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Assessment of Arterial Compliance by Carotid Midwall
Strain-Stress Relation in Hypertension

Jonathan N. Bella, Mary J. Roman, Riccardo Pini, Joseph E. Schwartz,
Thomas G. Pickering, Richard B. Devereux

Abstract—To elucidate the relations between arterial hypertrophy and compliance in hypertension, we studied 205
unmedicated hypertensive patients (129 men and 76 women) and 82 normotensive adults (56 men and 26 women) from
an employed population by carotid ultrasound, noninvasive applanation tonometry, and echocardiography. Carotid
midwall strain and circumferential stress were calculated at end diastole and peak systole. The relations of luminal and
midwall strain to the increment in circumferential stress from end diastole to peak systole (Dcarotid stress in normal
subjects) were used to calculate ratios of observed/predicted carotid luminal and midwall strain. Mean stress-corrected
luminal strain (82626%) and midwall strain (78623%) were lower (bothP,0.001) in hypertensive patients than in
normal adults. Stress-corrected luminal strain identified 14% of hypertensive patients with low arterial compliance,
while stress-corrected midwall strain was low in 18% of patients. Patients with subnormal carotid midwall strain were
older (61612 versus 54612 years,P,0.01) and had larger carotid diameters (6.660.8 versus 5.760.8 mm,P50.002)
and higher brachial pulse pressures (71625 versus 63617 mm Hg,P,0.05) than other patients. Patients with arterial
hypertrophy had lower stress-corrected midwall strain than those without hypertrophy (70624% versus 79623%,
P50.05), whereas no difference was observed in stress-corrected luminal strain (P50.40). Stress-corrected midwall
strain tended to be lower in patients with discrete atherosclerotic plaques than in those without (74620% versus
79624%,P50.15). Compared with patients with normal left ventricular geometry, those with concentric hypertrophy
had larger carotid diameters (6.660.7 versus 5.860.9 mm,P,0.05) and lower stress-corrected luminal strain (62611%
versus 85625%,P,0.05) and midwall strain (59610% versus 81622%,P,0.05). Therefore, stress-corrected midwall
strain identifies patients with reduced arterial compliance, increased arterial wall thickness, and abnormal left ventricular
geometry better than conventional measures based on arterial lumen diameters.(Hypertension. 1999;33:793-799.)
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The chronic increase in blood pressure during sustained
hypertension increases arteriolar wall thickness.1,2 In

addition, decreased large-artery compliance is a major deter-
minant of increased pulse pressure.3,4 Decreased arterial
compliance in hypertensive patients has been attributed both
to elevated distending pressure and to hypertension-induced
wall thickening that keeps arterial wall stress mainly un-
changed despite elevated blood pressure.5,6 However, despite
numerous studies of the influence of risk factors on carotid
artery intimal-medial thickness (IMT),7–9 the relation be-
tween arterial wall hypertrophy and compliance in hyperten-
sion has not been clearly elucidated. Recently, we evaluated
the relation of carotid midwall strain to the increment in
carotid stress during systole (Dcarotid stress) as a measure of
arterial compliance in normotensive adults.10 In this study we
examined carotid midwall mechanics in normotensive and
hypertensive individuals to identify the characteristics of

hypertensive patients with reduced arterial compliance by the
carotid midwall strain-stress relation.

Methods
Subjects
The study group consisted of 205 asymptomatic unmedicated hyper-
tensive patients (63% male; 34% nonwhite; age, 55612 years;
brachial arterial pressure, 158621/93611 mm Hg; body mass index,
26.664.0 kg/m2) and a reference group of 82 normotensive adults
(68% male; 21% nonwhite; age, 50617 years; brachial arterial
pressure, 122612/7369 mm Hg; body mass index, 25.164.0 kg/m2)
from an employed population in New York.11,12 Hypertensive
patients had systolic blood pressure.140 mm Hg, diastolic blood
pressure.90 mm Hg, or both. Segmental left ventricular (LV) wall
motion abnormalities and valvular regurgitation or stenosis were
excluded by 2-dimensional and Doppler echocardiograms. On the
basis of the Second National Health and Nutrition Examination
Survey (NHANES II), subjects were classified as overweight if body
mass index was.27.8 kg/m2 for men and.27.3 kg/m2 for women.13
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Subjects had no clinical evidence of coronary heart disease and gave
informed consent under protocols approved in 1979 and
regularly thereafter.

Echocardiographic Methods
M-mode and 2-dimensional echocardiograms were performed by a
skilled research technician and interpreted by a single investigator
(M.J.R.), as previously described.14 Penn convention measurements
were used for LV mass,15,16 and American Society of Echocardiog-
raphy measurements17 were used for LV internal diameter and wall
thicknesses. When optimal orientation of the LV could not be
obtained, correctly oriented 2-dimensional linear dimensions were
made by the American Society of Echocardiography recommenda-
tions.18 Brachial blood pressure was taken 3 times and averaged at
the end of the echocardiogram. Gender-specific partition values for
LV mass/body surface area used to classify LV geometric patterns
were the same as those previously used for comparison with
ambulatory blood pressures.19 Patients were classified as abnormal if
the LV relative wall thickness was.0.4120 or if the LV mass/body
surface area was.108 g/m2 in women or.118 g/m2 in men.21

Carotid Ultrasound
A Biosound Genesis II system (OTE Biomedica) or Acuson 128
(Acuson, Inc) equipped with a 7.0- to 7.5-MHz transducer was used
to scan the common, internal, and external carotid arteries for
discrete carotid plaques.8,11–14,22–24 Two-dimensionally guided
M-mode recordings of the distal common carotid artery'1 cm
proximal to the carotid bulb with simultaneous ECG and carotid
pressure waveforms were recorded on videotape and digitized with
the use of a frame grabber and customized software. Electronic
calipers were used to measure the internal diameter (Dd) and far wall
IMT (IMT d) at end diastole, recognized from the nadir of the
simultaneous arterial pressure waveform or the minimal arterial
diameter, as well as the diameter at peak systole (Ds). All measure-
ments were performed on several cycles by a single investigator
(M.J.R.) and averaged.

As previously described,24 a multiple regression equation predict-
ing IMT from other potentially relevant variables was
IMT d50.00586(Age)10.015267(Body Surface Area)10.16569. The
ratio observed/predicted IMTd was calculated for each subject, and
arterial hypertrophy was identified if this ratio was.2 SD above the
mean ratio of the reference population.

Arterial Function Assessment
Arterial pressure waveforms were recorded noninvasively by placing
a solid-state high-fidelity external pressure transducer (model SPT-
301; Millar Instruments, Inc) over the right common carotid artery
while recording M-mode images of the left common carotid artery.25

Orientation and pressure applied to the transducer were adjusted to
achieve applanation of the artery between the transducer and
underlying tissue, as has been validated to yield accurate estimates of
intra-arterial pulse pressure by comparison with simultaneous inva-
sive pressure recordings.26,27 The transducer is internally calibrated
(1 mV510 mm Hg) and registers absolute changes in applied
pressure over a range of 300 mm Hg. Actual carotid pressures were
obtained by external calibration; on the basis of the observation that
mean arterial pressure is nearly identical in all capacitance ves-
sels,28,29 mean brachial artery pressure was considered to equal the
planimetrically computer-derived mean blood pressure of the carotid
waveform. Alternative analyses in which carotid diastolic pressure
was also set equal to brachial diastolic pressure yielded similar
results and are not reported separately.

Arterial Compliance and Stiffness Indices
As previously described,10 carotid luminal strain, the percent systolic
expansion of the arterial lumen,30 was calculated as [(Ds2Dd)/
Dd]3100. Carotid pressures Dd, Ds, and IMTd were used to calculate
several measures of regional arterial stiffness, including Peterson’s
elastic modulus, Young’s elastic modulus,31 and a pressure-
independent measure (b).32,33 Systemic arterial compliance was

estimated by the ratio stroke volume/brachial pulse pressure.34 In
addition, the arterial compliance index was calculated using a
method modified25 from that described by Randall et al.35 This index
was normalized for body surface area. Cardiac output was calculated
from echocardiographic diastolic and systolic LV volumes.36

Measures of Carotid Midwall Function
As previously described in detail,10 carotid midwall strain was
derived with the use of a cylindrical model, adapted from Shimizu et
al,37 which assumes that the volumes of the total carotid wall and of
its inner and outer halves during the cardiac cycle are constant. If it
is assumed that the arterial long axis remains constant, inner shell
cross-sectional areas at end diastole and at end systole are equal,
allowing use of end-diastolic carotid lumen diameter and wall
thickness and peak systolic diameter to calculate the systolic thick-
ness of the inner arterial wall shell as well as other midwall
dimensions. From these values, previously reported equations10 were
used to calculate carotid midwall strain (expressed as percentage),
the midwall Peterson’s elastic modulus, the midwall Young’s elastic
modulus, and the midwallb.

Carotid end-systolic stress was estimated at the midwall from
M-mode tracings, with the adaption of a cylindrical model37 previ-
ously used for cardiac studies,38,39 and the same approach was used
to calculate carotid end-diastolic stress. These values were used to
calculate the increment in carotid stress during the cardiac cycle
(Dcarotid stress).

Equations relating carotid luminal strain and carotid midwall
strain toDcarotid stress in the clinically normal subjects were used
to predict the expected carotid luminal and midwall strain, respec-
tively, for observedDcarotid stress. The ratios of observed/predicted
carotid strains were then derived to yield measures of carotid luminal
and midwall strain adjusted for the imposed stress, called stress-
corrected carotid strain.

Statistical Analysis
Data are presented as mean6SD. Continuous variables were com-
pared by 1-way ANOVA, followed by the Scheffé post hoc test.
Independent samplet tests and ANCOVAs that took into account
relevant covariates were used to compare mean values between
groups. Proportions were compared among groups by thex2 statistic.
The independence of relations between continuous variables was
evaluated by linear regression. The null hypothesis was rejected at
2-tailedP,0.05.

Results
Relation of Carotid Luminal Strain and Midwall
Strain to DCarotid Stress
Figure 1 shows the relation in hypertensive patients of carotid
luminal strain toDcarotid stress (top;r50.29,P,0.001) and
of carotid midwall strain toDcarotid stress (bottom;r50.39,
P,0.001). Stress-corrected luminal strain (82626%) and
midwall strain (78623%) in hypertensive patients were on
average subnormal (bothP,0.001 versus mean values of
100% and 99% in normal adults). Similarly, after adjustment
for age, conventional measures of arterial stiffness were
higher in hypertensive than in normotensive individuals
(6.162.5 versus 5.062.5, P50.002 forb; 6366264 versus
5026204 dyne/cm2 per millimeter 31026, P,0.001 for
Young’s modulus). The significance of these differences was
greater for stress-corrected luminal strain (t55.36) and stress-
corrected midwall strain (t56.89) than forb (t523.09) or
Young’s modulus (t524.17), primarily because of lower
within-group coefficients of variation for stress-corrected
strains ('25%) than for traditional stiffness measures
('40%).
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Figure 2 compares the distribution of stress-corrected
luminal strain in normal subjects and hypertensive patients.
As seen in the bottom panel, the distribution of stress-
corrected luminal strain was shifted to the left in hypertensive
patients, with 14% below the 5th percentile of normal. Figure
3 compares the distributions of stress-corrected midwall
strain in normal subjects and hypertensive patients. The
distribution of stress-corrected midwall strain in the latter
group was also shifted to the left, with 18% below the 5th
percentile of normal.

Characteristics of Hypertensive Patients With
Reduced Arterial Compliance
Those in the subgroup of hypertensive patients with low
stress-corrected midwall strain were older and had higher
brachial and carotid systolic and diastolic blood pressures and
higher brachial pulse pressures than the other patients (Table
1). There were no statistical differences between patient
groups in gender, race, or body size. Although hypertensive
patients with low stress-corrected midwall strain had slightly
larger LV wall thickness, mass, and relative wall thickness
than those with normal stress-corrected midwall strain, these
differences did not approach statistical significance. Hyper-
tensive patients with low stress-corrected luminal strain also
had higher brachial and carotid systolic and diastolic blood
pressures (Table 2). There were no significant differences
with regard to age, gender, race, or body size. Patients with
low stress-corrected luminal strain had slightly thicker inter-

ventricular septa but similar LV mass compared with the
remaining patients.

Carotid Luminal and Midwall Mechanics in
Hypertensive Patients
Hypertensive patients with low stress-corrected luminal strain
had larger carotid systolic and diastolic diameters than those
with normal stress-corrected luminal strain (6.960.9 versus
6.560.9, P50.01; 6.560.9 versus 5.860.8, P,0.001, re-
spectively). There was no difference in arterial cross-
sectional area between subgroups of patients. Patients with
low stress-corrected midwall strain had larger carotid systolic
and diastolic diameters than the other patients (7.060.9
versus 6.560.9, P,0.001; 6.560.8 versus 5.760.8,
P50.002, respectively). In contrast to the lack of difference
when patients were grouped by level of stress-corrected
luminal strain, those with low stress-corrected midwall strain
had larger cross-sectional areas than those with normal
stress-corrected midwall strain (20.766.6 versus 17.265.5,
P,0.001).

Figure 1. Top, Relation of carotid luminal strain (vertical axis) to
Dcarotid stress (horizontal axis) in hypertensive patients. Bot-
tom, Relation of carotid midwall strain (vertical axis) to Dcarotid
stress (horizontal axis) in hypertensive patients.

Figure 2. Top, Level of observed stress-corrected luminal strain
in normotensive adults is normally distributed with a modal
value at '95% of the predicted value. The vertical line repre-
sents the 5th percentile of the distribution. Bottom, Distribution
of stress-corrected luminal strain in hypertensive patients is
shifted to the left compared with normotensive individuals, with
modal values of 70% to 75% of predicted and 14% below the
vertical line representing the 5th percentile of normal.
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According to a previously derived regression equation,26

arterial hypertrophy was present in 15% of hypertensive
patients. These patients had lower carotid midwall strain and
stress-corrected midwall strain than those without arterial
hypertrophy, whereas no difference was observed in luminal
or stress-corrected luminal strain (Table 3). Discrete athero-
sclerotic plaques were detected in 27% of hypertensive
patients. Both stress-corrected carotid luminal and midwall
strain were lower in those with plaque compared with those
without, but this did not approach statistical significance.

After adjustment for age, hypertensive patients with low
stress-corrected luminal strain had higherb (9.863.1 versus
5.561.9) and Young’s modulus (10326378 versus 5686160
dyne/cm2 per millimeter 31026) (both P,0.001) than the
other hypertensive patients. Similarly, after adjustment for
age, those with low stress-corrected midwall strain had higher
b (9.663.0 versus 5.461.8) and Young’s modulus
(10026372 versus 5656161 dyne/cm2 per millimeter31026)

(both P,0.001) than the other hypertensive patients. As
expected, after adjustment for age, midwall measures of
arterial stiffness were higher in hypertensive patients with
low stress-corrected midwall strain than in the other hyper-
tensive patients (9.363.4 versus 5.061.8 for midwallb;Figure 3. Top, Level of observed stress-corrected midwall

strain in normotensive adults is normally distributed with a
modal value at '95% of the predicted value. The vertical line
represents the 5th percentile of the distribution. Bottom, Distri-
bution of stress-corrected midwall strain in hypertensive
patients is shifted to the left compared with normotensive indi-
viduals, with modal values of 70% to 75% of predicted and
18% below the vertical line representing the 5th percentile of
normal.

TABLE 1. Clinical and Echocardiographic Characteristics of
Hypertensive Patients With Low or Normal Stress-Corrected
Carotid Midwall Strain

Variable

Stress-Corrected Midwall Strain

Low (n533) Normal (n5172)

Age, y 61612† 54612

% Male 63 63

% White 74 65

Body mass index, kg/m2 26.263.2 26.664.1

Brachial SBP, mm Hg 170.3626.8‡ 155.0619.5

Carotid SBP, mm Hg 157.4621.5‡ 145.6616.6

Brachial DBP, mm Hg 99.4612.6† 92.3610.2

Carotid DBP, mm Hg 97.9615.5† 91.0613.6

Brachial PP, mm Hg 70.9625.2* 62.8617.1

Carotid PP, mm Hg 60.0617.7 55.1617.7

IVSTd, cm 1.060.1 0.960.1

LVIDd, cm 5.060.6 5.160.5

PWTd, cm 1.060.1 0.960.1

LV mass, g 187.3653.0 177.6647.0

LV mass/height, g/m2.7 44.568.9 42.0610.0

RWT 0.3960.06 0.3760.06

SBP indicates systolic blood pressure; DBP, diastolic blood pressure; PP,
pulse pressure; IVST, interventricular septal thickness; LVID, LV internal
dimension; PWT, posterior wall thickness; BSA, body surface area; and RWT,
relative wall thickness. Subscript d indicates diastole.

*P,0.05; †P,0.01; ‡P,0.001.

TABLE 2. Clinical and Echocardiographic Characteristics of
Hypertensive Patients With Low and Normal Stress-Corrected
Luminal Strain

Variable

Stress-Corrected Luminal Strain

Low (n530) Normal (n5175)

Age, y 59612 55612

% Male 65 63

% White 71 65

Body mass index, kg/m2 25.663.0 26.764.1

Brachial SBP, mm Hg 168.3626.8† 155.6620.0

Carotid SBP, mm Hg 154.1621.0* 146.4617.1

Brachial DBP, mm Hg 99.4612.9† 92.4610.2

Carotid DBP, mm Hg 98.6615.6† 91.0613.5

Brachial PP, mm Hg 68.8624.9 63.3617.6

Carotid PP, mm Hg 56.7614.2 55.8618.3

IVSTd, cm 1.060.1* 0.960.1

LVIDd, cm 5.060.6 5.060.5

PWTd, cm 1.060.1 0.960.1

LV mass, g 188.7653.0 177.5647.1

LV mass/height, g/m2.7 43.968.9 41.5610.0

RWT 0.3960.06 0.3760.06

Abbreviations are as defined in Table 1.
*P,0.05; †P,0.01.
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292161044 versus 16656564 dyne/cm2 per millimeter
31026 for midwall Young’s modulus) (bothP,0.001).

Carotid Midwall Mechanics and LV Hypertrophy
Compared with hypertensive patients with normal LV geom-
etry and concentric remodeling, those with concentric hyper-
trophy had lower luminal strain and midwall strain as well as
stress-corrected luminal strain and midwall strain (Table 4).
The patients with eccentric LV hypertrophy had lower lumi-
nal and midwall strain as well as stress-corrected luminal and
midwall strain, but these differences did not attain statistical
significance.DCarotid stress did not differ among the LV
geometric patterns.

Discussion
Measurement of arterial compliance may provide evidence of
vascular changes that precede the development of overt
atherosclerotic disease.40 Therefore, noninvasive assessment
of arterial compliance may aid in early detection and subse-
quent prevention of atherosclerotic disease. Risk factors for
vascular disease, including older age, high blood pressure and
cholesterol, diabetes, and LV hypertrophy, are known to be
associated with decreased arterial compliance.24,41–48

Several methods of noninvasive assessment of arterial
compliance rely on the relation between systolic lengthen-
ing of arterial lumen diameter in relation to the corre-
sponding change in blood pressure.32–34However, conven-
tional methods do not examine the average strain of the
arterial wall, approximated by the behavior of the midwall
of the artery, nor do they take into account the average
imposed stress. On the basis of research on the left
ventricle that demonstrated that shifting the examination of
LV mechanics to the midwall improves understanding of
ventricular function in individuals with abnormal cardiac
geometry,49,50 we recently used carotid ultrasound and the

highly skill-dependent technique of carotid applanation
tonometry to evaluate in apparently normal adults a
measure of arterial compliance based on carotid midwall
strain and its relation to the increment in carotid stress
during systole (Dcarotid stress).10 In that study, carotid
midwall strain was unrelated to gender, positively related
to Dcarotid stress, and negatively related to age, over-
weight, and standard measures of arterial stiffness. In
addition, stress correction strengthened the negative rela-
tion of carotid midwall strain with age, suggesting that
assessment of carotid midwall mechanics may enhance
noninvasive assessment of the compliance of conduit
arteries.

In this study of hypertensive patients, carotid midwall
strain was positively related toDcarotid stress, albeit slightly
less closely than in normotensive individuals.10 The likely
explanation for this is that hypertensive patients respond to
elevated blood pressure heterogeneously, with proportionate
increases in normally compliant connective tissue and mus-
cular elements in some patients but disproportionate increases
in noncompliant connective tissue in others.49

We have previously demonstrated that increased carotid
wall thickness is associated with decreased carotid distensi-
bility in hypertensive patients compared with age-matched
normotensive subjects.8 In our initial report,25 when differ-
ences in wall thickness were taken into account using
Young’s elastic modulus, carotid artery stiffness was not
statistically greater in hypertensive patients than in normo-
tensive subjects. In contrast, the present study of substantially
larger hypertensive and normotensive populations reveals
statistically higher arterial stiffness by conventional indices in
hypertensive patients, a difference that became more striking
when the new measures of arterial mechanics were used.
Moreover, the present study demonstrates that the carotid
arterial wall is stiffer in hypertensive patients than in normo-

TABLE 3. Carotid Luminal and Midwall Mechanics in Relation to Clinical Characteristics of Hypertensive Patients

Variable

Gender Age Body Habitus Arterial Hypertrophy Arterial Plaque

Male Female ,55 y .55 y Normal Overweight Absent Present Absent Present

Luminal strain, % 11.963.9 12.064.1 12.263.9 11.764.1 12.164.1 11.663.8 12.163.9 10.964.6 12.164.2 11.563.3

midwall strain, % 9.263.0 9.363.0 9.663.0 8.963.0 9.463.1 9.062.9 9.562.9 7.963.1† 9.463.2 8.862.5

Stress-corrected luminal strain, % 81626 83627 84625 79627 82626 81625 82625 78631 83627 79622

Stress-corrected midwall strain, % 78623 79623 82622 75623* 78624 77622 79623 70624* 79624 74620

*P,0.05; †P,0.01.

TABLE 4. Carotid Midwall Mechanics and LV Geometric Patterns

Normal (n582)

Hypertensive Patients

Normal Geometry
(n5129)

Concentric Remodeling
(n542)

Eccentric LV Hypertrophy
(n521)

Concentric LV Hypertrophy
(n513)

Luminal strain, % 14.663.9 12.463.7 12.364.8 10.363.4 8.861.7*

Midwall strain, % 11.763.2 9.662.9 9.463.5 8.162.5 6.861.3*

DStress, 103 dyne/cm2 32.8610.6 32.9610.6 33.768.9 31.9611.1 30.967.8

Stress-corrected luminal strain, % 100626 85625 83631 71622 62611*

Stress-corrected midwall strain, % 100624 81622 78627 69619 59610*

*P,0.05, compared with patients with either normal LV geometry or concentric remodeling by ANOVA with Scheffé post hoc test.
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tensive subjects when compared at a given circumferential
Dstress (assessed by stress-corrected strains), when arterial
wall thickness is taken into account (Young’s modulus and
midwall Young’s modulus), and when the curvilinear arterial
pressure-diameter relation is taken into account (b and
midwall b).

In our study,Dcarotid stress was statistically indistinguish-
able in normotensive adults and hypertensive patients. Be-
cause carotid luminal strain was reduced (by 19% on average)
in hypertensive patients, use of stress-corrected luminal strain
identified 14% of patients with low arterial compliance. A
slightly larger proportion of hypertensive patients (18%) had
low arterial compliance by stress-corrected midwall strain.
These patients were older and had thicker arterial walls and
higher blood pressures than the hypertensive patients with
normal stress-corrected midwall strain. In addition, all con-
ventional measures of arterial stiffness were higher in hyper-
tensive patients with low stress-corrected midwall strain.

In a previous study,47 we demonstrated that hypertensive
patients with concentric LV hypertrophy have a greater
increase in arterial wall thickness, cross-sectional area, and
conventional measures of arterial stiffness at the operating
level of distending pressure than hypertensive patients with
other LV geometric patterns. In the present study, those with
concentric LV hypertrophy had reduced stress-corrected lu-
minal and midwall strain. Stress-corrected luminal and mid-
wall strain also tended to be more subnormal in those with
eccentric LV hypertrophy than in those with normal LV
geometry. An intriguing result is that LV hypertrophy is
related to stress-corrected midwall strain but not to conven-
tional measures of arterial stiffness, implying that the asso-
ciation between LV hypertrophy and arterial dysfunction is
better assessed by use of carotid midwall mechanics.

Conclusion
Stress-corrected midwall strain may identify hypertensive
patients with reduced arterial compliance, increased arterial
wall thickness, and abnormal LV geometry better than
conventional arterial function measures based on arterial
lumen diameters.
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