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viale Morgagni 67/A, 50134 Firenze, Italy
email: vespri@math.unifi.it

Abstract

We establish the intrinsic Harnack inequality for non negative solutions
of the parabolic p-laplacian equation by a proof that uses neither the com-
parison principle nor explicit self-similar solutions. The significance is that
the proof applies to quasilinear p-laplacian type equations thereby solving a
long standing problem in the theory of degenerate parabolic equations.
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1 Main Results

Let E be an open set in RN and for T > 0 let ET denote the cylindrical domain
E × (0, T ]. Consider quasi–linear, parabolic differential equations of the form

ut − div A(x, t, u,Du) = b(x, t, u,Du) weakly in ET (1.1)
∗Corresponding author
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where the functions A : ET × RN+1 → RN and b : ET × RN+1 → R are only
assumed to be measurable and subject to the structure conditions A(x, t, u,Du) ·Du ≥ Co|Du|p − Cp

|A(x, t, u,Du)| ≤ C1|Du|p−1 + Cp−1

|b(x, t, u,Du)| ≤ C|Du|p−1 + Cp−1
a.e. in ET (1.2)

where p ≥ 2 and Co and C1 are given positive constants, and C is a given non–
negative constant. A function

u ∈ Cloc

(
0, T ;L2

loc(E)
)
∩ Lp

loc

(
0, T ;W 1,p

loc (E)
)

(1.3)

is a local weak solution to (1.1) if for every compact set K ⊂ E and every sub–
interval [t1, t2] ⊂ (0, T ]∫

K

uϕ dx

∣∣∣∣t2
t1

+
∫ t2

t1

∫
K

[
− uϕt + A(x, t, u,Du) ·Dϕ

]
dxdt

=
∫ t2

t1

∫
K

b(x, t, u,Du)ϕ dxdt

(1.4)

for all bounded testing functions

ϕ ∈ W 1,2
loc

(
0, T ;L2(K)

)
∩ Lp

loc

(
0, T ;W 1,p

o (K)
)
. (1.5)

The parameters {N, p, Co, C1, C} are the data, and we say that a generic con-
stant γ = γ(N, p, Co, C1, C) depends upon the data, if it can be quantitatively
determined a–priori only in terms of the indicated quantities.

For ρ > 0 let Bρ be the ball of center the origin on RN and radius ρ and for
y ∈ RN let Bρ(y) denote the homotetic ball centered at y. For θ > 0 set also

Qρ(θ) = Bρ × (−θ, θ]

and for (y, s) ∈ RN × R

(y, s) + Qρ(θ) = Bρ(y)× (s− θ, s + θ].

Local weak solutions to (1.1)–(1.5) are locally bounded and locally Hölder continu-
ous in ET ([3]). This fact was used to prove the Harnack inequality, unfortunately
only in some special instances. We can now show that the Harnack estimate
actually holds in full generality and independently from the Hölder continuity.

Theorem 1.1 (Intrinsic Harnack Inequality) Let u be a non–negative weak
solution to (1.1)–(1.5). There exist positive constants c and γ depending only upon
the data, such that for almost all (xo, to) ∈ ET and all cylinders (xo, to)+Q2ρ(4θ) ⊂
ET

u(xo, to) ≤ γ

[
inf

Bρ(xo)
u(x, to + θ) + Cρ

]
, θ =

(
c

u(xo, to)

)p−2

ρp (1.6)
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where C is the same as in (1.2). As a consequence any locally bounded weak
solution to (1.1)–(1.2) is locally Hölder continuous in ET , and thus (1.6) permits
an independent proof of the Hölder continuity of solutions established in [3].

In (1.6) the time θ is intrinsic to the solution u and to the geometry of the ball
Bρ(xo). It would be desirable to have an estimate where the space–time geometry
can be prescribed a–priori, independent of u(xo, to): this will be object of a future
research.

2 Novelty and Significance

Equation (1.1) with the structure conditions (1.2) is a quasi–linear version of the
degenerate, homogeneous equation

ut −
N∑

i,j=1

Dxj
(|Du|p−2aij(x, t)Dxi

u) = 0 weakly in ET (2.1)

where the coefficients aij are measurable and locally bounded in ET and the matrix
(aij) is almost everywhere positive definite in ET . If (aij) = I, then (2.1) reduces
to the degenerate, prototype parabolic p–Laplace equation

ut − div(|Du|p−2Du) = 0 weakly in ET . (2.2)

Both (2.1) and (2.2) satisfy the structure conditions (1.2) with C = 0. Accord-
ingly, non–negative weak solutions of these equations satisfy the intrinsic Harnack
inequality (1.6) with C = 0.

2.1 The Linear Case p = 2

The Harnack inequality for local, non–negative solutions of the heat equation(
(1.6), with p = 2 and C = 0

)
, was established independently by Hadamard ([6])

and Pini ([8]), by local representation of solutions in terms of heat potentials. In
[9], Moser established the same Harnack inequality for weak solutions of (2.1) for
p = 2, by energy based, measure–theoretical arguments. Moser’s proof is non–
linear in nature, and it can be extended almost verbatim ([10, 1]), to the quasi–
linear versions (1.1)–(1.2) with p = 2. At almost the same time, Ladyzhenskaja,
Solonnikov and Ural’tzeva ([7]), established, by means of DeGiorgi–type measure–
theoretical arguments, that weak solutions of such quasi–linear equations (still for
p = 2), are locally bounded and locally Hölder continuous. It turns out that the
Harnack inequality of Moser can be used to establish the Hölder continuity of
solutions. On the other hand, it was observed in [2] that the Hölder continuity
implies the Harnack inequality for non–negative solutions.

Thus a summary of the quasi–linear theory for the “linear” case p = 2, is
that Hölder continuity and Harnack inequality for non–negative solutions, are
mutually equivalent. However, establishing either of them independently, requires
independent measure–theoretical arguments.
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2.2 The Degenerate Case p > 2

Neither Moser’s nor the DeGiorgi’s ideas, in the version of [7], seem to apply when
p 6= 2, even for the prototype case (2.2). Some progress was made by the idea of
time–intrinsic geometry, by which the time is scaled, roughly speaking by up−2.
This permits to establish that weak solutions of (1.1)–(1.2), for all p > 1, are Hölder
continuous in ET ([3], Chapters III and IV). It was also observed that while the
Harnack inequality in the Moser form is in general false for p > 2, it might hold in
this time–intrinsic geometry. Indeed it was shown that (1.6) with C = 0, holds for
non–negative solutions of (2.2). The proof is based on the maximum principle and
comparison functions constructed as variants of the Barenblatt similarity solutions
(see [3], Chapter VI, for an account of the theory)

Γp(x, t) =
1

tN/λ

[
1− γp

(
|x|
t1/λ

) p
p−1

] p−1
p−2

+

t > 0 (2.3)

where

γp =
(

1
λ

) 1
p−1 p− 2

p
, λ = N(p− 2) + p. (2.4)

As p → 2 this tends pointwise to the fundamental solution of the heat equation. In
this sense Γp is some sort of p–heat potential. Thus the approach can be regarded
as paralleling that of Hadamard and Pini for the heat equation.

The novelty of Theorem 1.1 lies in producing a proof of the Harnack inequality
(1.6) based only on measure–theoretical arguments. This bypasses any notion
of maximum principle and potentials, and permits an extension to non–negative
solutions of quasi–linear equations of the type of (1.1)–(1.2). Its significance is
in paralleling Moser’s measure–theoretical, quasi–linear development, following
Hadamard and Pini’s potential representations for the heat equation. Moreover
our approach gets rid of any kind of covering argument and Cross–over Lemma,
which were used in Moser’s proof but can be considered as rather artificial.

In [5] we will give a detailed proof of Theorem 1.1, built on measure–theoretical
facts established in [4]. Particular care will be used in showing how the Harnack
inequality implies the Hölder continuity of the solution.

Thus a summary of the quasi–linear theory, for the “degenerate” case p > 2,
is that Hölder continuity and intrinsic Harnack inequality are mutually equiva-
lent. However, establishing either of them independently, requires independent
measure–theoretical arguments. Finally when p → 2 the intrinsic Harnack in-
equality (1.6) and the corresponding Hölder theory, recover the classical Moser’s
estimate and the corresponding Hölder estimates of [7].

2.3 Expansion of Positivity

The main technical novelty is illustrated by referring back to the “linear” case
p = 2.
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Let u be a non–negative, local solution of the heat equation in ET . Let Bρ(y)×
(s− ρ2, s] ⊂ ET and assume that

meas{x ∈ Bρ(y)
∣∣ u(x, s− ρ2) < M} < α meas{Bρ}

for some M > 0 and some α ∈ (0, 1). Then there exists η = η(α) ∈ (0, 1), such
that for all x ∈ B2ρ(y)

u(x, s + 4ρ2) ≥ ηM.

Thus information on the measure of the “positivity set” of u at the time level
s− ρ2, over the ball Bρ(y), translates into an expansion of the positivity set both
in space

(
from Bρ(y) to B2ρ(y)

)
, and in time (from s− ρ2 to s + 4ρ2). This fact

continues to hold for quasi–linear versions of the heat equation and was established
in [2].

A similar fact for p > 2 is in general false as one can verify from the Barenblatt
solution (2.3)–(2.4). The main technical novelty of our investigation is that a
similar fact continues to hold for the degenerate equations (1.1)–(1.2), in a time–
intrinsic geometry. Precisely

Lemma 2.1 Let u be a non–negative, local, weak solution of (1.1)–(1.2). There
exist positive constants γ and b, and η ∈ (0, 1), depending only upon the data and
independent of (y, s), ρ and M , such that if

u(x, s) ≥ M for all x ∈ Bρ(y) (2.5)

then either M < γ C ρ, or for a.e. x ∈ B2ρ(y)

u(x, t) ≥ ηM with t = s +
(

b

ηM

)p−2

(4ρ)p. (2.6)
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