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Abstract

In this paper, a cellular neural network (CNN) model of FitzHugh–Nagumo equation is introduced.
Dynamical behavior of this model is investigated using harmonic balance method. For the CNN model
of FitzHugh–Nagumo equation, propagation of solitary waves have been proved.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The most widely used mathematical model of excitation and propagation of impulse (action po-
tential) in nerve membranes is the FitzHugh–Nagumo equation. In [6], it has been shown that this
equation or the original Nagumo active pulse transmission can be uni@ed under the umbrella of a
one-dimensional reaction–diAusion cellular neural network (CNN) where the cells are of a degener-
ate case of Chua’s oscillator. CNNs are dynamic nonlinear circuits having mainly locally recurrent
circuit topology, in other words, a local interconnection of simple circuit units called cells. Each
CNN is de@ned mathematically by its cell dynamics and synaptic law, which speci@es each cell’s
interaction with its neighbors. In this paper, we shall focus on reaction–diAusion CNNs [4,11] having
a linear synaptic law that approximates a spatial Laplacian operator.
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An autonomous CNN made of universal cells [5] and coupled to each other by only one layer of
linear resistors provides a uni@ed active medium for generating wave phenomena. In our case, since
the FitzHugh–Nagumo equation is only a simpli@cation of the classic Hodgkin–Huxley equations
[8] for nerve conduction, we shall prove that with appropriate choice of circuit parameters a CNN
represents a more general and versatile model of nerve conduction.

Consider now FitzHugh–Nagumo equation in the form

ut = u(u− a)(1− u)− w + uxx;

wt = �(u− bw); (1)

where ut is the @rst partial derivative of u(t; x) with respect to t, uxx is the second derivative of u
with respect to x, wt is the @rst derivative of w(t; x) with respect to t, b¿ 0, 0¡a¡ 1

2 , 0¡��1, u
is a membrane potential in a nerve axon, w is an auxiliary variable. In this equation the steady state
u=w=0 represents the resting state of the nerve. Since � is a small parameter, w is a slow variable
compared to u, and in an initial time period we may assume that w does not change appreciably,
i.e., w = 0. Thus,

ut = u(u− a)(1− u) + uxx;

which is the well-known Nagumo’s equation. Here u= 0 corresponds to the resting state and u= 1
to the excited state of the nerve. For this equation, it has been proved that both u=0 and u=1 are
stable, whereas u=a is unstable. Therefore, there is a threshold phenomenon. The model with w=0
thus predicts that a @nite localized stimulus can be suJcient to trigger a wave front such that the
nerve is in its resting state before its passage and its excited state afterwards. Thus the information is
passed along the nerve. For a model of nerve conduction to be realistic, there must be a mechanism
for returning to the rest state, so that the nerve may again be excited by a stimulus. This is the role
of the slow variable w.

In Section 2, we shall present an autonomous CNN model for FitzHugh–Nagumo equation (1).
In Section 3, a special spectral technique related to the Harmonic Balance method will be applied
for studying the dynamic behavior of the CNN model and the existence of periodic solutions will
be predicted. In Section 4, we shall prove the existence of solitary waves for our CNN model.

2. CNN model for FitzHugh–Nagumo equation

2.1. Basic de�nition of a CNN

Since its invention in 1988 [5], the investigation of CNNs has evolved to cover a very broad class
of problems and frameworks. Many researchers have made signi@cant contributions to the study of
CNN phenomena using diAerent mathematical tools [12]. CNN is simply an analog dynamic processor
array, made of cells, which contain linear capacitors, linear resistors, linear and nonlinear controlled
sources. Let us consider a two-dimensional grid with 3×3 neighborhood system as is shown in Fig. 1.

The squares are the circuit units—cells, and the links between the cells indicate that there are
interactions between linked cells. One of the key features of a CNN is that the individual cells are
nonlinear dynamical systems, but that the coupling between them is linear. Roughly speaking, one
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Fig. 1.

could say that these arrays are nonlinear but they have a linear spatial structure, which makes the
use of techniques for their investigation common in engineering or physics attractive.

We shall give the general de@nitions of a CNN which follows the original one [5].

De�nition 1. A CNN is a

(a) 2-, 3-, or n-dimensional array of
(b) mainly identical dynamical systems, called cells, which satis@es two properties:
(c) most interactions are local within a @nite radius r, and
(d) all state variables are continuous valued signals.

De�nition 2. A CNN is de@ned mathematically by four speci@cations:

(1) CNN cell dynamics, which presents the state equation,
(2) CNN synaptic law, which gives the interactions between cells,
(3) Boundary conditions,
(4) Initial conditions.

Now in terms of De@nition 2, for a general CNN whose cells are made of time-invariant circuit
elements, each cell C(i; j) is characterized by its CNN cell dynamics:

ẋij =−g(xij; uij; I sij); (2)

where xij ∈Rm, uij is usually a scalar. In most cases, the interactions (spatial coupling) with the
neighbor cell C(i + k; j + l) are speci@ed by a CNN synaptic law:

I sij =Aij;klxi+k; j+l + Ãij; kl ∗ fkl(xij; xi+k; j+l)

+ B̃ij; kl ∗ ui+k; j+l(t); (3)

where f is any sigmoid function: |f(xij)|6 c = const, and (df(xij)=dxij)¿ 0. The @rst term
Aij;klxi+k; j+l of (3) is simply a linear feedback of the states of the neighborhood nodes. The second
term provides an arbitrary nonlinear coupling, and the third term accounts for the contributions from
the external inputs of each neighbor cell that is located in the Nr neighborhood. In this paper, we



16 A. Slavova, P. Zecca / Journal of Computational and Applied Mathematics 151 (2003) 13–24

assume that CNN has no inputs, i.e., u ≡ 0 [4] and we shall henceforth refer to this zero-input CNN
as an autonomous CNN. For analytical investigations, it is often necessary to assume an autonomous
CNN of in@nite size, i.e., N → ∞. In this case, the boundary conditions are replaced by the pre-
scribed behavior of the solution at in@nity. For CNN with nearest-neighbor coupling, the following
three boundary conditions are typical.

(1) Fixed (Dirichlet) boundary condition:

x0(t) ≡ xN+1(t) ≡ 0;

(2) Zero-Pux (Neumann) boundary condition:

x0(t) ≡ x1(t);

xN+1(t) ≡ xN (t):

The boundaries act like mirrors rePecting the two extreme cells of the linear array.
(3) Periodic boundary condition:

x0(t) ≡ xN (t);

xN+1 ≡ x1(t)

making the array circular. Patterns and waves are usually observed with boundary conditions (2)
and (3). In our case we shall consider our autonomous CNN model for FitzHugh–Nagumo equation
with periodic boundary conditions (3), i.e., we shall have a circular array.

2.2. Modelling FitzHugh–Nagumo equation via CNN

As we mentioned in the introduction, FitzHugh–Nagumo equation can be presented by a reaction–
diAusion autonomous CNN where the cells are a degenerate special case of Chua’s oscillator [4,6].
CNN is called a reaction–diAusion CNN because it is described by a discretized version of the
well-known system of nonlinear PDEs, called in the literature as the reaction–diAusion equations
[2]: 9u=9t = f(u) + D∇2u, where u∈Rn, f∈Rn, D is an (n × n) diagonal matrix whose diagonal
elements, Di are called the diAusion coeJcients, and

∇2ui =
92ui

9x2 +
92ui

9y2 ; i = 1; 2; : : : ; n

is the Laplacian operator in R2. There are several ways to approximate the Laplacian operator ∇2ui

in discrete space by a CNN synaptic law with an appropriate A-template [11].
We map u(x; t) into a CNN layer such that the state voltage of a CNN cell vxkl(t) [5] at a grid

point (k; l) is associated with u(kh; t), h=Qx, and such that the second spatial partial derivative can
be written as

uxx ∼ 1
h2

[u(x + h; t)− u(x; t)− (u(x; t)− u(x − h; t))]

=
1
h2

[uk+1; l − 2uk;l + uk−1; l];

where h is the uniform grid size.
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Using this approximation and by the similarity indicated in [4], it is easy to design the CNN
model of Eq. (1).

(1) CNN cell dynamics:
duj

dt
= uj(uj − a)(1− uj)− wj + I sj ;

dwj

dt
= �(uj − bwj); 16 j6N: (4)

(2) CNN synaptic law:

I sj =
1
h2

(uj−1 − 2uj + uj+1): (5)

Let us assume for simplicity that the grid size of our CNN model is h= 1, and let us denote the
nonlinearity f(uj) = u2j (1 + a)− u3j . Substituting (5) into (4) we obtain

duj

dt
= uj−1 − (2 + a)uj + uj+1 + f(uj)− wj;

dwj

dt
= �(uj − bwj); 16 j6N: (6)

System (6) is actually a system of ODEs which is identi@ed as the state equation of an autonomous
CNN made of N cells.

(3) Boundary conditions: The boundary conditions aAect the steady-state solutions of CNN consid-
erably here. We take periodic boundary conditions (3), because they yield the most regular topology
of the array (all cells are identical), which will be conveniently exploited for the analysis.

3. Dynamic behavior of the CNN model

In this section, we shall introduce an approximative method for studying the dynamics of the CNN
model (6), based on a special Fourier transform. The idea of using Fourier expansion for @nding the
solutions of PDEs is well known in physics. It is used to predict what spatial frequencies or modes
will dominate in nonlinear PDEs. In CNN literature, this approach has been developed for analyzing
the dynamics of CNNs with symmetric templates [7]. When all state trajectories of a CNN converge
toward equilibrium points, an idea borrowed from physics and signal processing is to analyze them
in spatial frequency domain. The array is viewed as a spatial digital @lter, the coupling template
parameters being the coeJcients of a spatial in@nite impulse response @lter. Until the nonlinearity
begins to modify signi@cantly the states, this analysis is very accurate. Afterwards, it will depend on
the type of template parameters. In the case where steady-state trajectories oscillate, it is convenient
to use both a space-frequency, as before, and a time-frequency transform.

In this paper, we investigate the dynamic behavior of a CNN model (6) by the use of special
spectral technique related to harmonic balance method well known in control theory and in the study
of electronic oscillators as describing the function method [9,10]. This method is based on the fact
that all cells in CNN are identical [5], and therefore by introducing a suitable double transform, the
network can be reduced to a Lur’e system (Fig. 2) to which the describing function technique [9]
is applied for discovering the existence and characteristics of periodic solutions.
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Fig. 2.

Let us introduce the double Fourier transform F(s; z) of functions fk(t) discrete in space and
continuous in time:

F(s; z) =
k=∞∑

k=−∞
z−k

∫ ∞

−∞
fk(t) exp(−st) dt: (7)

In fact, this is continuous-time discrete-space Fourier transform (CTDSFT) from continuous time t
and discrete space k to continuous temporal frequency !, and continuous spatial frequency $, such
that z = exp(i$), s= i!.
Applying the above transform (7) to system (6), we obtain

sU (s; z) = z−1U (s; z)− (2 + a)U (s; z) + zU (s; z) + F(s; z)−W (s; z);

sW (s; z) = �(U (s; z)− bW (s; z)): (8)

From (8) the double transform of uj, U (s; z) can be expressed as a function of the double Fourier
transform of f(uj), F(s; z):

U (s; z) =
s+ �b

s2 + sA+ �B
N (s; z); (9)

A= a+ 2− z−1 − z + �b, B= 1 + b(a+ 2)− bz−1 − bz.
Therefore, dynamical system (8) can be represented in the Lur’e form shown in Fig. 2, where the

linear part is the transfer function

H (s; z) =
s+ �b

s2 + sA+ �B

and the nonlinear one is the function f(:).
According to the above Lur’e diagram (Fig. 2), the transfer function H (s; z) can be presented in

terms of !0 and $0, i.e., H (s; z) = H$0(!0):

H$0(!0) =
U$0(!0)
W$0(!0)

: (10)
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We are looking for possible periodic solutions of our CNN model (6) of the form

uj(t) = (($0j + !0t); (11)

for some function ( : R→ R and for some 06$06 2), !0 = 2)=T0, where T0 ¿ 0 is the minimal
period of (11). For the circular array the possible values for $0 can be easily obtained. As uj(t) is
assumed to be periodic, with minimal period T0, one has

(($0j + !0t) = (($0j + !0t + k!0T0) (12)

for any k ∈N. On the other hand, the periodic boundary conditions (3) impose that

((!0t) = (($0N + !0t): (13)

Combining (12) with j = 0 and (13), we get

$0 =
k
N

!0T0 =
2)k
N

; 06 k6N − 1; (14)

where the range of k is determined by the condition 06$06 2).
Now according to (11) we shall suppose that the state variable has the form

uj(t) = Um0 sin(!0t + j$0); (15)

which amounts to specify as ansatz for (11), which is (( ) = Um0 sin  .
Then we shall approximate the output by the fundamental component of its Fourier expansion:

wj(t) � Wm0 sin(!0t + j$0); (16)

with

Wm0 =
1
)

∫ )

−)
N (Um0 sin  )sin  d = U 3

m0
(− 3

4): (17)

Thus, the ratio of the CTDSFTs of these periodic solutions is

H$0(!0) =
U$0(!0)
W$0(!0)

=
Um0

Wm0

: (18)

On the other hand, if we substitute s= i!0 and z = exp(i$0) in (9) we obtain

H$0(!0) =
i!0 + �b

−!2
0 + i!0Â+ �B̂

; (19)

where

Â= a+ 2− 2 cos$0 + �b; B̂= 1− 2b cos$0 + b(a+ 2):

According to (18) and (19) the following constraints hold:

Re(H$0(!0)) =
Um0

Wm0

;

Im(H$0(!0)) = 0: (20)

Thus (14), (17) and (20) give us the necessary set of equations for @nding the unknowns Um0 , !0,
$0. As we mentioned above, we are looking for a periodic wave solution of (6); therefore, Um0 will
determine the approximate amplitude of the wave, and T0 = 2)=!0 will determine the wave speed.
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Combining (19) and (20) we get

!2
0(Â− �b) + �2bB̂

!4
0 + !2

0(Â2 − 2�B̂) + �2B̂2
=

Um0

Wm0

;

!0(�B̂− �bÂ)− !3
0

!4
0 + !2

0(Â2 − 2�B̂) + �2B̂2
= 0: (21)

After solving (21) we obtain the solutions

!0 =
√

�B̂− �bÂ;

Um0 =

√
4
3
�b2Â− bÂ2 + ÂB̂

bÂ− �b2 − B̂
: (22)

Now according to the describing function method, if for a given value of $0 (20) we can @nd a
solution (!0; Um0) of (21), then we can predict the existence of a periodic solution with an amplitude
Um0 and a period of approximately T0 = 2)=!0. Therefore, the following theorem has been proved.

Theorem 1. CNN model (6) of the FitzHugh–Nagumo equation (1) with circular array of N cells
has periodic state solutions uj(t) with a �nite set of spatial frequencies $0 =2)k=N , 06 k6N −1
and a period T0 = 2)=!0.

Remark 1. By applying the above Harmonic balance method we have been able to obtain a charac-
terization of the periodic steady-state solutions of our CNN model. In order to validate the accuracy
of the achieved results it would be useful to have a possible initial condition from which the network
will reach, at steady state, a steady-state solution characterized by the desired value of $0. One such
possibility is to take an initial condition xj(0) = sin($0j), 16 j6p.

Remark 2. In the above analysis the higher-order harmonics occurring at the output of the nonlinear
block are neglected, i.e. the nonlinear block is replaced by a constant gain having the same input,
which minimizes the mean squared error between the output from the nonlinearity and that from
the gain itself [2]. This assumption is often referred to us as the @ltering hypothesis. This is a very
important condition for the accuracy of the predictions.

4. Propagation of solitary waves in CNN model of FitzHugh–Nagumo equation

In literature concerning FitzHugh–Nagumo equation (1) [2], it is shown that under required condi-
tions there exists a solitary travelling wave solution of (1) for � small corresponding to the triggered
response of a nerve. The threshold behavior ensures that only stimuli above a certain level will trig-
ger a nerve impulse. This impulse consists of a wave of excitation, the leading wave front, followed
by a retractory period, when the nerve is not amenable to the triggering of another impulse, followed
by relaxation to the steady state. Another nerve impulse may then be triggered.
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Let us consider CNN model (6). For system (6), the travelling wave solutions are

uj(t) = u(.);

wj(t) = w(.); 16 j6N; (23)

where .= t − jh, h¿ 0 is a parameter.
If we compare the travelling wave solution (23) with the predicted periodic solutions (15) and

(16), we can see that they are similar u(t− jh) → Um0 sin(!0t+j$0), w(t− jh) → Wm0 sin(!0t+j$0).
Therefore, we are able to make a conclusion that our CNN model (6) of FitzHugh–Nagumo equation
has a solitary wave solution with period of the wave of approximately T0=2)=!0 and with amplitude
of the wave Um0 .

Substituting (23) in (6) we obtain

u̇= u(.− h)− 2u(.)− u(.+ h) + f(u) + w(.);

ẇ = �(u− bw); (24)

where the dot denotes diAerentiation with respect to ., f(u) = u(u − a)(1 − u). Note that . is the
coordinate moving along the array with a velocity equal to c = 1=h. Then the two diAerence terms
[u(. − h) − u(.)] − [u(.) − u(. + h)] can be replaced approximately by the @rst derivatives −u̇=h
and +u̇=h, respectively. Hence, from (24) we obtain

u̇=
1

1 + 2c
f(u) +

1
1 + 2c

w;

ẇ = �(u− bw): (25)

Let us assume that the nonlinear function f(u) = u(u− a)(1− u) satis@es for some a∈ (0; 1) the
following conditions:

f(0) = f(a) = f(1) = 0; f¡ 0∈ (0; a); f¿ 0∈ (a; 1); f′(0)¡ 0; f′(1)¡ 0;

F(1) =
∫ 1

0
f(z) dz¿ 0: (26)

Then the following theorem is known [2] for FitzHugh–Nagumo equation (1) with f(u) satisfying
(26):

Theorem 2. The stationary problem (25) for FitzHugh–Nagumo equation with zero <ux bound-
ary conditions, where f(u) satis�es (26), has three or more solutions with 06 u6 1. The two
stationary solutions u ≡ 0 and u ≡ 1 are both asymptotically stable as solutions of the correspond-
ing initial-boundary-value problem, whereas u ≡ a is unstable.

The phase plane for the stationary solutions of FitzHugh–Nagumo equation are given in Fig. 3.
By de@nition, the equilibrium points of (25) should satisfy

1
1 + 2c

f(u∗)− w∗ = 0;

�u∗ − �bw∗ = 0: (27)
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Fig. 3.

Clearly, u ≡ 0, u ≡ a, and u ≡ 1 are solutions of the stationary problem. To prove the asymptotic
stability or instability, we shall linearize (25) about (0; 0), (1; 0), (a; 0). The Jacobian matrix for
(27) is

J =

∣∣∣∣∣∣
1

1 + 2c
f′(u)

1
1 + 2c

1 −b

∣∣∣∣∣∣ :
Let us consider @rst the equilibrium point (0; 0). In this case we have the following eigenvalue

equation:∣∣∣∣∣∣
− a
1 + 2c

− 0
1

1 + 2c

1 −b− 0

∣∣∣∣∣∣= 0

or

02 + 0
(
b+

a
1 + 2c

)
+

1
1 + 2c

(ab− 1) = 0:

If ab−1¡ 0, then the origin is a saddle point. Analogously it can be shown that (1; 0) is a saddle
point too.

We require a trajectory from (0; 0) to (1; 0) in the phase plane remaining in the strip 06 u6 1.
Any such wave front must be monotonic. This is easily seen from phase plane (Fig. 3), noting that
a trajectory is directed towards the right if w is positive and to the left if it is negative. It follows
that the equilibrium points (0; 0) and (1; 0) cannot be centers or foci, since solutions close to such
points must oscillate. Trajectories which pass from one equilibrium point to another are known as
heteroclinic orbits.

Let us write system (25) in the following way:

ż = X (z; 2); (28)

z = (u; w); 2 = (b; c; �); a1 := (0; 0); a2 := (1; 0):
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Fig. 4.

Then we can show that (25) has a heteroclinic solution z∗1 (.) from a1 to a2 (z∗2 (.) from a2 to a1)
for certain parameter values. This solution corresponds to a travelling wave of FitzHugh–Nagumo
equation which satis@es

lim
.→−∞ z∗1 (.) = a1; lim

.→+∞ z∗1 (.) = a2; (29)

lim
.→−∞ z∗2 (.) = a2; lim

.→+∞ z∗2 (.) = a1; (30)

Therefore the following theorem holds:

Theorem 3. For CNN model of FitzHugh–Nagumo equation (6) where f(u) satis�es (26), there
is c¿ 0 such that there exists a wave front from 0 to 1.

The phase plane for travelling wave solutions of FitzHugh–Nagumo equation where f(u) satis@es
(26) is given in Fig. 4.

5. Conclusion

In this paper, we present the derivation of the CNN implementations through spatial discretization,
which suggests a methodology for converting PDEs to CNN templates. The CNN solution of a PDE
has four basic properties—they are

(i) continuous in time;
(ii) continuous and bounded in value;
(iii) continuous in interaction parameters; and
(iv) discrete in space.

As it was stated in [11], some autonomous CNNs represent an excellent approximation to the
nonlinear partial diAerential equations (PDEs). Although the CNN equations describing reaction–
diAusion systems are with the large number of cells, they can exhibit new phenomena that cannot
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be obtained from their limiting PDEs. This demonstrates that an autonomous CNN is in some sense
more general than its associated nonlinear PDE.

The results presented in this paper show that with appropriate choice of circuit parameters, the
generic third-order CNN model (6) represents a more general and versatile model of nerve conduction
than the FitzHugh–Nagumo equation. It is well known that FitzHugh–Nagumo equation is currently
the model of choice in simulating the mathematical neurophysiology of nerve conduction because
it is much simpler than the Hodgkin–Huxley equations. Therefore, we have proved once again that
an autonomous CNN can serve as a unifying paradigm for active wave propagation. For researchers
outside of engineering, the CNN paradigm will @nd increasing applications in view of the large
and rapidly expanding body of knowledge being generated in the CNN research community. By
simply translating any such nonengineering but CNN-based phenomenon into a corresponding CNN
paradigm, many tools, results, and concepts developed for CNNs [12] can be used to understand,
explain and control such a phenomenon.
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