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Abstract. Resting on a suitable base of the quotients of the \;-series for the
free groups on r generators, we get, for p odd, a class of TH-p-groups (the groups
in the title) "G, with arbitrary large derived length. We prove that every TH-p-
group G with r generators and exponent p™ is a quotient of "G, and a product
of m cyclic groups, where p™ = |Q1(G)|. At last we describe the TH-p-groups of
exponent p2.
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1 Introduction

Let G be a p-group and p an odd prime. We denote by Q;(G) the subgroup
of G generated by the elements of order dividing p’, and we call G’ a TH-
p-group if all its elements of order p are central, i.e., Q1(G) < Z(G). This
name was introduced by the authors in [2] in acknowledgment to Thompson
who first obtained some classical results for the number of generators of
these groups (see [4, III, 12.2]). In [2], it was shown that several properties
of the regular p-groups hold also for the class of TH-p-groups. There we
characterized the TH-p-groups G with |Q;(G)| = p? and exhibited some
other examples of TH-p-groups obtaining only metabelian groups.

In this paper, following a suggestion of C.M. Scoppola, we construct a
class of TH-p-groups "G, (see Definition 3.1) with arbitrary large derived
length (see Theorems 3.2 and 3.3).

This construction rests on the properties of the central series \;(F;.) of
the free group F). on r generators and on the behaviour of a particular base
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of the elementary abelian quotients \;(F,.)/Ai+1(F,) (see Theorem 2.5(c)).
The explicit determination of a base for \;(F;)/Ai+1(F,) has interest in
itself and we devote Section 2 to this, resting on methods and results in [5]
and [1].

Similar goals for the central series k,,(F)), the Jennings-Lazard—Zassen-
haus series of G, were reached by C.M. Scoppola in [6] (compare Lemma
1.11 and Proposition 2.5 in [6] with (a) and (c) of Theorem 2.5).

In Section 4, we observe that each TH-p-group with r generators and
exponent p" is a quotient of the group "G, (Theorem 4.1). Moreover, we
obtain some new general result about the structure of TH-p-groups which
turn out to be a suitable product of cyclic groups (Theorem 4.3). Finally,
in Section 5, we describe the TH-p-groups of exponent p2.

The notation is standard. We indicate by ~;(G) the i-th term of the
lower central series of a group G. Throughout this paper, p will be always
an odd prime.

2 The )\;-Series of the Free Groups

We recall the construction of the central series \;(G) of a group G and the
properties of this series which we intend to use, collecting them from [5]
and [1].

Definition 2.1. For any group G, put
Ai(G) =G (G wl(G) (P2 1).
Thus, A;(G) is a characteristic subgroup of G and
G=XM(G) 2 X(G) = = M(G) = -+

Theorem 2.2. [5, 1] For any i € N, the following properties hold:
(a) [M(G),A (@)] < X (G);
(b) Xi(G) = [Ai-1(G), G] A1 (G)";
(c) [ i(G), Gl =7(G) -7 (G); o
(@) if G/ (G) is torsion free, then M(G) 1% (G) = (G~ -+ w(G);
(€) Ni(G)P" < X (G);
(f) the A;-series is central and X\;(G)/Ai+1(G) is an elementary abelian

p-group.

Definition 2.3. Let F,. be the free group on r free generators =1, o, . .., T,
and A = (a1,as,...,a,) be an ordered subset of F,.. We denote by AP the
ordered subset AP = (a},db, ..., aP). Moreover, if H < F)., we denote with

A mod H the ordered subset (a1 H,a2H,... ,a,H) of F,./H.

For brevity, we will often write A; and ~; instead of A;(F,) and ~;(F}),
respectively.
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Lemma 2.4. Let aj,as,...,a, € \i—1 (i > 2). Then
(a1az -+ an)? = (a1Pas? -+ - a,?) mod Ajqq.

Proof. Let ay, as € \j—1. By the Hall-Petrescu formula, there exist elements

ek € ve(Nic1) (K =2,...,p) such that

pc(g) . ,cp_l(pfl)cp.

alpagp = (alaz) 2

Since i,k > 2, we get Ap;—1) < A;, and by (a) and (e) of Theorem 2.2, we
obtain vy, (A;) < Ag; and NP < Aj1; so whenever k < p — 1, we get

() YeAic1)? < Ai—)? < AP < N
For k = p, since ¢ > 2 and p > 3 imply p(i — 1) > i+ 1, we get

cp € Yp(Aic1) < Apiim1) < Aigr-

Hence,
alpagp = (a1a2)p mod /\i+1~
O

Now by induction on n, the lemma follows at once.

Theorem 2.5.
(a) Ai—1/X\i may be embedded into \;/Aiy1. Moreover, there exists a base
A;—1 mod \; of Ai—1/\; such that A;—1P mod ;41 is independent in

)\Z‘/)\iJrl .
For each i, let A; mod ;41 be a base of ~;/vit1. Then

(b)
(.A?Fl @] Ang U---uy Al) mod /\i-‘rl

is a base for \i/Aiy1.
Let C; denote the set of the basic commutators of weight © in a fized

sequence, then
i—2

Bii=(C" UG U UG) mod A\is

is a base of Ai/Xit1.
The map @; : \i—1 — Ai/Nit1 defined by xp; = xPN;y1 is a homomor-

(d)

phism and ker ¢, = \;.
Proof. (a) By a well-known result of Blackburn [5, VIII, 1.9b)], since p is
odd, there is an isomorphism

1
(073
Y1P7v2

Vi
ViPYi+1 — A/ din
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i—1 i—2

given by (@1, as, ... ,&i)ai =a1? ag?  ---a;Aiy1. If pois the natural im-
: 71 .. Yi-1 3 Y1 . i
mersion of Y1Pv2 x x Yi—1PYi nto Y1P72 x x YiPYit1’ then the map

= o1 oy s Nic1 /A — A/ Aiv

is a monomorphism.

Let a; € 'Yjp’Y’YJj+1 and z = (1,... ,1L,a5,1,. .. ,1)0&1‘_1 € /\i—l/)\i- Then

A; and we have

— g0t
T =a;

i—j
T, = CLjp /\¢+1 S /\z/)\z+1

Now if C; mod 7,741 is a base of v;/v;Pvj+1, then
i—1 i—1
p - pi—l—j
J (€5 mod 7,7y 1)ai1) = [ J (€ mod A;)
j=1 j=1

is a base, say A;_1 mod A; of A\;_1/A;. Hence, we obtain that

i—1
(Ai—l mod )\i)ﬂ'i = U (ij’lij mod /\i+1) = .Ai_lp mod )\i+1

j=1

is a base of Im ;.

(b) First of all, we observe that if A; mod 7,41 is a base of ~;/vit1,
since 7;/7;+1 18 a torsion-free abelian group, 4; mod ~;P7;4+1 is a base of
the elementary abelian group ~; /v:?Yit1-

Next the base (A; mod y1Py2) U--- U (A; mod v;Pvy,41) of

0 Ot (
Y1772 YiPYit1

is taken onto the base (.A’fli1 UAP " U+ UA;) mod Ay of Ai/Ais1 by
the isomorphism «; which we mentioned in the proof of (a).

(¢) By the well-known Hall’s basis theorem, C; mod ~;41 is a base of
~i/vi+1 (see [3, Chapter 11]). Thus, (c) follows from (b).

(d) By Lemma 2.4, the map ¢; : A\j—1 — /\)‘\il given by xp; = xPA;1q is

a homomorphism.
We prove ker p; = A;. Clearly, \; < ker ¢;, and we only need to show
that for x € A;_1, the condition a” € A;4q implies z € ;. By (a), we

can choose a base A;_1 mod A; for \;_1/A; with A;—1 = (a1,a9,... ,a)
such that AY ;| mod A;41 is independent in A;/A; 1. Let = af'a3? - - af*

mod A; for suitable 0 < o; < p. By Lemma 2.4, we get

P — 1P, 02p | Qup _
¥ =ai " aqy a; ' mod Aj41,

hence, zP € A\;4; implies

a1p ,02p ap — _
a;Fay? cap =1 mod M.
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Since .Aﬁll mod A;41 is independent, we obtain a1 = ag=---=a4=0. O
Note that the monomorphism of elementary abelian groups
@it Aic1/Xi — A/ i1

induced by ; coincides with the 7; introduced in the proof of (a) since they
agree on a base of A\;_1/\;.

3 The TH-p-Groups "G,
Definition 3.1. For all positive integers n and r > 2, we set

F,

"Gp=—
)\n+1(Fr)

Theorem 3.2. The groups "G, have the following properties:
(a) "G, is a finite p-group of order p!Br++IBnl,
(b) The nilpotency class of "G, is n.
(¢c) The exponent of "G, is p™.
(d) Al(nGr) = )\i/>\n+l fOT’ all 1 € N.
(e) The derived length dl("G,) of "G, is logy "4 + 2 when log, "4+ is
an integer, otherwise we have

+1 +1
flog, “5=1+ 1< dI("G,) < log, =1 +2,

where [a] denotes the upper integral part of the real number a.

Proof. (a) The order of "G,. follows immediately from Theorem 2.5(c).

(b) Since V41 ("Gy) = % = 1, the nilpotency class of "G, is

YnAnti
An
and by Theorem 2.5(c), C,, mod A, 11 is included in a base of )\n/)\nﬂtlso
¥n("G,) does not reduce to the identity.
(¢) Since F,7" = A" < An4+1 by Theorem 2.2(¢), we get exp ™G, < p™.
But C;?" " mod An+1 is included in a base of A, /A, 41, hence exp "G, = p™.
(d) We prove that A;("G,) = A;/A\n+1 by induction on i. The inductive

hypothesis gives

at most n. On the other side, C,, mod A, 41 generates v, ("G,) =

)

Ai—l(nc;’r) = )\i—l/An—i-h
hence by Theorem 2.2(b), we get

Xi(Er/An) = N1 (Fr/An)s Fr /A1) Nici (Fr/ Ang1)?
_ [)\i—l E, } ()\i—l)p _ N1, Fr] MiciPAnger N

s .
)\n+1 )\n+1 )\n+1 )\n+1 )\n+1 )\n+1

This also holds for 4 = 1 by the definition of "G,..
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(e) Since "G, < 751 ("G) < Aok ("G) = Aox /Ani1 by (d), we have
"G, (%) =1 whenever k > logy(n + 1), hence d1 ("G,) < [logy(n + 1)].

Next let 1 < x2 < --- < x, be the basic commutators of weight 1 in
F,.. We define inductively the elements u; € F,. by setting u; = [x2,z1] and
wiy1 = [[ui, 1], ug). Tt is easily checked by induction on i that the u; € F,.(*)
are basic commutators of weight w; = 20713 — 1. Therefore, u; € \,, and
U; & Aw,+1 since, by Theorem 2.5(c), the u; mod A, 41 belong to a base of
Aw; /Aw;+1. This means that (“’iGT)(i) # 1. Thus,

i <dl(""G,) < [logy(w; +1)] =i +1,

hence dl (*:G,) =i+ 1. If log, 41 =i — 1 is an integer, we get n = w;, so
dl("G,) = log, & + 2.

If log, ”TH is not an integer, there exists an integer ¢ such that w; < n <

w;+1. It is then clear that
1+ 1=dl(""G,) <dl("G,) <d(Y"*G,) =i+2

and i — 1 < log, "TH < 4. The thesis follows. |

Theorem 3.3. "G, is a TH-p-group on v generators.

Proof. First of all, we prove that "G, is a TH-p-group. Since the \;-series is
central, we only need to show that x € F,. and aP € A\, 41 imply = € \,. By
contradiction, assume x € A\;_1 — A; with ¢ < n. Since 2P € A\ 11 < Ai11,
by Theorem 2.5(d), we get = € ker p; = \;, against the assumption.

Next we observe that, by Theorem 3.2, ®("G,.) = A2("G,) coincides with
A2/An+1, and therefore, by Theorem 2.5(¢c), "G, : ®("G,.)| = |1 : Xo| = p",
which means d("G,) = r. O

Remark 3.4. If G is a TH-p-group of exponent p™, then \,+1—;(G) < Q;(G).
In particular \,4+1(G) = 1.

Indeed, this follows immediately from [5, VIII, 1.6] since the §2;-series is
central with elementary abelian factors (see [2, 2.3]).

Theorem 3.5. For 1l <i<mn and r > 2, it holds Q;("G,) = Apy1-:("G;)
_ Angi-i
Y

commutators of weight at most n on r free generators.

. Moreover, | ("G,)| = p™, where m is the number of the basic

Proof. We proceed by induction on i. It follows from the proof of Theorem
3.3 that for all x € F,, we have 2P € \,41 if and only if z € A\,. By
Theorem 3.2(d), this yields 1 ("Gr) = Ap/Ant1 = A ("G,). Assume now
that Q;("G,) = Ap41-:("G,). Then using [2, Lemma 2.2], Theorem 3.2(d)
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and the case i = 1, we have

Qi ("Gy) _ Qi ("Gy) —q, < "G, ) —q, ( A/ Ang1 )
)\n+17i (nGr) Qz (nGr) Qz (nGT) )\nJrlfi/)\nJrl

QA1 / Ant1-i) = U ("TIG) = Mmi("TUGy) = Mmi /A

)\n—i/)\n—i-l _ /\n—i(nGr)

)\nfiJrl/)\nJrl )\nJrlfi(nGr).

Thus,

I

~

QiJrl(nGr) ) )\nfz(nGr)
)\n—i-l—i (nGr) )\n+1—i(nGT) ’

and since \,—;("G,) < Q;11("G,) by Remark 3.4, we get that Q,1("G,)
= )\n—z(nGr)

Finally, by Theorem 3.2(d), we have |1 ("G,)| = [M("Gr)| = |An/Ant1l,
and Theorem 2.5(c) says that there is a base for the elementary abelian
group A, /An+1 which consists of as many elements as the number of the
basic commutators of weight at most n. O

4 TH-p-Groups
In this section, we want to describe deeply the structure of the TH-p-groups.

Theorem 4.1. Let G be a TH-p-group withlr generators and exp G = p".
Then G is a quotient "G, /N, where "G,»" £ N < ®("G,.).

Proof. Let F, be the free group on r free generators and ¢ : F, — G an
epimorphism. We only need to show kery > A\, 41(F,.). Since v is a homo-
morphism, we clearly have ¥(A;(F})) < A\;(G) for all ¢, and in particular,
by Remark 3.4, we get ¢(Ap41(Fr)) < A1 (G) = 1. O

Remark 4.2. Let "G,/N be a TH-p-group. Then "G, /(N N Q;("G,)) is
also a TH-p-group.

In fact, let T = zA\,41 € "G, for some z € F,, and let Z(N N Q;("G,))
be an element of order p of "G, /(N NQ;("G,)). Then 2* € NNQ;("G,) =
N N Apy1-i("Gy). In particular, Z? is in N, and since "G, /N is a TH-p-
group, this implies [Z,"G,] < N. On the other side, from zP € A\,,11-;("G,)
= Ant1—i/Ant1, it follows that 2P € A, 41—;. By the argument used in the
proof of Theorem 3.3, we get @ € A\,—;. Then [z, F}] < A\,4+1-; and this
implies [f,nGr} € )\n+17i<nGr) = Qi<"GT). Thus, [CE,”GT] < NN Qi(nGT),
ie, Z(NNQ("G,)) is central in "G, /(N N Q;("G,)).

Theorem 4.3. Let G be a TH-p-group with |Q1(G)| = p™. Then G is a
product of (not in general pairwise permutable) cyclic groups (a1), ... , (am),
where |a;| > |aj+1| and {(a;) N [{a1) - {ai—1){air1) - (am)] =1 for 1 <i <
m.
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Proof. We use induction on the exponent p"™ of G. When n = 1, G is an
elementary abelian p-group and the theorem holds. Next we observe that
G/Q1(G) is a TH-p-group of exponent p”~!. Setting

o o) -3

)

n(G) n(G)

by Theorem 2.3 in [2], we have m’ < m. By the inductive hypothesis,
we have % = (@1) -+ (@m), where for 1 < i < m/, |a;| > |a;+1| and
(@) N [(@1) - (ai-1)(@it1) -+ (@m)] = 1.

Now we set |a;| = [a;Q:(G)| = p" and H = (alphl,... ,am/ph’"’> <
01 (G).

We claim that H = (alph1> X +e X (am/phm/ ). Assume the contrary, then
for some ¢ and integers 0 < z1,... ,Ti—1, Tit1,... , Ty < P, We have

hq h1 ) hi—1 P hit1 Rt
aip — alﬂﬂlp .. _ai71$1—1P ai+1$l+1p . CLm/xm/p me

Let

1 h1—1

—phi— . hij_1-1 . hip1—1 Pt —1
b:ai p alx”’ ~--ai,1””*1p Ti41p Tyt p ™

Qjt1 o Qm ™ )

and observe that for all 7, aj_phj e Q5(G), which is nilpotent of class
2. Then the Hall-Petrescu formula implies b* = 1, so b € ;(G), a con-
tradiction. Hence, the thesis follows immediately if m’ = m. If m’ < m,
since Q1(G) < Z(G) is elementary abelian, there exists a subgroup K =
(@mrg1) X+ X {(am) of Q1(G) with Q1 (G) = Hx K. Then G = (a1) - - - {am),
and the conditions in the theorem are clearly satisfied. O

With the same argument, we can prove the following:

Theorem 4.4. Let G be a TH-p-group with exponent p™. If Amod Q,,_;(G)
is a base of Qp_i+1(G)/Qn—i(G), then AP mod Q,,—;—1(G) is independent
m ani(G)/anifl(G)-

Remark 4.5. Let G be a TH-p-group and N < G with N N GP = 1. Then
G/N is a TH-p-group. Actually, in this case, all the elements of order p in
G/N are images of elements of order p in G.

Remark 4.6. Let G/N be a TH-p-group. If there exists an element = €
G — ®(G) with 2P € N, then G/N has a cyclic direct factor.

5 TH-p-Groups of Exponent p?

Disregarding abelian TH-p-groups and TH-p-groups which differ from one
another in a cyclic direct factor, we have

Lemma 5.1. The TH-p-groups of exponent p*> with r generators are pre-
cisely 2G,. and the quotients G = 2G,./N, where N % G, N < ®(*G,) =
01 (%G,), and NN2G,P = 1.
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Proof. The third condition guarantees that G is a TH-p-group (see Remark
4.5). Conversely, if G is a non-abelian TH-p-group, then the first condition
is fulfilled, the second one follows from Theorem 4.1, and the third one is a
consequence of Remark 4.6. O

Now we study in more details the case r = 3. We get
203, — P’ _ PP p7 P _ p_ p_
G3—<m,y7z|m =Yy ==z _[yvx] —[Z,.T] —[Z,y] _1>

Let H = (zP,yP, 2P) = 2G§ and K = ([y, z|, [z, 2], [z, y]) = 2Gé By Lemma
5.1, the relevant TH-p-group quotients are obtained by N < Q;(?G3) =
H x K with NN H =1and NN K # K. From the condition NN H =1,
it follows that the allowed orders for N are p, p2, p>. The possible orders
for the commutator subgroup in the correspondent TH-p-groups are p? or
p® in the first case; p, p? or p? in the others two cases. Thus, we get at
least eight non-isomorphic TH-p-groups. But we may observe that there are
non-isomorphic TH-p-groups with the same order and the same commutator
subgroup order, as we see analyzing the case |N| = p.

Remark 5.2. (a) If N < K, then G = 2G3/N is isomorphic to the group
Gy = (u,v,w | w?’ =P’ =wP’ = [v,u]P = [w,ul? = [w,v] =1).

(b) If NN K =1, then G = 2G3/N is isomorphic to one of the following
non-isomorphic groups:

Gy = (w,v,w| uw?” =P =w?” = [v,u]P = [w,ulf =1, [w,v] = u"P),

Gs = (u,v,w|u?” = v =wP’ = [v,ulP = [w,ulf =1, [w,0v] = wP).

For (a), first of all, we observe that every k = [y, ]?[z, 2]’[z,y]¢ € K is a
commutator. Namely, as ?G3 is nilpotent of class 2, if ¢ #Z 0 (mod p), we have
k= [zcx’“,yxbc_l]; while if ¢ = 0 (mod p), we have k = [y?2°, z]. Let N =
(k), where k = [ga, g1]. Since ®(2G3) = Z(*>G3), we see that g;®(2G3) and
g2®(?G3) are independent, and one among the elements x,y, z, say x, does
not belong to the subgroup (g1, g2, ®(2G3)). Thus, g1, g2, * constitute a base
of 2G5, and the map = +— z, y — g1, 2 — g2 extends to an automorphism
of 2G3 which maps Ny = ([z,y]) onto the subgroup N = (k).

In the case (b), the group N is generated by an element of the form
[y, 2]%[z, 2]b[z, y]*x®Py°P 2/, where not all of a,b, ¢ and not all of d, e, f are
zero. As we showed in (a), the element [y, z]%[z, z]°[z,y]¢ is a commutator
[g2, g1], and it is convenient to separate two cases according to g3 = xtye 2t ¢
(g1,92) or g3 = 2%y € (g1, 92).

Assume g3 = 2%°27 ¢ (g1, g2). The elements g1, g, g3 constitute a base
for 2G5, and the automorphism determined by = +— g3, ¥ +— g2, z — g1
takes Ny = {([z,y]aP) onto N. It follows that 2G3/N = Gs.

Assume g3 = 2%°27 € (g1, g2). Then by the explicit form of g1, g» given

in (a), we get either g3 € <szm’“”,ypfcbc_lp> or gz € (Y2 zP). Anyway,
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this implies
be =cd+af. (*)

We show that () allows to define an automorphism of 2G'3 which takes
the element [z,y]z? into the element [y, x]%[z, z]°[z, y]°z™y°Pz/P. Namely,
if e,f # 0 (mod p), this automorphism is determined by z — x, y +—
ge (def T a)yef T z z¢ y ¢2f; while if f =0 and e # 0, it is determined
by x — x, y — z% Tmee” ,z»—>xyzf, andﬁnally,lffgéOande_O
it is determined by = — x, y — 2 y° ef 7! , z — z%y°z/. Observe that,
by (%), the only remaining possibility is ¢,e, f = 0, and in this case, the

-1 —1
—ad™ L =bd T s gyl Tt

automorphism is given by * — x, y — y
follows that 2G3/N = G3.
Finally, it is easily checked directly that there is no isomorphism between

G2 and G3.

Acknowledgement. We wish to thank Michael Vaughan Lee for many enlightening
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