\boldsymbol{p}-Groups with All the Elements of Order \boldsymbol{p} in the Center*

Daniela Bubboloni Gabriella Corsi Tani
DIMAD Universita’ di Firenze
via C. Lombroso 6/17, I-50134 Firenze, Italy
E-mail: daniela.bubboloni@dmd.unifi.it corsi@cce.unifi.it

Received 26 April 2001
Communicated by C.K. Gupta

Abstract

Resting on a suitable base of the quotients of the λ_{i}-series for the free groups on r generators, we get, for p odd, a class of TH- p-groups (the groups in the title) ${ }^{n} G_{r}$ with arbitrary large derived length. We prove that every TH- p group G with r generators and exponent p^{n} is a quotient of ${ }^{n} G_{r}$ and a product of m cyclic groups, where $p^{m}=\left|\Omega_{1}(G)\right|$. At last we describe the TH- p-groups of exponent p^{2}.

2000 Mathematics Subject Classification: 20D15
Keywords: p-groups, central series, free groups

1 Introduction

Let G be a p-group and p an odd prime. We denote by $\Omega_{i}(G)$ the subgroup of G generated by the elements of order dividing p^{i}, and we call G a $T H$ -p-group if all its elements of order p are central, i.e., $\Omega_{1}(G) \leq Z(G)$. This name was introduced by the authors in [2] in acknowledgment to Thompson who first obtained some classical results for the number of generators of these groups (see [4, III, 12.2]). In [2], it was shown that several properties of the regular p-groups hold also for the class of TH-p-groups. There we characterized the TH-p-groups G with $\left|\Omega_{1}(G)\right|=p^{2}$ and exhibited some other examples of TH- p-groups obtaining only metabelian groups.

In this paper, following a suggestion of C.M. Scoppola, we construct a class of TH- p-groups ${ }^{n} G_{r}$ (see Definition 3.1) with arbitrary large derived length (see Theorems 3.2 and 3.3).

This construction rests on the properties of the central series $\lambda_{i}\left(F_{r}\right)$ of the free group F_{r} on r generators and on the behaviour of a particular base

[^0]of the elementary abelian quotients $\lambda_{i}\left(F_{r}\right) / \lambda_{i+1}\left(F_{r}\right)$ (see Theorem 2.5(c)). The explicit determination of a base for $\lambda_{i}\left(F_{r}\right) / \lambda_{i+1}\left(F_{r}\right)$ has interest in itself and we devote Section 2 to this, resting on methods and results in [5] and [1].

Similar goals for the central series $\kappa_{n}\left(F_{r}\right)$, the Jennings-Lazard-Zassenhaus series of G, were reached by C.M. Scoppola in [6] (compare Lemma 1.11 and Proposition 2.5 in [6] with (a) and (c) of Theorem 2.5).

In Section 4, we observe that each TH- p-group with r generators and exponent p^{n} is a quotient of the group ${ }^{n} G_{r}$ (Theorem 4.1). Moreover, we obtain some new general result about the structure of TH-p-groups which turn out to be a suitable product of cyclic groups (Theorem 4.3). Finally, in Section 5, we describe the TH-p-groups of exponent p^{2}.

The notation is standard. We indicate by $\gamma_{i}(G)$ the i-th term of the lower central series of a group G. Throughout this paper, p will be always an odd prime.

2 The $\boldsymbol{\lambda}_{\boldsymbol{i}}$-Series of the Free Groups

We recall the construction of the central series $\lambda_{i}(G)$ of a group G and the properties of this series which we intend to use, collecting them from [5] and [1].

Definition 2.1. For any group G, put

$$
\lambda_{i}(G):=\gamma_{1}(G)^{p^{i-1}} \gamma_{2}(G)^{p^{i-2}} \cdots \gamma_{i}(G) \quad(i \geq 1)
$$

Thus, $\lambda_{i}(G)$ is a characteristic subgroup of G and

$$
G=\lambda_{1}(G) \geq \lambda_{2}(G) \geq \cdots \geq \lambda_{n}(G) \geq \cdots
$$

Theorem 2.2. [5, 1] For any $i \in \mathbb{N}$, the following properties hold:
(a) $\left[\lambda_{i}(G), \lambda_{j}(G)\right] \leq \lambda_{i+j}(G)$;
(b) $\lambda_{i}(G)=\left[\lambda_{i-1}(G), G\right] \lambda_{i-1}(G)^{p}$;
(c) $\left[\lambda_{i}(G), G\right]=\gamma_{2}(G)^{p^{i-1}} \cdots \gamma_{i+1}(G)$;
(d) if $G / \gamma_{j}(G)$ is torsion free, then $\lambda_{i}(G) \cap \gamma_{j}(G)=\gamma_{j}(G)^{p^{i-j}} \cdots \gamma_{i}(G)$;
(e) $\lambda_{i}(G)^{p^{j}} \leq \lambda_{i+j}(G)$;
(f) the λ_{i}-series is central and $\lambda_{i}(G) / \lambda_{i+1}(G)$ is an elementary abelian p-group.

Definition 2.3. Let F_{r} be the free group on r free generators $x_{1}, x_{2}, \ldots, x_{r}$, and $\mathcal{A}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be an ordered subset of F_{r}. We denote by \mathcal{A}^{p} the ordered subset $\mathcal{A}^{p}=\left(a_{1}^{p}, a_{2}^{p}, \ldots, a_{n}^{p}\right)$. Moreover, if $H \unlhd F_{r}$, we denote with $\mathcal{A} \bmod H$ the ordered subset $\left(a_{1} H, a_{2} H, \ldots, a_{n} H\right)$ of F_{r} / H.

For brevity, we will often write λ_{i} and γ_{i} instead of $\lambda_{i}\left(F_{r}\right)$ and $\gamma_{i}\left(F_{r}\right)$, respectively.

Lemma 2.4. Let $a_{1}, a_{2}, \ldots, a_{n} \in \lambda_{i-1}(i \geq 2)$. Then

$$
\left(a_{1} a_{2} \cdots a_{n}\right)^{p} \equiv\left(a_{1}{ }^{p} a_{2}{ }^{p} \cdots a_{n}{ }^{p}\right) \bmod \lambda_{i+1} .
$$

Proof. Let $a_{1}, a_{2} \in \lambda_{i-1}$. By the Hall-Petrescu formula, there exist elements $c_{k} \in \gamma_{k}\left(\lambda_{i-1}\right)(k=2, \ldots, p)$ such that

$$
a_{1}^{p} a_{2}^{p}=\left(a_{1} a_{2}\right)^{p} c_{2}^{\binom{p}{2}} \cdots c_{p-1}{ }^{\left({ }_{p-1}^{p}\right)} c_{p} .
$$

Since $i, k \geq 2$, we get $\lambda_{k(i-1)} \leq \lambda_{i}$, and by (a) and (e) of Theorem 2.2, we obtain $\gamma_{k}\left(\lambda_{i}\right) \leq \lambda_{k i}$ and $\lambda_{i}{ }^{p} \leq \lambda_{i+1}$; so whenever $k \leq p-1$, we get

$$
c_{k}\binom{p}{k} \in \gamma_{k}\left(\lambda_{i-1}\right)^{p} \leq \lambda_{k(i-1)}{ }^{p} \leq \lambda_{i}^{p} \leq \lambda_{i+1} .
$$

For $k=p$, since $i \geq 2$ and $p \geq 3$ imply $p(i-1) \geq i+1$, we get

$$
c_{p} \in \gamma_{p}\left(\lambda_{i-1}\right) \leq \lambda_{p(i-1)} \leq \lambda_{i+1} .
$$

Hence,

$$
a_{1}{ }^{p} a_{2}{ }^{p} \equiv\left(a_{1} a_{2}\right)^{p} \bmod \lambda_{i+1} .
$$

Now by induction on n, the lemma follows at once.

Theorem 2.5.

(a) $\lambda_{i-1} / \lambda_{i}$ may be embedded into $\lambda_{i} / \lambda_{i+1}$. Moreover, there exists a base $\mathcal{A}_{i-1} \bmod \lambda_{i}$ of $\lambda_{i-1} / \lambda_{i}$ such that $\mathcal{A}_{i-1}^{p} \bmod \lambda_{i+1}$ is independent in $\lambda_{i} / \lambda_{i+1}$.
(b) For each i, let $\mathcal{A}_{i} \bmod \gamma_{i+1}$ be a base of $\gamma_{i} / \gamma_{i+1}$. Then

$$
\left(\mathcal{A}_{1}^{p^{i-1}} \cup \mathcal{A}_{2}^{p^{i-2}} \cup \cdots \cup \mathcal{A}_{i}\right) \bmod \lambda_{i+1}
$$

is a base for $\lambda_{i} / \lambda_{i+1}$.
(c) Let \mathcal{C}_{i} denote the set of the basic commutators of weight i in a fixed sequence, then

$$
\mathcal{B}_{i}:=\left(\mathcal{C}_{1}^{p^{i-1}} \cup \mathcal{C}_{2}{ }^{p^{i-2}} \cup \cdots \cup \mathcal{C}_{i}\right) \bmod \lambda_{i+1}
$$

is a base of $\lambda_{i} / \lambda_{i+1}$.
(d) The map $\varphi_{i}: \lambda_{i-1} \rightarrow \lambda_{i} / \lambda_{i+1}$ defined by $x \varphi_{i}=x^{p} \lambda_{i+1}$ is a homomorphism and $\operatorname{ker} \varphi_{i}=\lambda_{i}$.

Proof. (a) By a well-known result of Blackburn [5, VIII, 1.9b)], since p is odd, there is an isomorphism

$$
\alpha_{i}: \frac{\gamma_{1}}{\gamma_{1}^{p} \gamma_{2}} \times \cdots \times \frac{\gamma_{i}}{\gamma_{i}^{p} \gamma_{i+1}} \longrightarrow \lambda_{i} / \lambda_{i+1}
$$

given by $\left(\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{i}\right) \alpha_{i}=a_{1}{ }^{p^{i-1}} a_{2} p^{p^{i-2}} \cdots a_{i} \lambda_{i+1}$. If μ is the natural immersion of $\frac{\gamma_{1}}{\gamma_{1}{ }^{p} \gamma_{2}} \times \cdots \times \frac{\gamma_{i-1}}{\gamma_{i-1}^{p} \gamma_{i}}$ into $\frac{\gamma_{1}}{\gamma_{1}{ }^{p} \gamma_{2}} \times \cdots \times \frac{\gamma_{i}}{\gamma_{i}{ }^{p} \gamma_{i+1}}$, then the map

$$
\pi_{i}=\alpha_{i-1}^{-1} \mu \alpha_{i}: \lambda_{i-1} / \lambda_{i} \longrightarrow \lambda_{i} / \lambda_{i+1}
$$

is a monomorphism.
Let $\bar{a}_{j} \in \frac{\gamma_{j}}{\gamma_{j}{ }^{p} \gamma_{j+1}}$ and $x=\left(1, \ldots, 1, \bar{a}_{j}, 1, \ldots, 1\right) \alpha_{i-1} \in \lambda_{i-1} / \lambda_{i}$. Then $x=a_{j}{ }^{p^{i-j-1}} \lambda_{i}$ and we have

$$
x \pi_{i}=a_{j}^{p^{i-j}} \lambda_{i+1} \in \lambda_{i} / \lambda_{i+1}
$$

Now if $\mathcal{C}_{j} \bmod \gamma_{j}{ }^{p} \gamma_{j+1}$ is a base of $\gamma_{j} / \gamma_{j}{ }^{p} \gamma_{j+1}$, then

$$
\bigcup_{j=1}^{i-1}\left(\left(\mathcal{C}_{j} \bmod \gamma_{j}{ }^{p} \gamma_{j+1}\right) \alpha_{i-1}\right)=\bigcup_{j=1}^{i-1}\left(\mathcal{C}_{j} p^{i-1-j} \bmod \lambda_{i}\right)
$$

is a base, say $\mathcal{A}_{i-1} \bmod \lambda_{i}$ of $\lambda_{i-1} / \lambda_{i}$. Hence, we obtain that

$$
\left(\mathcal{A}_{i-1} \bmod \lambda_{i}\right) \pi_{i}=\bigcup_{j=1}^{i-1}\left(\mathcal{C}_{j} p^{p^{i-j}} \bmod \lambda_{i+1}\right)=\mathcal{A}_{i-1}^{p} \bmod \lambda_{i+1}
$$

is a base of $\operatorname{Im} \pi_{i}$.
(b) First of all, we observe that if $\mathcal{A}_{i} \bmod \gamma_{i+1}$ is a base of $\gamma_{i} / \gamma_{i+1}$, since $\gamma_{i} / \gamma_{i+1}$ is a torsion-free abelian group, $\mathcal{A}_{i} \bmod \gamma_{i}{ }^{p} \gamma_{i+1}$ is a base of the elementary abelian group $\gamma_{i} / \gamma_{i}^{p} \gamma_{i+1}$.

Next the base $\left(\mathcal{A}_{1} \bmod \gamma_{1}{ }^{p} \gamma_{2}\right) \cup \cdots \cup\left(\mathcal{A}_{i} \bmod \gamma_{i}{ }^{p} \gamma_{i+1}\right)$ of

$$
\frac{\gamma_{1}}{\gamma_{1}^{p} \gamma_{2}} \times \cdots \times \frac{\gamma_{i}}{\gamma_{i}^{p} \gamma_{i+1}}
$$

is taken onto the base $\left(\mathcal{A}_{1}^{p^{i-1}} \cup \mathcal{A}_{2} p^{p^{i-2}} \cup \cdots \cup \mathcal{A}_{i}\right) \bmod \lambda_{i+1}$ of $\lambda_{i} / \lambda_{i+1}$ by the isomorphism α_{i} which we mentioned in the proof of (a).
(c) By the well-known Hall's basis theorem, $\mathcal{C}_{i} \bmod \gamma_{i+1}$ is a base of $\gamma_{i} / \gamma_{i+1}$ (see [3, Chapter 11]). Thus, (c) follows from (b).
(d) By Lemma 2.4, the map $\varphi_{i}: \lambda_{i-1} \rightarrow \frac{\lambda_{i}}{\lambda_{i+1}}$ given by $x \varphi_{i}=x^{p} \lambda_{i+1}$ is a homomorphism.

We prove $\operatorname{ker} \varphi_{i}=\lambda_{i}$. Clearly, $\lambda_{i} \leq \operatorname{ker} \varphi_{i}$, and we only need to show that for $x \in \lambda_{i-1}$, the condition $x^{p} \in \lambda_{i+1}$ implies $x \in \lambda_{i}$. By (a), we can choose a base $\mathcal{A}_{i-1} \bmod \lambda_{i}$ for $\lambda_{i-1} / \lambda_{i}$ with $\mathcal{A}_{i-1}=\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ such that $\mathcal{A}_{i-1}^{p} \bmod \lambda_{i+1}$ is independent in $\lambda_{i} / \lambda_{i+1}$. Let $x \equiv a_{1}^{\alpha_{1}} a_{2}^{\alpha_{2}} \cdots a_{t}^{\alpha_{t}}$ $\bmod \lambda_{i}$ for suitable $0 \leq \alpha_{i}<p$. By Lemma 2.4, we get

$$
x^{p} \equiv a_{1}^{\alpha_{1} p} a_{2}^{\alpha_{2} p} \cdots a_{t}^{\alpha_{t} p} \bmod \lambda_{i+1}
$$

hence, $x^{p} \in \lambda_{i+1}$ implies

$$
a_{1}^{\alpha_{1} p} a_{2}^{\alpha_{2} p} \cdots a_{t}^{\alpha_{t} p} \equiv 1 \bmod \lambda_{i+1}
$$

Since $\mathcal{A}_{i-1}^{p} \bmod \lambda_{i+1}$ is independent, we obtain $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{t}=0$.
Note that the monomorphism of elementary abelian groups

$$
\bar{\varphi}_{i}: \lambda_{i-1} / \lambda_{i} \longrightarrow \lambda_{i} / \lambda_{i+1}
$$

induced by φ_{i} coincides with the π_{i} introduced in the proof of (a) since they agree on a base of $\lambda_{i-1} / \lambda_{i}$.

3 The TH- \boldsymbol{p}-Groups ${ }^{n} \boldsymbol{G}_{r}$

Definition 3.1. For all positive integers n and $r \geq 2$, we set

$$
{ }^{n} G_{r}=\frac{F_{r}}{\lambda_{n+1}\left(F_{r}\right)}
$$

Theorem 3.2. The groups ${ }^{n} G_{r}$ have the following properties:
(a) ${ }^{n} G_{r}$ is a finite p-group of order $p^{\left|\mathcal{B}_{1}\right|+\cdots+\left|\mathcal{B}_{n}\right|}$.
(b) The nilpotency class of ${ }^{n} G_{r}$ is n.
(c) The exponent of ${ }^{n} G_{r}$ is p^{n}.
(d) $\lambda_{i}\left({ }^{n} G_{r}\right)=\lambda_{i} / \lambda_{n+1}$ for all $i \in \mathbb{N}$.
(e) The derived length $\mathrm{dl}\left({ }^{n} G_{r}\right)$ of ${ }^{n} G_{r}$ is $\log _{2} \frac{n+1}{3}+2$ when $\log _{2} \frac{n+1}{3}$ is an integer, otherwise we have

$$
\left\lceil\log _{2} \frac{n+1}{3}\right\rceil+1 \leq \mathrm{dl}\left({ }^{n} G_{r}\right) \leq\left\lceil\log _{2} \frac{n+1}{3}\right\rceil+2
$$

where $\lceil a\rceil$ denotes the upper integral part of the real number a.
Proof. (a) The order of ${ }^{n} G_{r}$ follows immediately from Theorem 2.5(c).
(b) Since $\gamma_{n+1}\left({ }^{n} G_{r}\right)=\frac{\gamma_{n+1} \lambda_{n+1}}{\lambda_{n+1}}=1$, the nilpotency class of ${ }^{n} G_{r}$ is at most n. On the other side, $\mathcal{C}_{n} \bmod \lambda_{n+1}$ generates $\gamma_{n}\left({ }^{n} G_{r}\right)=\frac{\gamma_{n} \lambda_{n+1}}{\lambda_{n+1}}$, and by Theorem 2.5(c), $\mathcal{C}_{n} \bmod \lambda_{n+1}$ is included in a base of $\lambda_{n} / \lambda_{n+1}$, so $\gamma_{n}\left({ }^{n} G_{r}\right)$ does not reduce to the identity.
(c) Since $F_{r}{ }^{p^{n}}=\lambda_{1}{ }^{p^{n}} \leq \lambda_{n+1}$ by Theorem 2.2(e), we get $\exp ^{n} G_{r} \leq p^{n}$. But $\mathcal{C}_{1} p^{n-1} \bmod \lambda_{n+1}$ is included in a base of $\lambda_{n} / \lambda_{n+1}$, hence $\exp ^{n} G_{r}=p^{n}$.
(d) We prove that $\lambda_{i}\left({ }^{n} G_{r}\right)=\lambda_{i} / \lambda_{n+1}$ by induction on i. The inductive hypothesis gives

$$
\lambda_{i-1}\left({ }^{n} G_{r}\right)=\lambda_{i-1} / \lambda_{n+1}
$$

hence by Theorem 2.2(b), we get

$$
\begin{gathered}
\lambda_{i}\left(F_{r} / \lambda_{n}\right)=\left[\lambda_{i-1}\left(F_{r} / \lambda_{n}\right), F_{r} / \lambda_{n+1}\right] \lambda_{i-1}\left(F_{r} / \lambda_{n+1}\right)^{p} \\
= \\
{\left[\frac{\lambda_{i-1}}{\lambda_{n+1}}, \frac{F_{r}}{\lambda_{n+1}}\right]\left(\frac{\lambda_{i-1}}{\lambda_{n+1}}\right)^{p}=\frac{\left[\lambda_{i-1}, F_{r}\right]}{\lambda_{n+1}} \frac{\lambda_{i-1}{ }^{p} \lambda_{n+1}}{\lambda_{n+1}}=\frac{\lambda_{i}}{\lambda_{n+1}} .}
\end{gathered}
$$

This also holds for $i=1$ by the definition of ${ }^{n} G_{r}$.
(e) Since ${ }^{n} G_{r}{ }^{(k)} \leq \gamma_{2^{k}}\left({ }^{n} G_{r}\right) \leq \lambda_{2^{k}}\left({ }^{n} G_{r}\right)=\lambda_{2^{k}} / \lambda_{n+1}$ by (d), we have ${ }^{n} G_{r}{ }^{(k)}=1$ whenever $k \geq \log _{2}(n+1)$, hence dl $\left({ }^{n} G_{r}\right) \leq\left\lceil\log _{2}(n+1)\right\rceil$.

Next let $x_{1}<x_{2}<\cdots<x_{r}$ be the basic commutators of weight 1 in F_{r}. We define inductively the elements $u_{i} \in F_{r}$ by setting $u_{1}=\left[x_{2}, x_{1}\right]$ and $u_{i+1}=\left[\left[u_{i}, x_{1}\right], u_{i}\right]$. It is easily checked by induction on i that the $u_{i} \in F_{r}{ }^{(i)}$ are basic commutators of weight $w_{i}=2^{i-1} 3-1$. Therefore, $u_{i} \in \lambda_{w_{i}}$ and $u_{i} \notin \lambda_{w_{i}+1}$ since, by Theorem 2.5(c), the $u_{i} \bmod \lambda_{w_{i}+1}$ belong to a base of $\lambda_{w_{i}} / \lambda_{w_{i}+1}$. This means that $\left({ }^{w_{i}} G_{r}\right)^{(i)} \neq 1$. Thus,

$$
i<\mathrm{dl}\left({ }^{w_{i}} G_{r}\right) \leq\left\lceil\log _{2}\left(w_{i}+1\right)\right\rceil=i+1
$$

hence $\operatorname{dl}\left({ }^{w_{i}} G_{r}\right)=i+1$. If $\log _{2} \frac{n+1}{3}=i-1$ is an integer, we get $n=w_{i}$, so $\mathrm{dl}\left({ }^{n} G_{r}\right)=\log _{2} \frac{n+1}{3}+2$.

If $\log _{2} \frac{n+1}{3}$ is not an integer, there exists an integer i such that $w_{i}<n<$ w_{i+1}. It is then clear that

$$
i+1=\operatorname{dl}\left({ }^{w_{i}} G_{r}\right) \leq \operatorname{dl}\left({ }^{n} G_{r}\right) \leq \operatorname{dl}\left({ }^{w_{i+1}} G_{r}\right)=i+2
$$

and $i-1<\log _{2} \frac{n+1}{3}<i$. The thesis follows.
Theorem 3.3. ${ }^{n} G_{r}$ is a TH-p-group on r generators.
Proof. First of all, we prove that ${ }^{n} G_{r}$ is a TH- p-group. Since the λ_{i}-series is central, we only need to show that $x \in F_{r}$ and $x^{p} \in \lambda_{n+1}$ imply $x \in \lambda_{n}$. By contradiction, assume $x \in \lambda_{i-1}-\lambda_{i}$ with $i \leq n$. Since $x^{p} \in \lambda_{n+1} \leq \lambda_{i+1}$, by Theorem $2.5(\mathrm{~d})$, we get $x \in \operatorname{ker} \varphi_{i}=\lambda_{i}$, against the assumption.

Next we observe that, by Theorem 3.2, $\Phi\left({ }^{n} G_{r}\right)=\lambda_{2}\left({ }^{n} G_{r}\right)$ coincides with $\lambda_{2} / \lambda_{n+1}$, and therefore, by Theorem $2.5(\mathrm{c}),\left|{ }^{n} G_{r}: \Phi\left({ }^{n} G_{r}\right)\right|=\left|\lambda_{1}: \lambda_{2}\right|=p^{r}$, which means $d\left({ }^{n} G_{r}\right)=r$.

Remark 3.4. If G is a TH- p-group of exponent p^{n}, then $\lambda_{n+1-i}(G) \leq \Omega_{i}(G)$. In particular $\lambda_{n+1}(G)=1$.

Indeed, this follows immediately from [5, VIII, 1.6] since the Ω_{i}-series is central with elementary abelian factors (see [2, 2.3]).

Theorem 3.5. For $1 \leq i \leq n$ and $r \geq 2$, it holds $\Omega_{i}\left({ }^{n} G_{r}\right)=\lambda_{n+1-i}\left({ }^{n} G_{r}\right)$ $=\frac{\lambda_{n+1-i}}{\lambda_{n+1}}$. Moreover, $\left|\Omega_{1}\left({ }^{n} G_{r}\right)\right|=p^{m}$, where m is the number of the basic commutators of weight at most n on r free generators.
Proof. We proceed by induction on i. It follows from the proof of Theorem 3.3 that for all $x \in F_{r}$, we have $x^{p} \in \lambda_{n+1}$ if and only if $x \in \lambda_{n}$. By Theorem 3.2(d), this yields $\Omega_{1}\left({ }^{n} G_{r}\right)=\lambda_{n} / \lambda_{n+1}=\lambda_{n}\left({ }^{n} G_{r}\right)$. Assume now that $\Omega_{i}\left({ }^{n} G_{r}\right)=\lambda_{n+1-i}\left({ }^{n} G_{r}\right)$. Then using [2, Lemma 2.2], Theorem 3.2(d)
and the case $i=1$, we have

$$
\begin{aligned}
& \frac{\Omega_{i+1}\left({ }^{n} G_{r}\right)}{\lambda_{n+1-i}\left({ }^{n} G_{r}\right)}=\frac{\Omega_{i+1}\left({ }^{n} G_{r}\right)}{\Omega_{i}\left({ }^{n} G_{r}\right)}=\Omega_{1}\left(\frac{{ }^{n} G_{r}}{\Omega_{i}\left({ }^{n} G_{r}\right)}\right)=\Omega_{1}\left(\frac{\lambda_{1} / \lambda_{n+1}}{\lambda_{n+1-i} / \lambda_{n+1}}\right) \\
\cong & \Omega_{1}\left(\lambda_{1} / \lambda_{n+1-i}\right)=\Omega_{1}\left({ }^{n-i} G_{r}\right)=\lambda_{n-i}\left({ }^{n-i} G_{r}\right)=\lambda_{n-i} / \lambda_{n-i+1} \\
\cong & \frac{\lambda_{n-i} / \lambda_{n+1}}{\lambda_{n-i+1} / \lambda_{n+1}}=\frac{\lambda_{n-i}\left({ }^{n} G_{r}\right)}{\lambda_{n+1-i}\left({ }^{n} G_{r}\right)} .
\end{aligned}
$$

Thus,

$$
\frac{\Omega_{i+1}\left({ }^{n} G_{r}\right)}{\lambda_{n+1-i}\left({ }^{n} G_{r}\right)} \cong \frac{\lambda_{n-i}\left({ }^{n} G_{r}\right)}{\lambda_{n+1-i}\left({ }^{n} G_{r}\right)}
$$

and since $\lambda_{n-i}\left({ }^{n} G_{r}\right) \leq \Omega_{i+1}\left({ }^{n} G_{r}\right)$ by Remark 3.4 , we get that $\Omega_{i+1}\left({ }^{n} G_{r}\right)$ $=\lambda_{n-i}\left({ }^{n} G_{r}\right)$.

Finally, by Theorem 3.2(d), we have $\left|\Omega_{1}\left({ }^{n} G_{r}\right)\right|=\left|\lambda_{n}\left({ }^{n} G_{r}\right)\right|=\left|\lambda_{n} / \lambda_{n+1}\right|$, and Theorem $2.5(\mathrm{c})$ says that there is a base for the elementary abelian group $\lambda_{n} / \lambda_{n+1}$ which consists of as many elements as the number of the basic commutators of weight at most n.

4 TH- p-Groups

In this section, we want to describe deeply the structure of the TH- p-groups.
Theorem 4.1. Let G be a TH-p-group with r generators and $\exp G=p^{n}$. Then G is a quotient ${ }^{n} G_{r} / N$, where ${ }^{n} G_{r}{ }^{p^{n-1}} \not \leq N \leq \Phi\left({ }^{n} G_{r}\right)$.
Proof. Let F_{r} be the free group on r free generators and $\psi: F_{r} \rightarrow G$ an epimorphism. We only need to show $\operatorname{ker} \psi \geq \lambda_{n+1}\left(F_{r}\right)$. Since ψ is a homomorphism, we clearly have $\psi\left(\lambda_{i}\left(F_{r}\right)\right) \leq \lambda_{i}(G)$ for all i, and in particular, by Remark 3.4 , we get $\psi\left(\lambda_{n+1}\left(F_{r}\right)\right) \leq \lambda_{n+1}(G)=1$.

Remark 4.2. Let ${ }^{n} G_{r} / N$ be a TH- p-group. Then ${ }^{n} G_{r} /\left(N \cap \Omega_{i}\left({ }^{n} G_{r}\right)\right)$ is also a TH- p-group.

In fact, let $\bar{x}=x \lambda_{n+1} \in{ }^{n} G_{r}$ for some $x \in F_{r}$, and let $\bar{x}\left(N \cap \Omega_{i}\left({ }^{n} G_{r}\right)\right)$ be an element of order p of ${ }^{n} G_{r} /\left(N \cap \Omega_{i}\left({ }^{n} G_{r}\right)\right)$. Then $\bar{x}^{p} \in N \cap \Omega_{i}\left({ }^{n} G_{r}\right)=$ $N \cap \lambda_{n+1-i}\left({ }^{n} G_{r}\right)$. In particular, \bar{x}^{p} is in N, and since ${ }^{n} G_{r} / N$ is a TH- p group, this implies $\left[\bar{x},{ }^{n} G_{r}\right] \leq N$. On the other side, from $\bar{x}^{p} \in \lambda_{n+1-i}\left({ }^{n} G_{r}\right)$ $=\lambda_{n+1-i} / \lambda_{n+1}$, it follows that $x^{p} \in \lambda_{n+1-i}$. By the argument used in the proof of Theorem 3.3, we get $x \in \lambda_{n-i}$. Then $\left[x, F_{r}\right] \leq \lambda_{n+1-i}$ and this implies $\left[\bar{x},{ }^{n} G_{r}\right] \in \lambda_{n+1-i}\left({ }^{n} G_{r}\right)=\Omega_{i}\left({ }^{n} G_{r}\right)$. Thus, $\left[\bar{x},{ }^{n} G_{r}\right] \leq N \cap \Omega_{i}\left({ }^{n} G_{r}\right)$, i.e., $\bar{x}\left(N \cap \Omega_{i}\left({ }^{n} G_{r}\right)\right)$ is central in ${ }^{n} G_{r} /\left(N \cap \Omega_{i}\left({ }^{n} G_{r}\right)\right)$.

Theorem 4.3. Let G be a TH-p-group with $\left|\Omega_{1}(G)\right|=p^{m}$. Then G is a product of (not in general pairwise permutable) cyclic groups $\left\langle a_{1}\right\rangle, \ldots,\left\langle a_{m}\right\rangle$, where $\left|a_{i}\right| \geq\left|a_{i+1}\right|$ and $\left\langle a_{i}\right\rangle \cap\left[\left\langle a_{1}\right\rangle \cdots\left\langle a_{i-1}\right\rangle\left\langle a_{i+1}\right\rangle \cdots\left\langle a_{m}\right\rangle\right]=1$ for $1 \leq i \leq$ m.

Proof. We use induction on the exponent p^{n} of G. When $n=1, G$ is an elementary abelian p-group and the theorem holds. Next we observe that $G / \Omega_{1}(G)$ is a TH- p-group of exponent p^{n-1}. Setting

$$
p^{m^{\prime}}=\left|\Omega_{1}\left(\frac{G}{\Omega_{1}(G)}\right)\right|=\left|\frac{\Omega_{2}(G)}{\Omega_{1}(G)}\right|,
$$

by Theorem 2.3 in [2], we have $m^{\prime} \leq m$. By the inductive hypothesis, we have $\frac{G}{\Omega_{1}(G)}=\left\langle\bar{a}_{1}\right\rangle \cdots\left\langle\bar{a}_{m^{\prime}}\right\rangle$, where for $1 \leq i \leq m^{\prime},\left|\bar{a}_{i}\right| \geq\left|\bar{a}_{i+1}\right|$ and $\left\langle\bar{a}_{i}\right\rangle \cap\left[\left\langle\bar{a}_{1}\right\rangle \cdots\left\langle\bar{a}_{i-1}\right\rangle\left\langle\bar{a}_{i+1}\right\rangle \cdots\left\langle\bar{a}_{m^{\prime}}\right\rangle\right]=1$.

Now we set $\left|\bar{a}_{i}\right|=\left|a_{i} \Omega_{1}(G)\right|=p^{h_{i}}$ and $H=\left\langle a_{1} p^{p_{1}}, \ldots, a_{m^{\prime}}{ }^{p^{h_{m}}}\right\rangle \leq$ $\Omega_{1}(G)$.

We claim that $H=\left\langle a_{1} p^{h_{1}}\right\rangle \times \cdots \times\left\langle a_{m^{\prime}}{ }^{p^{h_{m}}}\right\rangle$. Assume the contrary, then for some i and integers $0 \leq x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m^{\prime}}<p$, we have

$$
a_{i} p^{p_{i}}=a_{1}{ }^{x_{1} p^{h_{1}}} \cdots a_{i-1}{ }^{x_{i-1} p^{h_{i-1}}} a_{i+1}{ }^{x_{i+1} p^{h_{i+1}}} \cdots a_{m^{\prime}}^{x_{m^{\prime}} p^{h_{m^{\prime}}}}
$$

Let

$$
b=a_{i}-^{p_{i}-1} a_{1}{ }^{x_{1} p^{h_{1}-1}} \cdots a_{i-1} x_{i-1} p^{h_{i-1}-1} a_{i+1} x^{x_{i+1} p^{h_{i+1}-1}} \cdots a_{m^{\prime}}^{x_{m^{\prime}} p^{h_{m^{\prime}}-1}},
$$

and observe that for all $j, a_{j}^{-p^{h_{j}-1}} \in \Omega_{2}(G)$, which is nilpotent of class 2. Then the Hall-Petrescu formula implies $b^{p}=1$, so $b \in \Omega_{1}(G)$, a contradiction. Hence, the thesis follows immediately if $m^{\prime}=m$. If $m^{\prime}<m$, since $\Omega_{1}(G) \leq Z(G)$ is elementary abelian, there exists a subgroup $K=$ $\left\langle a_{m^{\prime}+1}\right\rangle \times \cdots \times\left\langle a_{m}\right\rangle$ of $\Omega_{1}(G)$ with $\Omega_{1}(G)=H \times K$. Then $G=\left\langle a_{1}\right\rangle \cdots\left\langle a_{m}\right\rangle$, and the conditions in the theorem are clearly satisfied.

With the same argument, we can prove the following:
Theorem 4.4. Let G be a TH-p-group with exponent p^{n}. If $\mathcal{A} \bmod \Omega_{n-i}(G)$ is a base of $\Omega_{n-i+1}(G) / \Omega_{n-i}(G)$, then $\mathcal{A}^{p} \bmod \Omega_{n-i-1}(G)$ is independent in $\Omega_{n-i}(G) / \Omega_{n-i-1}(G)$.

Remark 4.5. Let G be a TH- p-group and $N \triangleleft G$ with $N \cap G^{p}=1$. Then G / N is a TH-p-group. Actually, in this case, all the elements of order p in G / N are images of elements of order p in G.
Remark 4.6. Let G / N be a TH- p-group. If there exists an element $x \in$ $G-\Phi(G)$ with $x^{p} \in N$, then G / N has a cyclic direct factor.

5 TH- \boldsymbol{p}-Groups of Exponent $\boldsymbol{p}^{\mathbf{2}}$

Disregarding abelian TH- p-groups and TH- p-groups which differ from one another in a cyclic direct factor, we have
Lemma 5.1. The TH-p-groups of exponent p^{2} with r generators are precisely ${ }^{2} G_{r}$ and the quotients $G={ }^{2} G_{r} / N$, where $N \nsupseteq{ }^{2} G_{r}^{\prime}, N \leq \Phi\left({ }^{2} G_{r}\right)=$ $\Omega_{1}\left({ }^{2} G_{r}\right)$, and $N \cap{ }^{2} G_{r}{ }^{p}=1$.

Proof. The third condition guarantees that G is a TH-p-group (see Remark 4.5). Conversely, if G is a non-abelian TH-p-group, then the first condition is fulfilled, the second one follows from Theorem 4.1, and the third one is a consequence of Remark 4.6.

Now we study in more details the case $r=3$. We get

$$
{ }^{2} G_{3}=\left\langle x, y, z \mid x^{p^{2}}=y^{p^{2}}=z^{p^{2}}=[y, x]^{p}=[z, x]^{p}=[z, y]^{p}=1\right\rangle .
$$

Let $H=\left\langle x^{p}, y^{p}, z^{p}\right\rangle={ }^{2} G_{3}^{p}$ and $K=\langle[y, x],[z, x],[z, y]\rangle={ }^{2} G_{3}^{\prime}$. By Lemma 5.1, the relevant TH-p-group quotients are obtained by $N \leq \Omega_{1}\left({ }^{2} G_{3}\right)=$ $H \times K$ with $N \cap H=1$ and $N \cap K \neq K$. From the condition $N \cap H=1$, it follows that the allowed orders for N are p, p^{2}, p^{3}. The possible orders for the commutator subgroup in the correspondent TH-p-groups are p^{2} or p^{3} in the first case; p, p^{2} or p^{3} in the others two cases. Thus, we get at least eight non-isomorphic TH-p-groups. But we may observe that there are non-isomorphic TH- p-groups with the same order and the same commutator subgroup order, as we see analyzing the case $|N|=p$.

Remark 5.2. (a) If $N<K$, then $G={ }^{2} G_{3} / N$ is isomorphic to the group $G_{1}=\left\langle u, v, w \mid u^{p^{2}}=v^{p^{2}}=w^{p^{2}}=[v, u]^{p}=[w, u]^{p}=[w, v]=1\right\rangle$.
(b) If $N \cap K=1$, then $G={ }^{2} G_{3} / N$ is isomorphic to one of the following non-isomorphic groups:

$$
\begin{aligned}
G_{2} & =\left\langle u, v, w \mid u^{p^{2}}=v^{p^{2}}=w^{p^{2}}=[v, u]^{p}=[w, u]^{p}=1,[w, v]=u^{-p}\right\rangle \\
G_{3} & =\left\langle u, v, w \mid u^{p^{2}}=v^{p^{2}}=w^{p^{2}}=[v, u]^{p}=[w, u]^{p}=1,[w, v]=w^{-p}\right\rangle .
\end{aligned}
$$

For (a), first of all, we observe that every $k=[y, x]^{a}[z, x]^{b}[z, y]^{c} \in K$ is a commutator. Namely, as ${ }^{2} G_{3}$ is nilpotent of class 2 , if $c \not \equiv 0(\bmod p)$, we have $k=\left[z^{c} x^{-a}, y x^{b c^{-1}}\right]$; while if $c \equiv 0(\bmod p)$, we have $k=\left[y^{a} z^{b}, x\right]$. Let $N=$ $\langle k\rangle$, where $k=\left[g_{2}, g_{1}\right]$. Since $\Phi\left({ }^{2} G_{3}\right)=Z\left({ }^{2} G_{3}\right)$, we see that $g_{1} \Phi\left({ }^{2} G_{3}\right)$ and $g_{2} \Phi\left({ }^{2} G_{3}\right)$ are independent, and one among the elements x, y, z, say x, does not belong to the subgroup $\left\langle g_{1}, g_{2}, \Phi\left({ }^{2} G_{3}\right)\right\rangle$. Thus, g_{1}, g_{2}, x constitute a base of ${ }^{2} G_{3}$, and the map $x \mapsto x, y \mapsto g_{1}, z \mapsto g_{2}$ extends to an automorphism of ${ }^{2} G_{3}$ which maps $N_{0}=\langle[z, y]\rangle$ onto the subgroup $N=\langle k\rangle$.

In the case (b), the group N is generated by an element of the form $[y, x]^{a}[z, x]^{b}[z, y]^{c} x^{d p} y^{e p} z^{f p}$, where not all of a, b, c and not all of d, e, f are zero. As we showed in (a), the element $[y, x]^{a}[z, x]^{b}[z, y]^{c}$ is a commutator [g_{2}, g_{1}], and it is convenient to separate two cases according to $g_{3}=x^{d} y^{e} z^{f} \notin$ $\left\langle g_{1}, g_{2}\right\rangle$ or $g_{3}=x^{d} y^{e} z^{f} \in\left\langle g_{1}, g_{2}\right\rangle$.

Assume $g_{3}=x^{d} y^{e} z^{f} \notin\left\langle g_{1}, g_{2}\right\rangle$. The elements g_{1}, g_{2}, g_{3} constitute a base for ${ }^{2} G_{3}$, and the automorphism determined by $x \mapsto g_{3}, y \mapsto g_{2}, z \mapsto g_{1}$ takes $N_{0}=\left\langle[z, y] x^{p}\right\rangle$ onto N. It follows that ${ }^{2} G_{3} / N \cong G_{2}$.

Assume $g_{3}=x^{d} y^{e} z^{f} \in\left\langle g_{1}, g_{2}\right\rangle$. Then by the explicit form of g_{1}, g_{2} given in (a), we get either $g_{3} \in\left\langle z^{c p} x^{-a p}, y^{p} x^{b c^{-1} p}\right\rangle$ or $g_{3} \in\left\langle y^{a p} z^{b p}, x^{p}\right\rangle$. Anyway,
this implies

$$
\begin{equation*}
b e=c d+a f \tag{*}
\end{equation*}
$$

We show that $(*)$ allows to define an automorphism of ${ }^{2} G_{3}$ which takes the element $[z, y] z^{p}$ into the element $[y, x]^{a}[z, x]^{b}[z, y]^{c} x^{d p} y^{e p} z^{f p}$. Namely, if $e, f \not \equiv 0(\bmod p)$, this automorphism is determined by $x \mapsto x, y \mapsto$ $x^{e^{-1}\left(d c f^{-1}+a\right)} y^{c f^{-1}}, \underset{-1}{z} \mapsto x^{d} y^{e} z^{f}$; while if $f \equiv 0$ and $e \not \equiv 0$, it is determined by $x \mapsto x, y \mapsto x^{a e^{-1}} z^{-c e^{-1}}, z \mapsto x^{a} y^{e} z^{f}$; and finally, if $f \not \equiv 0$ and $e \equiv 0$, it is determined by $x \mapsto x, y \mapsto x^{b f^{-1}} y^{c f^{-1}}, z \mapsto x^{d} y^{e} z^{f}$. Observe that, by $(*)$, the only remaining possibility is $c, e, f \equiv 0$, and in this case, the automorphism is given by $x \mapsto x, y \mapsto y^{-a d^{-1}} z^{-b d^{-1}}, z \mapsto x^{d} y^{e} z^{f}$. It follows that ${ }^{2} G_{3} / N \cong G_{3}$.

Finally, it is easily checked directly that there is no isomorphism between G_{2} and G_{3}.

Acknowledgement. We wish to thank Michael Vaughan Lee for many enlightening remarks.

References

[1] N. Blackburn, L. Evens, Schur multipliers of p-groups, J. Reine Angew. Math. 309 (1979) 100-113.
[2] D. Bubboloni, G. Corsi Tani, p-Groups with some regularity properties, Ric. di Mat. 49 (2) (2000) 327-339.
[3] M. Hall, The Theory of Groups, Chelsea, New York, 1976.
[4] B. Huppert, Endliche Gruppen, Vol. 1, Springer-Verlag, New York-BerlinHeidelberg, 1967.
[5] B. Huppert, N. Blackburn, Finite Groups, Vol. II, Springer-Verlag, Berlin-Heidelberg-New York, 1982.
[6] C.M. Scoppola, Groups of prime power order as Frobenius-Wielandt complements, Trans. Amer. Math. Soc. 325 (1991) 855-874.

[^0]: *Supported by M.U.R.S.T. and C.N.R.

