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1 Introduction 

Mobile communications are going to be one of the fastest growing fields in the 
future, due to the high number of users. 
The narrow band TDMA digital cellular system has required to adopt chan­
nel coding, interleaving and compact-spectrum constant envelope modulation 
(as the modulations belonging to the class of the Continuous Phase Modula­
tion CPM) to increase the spectrum efficiency. Due to the spectral shape of 
the adopted partial response modulation and to the multipath nature of the 
communication channel, interference occurs between adjacent symbols, which 
are known as inter-symbol interference (lSI). The best theoretical performance 
for demodulating operations over channels with lSI and additive white noise 
is the maximum likelihood sequence estimator (MLSE) technique [3]-[5]. Top­
ics about different digital MLSE structures, such as the correlator receiver [5] 
and the euclidean distance polyphase receiver which can be efficiently imple­
mented by means of the Viterbi algorithm, are analyzed and discussed. An 
Euclidean MLSE structure leads to a receiver that searches among all possible 
data sequences to find the sequence which is closest to the noisy received signal 
according to the Euclidean metric directly used in the Viterbi algorithm. This 
euclidean MLSE receiver is analyzed in the paper since no matched filter is 
needed and, in view of adaptive implementations, the Viterbi processor gives 
directly the error signal used by adaptation algorithms. In the mobile environ-
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ment, the TDMA signal structure and the rapidly varying channel character­
istics, due to fading and Doppler effect, require adaptive techniques through 
a continuous updating of channel characteristics. The channel estimation is 
usually realized by a FIR transversal filter with adjustable coefficients. Either 
the gradient LMS algorithm or one of the class of the faster converging RLS 
algorithm may be used to adjust the coefficients of the filter. These estimated 
coefficients are fed to the MLSE based on VA for use in the metric computa­
tions [6]. This conventional adaptive MLSE receiver [3],[5],[7] has difficulty in 
tracking fast time-varying lSI channels due to the fixed decision delay inherent 
in the Viterbi algorithm which causes a channel estimation delay [29]. 
In the literature [8],[29], the per-survivor processing (PPSP) and the adaptive 
MLSE proposed by Kubo et alii are presented to embed data-aided estima­
tion techniques without being influenced by the fixed decision delay, within the 
Viterbi algorithm itself. In these method the estimate of the channel impulse 
response is evaluated by using the data sequence associated to each survivor 
path in the branch metric calculation which is relative to a possible state tran­
sition in the Viterbi trellis. Therefore for each survivor independent channel 
coefficients are updated employing conventional adaptive algorithms. The pa­
per presents a new method in which the initial estimate of channel response 
for each burst is obtained by the known training sequence and the parameters 
update is subsequently carried out recursively at each step of the Viterbi al­
gorithm, during the unknown information sequence, taking into account the 
data sequence that corresponds to the best metric value (minimum-survivor 
method). The selected data sequence at each step is considered to be one of 
the closest to the received signal and is used to update the channel estimate of 
all survivors. However the decision on the transmitted data sequence is taken 
by the Viterbi algorithm at the end of each burst. Our investigation is similar 
to PPSP but in the final analysis the min survivor method highlights a signif­
icantly lower computational complexity with respect to persurvivor principle 
giving equivalent performance in typical GSM environments as shown in the 
simulation results. The paper is organized as follows. Section 2 describes the 
GMSK modulation as belonging to the class of the CPM modulation. Section 
3 gives the model of the communication channel including fading and Doppler 
effects. In Section 4 the structure of different MLSE receivers are analyzed. Sec­
tion 5 indicates the independence of the proposed MLSE system from carrier­
phase and symbol-timing synchronization. The classical adaptive algorithms, 
such as the least mean square (LMS) and the recursive least square (RLS) al­
gorithms used within the Viterbi algorithm to track the rapidly time-variant 
channel are described in Section 6. Finally, in Section 7 the performance of 
the MLSE receiver in the two operating modes, periodically or continuously 
updating, in terms of bit error rate (BER) versus energy per bit/ noise spectral 
density(Eb/No) is shown, and the conclusions can be found in Section 8. 
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2 Linear model of CPM signals 

In this section we briefly recall the relevant characteristics of Continuous Phase 
Modulation (CPM) signals, with a modulation index h = ~ and modulated 
by a sequence of binary alphabet symbols Xn = ±1. Any CPM signal can 
be defined by the continuous phase shift function 'P(t). In terms of complex 
envelope representation, it has the general form [1] 

(t) - jrrh'\" xn<p(t-nT) 
7'0 - e ~n (1) 

where T is the bit period and j = V-l. The phase shift function is assumed to 
be zero for negati ve values oftime t and has the unit value for t ~ (Lm -1)T, Lm 
being a positive integer. Examples of modulations belonging to this class are 
MSK (Minimum Shift Keying) and GMSK (Gaussian Minimum Shift Keying) 
[1],[2],[9]. As shown [2], in some cases of interest the h = t CPM signal can be 
very closely approximated by a sum of time and phase shifted pulses as follows 

(2) 
n 

In eq. 2 Zn symbols are determined by the recursion 

(3) 

and the pulse c(t), which approximates the form of the modulation phase shape 
and has a duration of less than or equal to LmT, is defined by 

£=-2 

c(t) = co(t) = II sin[ %7j;(t + iT)] 
i=O 

(4) 

where 
_ { 'P(t) t :S (Lm - I)T 

7j;(t) - 1 - 'P(t - (Lm - I)T) t> (Lm - I)T 

The factor jn in 2, that causes 7r /2 phase rotation on the complex plane from 
symbol to symbol, can be avoided by means of a de rotation technique [10], 
e.g. by multiplying, at the receiver, the signal 7'l(t) by the complex function: 
d( t) = (- j)i for iT :S t < (i + I)T. Hence, the signal takes the form 

7'2(t) = d(t)rt(t) = L znp(t - nT) (5) 
n 

having defined a derotated pulse p(t) = d(t)c(t). Finally, let an be the assigned 
binary sequence to be modulated. In order to have an in the linear represen­
tation 5 the transmitter should build the phase in the exponent of 1 after a 
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differential encoding of the sequence: from 3, choosing Xn = anan-l, it results 
{zn} = {an}. 
In this way, a h = ~ CPM modulation can be depicted as a simple binary Pulse 
Amplitude Modulation (PAM) signal, thus simplifying the signal model and 
the receiver structure. In the following, for the baseband transmitted signal 
the linear model 

r(t) = L anP(t - nT) (6) 
n 

will be assumed for the baseband signal. Accordingly, the signal modulated 
onto a carrier frequency 10 is 

rM(t) = ei27fJot L anP(t - nT) (7) 
n 

The parameter Lm represents the duration (in symbols) of the modulating pulse 
p(t) and, consequently, of the controlled intersymbol interference (lSI) inherent 
to the modulation itself. Typical values of Lm are in the range 2 to 4. 

3 Channel effects on signal 

In land mobile radio, the received signal is subjected to multipath components 
caused by many factors, including tropospheric scattering, reflections from nat­
ural and artificial of objects, topographic and environmental conditions. All 
these factors lead to characterize the signal amplitude received at the mobile 
unit as composed of two terms [15]: 

• a slow fading component, mainly due to the local topographic conditions, 
antenna height and other environmental conditions. This slow fading com­
ponent of the received signal may remain approximately constant along 
distances of the order of 20 to 30 wavelengths (at least for frequencies 
below 1 GHz); 

• fast fading component, due to the reflections from obstacles and the vehicle 
speed. This component must be carefully considered in the receiver design. 
Generally the assumed model for the envelope of these signal affected by 
this type of fading is the Rayleigh distribution or the Rice distribution. 
The first one applies when no "dominant" component is present in the 
received signal. 
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In case of digital transmission another parameter is important, the delay spread 
or the maximum delay. Due to the multipath propagation, a transmitted im­
pulse signal produces several replicas at the receiver at different time instants. 
The delay spread is defined as the standard deviation of the delay time of the 
received signal and it measures the time dispersion of the received signal. 
In some cases more useful is the delay of the last received significant replica 
(maximum delay) instead of the delay spread. In the 900 MHz band the de­
lay spread is typically about O.lJ.ls on flat terrain, 2J.ls in urban areas, and up 
to 5J.ls for hilly terrain. The maximum delay can be O.5J.ls, 10J.ls and 20J.ls 
in the three environments respectively. The fading signal components are re­
ceived with independently time-varying amplitudes and phases, with random 
incoming angle and time delay [12],[11],[13]. The channel model is composed 
of 6-12 distinct propagation paths which are subjected to the Rayleigh fading; 
each path is characterized by a delay di (t) and by a specific attenuation Ai (t) 
and the classical Doppler spectrum is employed [14] (fig. 1). The baseband 

Fig. 1 Mobile radio channel model 
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expression for the noiseless received signal is 

s(t) = SM(t)e-j27rfot = L:: ang(t, t - nT) (8) 
n 

In the last one (in which SM(t) is the modulated representation of received 
signal), the received pulse shape g(t, r) has the form 

I 

g(t, r) = L:: Wi(t)p(r - dj(t)) (9) 

where 
Wi(t) = Ai(t)e-j27rfodi(t) (10) 

Therefore, the channel behaves on the signal as a time-variant linear system 
with impulse response [3] 

I 

h(t, r) = L:: wi(t)8(r - di(t)) (11 ) 
i=1 

where 8( r) is the Dirac impulsive function. The effects of transmitter and 
receiver bandpass filters on the pulse shape are included in the impulse response 
of the channel. In the equation 11 the dependence of the impulse response on 
variable t through the weights Wi(t) and the delays di(t) accounts for the time 
changes in the channel. The rate of change of the processes Wi(t) (due to the 
large factor fo in the exponent of 10) is much more critical then that of d;(t) 
which are assumed to be constant for long time intervals. As a rough measure 
of the bandwidth of the processes Wi(t), which is correlated to the fast fading 
components, the Doppler frequency fd = % fa, where v,c are respectively the 
vehicle speed and the velocity of light, can be chosen. For example, considering 
high vehicle speed of 300 km/h and a carrier frequency of 900 MHz the peak 
Doppler shift that may occur is 250 Hz. 
In the applications of interest the channel model can be considered constant 
during a time interval equal to at least some bit periods, since the bit rate 
ft = l/T is much greater than the Doppler frequency even for high vehicle 
speed. The dependence of the impulse response from variable r determines 
instead the shape of the received pulse. Let Lc be the duration of h( r, t) 
expressed in units of T. Then the duration of the lSI in the received signal 
exceeds the quantity Lm, intrinsic in the modulation itself, up to L5 = Lm + Lc. 
In the system under examination, typical values for Lc parameter are 1-2 in 
rural or urban environments [15]. Let n(t) be the baseband additive noise 
introduced in the channel, in such a way that the baseband received signal 
expressIOn IS 

y(t) :::: s(t) + n(t) (12) 
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The additive noise n(t) is supposed to be stationary, complex-gaussian dis­
tributed and, for generality, colored with autocorrelation function k(t). As it 
will be seen, an important quantity for the definition of the MLSE receiver 
is the noise inverse autocorrelation quantity k- 1 (t), which is defined by the 
relation 1: k(1')k-1(t - 1')d1' = 8(t) (13) 

and which is assumed to be zero out of some interval [-LnT; LnT], being Ln 
a positive integer. 

4 Digital MLSE receivers - the employment 
of euclidean distance 

In this section, in order to explain the MLSE euclidean distance structure 
[3],[18], the channel will be assumed time-invariant, that is the received pulse 
g(t, 1') is equal to g(1') for each t. 
According to the MLSE principle, the demodulation of digital information is 
accomplished through sequences and a single final decision is taken in favor 
of one sequence {an} only at the end, after the whole transmitted signal is 
received (at the end of a finite-length sequence in GSM). 
In order to reach this aim, a likelihood function is defined on the space of 
possible candidate sequences {an} which returns, for each sequence, a measure 
of its probability of having been transmitted. This function depends, in the 
particular case, on: 

• system impulse response; 

• power density spectrum of additive noise introduced in the link; 

• carrier phase and symbol timing synchronization; 

• received signal. 

Indicating s( t I {an}) = Ln ang( t - nT) as the analog expected signal which 
would be received in absence of noise, considering the transmission of {an} 
sequence, the a posteriori transmission probability for {an} is exponentially 
decreasing with the following quantity [5]: 
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where * indicates complex conjugate. This expression represents a distance 
between received and expected signal, conveniently weighed by the autocorre­
lation properties of additive noise. It is possible to solve recursively the expres­
sion 14 defining functions, in terms of sum of partial metrics, still monotone 
with the a posteriori transmission probability [24],[5]. They are of the form: 

N 

F({an}) = Lln(an-L+1, .... ,an-1,an) (15) 
n=l 

where N is the sequence length and In are the branch metrics (or functions), 
depending each one on L consecutive bits in the sequence, where L from the 
literature[24], [5] is the nearest integer greater than the sum of the received pulse 
duration Ls and the noise inverse autocorrelation function semiduration Ln. 
In the following it will always be L = r Ln + Ls 1. 
In order to identify the ML sequence, due to the particular structure in 15, it 
is possible to optimize the function F( {an}) with respect to the sequences us­
ing the Viterbi algorithm, which is characterized by an only linear complexity 
(through a factor 2L-1), instead of exponential, with the sequence length N 
[15]. 
Furthermore, for a digital implementation of the MLSE receiver, it is conve­
nient to operate with data taken at some sampling frequency Is = C Ir (where 
Ir = liT is the bit rate and C an integer) sufficiently high according to the 
modulation bandwidth. Then let Yn = y( nT I C) be the sampled received sig­
nal. 
A classical MLSE receiver structure, based on a correlation function was first 
proposed by Ungerboek [5]. It consists of a matched filter cascaded by a deci­
mation device that reduces the sampling frequency to the symbol rate Ir. The 
output signal Zn is then sent to a Viterbi processor to accomplish MLSE (fig. 
2). The filter is matched to the system impulse response g(t) and to the noise 
inverse autocorrelation k- 1(t). Its equivalent analog impulse response is: 

The Viterbi branch function evaluates: 

where 

L-1 
!t,n(an-L+1, ... , an) = ~{an(zn - L Cian-i)} 

i=O 

(16) 

(17) 

1 i = 0 
o i oF 0 
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~ Y n Matched I Decim. Zn '-v-it-e-rb-i---' a n 

Filter I c f1 ,n metric 
t=nT/C 

Fig. 2 Correlation MLSE receiver model 

and 

and can be interpreted as a correlation in the sampled domain. The structure 
of the MLSE receivers commonly employed (i.e., see [16],[17]) is based on this 
correlation operation. 
Another possibility of implementation of the MLSE principle is based on eu­
clidean distance. Let q(t) be a complex valued function such that 

(19) 

The function q(t) represents a spectral factorization of the noise inverse au­
tocorrelation k- 1 (t) (in the frequency domain the function Q(J) is such that 
1 Q(J) 12= [{-I (J) ) and can be chosen with a duration, in the sampled domain, 
equal to half the duration of k-1(t). Moreover a filter with impulse response 
q(t) is a whitening filter for the signal y(t). Substituting the equation 19 in the 
equation 14 yields 

1: 1 z(t) - L Cl;nC(t - nT) 12 dt 
n 

(20) 

where 

c(t) = I: g(T)q(t - T)dT (21 ) 



216 

z(t) = I: y(r)q(t - r)dr = Lanc(t - nT) + I: n(r)q(t - r)dr (22) 
n 

According to the last equation the z(t) signal represents a linear modulation 
with pulse shape c(t) plus AWGN. The quantity 20 can be evaluated in the 
sampled domain and used directly for the definition of a likelihood function. 
Assuming the notations 

C(k)(i)=C(iT+k~) i=0, ... ,L-1 k=O, ... ,C-1 (23) 

z~k)(i)=z(nT+k~) n=l, ... ,N k=0, ... ,C-1 (24) 

the Viterbi euclidean distance branch function can be defined as follows: 

C-1 C-1 L-1 

h,n(an-L+1, ... , an) = L I~k) = L 1 z~k) - L c(k)(i)an_i 12 (25) 
k=O k=O i=O 

Fig. 3 shows the euclidean distance MLSE receiver structure. It is noteworthy 
that the Viterbi algorithm can be implemented in such a processor that con­
tains C modules that operates in parallel in a polyphase mode. 
If the communication link is regarded as a linear discrete time finite impulse 

response (FIR) system whose input is the information sequence an and whose 
output is the noise- whitened signal zn(k), it is found out that the c(k)(i) branch 
function parameters are the FIR coefficients. Thus, both 20 in the analog do­
main and 25 in the discrete domain, state the principle of the minimization the 
euclidean distance between the whitened received signal and the corresponding 
expected one. Theoretically, when the system impulse response, noise autocor­
relation, synchronization constants are deterministic and known at the receiver 
the employment of the two different MLSE methods 17 and 25 in demodulation 
determines identical performance because the functions, being monotone with 
the same quantity, both describe the same likelihood law. 
This statement was verified by means of simulations on MSK signaling recep­
tion in AWGN channel: both the demodulation methods always return identical 
ML sequences. Table 1,2 report the BER values obtained from simulation us­
ing two different filters and varying the sampling frequency (parameter C). It is 
noteworthy that a value of C=2, that is Is = 2/r is sufficient not to degrade the 
system performance. This occurs since the bandwidth of MSK signaling is not 
so wide to require greater receiver sampling frequency. Generally the compu­
tational complexity of the euclidean distance structure is higher, as the Viterbi 
processor must operate on C branches. Nevertheless the euclidean distance 
receiver offers some advantages: 
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Viterbi 
f metric 

y(t) Yn 
2,n 

z{O) 

---.7) Whiten. n I f(O) ~ an Filter I n -
t=nT/C: • ~ 

(C -1) 
Z I f{ C-1 ) } n 

l n 

Fig. 3 Euclidean distance MLSE receiver model 

• No matched filtering is needed; moreover the whitening filter can be omit­
ted in the practical cases in which the noise in the channel can be assumed 
to be white 

• In applications to narrow-band signaling (receiver sampling rate equal to 
bit rate: C= 1) the Viterbi processor consists of only one phase 

• In view of adaptive implementations, the number of parameters depending 
on both g(t) and k-1(t) reduces from (C+l)Ls+(2C+l)Ln to CLs+2CLn. 
When no adaptation to k-l(t) is required, only the C(Ls + Ln) Viterbi 
processor parameters need to be estimated. Furthermore the Viterbi pro­
cessor directly provides an error signal directly employable by adaptation 
algorithms. 
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8/r 2.26 10 .:.J 5.8 10 -;j 1.8 10 -4 

4/r 2.31 10 -2 6.2 10 -;j 1.5 10 -4 

2/r 2.29 10 -~ 6.3 10 -;j 1.710.4 

Ir 2.66 10 ·2 7.4 10 .;j 2.8 10 ·4 

Table 1 BER performance of euclidean distance and correlation MLSE - MSK 
signal, AWGN channel, receiver ideal bandpass filters 

8/r 2.27 10 .~ 5.7 10 .;:) 1.7 10 ·4 

4/r 2.28 10 .:.J 6.0 10 .;j 1.8 10 ·4 

2/r 2.31 10 .:.J 5.8 10 .;j 2.0 10 ·4 

Ir 2.47 10 ·2 6.6 10 .;j 2.6 10 ·4 

Table 2 BER performance of euclidean distance and correlation MLSE, MSK 
signal,AWGN channel, receiver raised cosine filters 
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5 Independence of euclidean MLSE receiver 
performance from carrier phase and symbol 
timing synchronization 

In view of the applications it will be assumed hereafter the additive noise to 
be white and consequently the whitening filter in the euclidean distance re­
ceiver is not necessary. As already noticed in the preceding section, the correct 
likelihood function to be employed in order to obtain MLSE depends on the 
synchronization, particularly on (fig. 4): 

• the phase shift () E [0, 27r) between transmitted and local carriers (carrier 
phase); 

• the exact position T E [0, TIC) in which the receiver takes the samples of 
received signal inside the sampling step (symbol timing). 

y(t) t=nT/C + 't 
received sampling " 

signal X I I an ~.~~ , ~., MLSE~· 
e -j 2 1t (f ot - t}) 

baseband 
translation 

Fig. 4 Carrier phase and symbol timing synchronization parameters 

For the euclidean distance MLSE receiver, these quantities determine the values 
of the coefficients that define the likelihood branch function 25 according to the 
following relation: 

(k) (.) - j 9 ( "T k T ) " - 0 L - 1 k - 0 k - 1 c z - e 9 T + Z + C z - '"""' - , .. , (26) 

In particular, as the coefficients are samples of the received pulse g(t), the effect 
of phase shift is to rotate it on the complex plane while the effect of symbol 
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timing is to translate it with respect to t. Nevertheless it is possible to show that 
if the coefficients are correctly defined according to 25, the probability of error 
for the euclidean distance based MLSE receiver model is independent from the 
particular synchronization. This occurs since the euclidean distance between 
expected and received signals does not depend on complex plan rotations and 
time translations of both signals. 
It is possible to prove that the Euclidean distance between sample sequences 
received without AWG N and due to two different transmission sequences, an (i), 
an(j), is independent from phase and timing synchronism if their contribution 
is the same: 

2 (i) (') _ 2 d (s(an ,(), T), s(ar!, ,(), T)) - di,j (27) 

The baseband received signal for every transmitted sequence an is 

(28) 
n 

For example, considering the Euclidean distance for each an (i), an (j) and for 
every and T, it is obtained 

(29) 

and therefore, the Euclidean distances effectively independent to phase shifts. 
Analogously for the timing synchronism. Hence in order not to degrade the 
receiver performance it is sufficient to use the values of () and T determined by 
the demodulation and sampling devices in the definition of the branch function. 
The statement has also been verified by means of computer simulations on 
MSK signaling in AWGN channel. Table 3 depicts the results. It is recognized 
that the BER performance does not vary significantly with synchronization. 
The variations of Table 3 are within the confidence limits of the performed 
simulations. Then, as an important practical consequence, the employment of 
a separate subsystem to recover phase and timing synchronization results no 
longer necessary [18] for MSK signaling. In more general modulation schemes 
and in case of lSI channel the accuracy of the time synchronization must be 
within one T not to lengthening the computing of the metric. 

6 Adaptive euclidean distance MLSE . receIvers 

In this section, a new adaptive technique named "minimum-survivor" [19],[20] 
is proposed and compared with per-survivor technique [8]. Among the adaptive 
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II II II 5 II 8 

r=O () = 0° 2.69 10 .;l 7.8 10 -.:) 2.8 10 -'I 

r=O () = 40° 2.66 10 -~ 7.4 10 -oJ 2.810 -'I 

r=O () = 110° 2.62 1O-~ 7.1 10 -J 2.4 10 -'I 

r = 1/210 () = 0° 2.65 1O-~ 7.2 10 -J 3.0 10 -'I 

Table 3 BER performance of the euclidean MLSE - MSK signal, AWGN 
channel, receiver raised cosine filter and fs = 2fT 
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realizations using the LMS and RLS methods, the different minsurvivor and 
persurvivor estimation techniques have all exhibited very similar performance. 
Consequently, the simplest structure, which is the proposed LMS min-survivor 
receiver can be regarded with particular interest and shown in this section. 
The need to introduce adaptive techniques within the euclidean distance MLSE 
receiver arises since the likelihood branch function parameters and the correla­
tor receiver depend on the time varying channel characteristics. Only in case of 
invariant time channel it is possible to measure its impulse response, allowing 
the receiver to be correctly initialized and permanently operate as a MLSE esti­
mator. In the case of a land mobile radio link, the channel and the synchroniza­
tion are always unknown and time-varying. Many land mobile communications 
systems employ the periodic transmission of some established short sequences 
(preamble) of symbols known by the receiver in order to give start-up values of 
the likelihood parameters (training processing). Furthermore, the parameters 
update can be subsequently carried out iteratively throughout the information 
sequence transmission by means of adaptive algorithms (tracking processing). 
The employment of tracking techniques is justified by: 

1. The training estimation is affected by noise and can be improved by 
further adaptive estimate. 

2. The training estimation needs to be adjusted during the information 
bits according to the link parameter time changes imposed by fading 
[21), Doppler effect and any incoherence phenomena. 

The conventional adaptive MLSE receiver generally consists of an MLSE esti­
mator implemented by the VA and a channel estimator [29], [7], [5]. 
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• the VA evaluates the closest sequence to the transmitted sequence using 
the channel coefficients supplied by the channel estimator 

• the channel estimator adaptively estimates the channel impulse response 
using the tentative decisions provided by VA as an estimate of the trans­
mitted sequence. 

The tentative decisions derived in the VA are obtained with a delay; if the 
delay is small, erroneous data decisions are given while a large delay causes a 
channel estimation delay decreasing the capability of tracking fast time-varying 
lSI channels [29]. Generally, the tentative decisions are made by truncating the 
survivor path history in the VA to some fixed length usually equal to 5L (L 
indicates the memory length) giving a channel estimation delay. 
As suggested by Qureshi the channel estimation is obtained by using the ten­
tative sequence with the largest survivor metric [5]. 
In the literature, two similar methods, the persurvivor method [8] and the chan­
nel estimation procedure proposed by Kubo et alii [29], estimate the channel 
impulse response into the structure of the VA itself, along the survivor path 
connected to each state without the decision delay. 
In our method the channel estimation is made directly within the metric cal­
culation of the VA with very restricted delay. The branch metric of the VA 
calculates the Euclidean distance between the received sequence and the esti­
mate of received signal, therefore the VA directly provides the error signal used 
by the adaptive algorithms. 

Let the time-invariant channel hypothesis be removed and assume that the 
signal is sampled once per symbol (C=l). This condition, together with the 
white-noise condition, leads the euclidean distance MLSE branch function 25 
to become 

L-1 

In =1 Yn - L Cn(i)an-i 12 (30) 
i=O 

where Yn = z~O) is the received signal and Cn (i) = chO\ i) are the branch func­
tion coefficients in which the introduction of dependence on time index n ac­
counts for their time changes. The corresponding monophase MLSE receiver 
structure is depicted in fig. 5. The aim of adaptivity is to provide the best 
possible estimation of Cn (i) parameters to the Viterbi processor. Since Cn (i) 
are the coefficients of the time-varying FIR that models the communication 
link, tracking consists particularly in some procedure for the identification of 
an unknown time varying FIR by observing on the flow of its input and out­
put signals. One estimation problem occurs because while the output signal 
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t=nT 

y~~ _'tJ----+jn 

/ Euclidean metric 

Viterbi 

Fig. 5 Mono-phase euclidean distance MLSE receiver model for AWGN signal 

Yn is available, the {an} input sequence is unknown and is going to have to 
be approximated through information supplied by the Viterbi processor itself. 
Let Cn = [cn(O), cn(1), .. , cn(L - 1)Y be now the vector of coefficients at time n, 
cn = [cn(O), cn(1), .. , cn(L - 1)Y its estimation, Q:n= [Q:n , Q:n-l, .. , Q:n-L+1Y a 
possible transmitted L-uple, an = [an, an-l, .. , an-L+1Y the actually transmit­
ted one (T denotes transpose conjugate). Most system identification methods 
are based on the criterion of the minimization of the mean square output error 
EI en (an, Cn) 12 with respect to cn [22], where 

(31 ) 

is the output error, depending on cn . The branch function 30, generalized as a 
function of cn coefficients vector, takes the form 

(32) 

As a matter of fact, both the branch function and the mean square output 
error (to be minimized) are quadratic function of the error. The utility of this 
functions is in the Gaussian distributed structure of additive noise. Using the 
euclidean distance adaptive MLSE approach some computational complexity 
can be avoided; the metric is computed by the Viterbi processor is employed 
in the tracking algorithm as well. A simple classical adaptive algorithm is the 
LMS ( Least Mean Square) [3],[22],[7] which operates by moving at every time 
n in the direction of the 1 en (an, Cn ) 12 gradient (versus cn ). This results in the 
following iteration: 

(33) 
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where J.l is the step-size parameter which controls the rate of adjustment. In 
the particular case, if the Cn vector are time invariant, the algorithm converges 
for J.l < 2/ L but while the convergence is slower for smaller values of J.l, the 
difference between the residual error and the minimum value of the squared 
errors grows linearly with J.l through a factor ()2 L/2, where ()2 is the additive 
noise variance. Then, in theory, fl must be chosen as a compromise between 
the speed of response and the stability of the algorithm. In the results, the 
optimization of fl has been performed by computer simulation for the different 
system environments. 
The RLS (Recursive Least Square) [3],[22],[7] algorithm attains instead the 
minimization of the function 

n n 

L wn - i 1 ei(ai, Cn) 12= L wn - i 1 Yi - Cnai 12 (34) 
i=O i=O 

where w E (0,1) is the "forgetting factor" weighing the past output errors 
according to an exponentially decreasing progression. In the time-invariant 
taps case, if the input is stationary, the RLS algorithm is asintotically optimal 
for w :::: 1 since it approximates the minimization of mean square output error 
law. Nevertheless when the Cn vector is time-varying a forgetting factor must 
be introduced by reducing w. The cn computation can be efficiently performed 
iteratively as follows [3],[30]: 

(35) 

where 
k _ Pn-Ian 
n- T 

W + anPn-1an 
(36) 

is the Kalman weighing vector, and 

(37) 

is the input inverse autocorrelation matrix. The last one must be updated 
and stored in memory for use at the following step. Both the LMS and RLS 
algorithms update the cn by iteratively adding an adjustment term. The ad­
justment term is given by a vector of weights, which, multiplied by the error 
en, determines the parameters change. While the increase is forced in the an 
vector direction in the LMS algorithm and evaluates flen (in absolute value) 
for each component, in the RLS algorithm the increase in one component is 
determined by the associated weight in the Kalman gain vector. The LMS and 
RLS algorithms update the channel coefficients within the VA and therefore the 
error (or the branch metric calculation) also depends on the state transition. 
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The updating of the channel coefficients at time n + 1 in the Viterbi algorithm 
is based on the old least squared estimate of the tap-weight vector which was 
made at time n. 
Since the sequence {an} is not available, the LMS and RLS algorithms must 
use an estimate. In order for the receiver to operate in real-time, the estimation 
of {an} cannot supplied by the tentative decisions with fixed delay, but must 
be continuously updated from the information given by the Viterbi processor. 
In principle, the idea is to let the Viterbi processor operate in concurrence with 
the coefficients estimation processor, in such a way that each one at every step 
receives information from the other one, computes certain quantities, and re­
turns them back to the other one, as in fig. 6. The Viterbi processor calculates 
the errors, the metrics, the survivor paths, while the other processor estimates 
the likelihood function parameters. At each step n the set of Viterbi survivor 

~n Yn S'ViterbiL - - -la,gorit1~ --~,------. 

- updated J t=nT _ output errors 
coefficients! 

- survivor paths 
~~ t=n T - metrics 

Itracking 
lalgorithm 
l ________ . ___ 

Fig. 6 Concurrent processing of Viterbi algorithm and tracking algoritm 

paths includes the only path thereafter candidates to the maximum likelihood 
estimate. Among them, the one with the best metric value (minimum-survivor, 
briefly min- survivor) can be regarded as the most likely to be conditioned to 
the signal samples received and processed till that moment. The realization of 
minimum-survivor principle is quite simple since it only requires the compar­
ison of all the survivor metrics at every step. The sequence with the largest 
metric is used to update the branch function coefficients to all the states of 
the VA. Let {ao(n),al(n), .. ,un(n)} be the min-survivor at time n, which is 



226 

also the instantaneous maximum likelihood sequence at time n. It has been 
verified that the error rate in the above sequence is not uniform with respect 
to n, but can be significantly higher for values close to n [24],[25]; in other 
words, the survivor paths converge in the past. Thus, in order to approximate 
within the least errors the true transmitted sequence, it can be convenient to 
introduce some delay d> 0 in the symbols an of the recursions 33, 35, 37. Of 
course, if d chosen is too large, the delay introduced in the estimation process 
can determine significant performance degradation. 
The same formulas become respectively: 

(38) 

for LMS algorithm, and for RLS algorithm 

Cn+l = cn + e~_d(an-d(n), cn)kn-d(n) (39) 

(40) 

(41 ) 

An alternative to the above mentioned method is to accomplish an indepen­
dent likelihood function coefficients estimation for each survivor (per-survivor 
processing) [8] At each step in order to calculate the branch metric relative 
to a possible state transition, the coefficients associated to the source state 
are employed. Then, after the new set of survivor paths is determined and 
the corresponding correct (surviving) state transitions are found, for each state 
transition a coefficients vector updating is carried out. The coefficients associ­
ated to the incoming state are updated in terms of: 

• the coefficients associated to the source state; 

• an adjustment increase depending on the error 

• the binary L-uple corresponding to the state transition. 

Let us consider a certain state k3 at time n which allows the transitions kl -+ k3 
and k2 -+ k3 (fig. 7). Let cn (k) be the estimated coefficients vector associated 
to the state k, a( ki -+ kj ) the bit L-uple corresponding to the ki -+ kj tran­
sition. First, the errors en(a(k1 -+ k3 ), cn(kl)), en (a(k2 -+ k3 ), cn(k2)) are 
computed. Then, their squared absolute values (the branch metrics) are com­
puted. By means of the branch metrics, the partial metrics up till time n are 
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time: n-1 n 

Fig. 7 

found, and the survivor at time n is chosen (say the one coming from state kl 
). The state transition corresponding to the survivor is then kl -+ k3: now 
the coefficients associated to state k3 can be found. If the LMS algorithm is 
employed: 

If the RLS algorithm is employed: 

k~ ( k) _ Pn-1(n - 1, kl)a(kl -+ k3) 
n n, 3 - ~ 

W + aT(k1 -+ k3)Pn- 1(n - 1, kl)a(kl -+ k3) 
( 44) 

~ 1 ~ ~ T ~ 
Pn(n, k3) = -(Pn-1(n - 1, k1) - kn(n, k3)a (k1 -+ k3 )Pn- 1 (n - 1, k1)) 

w 
( 45) 

where kn(n,k3) and P n(n,k3) are quantities associated to the state k3 as well 
as cn +l(k3 ) . The Pn(n, k) represents path inverse autocorrelation matrices 
and must be stored one per state for iterative updating. Notice that formally 
the per-survivor processing results in an extension of Viterbi algorithm. Asso­
ciated to each survivor path we don't find any longer just a metric, but a metric 
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and other parameters (the branch function coefficients vector cn+l(k) and, if 
RLS is used, the path inverse autocorrelation matrix Pn(n, k)). This feature 
makes the per-survivor approach attractive from a conceptual point of view 
although a theoretical comparison (in terms of expected performance) with the 
delayed min-survivor approach is not easy to attain. 
The LMS and RLS algorithms are used in the particular context of additive 
Gaussian- distributed noise, in which the squared output error is minimized. 
Therefore if the true transmitted L-uple an is employed for coefficients updating 
at step n, since 

_ T 
Yn - ancn +nn (46) 

where nn are AWGN samples, the corresponding adjustment term can directly 
estimate the true coefficients vector Cn. On the other hand when a generic 
L-uple an is employed, then the corresponding received signal model results in 

(47) 

where the additive noise term 

(48) 

is no longer Gaussian-distributed, therefore the over mentioned algorithms can 
even not correctly determine the adjustment term at step n. Let us intro­
duce the diagonal matrix En( an) = diag an diag an whose generic element is: 
e(i,j) = ° for i #- j(i,j = 0, '" L -1); 
e(i,i) = +1 if an(i) is "right" when compared to the corresponding true trans­
mitted symbol an(i) and 
e(i,i) = -1 if it is "wrong" (i = 0, '" L - 1). 
It is easy to see that the signal model, if the an L-uple and additive noise 
AWGN are transmitted, can be written as 

(49) 

The adjustment term moves the estimation at step n towards En( an)cn which 
disagrees with Cn having opposite component values in correspondence to wrong 
components in an. Now, when the per-survivor estimation is carried out at step 
n, since all the L-uple an associated to the 2L - 1 survivors differ from one other, 
it follows that at least one of the updating terms associated to each survivor as 
well is correct and the estimation moves in the right direction. This statement 
does not imply that the per-survivor estimation paths are globally diverging. 
In fact at each step the global estimation history is similar for all the survivor 
paths since all of them are quickly converging backwards in the past [5]. Only 
in the steps preceding step n the estimation paths tend to diverge. Particularly, 
the more errors appear inside a path in the most recent bits (particularly in 
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the L-1 state bits), the more the final estimated coefficients associated to it 
may differ from the right ones. This is not, in general, a favorable condition 
for a correct demodulation, since some wrong survivor path could even worsen 
the bad estimation associated to them: e.g. the path corresponding to - {an} 
sequence, if surviving, could lead quite quickly the coefficients estimation to 
its equilibrium point -en and survive further. Besides, statistics estimated 
through computer simulations (see next section) have shown that the survivor 
metrics (shifted at each step by their minimum value, in such a way that the 
smallest is always zero) exhibit smaller average and standard deviation val­
ues when the estimation technique is per-survivor instead then min-survivor. 
This condition may indicate a smaller ability in emphasizing different likeli­
hood paths by the per-survivor technique. The MLSE principle simply states 
that the correct coefficients should be employed in the computation of all the 
branch metrics. Furthermore, a hypothesis of continuity in the receiver error 
probability dependence from the coefficients error is certainly reasonable to be 
assumed. Again, this is not a reason in favor of per-survivor processing. 
Finally, the computational complexity comparison for the two considered es­
timation techniques indicates that a significant amount of computation can 
be avoided using the min-survivor technique. The reason lies substantially in 
the fact that the min-survivor processing carries out one estimation process 
instead of 2L - 1 (one per state). Particularly, the basic cost of a single vector 
of coefficient updating depends on the algorithm used (LMS or RLS) and can 
be expressed as the sum Nscs + Nmcm + Nece where Ns, Nm, Ne are the real 
sums, real multiplications and memory cells required and cs , Cm , Ce are their 
unitary costs. (See Table 4). Table 4 lists the values Ns,Nm,Nc as a func­
tion of L. The computational complexity for the error en is not included in 
Table 4 as this value is available by the Viterbi processor. The cost of min-

II Nc II 
2L 2 ~~ + 4L II 2£2+2L 2£2+3L 

Table 4 Numbers N s, N m , Nc of real sums, multiplications, memory cells 
required by one vector of coefficients updating 

survivor processing is then determined by three additional quantities: the first, 
c1 = (2 L - 1 -l)cs + Cc is due to the minimum survivor search problem solution; 
the second, C2 depends on the particular memory allocation of the survivor path 
(in any case linear with respect to L parameter) and is due to the presence of 
delay d in 38-41, which requires to look backwards in the minimum survivor 
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path to find the bit vector an-d(n); the third, C3 = Lcs + Cc is required to 
evaluate the output error en-d(an-d(n), en). As a result, the estimation cost 
for min-survivor is per step 

(50) 

On the other hand the per-survivor computational complexity is 2L - 1 times 
the basic cost, that is per step: 

(51) 

Considering the values shown in Table 4 for Ns , Nm , Nc , the persurvivor, min­
survivor computational complexities ratio asintotically grows with a power of 
L (which is 1 for LMS and 2 for RLS), in such a way that: 

1· 1 cpersurv(L) 2 Cc 2 
1m - =-+ 

L-oo L Cminsurv (L) Cs 
(52) 

for LMS, and: 

1· 1 cpersurv(L) 2 Cm Cc 2 
Im- =--+-+ 

L ..... oo L2 cminsurv(L) Cs Cs 
(53) 

for RLS. 

7 Simulated performance 

7.1 Simulated system 

The performance of the different adaptive MLSE receivers have been experi­
mentally evaluated according to the standard of the new high capacity pan Eu­
ropean digital mobile radio system, the ETSI/GSM. This system [14],[16],[19] 
employees a TDMA with 8 channels per carrier. All the carriers are located in 
the 900M H z frequency band and are spaced by a 200 kHz bandwidth. In the 
case of user data packet (normal burst), the time slot basic structure is depicted 
in fig. 8. The bits are usually referred to in terms of their logical 0 and 1 values, 
while the corresponding physical ones are + 1 and -1. The information bits are 
split into two groups of 58 bits by a 26-bit long preamble sequence that enables 
the synchronization and the estimate of the channel response. The midamble 
sequence mn n = 1, .. , 26 (physical values) is characterized by a particular 
autocorrelation property, that is 

1 20 

16 L mkmn+k = Dn n = -4, ... ,0, .. ,4 
k=5 

(54) 
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Fig. 8 GSM normal burst structure 

This autocorrelation [26] property makes optimal for training estimation of 
system with no more of L=5 coefficients. The bit period evaluates T = 3.69 {lS, 

hence the bit rate is R = 270.833 kbit/s. The adopted modulation scheme 
is the GMSK signaling with normalized 3-dB bandwidth BT = 0.3 which is 
characterized by modulation index h = 1/2, a smooth shaping pulse, narrow 
band, and belongs to the class of CPM described in Section 2. Before entering 
the GMSK phase modulator, the binary sequence is differentially encoded as 
indicated in Section 2, so that the linear model 6,7 can be used for transmitted 
signal. In order to assess performance and compare different MLSE receivers 
various propagation models have been considered: 

• AWGN channel; 

• AWGN channel with Doppler effect (175 Hz carrier frequency constant 
shift corresponding to vehicle radial velocity 210 km/h); 

• the fading multipath channels indicated as TU (Typical Urban), HT (Hilly 
Terrain) and RA (Rural Area) in GSM Recommendations are simulated 
by the 6 specified taps with mobile speed of respectively 50 km/h, 100 
km/h and 300 km/h. 
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The employed transmitter and receiver bandpass filters are linear phase ones. 
The transmitter filter has been chosen with an enough wide band not to modify 
the signal shape. According to the equivalent baseband representation, the 
receiver filter features are depicted in 9,10, 11 illustrate respectively the shape 
of linearized baseband transmitted and filtered pulse. Finally, the additive 
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Fig. 9 Receiver filter: (a) frequency domain amplitude response; (b) time 
domain impulse response 

noise introduced by the channel simulator was created as white. Signal to 
noise ratios values of 3,5,8 dB were simulated in the AWGN and AWGN with 
Doppler channels, while 8,16,24 dB were chosen for simulation in TU, HT and 
RA. The receiver sampling frequency has been chosen equal to bit rate (C=l), 
and the parameter L has been regularly set to a value of 5 for the trials, in such 
a way that the simulated demodulator were always a Viterbi 2L - 1 = 16 states 
one. The values for the channel coefficients c(i), i = 0, ",4 resulting from the 
modulation scheme, the filters and the synchronization constants, are listed in 
Table 5. The performance comparison among the 'non adaptive' receiver,the 
LMS/RLS min-survivor receiver and the LMS/RLS per-survivor receiver is 
evaluated in terms of the bit error rate (BER) versus Ed No. In the 'non 
adaptive' receiver the known training sequence of each burst (midamble) is used 
to estimate the channel response during the actual burst. This training channel 
estimate is held fixed in the computing of the Viterbi metric for the entire burst 
duration and is updated only the next burst. The non adaptive term is used 
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Fig.10 Transmitted pulse shape: (a) realpartj (b) imaginary part 

II coefY. II real part imag.part II 
c(O) 0.02 0.37 
c(1) 0.04 -0.71 
c(2) -0.02 0.37 
c(3) 0 -0.03 
c(4) 0 0 

Table 5 c(i) coefficients (sampled received pulse) for GMSK BT=O.3 modu­
lation and adopted receiver filter 
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in this section to indicate a periodic update of the channel parameters (at each 
burst). It differs from the adaptive receivers (LMSjRLS min-survivor receiver 
or per-survivor receiver) which use this training channel estimate only for start 
up purposes and then update continuously the channel estimate within the 
burst. The detection of the transmitted data sequence is performed by the 
Viterbi algorithm at the end of each burst for the non-adaptive and adaptive 
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Fig. 11 Received pulse shape: (a)real part, (b) imaginary part 

receivers. Let 
4 

Yn = L mn-i C( i) + nn 
i=O 

(55) 

the received signal in correspondence of midamble, where nn is the AWGN 
term (variance 0-2 ). 

The channel training estimation is defined as the signal-midamble cross corre­
lation 

1 20 

Ctraining( i) = 16 L Yn+imn 
n=5 

i = 0, ... ,4 (56) 

Substituting 54 into the last one, in the hypothesis c( i) =F 0 only for 0 ::; i ::; 4, 
yields 

Ctraining(i) = c(i) + f(i) i = 0, ... ,4 (57) 

where 
1 20 

f(i) = 16 L mn-inn i = 0, ... ,4 
n=5 

(58) 

are Gaussian distributed errors with variance 0- 2/16. The performance of the 
different receivers has been assessed by demodulating the same signal and noise 
realization for each assigned channel type and Eb/NO. The statistics extension 
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is determined by the number of transmitted burst simulated, which has been 
fixed on 1000 bursts. The results presented refer to optimized values of the 
estimation algorithms parameters. The optimization was carried out experi­
mentally repeating the demodulation trials for different parameters values. For 
LMS algorithm, the optimal value of the step size parameter J..L has been found 
to range from 1/80 to 1/20 in any case. For RLS algorithm in the AWGN 
channel case, according with theory, the optimality for the forgetting factor 
w is exhibited for w close to 1 i.e. 0.9999; in the other cases, optimality is 
exhibited in the range 0.96 -7 0.99. When min-survivor estimation technique 
was employed, the d delay parameters has been optimized as well. The values 
chosen were d = IT for AWGN, AWGN and Doppler effect, RA channel and 
d = 2T for TU, HT channels. 

Finally, the behavior of the used adaptive algorithms (RLS and LMS) within the 
Viterbi algorithm is compared in the case of a continuous sequence transmission 
with the GMSK modulation. 

7.2 Results 

7.2.1 AWGN channel 

The BER simulated performance comparisons between nonadaptive, persur­
vivor, minsurvivor, reference receivers are shown in fig.12, fig.13 respectively 
when LMS and RLS algorithm are employed. The reference curves are asso­
ciated to the receiver that uses permanently the correct likelihood parameters 
(see Table 5). These results show that all the LMS/RLS minsurvivor re­
ceiver and LMS/RLS persurvivor receiver exhibit very similar performance. 
The adaptive techniques allow to improve the performance of non-adaptive re­
ceivers, although they do not attain the optimal reference receiver one. 
This behavior points out that: 

1. The noise on received signal determines sensible degradation in train­
ing (midamble) estimation and, hence, BER degradation of the non­
adaptive receiver with respect to the reference receiver. The adaptive 
parameters estimation techniques, by means of parameters improve­
ment, recover only a small part of the non-adaptive receiver errors. 

2. The residual BER gap between reference and adaptive receivers is 
due to the finite time-delay in the convergence process of tracking. 
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Fig.12 AWGN channel, EuclideanMLSE performance (BER) : (a) non adap­
tive; (b) LMS min-survivor (c)LMS per-survivor; (d) reference receiver. 
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Fig. 13 AWGN channel- Euclidean MLSE BER : (a) non adaptive; (b) RLS 
min-survivor (c)RLS per-survivor; (d) reference receiver. 
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side and 58 is the end of burst), statistic on 1000 bursts: (a) non adaptive 
receiver; (b) LMS min-survivor J.L = 1/20. 
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As shown in fig.14, the adaptive receiver exhibits a statistic of errors similar 
to the non adaptive one. Fig. 15 depicts the comparison of average mean and 
standard deviation (shifted at each step by their minimum value, in such a way 
that the smallest is always zero) of the survivor metrics between per-survivor 
and min-survivor adaptation techniques: as seen, the min-survivor receiver 
exhibits greater values. Notwithstanding this, no preference can be given from 
observation on simulated BER performance. 

7.2.2 A WGN Channel with Doppler effect 

These demodulation simulations refer to an impairment introduced by multiply­
ing the transmitted signal (its complex envelope) by the exponential ej27rjdt, 

with fd = 175Hz (corresponding to 21Okm/h vehicle speed, which is a 16° 
phase shift in half burst), in order to describe the progressive rotation of re­
ceived pulse due to the presence of Doppler effect. The results are shown in 



239 

Sr-------r--------r-------.--------,-------~------~ 

icc ,---'~- ". ", 

4.S .................. + ...................... +.:;:: ....... ··········1························i·················· ..... + ................. ' 

4 

3.S 

3".,.' •.. "c,·,:,:::~:::i,:·:·:,::·:····:::::·::,:r':::t:~~~:,:::::;:·:··::·:·:::t'"··· .. ·'···~·~::'····t··,,···,·····"',,,,_·-t······"' .. ·,····:::;\ 

i(d) 
2.S~------~------~------~~------~------~------~ 

10 20 30 

step 

40 so 

Fig. 15 AWGN channel-Eb/No = 5dB, LMS J1- = 1/20 average mean and 
standard deviation of survivor metrics on 1000 bursts: (a) min-surv mean; (b) 
per-surv mean; (c)min-surv std. dev; (d) per-surv std. dev. 
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fig.16 17. The reference curve is the same as in fig. 12,13 without Doppler 
effects. As seen, the non adaptive receiver performance degrades with respect 
to AWGN channel case. The adaptive techniques allow an effective tracking of 
parameters. A 2 dB improvement is attained with respect to non-adaptive re­
ceiver at BER = 2 10-3 . This result is confirmed by the histograms depicted 
in fig.18: while the adaptive receivers keep constant the BER ( the tracking 
processing already begins in the midamble sequence), the non-adaptive demod­
ulation errors grow from midamble to the end of burst. 

7.2.3 GSM RA channel 

In this environment, the fading and Doppler effects due to the high vehicle speed 
(simulated speed: 300 km/h), contribute to the degradation of the transmit­
ted signal. The multipath effect does not change the channel response length 
significantly since the maximum simulated delayed path arrives to the receiver 
antenna 1/7T later than the direct path. However, the multipath degrades the 
BER of the receiver. The simulation results are presented in fig.19, fig. 20. 
A performance improvement of 5 dB at BER equal to 10-2 is exhibited for 
adaptive receivers versus non-adaptive ones. 

7.2.4 GSM TU Channel 

This environment is characterized by moderated Doppler effect (simulated ve­
hicle speed: 50 km/h), and multipath effect (1.3T maximum simulated delay) 
due to presence of significant reflectors like large buildings walls. Fig. 21 22 
depict the performance comparison respectively for LMS and RLS adaptive 
receiver with non-adaptive receiver. The improvement for adaptive receivers 
reaches 3-dB at BER equal to 4X10- 4 . One more time, no relevant differ­
ence are observed between LMS/RLS algorithms and minsurvivor persurvivor 
techniques. 

7.2.5 GSM HT channel 

In this model the vehicle speed is equal to 100 km/h. Due to large time delays 
determined in some paths by the signal reflection on the mountains surfaces 
according to the GSM specifications, relevant amount of energy arrives to the 
receiver antenna even 8T later than the direct path. This energy results in 
additive noise since the length of the adopted Viterbi memory (L=5) is not 
sufficient to recover such a large multipath effect. Moreover using a Viterbi 
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adaptive; (b) LMS min-survivor; (c) LMS per-survivor; (d) reference receiver. 
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Fig. 17 AWGN channel with Doppler effect-Euclidean MLSE BER: (a)non 
adaptive; (b) RLS min-survivor; (c) RLS per-survivor; (d) reference receiver. 
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(a) non adaptive receiver; (b) RLS min-surv. w = 0.96. 
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Fig. 19 GSM RA channel- Euclidean MLSE BER: (a) non adaptive receiver; 
(b) LMS min-survivor; (c) LMS per-survivor. 
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Fig. 20 GSM RA channel- Euclidean BER: (a) non adaptive receiver; (b) 
RLS min-survivor; (c) RLS per-survivor. 



246 

a:: 
w 
CD 

8 10 12 14 16 18 20 22 24 

Eb/No (dB) 

Fig. 21 GSM TU channel- Euclidean MLSE BER: (a) non adaptive receiver; 
(b) LMS min-survivor; (c) LMS per-survivor. 
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Fig. 22 GSM TU channel- Euclidean MLSE BER: (a) non adaptive receiver; 
(b) RLS min-survivor; (c) RLS per-survivor. 
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receiver with memory L equal to 5 no improvement is obtained with adaptive 
techniques as shown in fig.23,24. 

10·1r-----~----._----_r----~----_.------r_----._----, 

10.2 '-------'-------'-------'-------'---------'------'-------'-------' 
8 10 12 14 16 18 20 22 

EblNO 

Fig. 23 GSM HT channel- Euclidean MLSE BER: (a) non adaptive receiver; 
(b) LMS min-survivor; (c) LMS per-survivor. 

7.3 Continuous modulations 

24 

A continuous GMSK modulation has been simulated in order to compare the 
behavior of the different adaptive algorithms within the MLSE receiver. Par­
ticularly some meaningful adaptation learning curves have been found and re­
ported in order to further distinguish the features of the different methods 
presented. A learning curve shows the maximum coefficients estimation error 

(59) 
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Fig.24 GSM HTchannel- EuclideanMLOSE BER: (a) non adaptive receiver; 
(b) RLS min-survivor; (c) RLS per-survivor. 

versus the number of iterations n from parameters start-up. The continuous 
information data stream is preceded by a preamble transmission employed for 
(training) parameters start-up. 

7.3.1 AWGN channel 

Some learning curves for min-survivor processing are depicted in fig.25. The 
learning of the LMS algorithm proceeds as fast as the RLS learning while 
JL = 1/20. 

On the other hand, for LMS to attain a residual mean estimation error as small 
as RLS, it is necessary to choose JL = 1/320. Instead, the RLS algorithm (with 
w=0.9999) is optimal in terms of both speed of response and residual error. 
Notwithstanding this, in the small interval of steps 1-58 (a GSM information 



250 

bits group) the LMS and RLS algorithms cannot show their different global 
performance if LMS is optimized with respect to speed of response (p = 1/20). 
However, the time constants of the estimation convergence process seems to 
evaluate about 1000 steps, which is more than the 58 steps duration of a GSM 
information bits group. Hence not the LMS nor the RLS algorithms can deter­
mine the optimal receiver demodulation performance if the GSM burst format 
is employed. Also the adaptive demodulation in the continuous modulation 
context has been simulated. The algorithms parameters were optimized with 
respect to mean residual error. The BER obtained on a 58000 bit sequence has 
been found to be equal to the reference receiver performance. Finally, fig. 26 
depicts the comparison between min-survivor and per-survivor LMS and RLS 
optimal learning curves. The per-survivor learning curves are referred to the 
estimation path associated to the ML sequence. The average value of the rep­
resented curves evaluates 1.1XIO-3 for LMS p = 1/320 and 1.6XIO-3 for RLS 
w=0.9999. These results show that similar learning performance are exhibited 
by min-survivor and per-survivor estimation techniques. 
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Fig. 25 Continuous transmission AWGN channel- Eb/NO = 8dB min survivor 
learning curves: (a)LMS J-L1/320; (b) LMS J-L = 1/20; (c) RLS w=0.9999 
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Fig. 26 Continuous transmision AWGN channel- Eb/NO = 8dB differences 
between min-survivor and per-survivorlearning curves: (a)LMS 11 = 1/320; (b) 
RLS w=0.9999 

7.3.2 AWGN channel with Doppler effect 
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The learning curves for some min-survivor LMS and RLS receivers are presented 
in fig. 27. It is noteworthy that the RLS w=0.9999 and LMS J.L = 1/160, after 
initial convergence, are not able to follow the progressive rotation since they 
keep a very heavy track of past estimation history. RLS w=0.9999, which 
is optimal in the AWGN channel case, diverges very fast since its estimation 
forgets practically nothing. RLS w=0.96 and LMS J.L = 1/20 learning curves 
behave similarly each other and fluctuate in dependence of the noise. However 
some reduction of estimation error with respect to start-up error is maintained. 
Fig. 28 shows the difference between min-survivor and per-survivor LMS and 
RLS optimal learning curves. Also in this case the per-survivor learning curves 
are referred to the estimation path associated to the ML sequence. The average 
value of the represented curves evaluates 1.2X10-3 for LMS J.L = 1/20 and 
1.1X10-3 for RLS w = 1/0.96. As in the AWGN case, no different learning 
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behavior is found between minsurvivor and persurvivor estimation techniques. 
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Fig. 27 Continuous transrnision AWGN channel with Doppler effect­
Eb/NO = sdB min-survivor learning curves: (a)RLS w=0.9999; (b) LMS 
J.L = 1/80; (c) LMS J.L = 1/20; (d) RLS w=O.96. 

8 Conclusions and open questions 

In this paper, topics about a digital euclidean distance polyphase MLSE struc­
ture has been discussed. The proposed structure performance has been shown 
to be, according with theory, insensitive to particular choice of carrier-phase 
and symbol-timing synchronization. Second, data-aided adaptive realizations 
of the euclidean distance MLSE receiver have been defined. Their performance 
has been studied in particular for the ETSI/GSM TDMA format in AWGN, 
Doppler and fading channel environments. All the obtained results show a 
performance superior to traditional receivers based only on midamble train­
ing. The simulations for continuous modulation format in the AWGN channel 



253 

0.15 r-------,--------,-------,--------,-------,--------" 

200 400 600 800 1000 1200 

step 

Fig. 28 Continuous transmission AWGN channel with Doppler effect­
Eb/NO = 8dB difference between min-survivor and per-survivor learning 
curves: (a)LMS J1. = 1/20; (b) RLS w=0.96 

environment have shown that the convergence time constants for adaptive tech­
niques are somehow larger than the ETSI/GSM time burst duration, adaptive 
techniques can change the receiver performance enough to attain significant 
BER improvement in the ETSI/GSM format case as well. Among the adap­
tive realizations, the different LMS/RLS minsurvivor and persurvivor estima­
tion techniques have all exhibited very similar performance. Consequently, the 
simplest structure, which is the proposed LMS min-survivor receiver can be 
regarded with particular interest. 
Hence, in view of possible further simplification, open questions are left about: 

• analysis of tracking algorithm and adaptive receivers performance varying 
the number L of estimated coefficients. 

• performance evaluation of the analyzed adaptive receivers for the new AT­
DMA (Advanced Time Division multiple access) systems of third genera­
tion in the scenario of terrestrial and satellite integrated networks. 
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