
Metric Framework for Object-Oriented Real-Time
Systems Specification Languages

P. Nesi
Department qf Systems and Informatics, Faculty of Engineering, University of Florence, Florence, Italy

M. Campanai
CESVIT/ CQ-ware, Center for Software Quality, Florence, Italy

In this paper, a framework for maintaining control of

and analyzing object-oriented system specifications of

real-time systems by using a set of metrics covering

technical, cognitive, and process-oriented views is

presented. The indicators defined can be used for

monitoring the evolution of system quality and for

effort prediction. The use of metrics for the estimation

of reusability, verifiability, and testability is analyzed.

The metric framework is integrated in a CASE tool

named TOOMS, which is based on TROL, a dual

object-oriented language with both descriptive and

operational capabilities. TOOMS allows one to de-

scribe the system at different levels of structural ab-

stractions and at different levels of specification detail,

such as many other languages and models for

real-time systems (e.g., OSDL, ObjectTime, Ob-

jectchart). According to this, the metrics proposed are

capable of producing estimations at each level of sys-

tem specification, thus allowing incremental specifica-

tion/metrication. The metric framework must be re-

garded as a support for controlling the process of

software development in order to guarantee the final

quality.

1. INTRODUCTION

There is an overabundance of metrics in the litera-
ture. Complexity and size are often defined on the
basis of available metrics; many attempts at metrics
validation have been made, but unfortunately, for
each positive validation there is a negative one.

Address correspondence to Prof: P. Nesi, Deparlment of Systems
and Informutic.s, University of Florence, Via S. Marta 3, 50139,
Florence, Italy. E-Mail:nesi@ingfil.ing.uni~,it

Some studies with metrics and measurement frame-
works for object-oriented systems have been pre-
sented (Laranjeira, 1990; Meyer, 1990; Panaroni and
Musone, 1990; Jensen, 1991; Coulunge and Roan,
1993; Li and Henry, 1993; Henderson-Sellers, 1993;
Yap et al., 1993) where general concepts for the
estimation of system size, complexity, and reuse level
have been proposed. Furthermore, an analysis of the
impact of the “reuse, as the most enticing promise”
in object-oriented system development has been car-
ried out by Henderson-Sellers (1993). However, it
should be noted that in the measurement of object-
oriented systems, a generally poor design and a lack
of adherence to proper measurement principles are
still present. This lack is also due to the different
definitions of what the object-oriented paradigm is.

Moreover, several formal definitions of the correct
measurement principles have been presented (e.g.,
Fenton, 1991; ESPRIT-5494, 1992; Zuse, 19941, but
they are still oriented to the structured approach. In
addition, it should be noted that to define a specific
framework for measuring the quality of the specifi-
cations given in languages suitable for real-time
system specification, many specific metrics must be
defined (Warburton, 1983; Jensen and Vairavan,
1985; Wearing, 19921. This is due to several factors,
including, (a) the need of using particular languages
for specifying real-time systems (e.g., TROL by Bucci
et al., 1994; TRIO+ by Morzenti and SanPietro,
1992; OSDL by Braek and Haugen, 1993, etc., as can
be observed by Bucci et al., 19951, (b) the need to
give more evidence to system behavior-i.e., to the
presence of temporal and logical constraints on sys-
tem behavior, (c) the need for verifiability metrica-

J. SYSTEMS SOFTWARE 1996; 34:43-65
D 1996 by Elsevier Science Inc.
655 Avenue of the Americas, New York, NY 10010

0164.1212/96/$15.00
SSDI 0164.1212(95)00064-S

44 J. SYSTEMS SOFTWARE
1996; 34:43-65

P. Nesi and M. Campanai

tion of the specification consistency of the system
under analysis, (d) the need to obtain valid measure-
ments, even if the system is only partially specified
(this is very useful for many algebraic and logical
languages such as Object-Z by Carrington et al.,
1990; VDM + + by Diirr and vanKatwijk, 1992;
TRIO + by Morzenti and SanPietro, 1992; TROL by
Bucci et al., 1994, etc.).

Recently, an increase in attention to the process
of software development has created the need to
obtain process-oriented information and to integrate
metrics into the software development process. Fur-
thermore, due to the presence of many differences
among projects by the same company, it is impor-
tant to create an integrated environment to perform
project-oriented tailored measures. This means that
it is important for a company to adopt a unique
method and approach for project measurement, but
its approach must be capable of adapting its features
to different types of projects and languages. This
process of adaptation is usually performed by using
adjusted weights and thresholds (Henderson-Sellers
and Edwards, 1994).

In this paper, a shift of prospective is presented
(a) in the definition of metrics and (b) in the integra-
tion of metrics in the development process by pro-
viding an integrated framework for system measure-
ments. In fact, the metrics proposed have been inte-
grated into TOOMS, which is a CASE tool for the
specification of real-time systems (Bucci et al., 1993).
The structure of the TOOMS tool is comprised of a
set of visual editors and utilities. In TOOMS, the
user interacts with the visual editors describing the
system under specification by means of few graphical
symbols. In particular, the Block Editor is adopted
to specify nonbasic object classes which model the
system decomposition/composition defining a class
and a set of communicating subobjects; while the
Machine Editor is used to specify basic object classes
as extended state machines (i.e., XCMs and XSMs),
for modeling classes which cannot be further decom-
posed (see Figure 1); the Type Editor is used to
define new data types (Bucci et al., 1993) (see Ap-
pendix A). Utilities for providing metrication, verifi-
cation, validation, and simulation are directly inte-
grated into the visual editors. A code generator,
which transforms the system specification from the
TROL language into C ++ code, is also available.
TOOMS is based on an object-oriented formal lan-
guage and model named TROL (Nesi, 1993; Bucci
et al., 1994). TROL adopts a dual model which
is capable of integrating the operational and the
descriptive formalism; its operational or descrip-
tive features are similar to other IO-based object-

oriented specification languages and methods-
e.g., TRIO + by Morzenti and SanPietro (1992);
ObjectCharts by Coleman et al. (1992); Object-
Oriented version of SDL (OSDL) by Braek and
Haugen (1993); Object-Time by Northern Telecom
(1993). Most of these approaches have the capabili-
ties of specifying system behavior, structure, and
functionality and allow the verification and valida-
tion of composition/decomposition mechanisms. In
addition, the incremental specification of system de-
scription is allowed where classes are defined by
means of their external and internal class descrip-
tions (which correspond to public and private class
members according to the object-oriented paradigm).

Even though the metric framework proposed in
this paper has been defined for the TOOMS/TROL
model, it can also be applied to the above-men-
tioned formalisms with minor changes, since most of
the metrics proposed are independent of the pro-
gramming language, as will be shown later. The
metric model was integrated into the TOOMS tool
in order to maintain control of the evolution (i.e.,
quality and effort) of real-time systems under speci-
fication; thus, quantitative parameters and related
metrics have been defined to evaluate all aspects of
the system under specification with a greater atten-
tion to the specification quality, reusability, verifia-
bility, testability, and cost prediction.

The paper is organized as follows. In Section 2,
the metrics which have been integrated into the
TOOMS tool are discussed. The validation of the
most important metrics proposed is presented in
Section 3. The mapping of the general concepts
(with respect to the metrics proposed) together with
the discussion about the language dependency and
methodologies support, are reported in Section 4. In
the same section, the quality model is presented
together with a discussion about the suggested
guidelines. Conclusions are drawn in Section 5. To
improve understanding of this article, the main fea-
tures of the TOOMS/TROL notation are reported
in Appendix A, while detailed descriptions of the
TOOMS tool and TROL languages can be found in
Bucci et al., (1993) and in Bucci et al. (1994); Nesi
(1993), respectively.

2. METRIC FRAMEWORK OF TOOMS

In this section, the metrics of the metric framework
integrated in the TOOMS tool are presented. The
metrics proposed have been defined in order to
provide the TOOMS/TROL users assistance in
maintaining control of and evaluation of their work.
The aim of the integration is to cover the entire life

Metric Framework for Systems Specification
1996; 34~43-65
J. SYSTEMS SOFTWARE 45

M%tqQet) and not is

El NnnhsicObJed Editor far EstimatorBuffand

File EditList Insed Modify Sea Editor Cheek Slm~tion

Ii
I

Figure 1. Some Visual Editors of the TOOMS tool.

-: wmTEouT

mu: wlb~um

b_npty - FPLSE

cycle of the system under specification by using a
unique tool that provides software developers and
managers appropriate instruments for establishing
software quality from the early stages of system
development. In specification languages, such as
OSDL, TROL, TRIO + , etc., partially defined spec-
ifications can also be validated and tested (by prov-
ing properties through mathematics or by simula-
tion). In Figure 2, different phases of the specifica-
tion life cycle are reported, where the system can be
simulated and metricated. In TROL, as in other
languages, when a class is only described by means
of its external class description (services and clauses
or assertions) the simulation can be performed by
using clauses or other high-level descriptions of class
behavior. Analogously, the class complexity and size
can be predicted approximately by using only the
information available in the external class descrip-
tion (complexity and size). For these reasons, the

Figure 2. Different phases of system specification. In (a),
A is defined and implemented as a nonbasic object class,
while for B, C, and D the only external class description
has been defined. In (b), C has been implemented as an
extended state machine (i.e., XSM) while D has been
implemented as a nonbasic object class, etc.

46 J. SYSTEMS SOFTWARE
1996; 34:43-65

P. Nesi and M. Campanai

model proposed allows the application of metrics at
each level of specification detail, and thus the system
development can be continuously maintained under
metrication (see Figure 3). Therefore, metrics are
used as a prevision model, as well as to control the
software quality (see Section 4.3).

In the literature, many metrics frameworks have
been presented, e.g., (Henderson-Sellers, 1991; Zuse,
1994). Our approach is based on three different

system views: a technical, a cognitive, and a process-
oriented view. The technical view refers to the soft-
ware engineering aspects of system specification

(size, complexity, etc.); the cognitive view takes into
account the external understandability and verifia-
bility of system components and libraries; and, the
process-otiented view refers to system aspects that
are influenced by or which can influence the process
of system development (productivity, reuse, size, cost,
etc.). These three views are evaluated in a common
measurement framework in which each view can
influence the others. Metrics of each view can be
used in different phases of system evolution: the
cogrtitive metrics during system development and/or
in system maintenance; the technical metrics for the
evaluation/certification of some specific characteris-
tics of the system; the process-oriented metrics for
evaluating the impact of technology on the whole
development process. All these measurements should
be estimated even if the system under development
is not yet completely specified according to the
above-mentioned specification languages for real-
time systems. In object-oriented systems develop-
ment, a greater effort is required in the design
phase, and considerably less is required for program
maintenance. For these reasons, the metrication of
system specifications has been very important since

the early stages of system design.

2.1 Technical Metrics

In this section, technical metrics to evaluate the
class complexity and size are reported. For noncon-

Figure 3. A continuous approach to quality improvement
through metrics.

current systems, the class complexity can easily be
related to class size, while in the case of real-time

systems (where the system behavior is defined by
that of many concurrent processes, frequently mod-
eled by means of state machines), these two con-
cepts can be very different. Most of the traditional
technical metrics for the estimation of size or com-
plexity have been defined in order to predict the
system cost (Fenton, 1991; Laranjeira, 1990). These
measurements of size are mainly based on the esti-
mation of the number of Lines Of Code (LOC). In
the case of formal languages for the specification of

real-time systems, the LOC estimation is not a suit-
able measure because the dynamic aspects of the
system under measurement are neglected (the cor-
rections which are usually performed on the basis of
the development context and on the kind of applica-
tion are hardly applicable to formal specification
languages for real-time systems). In fact, it is likely
that two specifications having the same size can be
very different in cost if they are implemented by
using a different number of communicating pro-
cesses, In addition, traditional methods for measur-
ing system size do not take into account the pres-
ence of temporal constraints or assertions (Thomas
and Jacobson, 19891, i.e., clauses for describing the
class or system behavior. For this reason, more spe-
cific technical metrics have been proposed.

Given a class c, the following symbols will be used
in the rest of the paper: NRS, for the number of
required services, NPS, for the number of provided
services, NA, for the number of attributes, NC, for
the number of clauses, and NP, for the number of
paths (for the meaning of “path,” see Appendix
A.2). The above numbers also include the features
inherited from the superclasses of the class under

consideration, according to the object-oriented
paradigm. In the case of a method-based approach,
the number of paths corresponds approximately to
the number of concurrent class methods or class
processes (as in OSDL). A list of symbols adopted in
this paper is reported in Table 5 of Section 4 to
improve the paper readability.

2.1.1 Class complexity, CC. Following the object-
oriented paradigm, the estimation of class complex-
ity of the system under analysis corresponds to the
estimation of the class complexity of the class which
models the system itself. The typical methods to
estimate the complexity which are based on fan-in
and fan-out, such as those in Card and Glass (19901,
are less suitable in this context (i.e., I/O-based
object-oriented specification languages for real-time
systems) because the input/output complexity is only

Metric Framework for Systems Specification

a small part of the whole class complexity. There-
fore, the Class Complexity (CC) can be seen as the

weighted sum of the Internal and the External Class
Complexity (ICC and ECC):

CC = w,<.(ICY’ + w,,.,.ECC

where w,(c and wEcTc are tailorable weights. Note
that since ICC and ECC take into account the

complexity of the class by considering all of its
superclasses, then CC also includes such complexi-
ties. The class complexity can be very useful to
evaluate the system maintainability and reliability
(Li and Henry, 1993). In addition, basic object classes
should have a complexity lower than a given thresh-
old to ensure a selected software quality in terms of
satisfying maintainability and reliability constraints.

2.1.2 Internal class complexity, ICC. The Internal
Class Complexity (ICC) takes into account the Class
Path Complexity (UC) and the Class Attribute
Complexity (UC). In addition, the ICC also de-
scribes how the Paths of a given class are internally
coupled in using class attributes by means of the
term CCPC, (Class Coupling Path Complexity). The
ICC is also influenced by the intrinsic concurrency
of the class (Class Internal Task Complexity, CZTC),
c.g., a class comprised of only one Path is obviously
less complex than the same class implemented with
two Paths (i.e., which correspond to two processes).
The object-oriented design usually consists of a pro-

cess of class decomposition and/or object composi-
tion for defining new classes. At this level, the Class
Path Complexity has no meaning because the paths

are not yet implemented. On the contrary, in the
design phase, it is very important to evaluate the
class complexity on the basis of the exchange infor-

mation by the class attributes (which in turn are
instances of some classes). This fact is measured
with the Class Internal Communication Complexity,

CICC.
Therefore, the internal class complexity has been

defined as:

ICY‘ = u‘(. ,(.(;lC + M’(,,(CPC + w(.(.r>(-cCPC

+ ‘I’(I/(. CITC + u’(,((CICC,

where w(,,(, w(,,,(., w(,(.(., w~(.~~, and wcI,.(. are
application-dependent weights. In the following, we

provide details about the above terms.

C1rr.s.s uttrihute complexity, CAC. The complexity of
each attribute (Attribute Complexity, AC) is equal
to the class complexity of the attribute itself, thus
,4C = CC. Hence, the class attribute complexity,

CAC, is obtained
tributes:

NA

J. SYSTEMS SOFTWARE 47
1996; 34343-65

by considering all the class at-

CAC = c AC,

In many object-oriented languages, such as in
C + + , there is a set of predefined basic types which
are not implemented as classes. For these basic
types, the class complexity CC must be predefined.
In TROL, a suitable class has been defined for each
basic type (Bucci et al., 1993).

Class path complexity, CPC. The Class Path Com-
plexity is estimated by using the expression:

NP

CPC = c PTC,,
i

where PTC is the Path Complexity defined as:

PCT, = WPMC. PMC, + wPE(. PEC, + w,,,(. PIG,,

where PMC, is the sum of McCabe-like complexities
of the statements which are present in the class path
j (McCabe, 1976; Henderson-Sellers, 1992); PECj is
the path external complexity which estimates the
cost of the external procedure calls, considering the
calls which are present in path j:

Allcoll\ln(J)
PEC, = C CallComplexify~ i, j),

I

where the CallComplexity(i, j) is evaluated by con-
sidering the complexity of the procedure parameters
(the term ‘call’ means the use of a function from the
library); PIC is the path internal complexity which
estimates the cost of the access to the class at-

tributes. The PZC for path j holds:

.Vvn
PIG, = c AC,USE(i, j).

I

where USE(i, j) assumes the following value: 0 if the
attribute i is not used by path j, 1 if it is only read,
and 2 if it is read and/or written; and AC is the
already defined Attribute Complexity.

In TROL, the concept of Path is present only for
basic object classes; therefore, for nonbasic object
classes NP = 0 and, thus, the CPC is equal to zero.

The weights wPM(., wpEc, and wp,(. mainly depend
on the application field under analysis. In the case of
real-time system specification, they are assumed to
be equal to 1, 1, and 2, respectively. In this way, a
higher importance is given to the costs of attribute
sharing among internal processes (i.e., paths) of an
object.

48 _I. SYSTEMS SOFTWARE
1996; 3443-65

P. Nesi and M. Campanai

Class coupling path complexity, CCPC. This fac-
tor indicates to what extent the class paths act on
class attributes. In fact, as in method-based object-
oriented languages, several class methods can work
on the same attributes; thus, in TROL, several paths
can work on the same attributes. For this reason, the
complexity of path coupling when working on at-
tributes can be estimated by using:

NA NP

CCPC = c c AC,PRS(i, j),

where PRS(i, j) is the number of times attribute i is
present in path j; AC is the already defined at-
tribute complexity. Note that CCPC is higher when
the same attribute is frequently used in more than
one path. Since in TROL (as in OSDL) the concept
of Path (i.e., process in OSDL) is present only for
basic object classes (basic block in OSDL), for non-
basic object classes NP = 0 and, thus, CCPC is
equal to zero.

Class internal task complexity, CITC. As for con-
currency, the class internal complexity mainly de-
pends on the number of tasks which are present
inside the class itself. For this reason, the CZTC has
been considered equal to the number of internal
processes of the class. If the class is a basic object
class, the number of internal processes of a class is
equal to the number of paths, i.e., CITC = NP. On
the contrary, at the level of nonbasic object classes,
when the system under specification is only partially
defined, the number of class paths is not yet defined,
since the low-level classes are still undefined; in that
case, it is supposed that the number of tasks is at
least equal to the number of class subobjects (i.e.,
attributes), thus CZTC = NA.

Class internal communication complexity, CICC.

The measure of Class Internal Communication
Complexity has a meaning only for nonbasic object
classes, while for basic object classes it is equal to
zero, CICC = 0. Therefore, it is a complementary
measure with respect to the already presented Class
Path Complexity (CPC) where the relationships
among paths and attributes are measured. The
structure of nonbasic object classes is defined in
terms of communicating subobjects:

NCON

CICC = c MSGC,CTYPE(i),

where NCON is the number of connections among
the subobjects of the class (see Appendix A.2);
MSGC, is the message complexity that depends on

the complexity of the message class; CTYPEW is a
coefficient which takes into account the kind of
communication between objects. In TROL (see Ap-
pendix A.2), four types of communication mecha-
nisms are obtained by combining different service
types; hence, CTYPE is equal to four for normal-
to-normal, three for normal-to-buffered, two for
available-to-buffered, and one for available-to-
normal communications. The complexity of a mes-
sage, MSGC, depends on the complexity of the class
which has been used to define the message structure
because in the object-oriented approach, messages
are also class instances (i.e., objects), and MSGC is
equal to the CC of the message. With this assump-
tion, the costs for manipulating the message itself
are also included in that measure.

It should be noted that a value for CZCC can be
obtained at the early stages of system specification.
Therefore, this can be very useful as a basis for
defining process-oriented metrics.

2.13 External Class Complexity, ECC. The Ex-
ternal Class Complexity (ECC) takes into account
the complexity of provided and required services
(Provided Service Interface Complexity, PSIC, and
Required Service Interface Complexity, RSZC, re-
spectively) of the class, considering also their inter-
dependencies by means of the measure of Service
Complexity, SC. The SC term also measures to what
extent the class is capable of producing autonomous
requests for the outer objects:

ECC = wpslc PSIC f wRslc RSIC + w&C.

In the following, the terms PSZC, RSZC, and SC are
discussed separately. The values of weights wpsIc,

wRSIC, and wSC depend on the application field
under analysis. In the case of real-time systems
specification, they are usually assumed to be 1, 1,
and 1.5, respectively. This choice is due to the fact
that in real-time systems, the dependency among
objects through services is an index of the event
propagation inside the system. Therefore, SC must
have a greater influence on ECC with respect to the
others.

Provided service interface complexity, PSIC. The
complexity of the provided interface of a class is
estimated with:

NPS

PSIC = c MSCC, PMEC, PTCPS,,

where NPS is the number of provided services;
MSGC is the already defined message complexity
(equal to the CC of the message); PMEC is a weight

Metric Framework for Systems Specification J. SYSTEMS SOFTWARE 49
1996; 34:43-65

which takes into account the type of communication
mechanism of a provided service (equal to one if the
provided service is buffered or two if it is normal);
PTCPS, marks the presence of a temporal constraint
for the provided service i (it is equal to two if the
temporal constraint specifying the service rate has
been defined; otherwise, a value equal to one is
assigned).

Required service interface complexity RSIC. As op-
posed to the method-based object-oriented models
in which the requests of services are hidden inside
the methods body, the complexity of the required
interface of a class in the IO-based model (such as
in TROL or OSDL languages), can simply be esti-
mated by means of

NRS

RSIC = c MSGC, RMECi PTCRS,,

where NRS is the number of required services;
MSGC is the already defined message complexity;
RMEC takes into account the type of communica-
tion mechanism of a required service (equal to one,
if the required service is available, or two if it is
normal); PTCRS, marks the presence of the tempo-
ral constraint for the required service i (it is equal to
two if the temporal constraint specifying the service
rate has been defined, otherwise a value equal to
one is assigned).

Service complexity, SC. The complexity of class
services, SC, indicates to what extent the required
services (outputs) of a class depend on the provided
services of the same class. Therefore, it can be
considered as a measure of the class behavior com-
plexity. In general, for a class, two kinds of required
services can be present, i.e., autonomous and nonau-
tonomous. The former are those which are gener-
ated directly from the class without receiving any
external request; the latter are those which are
indirectly due to requests of other system objects.
For these reasons, the Service Complexity is defined
as:
SC = NAR + NASC,

where NAR is the Number of Autonomous Re-
quests. This is equal to the number of required
services which are generated by paths independently
of the provided services of the class. On the con-
trary, the Number of Nonautonomous Requests of a
class, NNAR, is equal to (NRS-NAR). Hence, the
complexity of nonautonomous services of a class,
NASC is estimated by

NNAR

NASC = c NPS(Puth(i)),

where NPS(Path(i)) is the number of provided ser-
vices which are present in the Path(i), and function
Path(i) identifies the path which generates the
nonautonomous request i.

The measure of SC can be directly obtained by
measuring the definition of class clauses since the
early phases of the software life cycle.

2.1.4 Class Size, CS. The Class Size (CS) is the
weighted sum of the Internal and the External Class
Size (KS and ECS)

CS = wlcs ICS + wECsECS,

where wIcs and wECS are tailorable weights. Note
that because ZCS and ECS take into account the
size of the class by considering all its superclasses,
CS also includes such a measure.

The class size can be very useful for evaluating the
productivity and for predicting the dimensions of the
system under analysis and, thus, the effort of devel-
opment, since the ECS can be estimated even if the
system (i.e., the class) is only defined at its external
level.

2.1.5 Internal Class Size, KS. The Internal Class
Size (ZCS) takes into account the Class Path Size
(CPS) and the Class Attribute Size (CAS) according
to the TROL and OSDL models. The size of the
class also depends on the communications among its
subobjects; this fact is measured with the Class
Internal Communication Size, CZCS. Therefore, the
internal class size is defined as:

KS = wCAsCAS + wcpsCPS + wclcsCICS,

where wcAS, wcps, and wcIcs are application-depen-
dent weights. In the following, the above terms are
discussed.

Class attribute size, CAS. The size of each at-
tribute (Attribute Size, AS) is equal to the class size
of the attribute itself, thus AS = CS. Hence, the
class attribute size, CAS, is obtained by considering
the class attributes

CAS = F AS;.

In many object-oriented languages, such as in
C + + , there is a set of predefined basic types which
are not implemented as classes. For these basic
types, the class size must be predefined.

50 J. SYSTEMS SOFTWARE
1996; 34:43-65

P. Nesi and M. Campanai

Class path size, CPS. The Class Path Size is esti-
mated by using the expression

CPS = E PTSi,

where PTSj is the size of path j

NS,
PTSi = NT + c NIST,,

where NSj is the number of states of path j; N?; is
the number of conditions for transitions of path j;
NZST, is the number of statements (assignment or
procedure call) associated with the state i of path j.
In TROL, the concept of Path is present only for
basic object classes, while for nonbasic object classes
NP = 0; therefore, the value of CPS is equal to
zero.

Class internal communication size, CICS. In the
TROL model, the measure of Class Internal Com-
munication Size has a meaning for nonbasic object
classes where it is equal to the number of communi-
cations (i.e., connections in TROL) among subob-
jects (i.e., attributes); therefore, CICS = NCON. In
basic object classes, the connections are missing;
hence, CICS = 0. A value for CICS can be obtained
from the early stages of system specification. There-
fore, it can be very useful as a basis for defining a
process-oriented metric.

2.1.6 External Class Size, ECS. The External
Class Size (KS) takes into account the size of the
external class interface by considering the number
of clauses and that of provided and required ser-
vices:

ECS = NPS + NRS •t NC.

2.2 Cognitive Metrics

In the object-oriented approach, cognitive metrics
should provide a measure of how easy it is for the
user to understand the nature of a class by observing
its external description. To this end, a significant
cognitive measure is given by the Complexity Ratio,
CR. Moreover, the estimation of system and subsys-
tem verifiability is another important cognitive met-
ric, this factor being measured by the Verifiability
Index, VI.

2.2.1 Complexity Ratio, CR. The Complexity Ra-
tio indicates to what extent the nature of a given
class can be understood through its external descrip-

tion. This measure is very useful to estimate the cost
of reuse of a class by means of its understandability.
In fact, during the reuse of a class, the analyst
usually does not read all the details of class imple-
mentation and observes only the class description.
Therefore, CR is defined as

ECD
CR = -

ICC ’

where ECD is a measure of the External Class
Description, and ICC is the Internal Class Complex-
ity. A high CR means that the class external descrip-
tion is very detailed with respect to its internal
complexity; therefore, much of the whole class be-
havior can be understood by observing the external
class description. It has been necessary to define
ECD instead of using the already defined ECC

because the latter does not represent only the exter-
nal class complexity-as can be observed by the
external class description. In fact, ECC has also
been defined by considering the SC, which, in turn,
is based on the knowledge of dependencies between
required services and class paths. The ECD gives a
measure of the external class description, as can be
observed by the analyst in the phase of class reuse.
In method-based models, the external class descrip-
tion consists of the description of methods domain
plus their preconditions and postconditions-if these
are available at the external class level. In other
languages, assertions or clauses for describing the
internal class behavior at the external level can be
present. In this case, the External Class Description
is more complete as in TROL. Note that in TROL,
the external class description includes provided and
required services measuring the class static inter-
face, augmented by clauses measuring the class be-
havior.

ECD is defined as the weighted sum of Class
Static Description, CSD, and Class Dynamic De-
scription, CDD. The static description covers the
structural aspect, and the dynamic description the
behavioral aspect;

ECD = wcsDCSD + wcn&DD,

where wcsD and wcDD are application-dependent
weights. For example, in measuring real-time system
specifications, values one and two, respectively, have
usually been assumed in order to gi-s more impor-
tance to the description of system behavior. CSD is
obtained by means of the PSIC and RSIC already
defined in Section 2.1.3:

CSD = wpsIc PSIC + wRSIC RSIC

Metric Framework for Systems Specification J. SYSTEMS SOFTWARE 51
1996; 34:43--65

CDD describes how many details regarding the class

behavior are reported in the class external descrip-
tion. For the TROL model, this measure holds:

NSPSR NSRSR
CDD = ~ +

NPS
~ i- ccc,

NRS

where NSPSR is the number of specified Provid-
ed-service rates; NSRSR the number of specified
Required-service rates; and CCC is the Class Clause
Complexity defined as

NC

(‘CC = c CLC,,

where CLC is the CLause Complexity estimated
with

C‘LC, = NPS, + NRS, + NOP, + PTCC,,

while NOP, is the number of Boolean and compara-
tive operations in clause i; NPS, is the number of
provided services in clause i; NRS, is the number of
required services in clause i; PTCC, marks the pres-
ence of temporal constraint for clause i (it is equal
to one if the temporal constraint has been defined;
otherwise, it receives a value equal to zero).

2.2.2 Verifiability Index, W. In TROL, class and
system verifiability is guaranteed by means of the
definitions of provided services, required services,
and clauses with their respective temporal con-
straints. Basic object classes, such as XSMs and
XCMs, are implemented according to the clauses

defined in their external class interface. Therefore,
the external class description given in terms of
clauses must verify the class implementation ex-
pressed by means of a set of communicating subob-
jects (i.e., nonbasic object class) or as a basic object
class (i.e., XSMs, XCMs). To this end, the verifiabil-
ity index for a given class is defined by the ratio

between the ECD and CC

ECD
VI = ___

cc

This index indicates to what extent the class can be
verified by using the information contained in the
external class description with respect to its actual
complexity. For example, if a given class reports

many details to the external level (by means of
provided services, required services, and clauses)
with respect to its total complexity, then it is more

verifiable than a class that, having the same total
complexity, is less described in detail at the external
level. Therefore, I4 can be regarded as measure of
class verifiability.

In TROL,, this measure can also be used to evalu-
ate the testability of the system under development.

In fact, in the TROL language, the patterns for
testing the application can be generated by using the

external class description with services and clauses.

2.3 Process-Oriented Metrics

When managers and software quality assurancers

plan budgetary and personnel resources for a new
project, they feel more comfortable to use estima-
tion models than just to rely on rules of thumb or
entirely subjective judgments. For this reason, they
need objective information from the projects under
development. At the process level, the metrics which
can be useful to control the development are pro-
ductivity and expected cost (Henderson-Sellers et
al., 1993). These measures are usually based on the
trend of technical metrics, which in turn, to be
suitable, must be capable of producing significant
results at each level of system development. In fact,
according to the TOOMS/TROL model, congruent
values for the technical metrics can be estimated
from the early stages of the software life-cycle. In
the following, coefficients to estimate team produc-
tivity, system reuse level, and expected cost are
reported. Another very important factor is the evalu-
ation of the need for testing during the development

process. Though the phases of system testing should
be defined in advance, it is also important to detect
when a class or a subsystem under development has
grown too much without being tested. These condi-
tions can easily be detected by using the last metric
of this section.

2.3.1 Productivity Index, PI. The measurements
of productivity are very complex for object-oriented
systems since in these cases these cannot be reduced
to a simple ratio between the quantity of developed
software and the effort of development. In fact, a
good measure of productivity should be defined as
the ratio between the increase in implemented sys-
tem functionalities and the effort to add them. In
effect, in the case of object-oriented languages and
methodologies, productivity should often reach
higher levels than those obtained in classical proce-
dural development environments, since the mecha-
nisms of specialization and aggregation are powerful
tools for software reuse and thus, for increasing
productivity. This fact must be considered when
estimating productivity. Therefore, at each time in-
stant of system development, a measure of produc-
tivity can be given by a Productivity Index, PI,

defined as
NewC‘h. NewSpcc.Ch.

PI = c CS, + c PINCCS,,
1 i

52 J. SYSTEMS SOFTWARE
1996; 34:43-65

P. Nesi and M. Campanai

where NewCls. are the classes which have been
added (without any specialization) with respect to
the last check point of PI estimation; NewSpec.Cls.

are the classes which have been specialized with
respect to the last PI estimation. PZNCCS is the
productivity in incrementing the size of class i

SuperClassesOf

PINCC& = CS, - c CS, CR,,

where SuperClassesOf are only the direct super-
classes of class i. The increment of class size is
obtained by considering the class size, CS,, of class i,

minus the sum of the size of superclasses of class i.

This last term is obtained by weighing the class size
of each superclass with its complexity ratio, CR. In
this way, a higher productivity is assigned to less
understood classes and a lower productivity to classes
which are easily understood.

Note that PI indicates to what extent the software
has been produced by the designer with respect to
the last PI estimation and is obtained in terms of
class size. Since this measure is obtained with re-
spect to the last value, the sequence of PI should be
estimated by using a constant interval in terms of
working days. A version of this metric, independent
of the interval duration, can be obtained by dividing
PI for the time interval expressed in days of work,
i.e., NPZ = PZ/DW.

2.3.2 Reuse index of the system, RI. The reuse
index indicates to what extent the reuse mechanism
has been exploited in the system specification. The
most important and used mechanism of reuse of
the object-oriented paradigm is the specialization.
Therefore, a good measure of the reuse level in the
system is given by the Reuse Index, RI, defined as

RZ=
E~IISFec.Cls.ZNCCSi

ENCLCS. ’ I I

where ZNCCS, is the increment of class size for the
specialized class i; AZISpec.Cls. are the classes which
have been specialized with respect to the initial
condition of class library. In this case, ZNCCS is
estimated by considering as superclasses only those
which belong to the class library

SuperClassesOf
INCCS, = CS, - c csj .

j

RZ can be estimated at each time instant of system
development giving in this way the trend of reusabil-
ity.

2.3.3 Expected System Cost, ESCost. Most of the
methods proposed in the literature express the ef-

fort as a function of a number of quantities which
can usually be determined in the early phases of the
software life cycle or directly from system require-
ments. For example, according to the Albrecht’s
method, the effort estimation is based on the system
size, which in turn, is evaluated by using a set of
features such as the number of internal and external
files, the number of inputs and outputs, and the
number of external inquiries, etc. Finally, the system
size is multiplied by a factor depending on the
technical complexity of the application. This factor is
heuristically estimated by means of a set of ques-
tions which are used to tune the effort estimation
with respect to the application domain context (Al-
brecht and Gaffney, 1983; Rask et al., 1993). An-
other example is the COCOMO model (Boehm,
1982; Boehm, 19841, which estimates the effort on
the basis of the system size in LOC and the use of
15 cost drivers. The values of these drivers are
identified according to the development context, i.e.,
type of computer, qualification of personnel staffing,
etc. Other techniques following the same path have
been compared in Kemerer (1987) and Laranjeira
(1990). The drivers usually adopted cannot be easily
tuned for tailoring the method for measuring the
specifications of real-time systems in formal lan-
guages. In fact, this fails to take into account the
effort of defining class behavior when it is strongly
dependent on temporal constraints. Therefore, dif-
ferent parameters must be taken into account to
measure the effort for specifying real-time systems.
In these cases, the effort is dependent on system
complexity and specification requirements rather
than on the number of inputs and outputs files that
sometimes can be missing (for example, in embed-
ded systems). In addition, as has been previously
pointed out, in the case of object-oriented real-time
specification languages, the measure of system size
in LOC is not adequate to express the system size
and, hence, the effort of development. This is due to
the fact that the size of the specification in dedi-
cated languages is not directly correlated to the size
of the final code (usually specification
languages-e.g., OSDL, TROL, etc.-are translated
in conventional languages such as C + + , ADA, etc.).

For these reasons, the Expected System Cost,
ESCost, can be regarded as the sum of costs which
are due to the reuse of old classes, ESCost,,,,, , plus
the cost of development of new classes, ESCost,,,. ,
plus the cost of specialization of already imple-
mented classes, ESCost,,,,, :

ESCost = ESCost,,,.+ ESCost,,,,.+ ESCost,,,,, .

The cost related to the development of new classes

Metric Framework for Systems Specification J. SYSTEMS SOFIWARE 53
1996;34:43-65

takes the form:

NWClS.

ESCost,,,..= CMA,,, c CC,,

where CMA,,,,, is a company-dependent coefficient
which expresses the mean cost of development per
class in man months (estimated by considering the
average costs observed in a congruent category of
already developed applications); and NewCls. are
the classes which have been implemented without
any specialization or reuse in general. The costs of
reuse and specialization hold:

ESCo%,.~.= CMA,,,.,.
RyiCk 2;

I I

NewSpec.Cl~.

ESCost,,,,.,= CMA,,,,,. c INCCS,

where CIVA,,,,~, and CIUA,~,,,. are company-depen-
dent coefficients. The first expresses the mean cost
of reuse per class in man month, while the second is
the cost of specialization in man months; ZNCCS
is the already defined increment of class size.

ESC%,ll,. is defined on the basis of the ratio be-
tween CC and CR for each reused class. This ratio
is lower when the class reuse is easier, since CR is
bigger. The coefficients C’MAs also depend on the
language used such as the estimation of the Al-
brecht’s Function Point (Albrecht and Gaffney, 1983;
Fenton, 1991). The definition of CMA values is
statistically based; they allow applying past experi-
ences to project the future. Software process data
may be gathered as a part of the everyday process
control activities.

It should be noted that for the estimation of
the general cost, both technical and cognitive
metrics defined in the previous sections have been
used. This is possible because most of those measures
lead to a value even if the system is only partially
specified. This characteristic is congruent with
TOOMS/TROL, TRIO + , OSDL, etc., capabilities.

2.3.4 Test Index, TZ. During the development pro-
cess, it is very useful to identify the classes (i.e.,
subsystems) for which the test is needed before
continuing with the development process. With this
metric, it is assumed that the test of a class is
needed when its complexity has grown too much
with respect to the last testing section. In TROL, the
testing can correspond to 6) the verification of the
high-level class behavior by means of clauses execu-
tion, (ii) the validation of system composition/de-
composition and (iii) the validation of an XSM in

terms of clauses (Nesi, 1993). Analogous mecha-
nisms are present in similar languages.

Therefore, the Test Index for a given class i is
estimated as a relative change in class complexity

TI; =
CC,(ActualVersion) - CC,(LastTestedVersion)

CC,(LastTestedVersion)

As a conclusion, classes which have a TI which is
larger than a predefined threshold must be tested
before continuing with the development process.
The threshold is defined on the basis of company
experience in the specific field of the application
measured. This measure can be extended to the
entire system by evaluating the TI of the class repre-
senting the system itself.

3. METRIC VALIDATION

In general, metrics can be divided into predictive

and descrzptive categories. Predictive metrics try to
predict the future value of a system characteristic by
using simple and early measurements on the system
itself. This type of metrics is very difficult to be
validated because the entire process of system devel-
opment must be controlled. Several projects must be
monitored, and the results are only a picture of the
company under control. Descriptive metrics try to
estimate a given characteristic of the software sys-
tem under metrication by means of direct or indirect

measures (the aim of direct measure is usually to
estimate values for predictive metrics and for mea-
suring the product quality). In the case of direct

measure, the metric obviously does not need to be
validated, as in the case of the measure of the LOC
for estimating the program length. It should be
noted that direct estimations are usually complex
and computationally heavy to be performed. For
these reasons, they are usually not preferred. In the
case of indirect estimations, the parameters mea-
sured must be related to the characteristic under
measure (for example, the measure of the number of
classes may be related to the system complexity by
means of a mathematical relationship). In this case,
the process of metric validation consists of (i) evalu-
ating the mathematical relationships between the
parameters measured and the real value of the sys-
tem characteristic under evaluation (i.e., the mathe-
matical model), and (ii) verifying the robustness of
the identified relationship. This relationship can
be linear or not, and it must be identified by using
both mathematical and statistical techniques-e.g.,
(Stetter, 1984; Fenton, 1991; Zuse, 1994).

The metrics mentioned above have been defined
according to the evaluation process model of IS0

54 J. SYSTEMS SOFTWARE
1996; 34~43-65

9126. In the proposed model, there are many de-
scriptive metrics, such as CC, CS, CR, VZ, PI, RI,
TI. Among these, a discussion about the validation
of CC, CS, I/I, and CR is presented. These have
been used for measuring a set of test projects in
order to validate them. Therefore, it will be demon-
strated that (i) the class complexity (CC) and the
real class complexity (RCC) are linearly correlated
(correlation of Pearson (Fenton, 1991) and (ii) the
class size (CS) and the real class size (RCS) are
linearly correlated. Since most of the other cognitive
and process-oriented metrics proposed depend on
the above-mentioned technical metrics, once these
are validated, PI, RI, and TI can be considered
direct descriptive metrics.

The metric validation has been performed with
respect to real data. The data comes from the Uni-
versity of Florence and O.T.E. Spa., a company
which manufactures micro-telephones and other
real-time embedded systems. The projects are a sig-
nificant set of software for embedded systems: (i) the
buoy system proposed by Booth (1986), and revised
by Sanden (1989a); (ii) an elevator system with two
columns and six floors proposed by Sanden (1989b)
and Gangopadhyay and Mitra (1993); (iii) and
a filter for digital signals, (iv) to (vi) the control
software for different hand-held wireless micro-
telephones. In Table 1, the main characteristics of
this data are reported. It should be noted that lan-
guages such as OSDL and TROL need to be trans-
lated into a standard language (e.g., ADA, C + +) to
be compiled and executed at run time. In particular,
once a system specified in TROL is translated into
C + + , it has to be compiled and linked with approx-
imately 70 classes of the TROL kernel. Many of
these classes are superclasses of those obtained from
translating the TROL classes into C + + (Bucci et
al., 1993). Therefore, the projects adopted represent
real problems and not simple textbook examples.

In Table 2 and Table 3, the correlations among
the most important metrics previously proposed are

P. Nesi and M. Campanai

reported. Since the measurement values are strongly
different in the cases of basic and nonbasic object
classes according to TROL, OSDL (blocks and pro-
cesses, respectively) languages, two different tables
of correlations have been used for basic and nonba-
sic object classes. The values for the metrics defined
have been estimated by assuming all the weight
values to be equal to 1.0 except for wsc and wcDD,
which have been posed to be equal to 1.5 and 2.0,
respectively (for the previously discussed reasons).
The real class complexity, RCC, has been estimated
by evaluating the state domain of the class or subsys-
tem under estimation, while the real class size, RCS,
has been measured by counting the LOC in the
run-time version of the project (obviously neglecting
the TROL kernel and support library).

As can be seen from the correlation matrices, the
metrics proposed are only partially correlated, while
metrics for estimating class complexity and size are
strongly correlated with the respective real values. It
can also be observed that the class complexity, CS,
cannot be considered to be a good measure of the
real class complexity, RCC, as usually assumed for
traditional languages. This is confirmed by the corre-
lations between RCC and RCS for both basic and
nonbasic object classes. In fact, in both cases, the
correlation between CC and RCC is greater than
that of CS with RCC. This is particularly true in the
case of basic object classes, where the details of class
behavior are dominant with respect to the structural
aspects considered in the ECC. In fact, the best
estimation of class complexity is obtained by using
the internal class complexity, ICC. In Figure 4, the
diagrams of the relationships between the class com-
plexity and class size with respect to their respective
real values are reported.

As can be noted from the correlation matrices,
the ECC and ECS are quite correlated with RCC
and RCS, respectively. This fact is very useful for
estimating the class complexity and size even if the
class is only partially defined. This means that the

Table 1. Summary of the Main Characteristics of the Data Adopted for Metrics Validation

Project NCL NNBOC NBOC N Proc. NInst. Eff. Leu

buoy system 10 3 7 14 295 5 exp.
elevator 10 2 8 18 433 6 exp.

filter 4 1 3 6 168 2 exp.
microtel. 1 18 6 12 22 570 20 beg.
microtel.2 35 6 29 49 1352 26 beg.
microtel.3 31 6 25 42 1050 35 beg.

Note: NCL is the number of classes of the system, NNBOC is the number of nonbasic object classes in the system, NBOC is the number of basic

object classes in the system, NProc. is the number of concurrent processes which are present in the application, Nlnsr. is the number of TROL
instructions of control, QT. is the effort in working days for specifying the system under development (hence, without considering the costs of
analysis). Let,. is the experience of developers in using TROL (exp. for experts and beg. for beginners).

Metric Framework for Systems Specification J. SYSTEMS SOFTWARE 55
1996; 34:4X-65

Table 2. Correlations among the Technical and Cognitive Metrics Proposed for Nonbasic Object Classes with Respect
to the Actual Values of Complexity and Size (RCC and RCS, Respectively)

non-basic object classes

cc ICC ECC CS KS ECS CR ECD VI NC‘C RC’S

CC
ICC
ECC
CS
ICS
ECS
CR
ECD
VI
RCC
RC‘S

1 .ooo

0.994,
0.974
O.Y8Y
0.98 1
O.Y72

1 .ooo

0.972
0.989
0.989
0.972

- 0.755 ~ 0.754
0.767 0.763

- 0.744 - 0.743
0.982 0.971
0.880 0.99 I

1 .ooo
0.960
0.959
0.964

- 0.760
0.836

- 0.746
0.955
0.963

1 .ooo

0.999 1.000
0.98 I 0.980 I .ooo

- 0.727 - 0.730 ~ 0.647 1 .ooo

0.704 0.700 0.795 -0.128 1 .ooo
-0.719 - 0.722 ~ 0.636 0.985 -0.401 I .ooo

0.904 0.997 0.972 - 0.732 0.700 - 0.723 .ooo
0.998 0.998 KY83 - 0.746 (LhY3 - 0.73’) (I.083 I .ooo

estimation of system complexity and size can be
obtained even if the system is only partially specified
(see Figure 2). For example, in case (b) of Figure 2,
the CC of class A is estimated by considering the
ECC of class B, the CC of class C, and the CC of
class D, which in turn is estimated by considering
the ECCs of classes G and H. When a class com-
plexity is estimated by using only a part of the
information (e.g., CC is estimated by using only
ECC since the ICC is not yet available) the weights

in the expression of CC can be modified in order to
compensate the loss. In these cases, the values of
weights are estimated by using the mean values of

the metrics and, thus, by the previous experiences
(our values are reported in the following). For exam-
ple, in the case of a basic object, if the ICC is

missmg, u’~-(.(is assumed to be equal to three. For
these reasons, the model proposed allows the metri-
cation at each level of specification detail; thus, the

system development can be continuously maintained
under metrication.

The validation of complexity ratio, CR, to demon-
strate its efficiency in measuring to what extent a

class can be understood (by observing its external
class description) is quite unfeasible because the
measure of understandability is subjective. In addi-
tion, it should be noted that CR is strongly corre-
lated with the verifiability index, VI (see Table 2 and
Table 3). Our experiments have shown that the

verifiability of basic object classes in the sense of
formal verification of class behavior (Bucci et al.,
1994) is guaranteed when VI > 1. For nonbasic ob-
ject classes, VI depends on CC, which tends to grow
with the system size; therefore, to get a measure of
VI, independent of the system size, V1 should be
obtained by dividing ECD by a normalized version

of CC with respect to the number of class at-
tributes. For these reasons, VI can be used for
measuring both understandability and verifiability.

4. GENERAL APPLICATION OF METRIC
FRAMEWORK

The integration of the metric framework into the

specification tool saves the measurement time since
watchdogs on the values of certain metrics can be

Table 3. Correlations among the Technical and Cognitive Metrics Proposed for Basic Object Classes with Respect
to the Actual Values of Complexity and Size (RCC and RCS, Respectively)

basic object classe.~

C‘C ICC ECC cs ICS ECS CR EC‘D VI RC(RC‘S

(‘C’ 1.000
IC‘C 0.030 I .ooo
EC‘C’ 0.720 0.449 1 .ooo
c ‘S 0.714 0.614 0.631 I .ooo
ICS 0.776 0.714 0.595 O.Yhl 1 .ooo
EC‘S 0.301 0. I45 0.402 0.734 0.252 1 .OOO
C‘R - 0.330 - 0.544 0.200 - O.OY3 - 0.28 I 0.406 1 .ooo
EC‘11 0.553 0.325 0.790 0.814 0.668 0.880 0.42’) 1 .ooo
VI -0.314 - 0.485 0.148 O.OY5 -0.141 0.465 0.902 0.542 I.000
RC’C‘ 0.864 0.771 0.771 0.700 0.801 0.197 - 0.292 0.428 - 0.292 I .I)00
R(‘S 0.632 0.601 0.447 0.934 0.877 0.7 13 - 0. IO4 0.724 0.1 1 I 0.713 I .ooo

56

z
d

0

J. SYSTEMS SOITWARE
1996; 34:43-65

ClaSS COmpleXity

(4

: . .
. . ;. .
..: .;-. ;:

Class size

(b)

Figure 4. Relationships between (a) the class complexity
and the real class complexity and (b) the class size and the
real class size.

set in order to maintain the quality at the imposed
values. This is also a way to compel the developers
to produce specifications with a predefined quality.
The quality model proposed has been implemented
according to the evaluation process model of IS0
9126 and the GQM approach (Basili and Weiss,
1984). Therefore, quality requirement definition, eual-
uation preparation, and evaluation procedure, have
been the steps accomplished to reach the results

P. Nesi and M. Campanai

presented in this article. According to IS0 9126,
quality metrics have been selected, and for these,
the rating values are defined; hence, the validation
of metrics with respect to real measures has been
proposed. Thus, the model proposed consists of a set
of metrics capable of expressing meaningful indica-
tors and some conformance to the IS0 9126 stan-
dard.

In the next subsections, four aspects will be dis-
cussed: (i) the selection of metrics defined for mea-
suring general concepts, (ii) a discussion about the
language dependence of the metrics proposed, (iii)
the quality guidelines based on the metric frame-
work proposed, and (iv) a discussion about the adop-
tion of the metric proposed as a support for object-
oriented methodologies.

4.1 Classification Scheme

The classification scheme reported in Table 4 ex-
plains some aspects of the metric framework inte-
grated in the TOOMS tool. This table shows the
mapping of the metrics proposed in the general
concepts of system measurements. As was pointed
out by many authors, metrics must fit the main
needs of developers and managers; data collection
and data gathering have to be an automatic support
for the development process. In fact, the classifica-
tion is related to a real need for gathering different
kinds of metrics and for inducing metrics to produce
a readable and understandable data output.

In Table 4, four levels are given, that is, class-level,
test-level, reuse-level, and process-oriented level. In
the metrics framework proposed, a correlation exists
among the different levels and metrics. In fact, some
metrics assume different meanings according to the
level at which they are adopted. Thus, the same
metrics can be used by different levels for analyzing
distinct aspects. The first two levels are very useful
for estimating specific properties of the software
produced. For each class, the size and complexity
can be estimated. In particular, a strong emphasis is
given to the internal concurrency of the class and to
the possibility of taking into account the presence of
temporal constraints, making this model very suit-
able for analyzing object-oriented formal languages
for real-time systems. Moreover, by using the met-
rics of test-level, the testability and verifiability of
each class as well as of the whole system can be
estimated. The metrics classified into the reuse-level
can indicate to what extent the available class li-
braries have been exploited and what the cost is of
reuse for a given class. For example, CR is used
during the class reuse for measuring the effort

Metric Framework for Systems Specification J. SYSTEMS SOFTWARE 57
1996; 34:43-65

Table 4. Mapping of General Concepts Towards TOOMS Metrics

General Concepts

Class-Level

Measurements

Class External Interface
Complexity
Expressivity

Class Internal Features (attributes, operations, etc.)
Class size

Attributes
Methods

Class complexity
Attributes
Methods (logic complexity, paths or processes)
Method coupling, cohesion, etc.
Timed complexity (temporal constraint on services and clauses)
Input/Output
Communication

Test-Level

ECC, ECD
ECC, PSIC, RSIC, SC

ECD, CSD, CDD
CAC, CPC

CS, EC& ICS
AS, CAS

PTS
CC, ECC, ICC, VI

AC, CAC
CPC, PIC, CITC

CCPC
PSIC, RSIC, CCC
NRS, NPS, PEC

CICC, RSIC, PEC, PSIC

Complexity Metrics
Timed complexity (temporal constraint on services and clauses)
Logic complexity (class paths)
Test coverage

Reuse-Level

CR, ECD, CC
CCC, PSIC, RSIC
ECD, CCPC, CITC

VI, TI

Inheritance
Class Features (attributes, services, etc.)
System/Subsystem
Cognitive Metrics

Process-Oriented Level

RI
CR, ECD, ECC

ECC, ECD, CICC
CR, VI

Productivity PI

Reuse RI

Size estimation cs, KS
Complexity estimation CC, ICC, ECC

Cost estimation ESCost

needed to understand the class nature and, thus, to
reuse it; while RZ is very useful to evaluate the level
of reuse in a given application. This category of
metrics plus those of the process-otiented led can
be employed to keep the quality of software devel-
opment under control. In TOOMS, this is possible
because the user can evaluate several metrics in
each instant of the system specification, even if the
system is only partially specified.

4.2 Language Dependency

The metrics proposed can be classified as high- and
low-level metrics depending on their relationships
with the other metrics of the framework (see Table
5’), where:

l Leu. is the metric level (H for high-level metrics,
L for low-level metrics, M are parameters ob-

’ In the same table, the direct measures which can be estimated
by the observation of elementary measurable characteristics are
also reported.

tained by a direct measure, I/ are coefficients with
an assigned value.). The low-level metrics are
mainly based on the direct measures, while the
high-level metrics are defined on the basis of the
low-level metrics.

L.Dep. is a vote from 0 to 4 expressing to what
extent the definition of the metric depends on the
language adopted, where 0 means that the metric
is independent of the language used for imple-
menting the system under metrication, while for
higher values an increasing dependence is pres-
ent. As can be observed, most of the high-level
metrics are language independent. For these rea-
sons, the tailoring of the metrics framework for a
language other than TROL consists only in re-
defining some of the low-level metrics.

Type is the main classification of the paper and
reports the prominent nature of the metrics pro-
posed: T for technical, C for cognitive, and P for
process-oriented metrics. As can be noted, the
process-oriented metrics are completely language
independent, while the cognitive metrics are lightly

58 .I. SYSTEMS SOFTWARE
1996; 34:43-65

P. Nesi and M. Campanai

Table 5. Classification of the Metrics Proposed

Metric Lev. L.Dep. Type Note

AC
AS
CAC
CAS
cc
ccc
CCPC
CDD
CICC
CICS
CITC
CLC
CMA
CPC
CPS
CR
cs
CSD
mYPE(i)
DW
ECC
ECD
ECS
ESCost
ICC
ICS
INCCS
MSGC
NA
NAR
NASC
NC
NCL
NCON
NIST
NNAR
NOP
NP
NPI
NPS

NPS(j)
NRS
NSPSR
NSRSR
NT
Path(i)
PEC
PI
PIG
PINCCS
PMC
PMEC
PRSC(i, j)
PSIC
PTC
PTCC
PTCPS
PTCRS
PTS
RI
RSIC
RMEC
SC
TI
VI

H
H
H
H
H
H
H
H
H
H
H
L
V
L
L
H
H
H
V
M
H
H
H
H
H
H
H
L
M
M
L
M
M
M
M
L
M
M
H
M
M
M
M
M
M
M
L
H
H
H
L
L
M
L
H
M
M
M
H
H
L
L
H
H
H

0
0
0
0
0
2
0
2
0
0
0
3
2
0
0
0
0
1
2
0
0
0
1
0
0
0
0
2
0
0
0
2
0
0
0
0
2
0
0
0
1
2
3
3
2
2
1
0
0
0
1
2
1
2
1
4
4
4
1
0
2
2
0
0
0

T
T
T
T
T
C
T
C
T
T
T
C

T
T
C
T
C

T
C
T
P
T
T
P
T

T

T

P

T
P
T
P
T
T

T
T

-

T
P
T
T
T
P
C

Attribute Complexity, CC of attribute;
Attribute Size, CS of attribute;
Class Attribute Complexity;
Class Attribute Size;
Class Complexity;
Class Clause Complexity;
Class Coupling Path (or process) Complexity;
Class Dynamic Description;
Class Internal Communication Complexity;
Class Internal Communication Size;
Class Internal Task Complexity;
CLause Complexity;
A company-dependent coefficient;
Class Path (internal process) Complexity;
Class Path (or process) Size;
Complexity Ratio;
Class Size;
Class Static Description;
Communication Type of connection i;
Days of work;
External Class Complexity;
Measure of the External Class Description;
External Class Size;
Expected System Cost;
Internal Class Complexity;
Internal Class Size;
Increment of Class Size;
Message Complexity;
Number of class Attributes;
Number of Autonomous Requests in the class;
Complexity of Non-Autonomous Services of a Class;
Number of Clauses in the class;
Number of system Classes;
Number of Connections in the class;
Number of statements;
Number of Non-Autonomous Required services in the class;
Number of Boolean and comparative operations;
Number of class Paths;
Normalized PI;
Number of Provided Services;
Number of Provided Services used in Path j;
Number of Required Services;
Number of Specified Provided Services Rates;
Number of Specified Required Services Rates;
Number of conditions for Transition in a Path or process;
Path generating the required service i;
Path (or process) External Complexity;
Productivity Index;
Path (or process) Internal Complexity;
Productivity Increment of Class Size;
McCabe-like Complexity of statements in a Path;
Weight of communication Mechanism of Provided services;
Number of Presences of attribute i in path j;
Provided Service Interface Complexity;
Class Path (or process) Complexity;
Presence of Temporal Constraint for the Clause;
Presence of Temporal Constraint for the Provided Service;
Presence of Temporal Constraint for the Required Service;
Class Path (or process) Size;
Reuse Index of a system or a sub-system;
Required Service Interface Complexity;
Weight of communication mechanisms of Required service:
Service Complexity of a class;
Test Index of a class;
Verifiability Index of a class;

Metric Framework for Systems Specification

dependent, and the technical metrics are the most

dependent on the language. Measures having Leu.

equal to M or V have not been classified since
they are simple direct measures or constants,
though some of them, such as the number of class
attributes, could be considered technical or cogni-
tive metrics.

4.3 Quality Guidelines

According to the evaluation process model of IS0
9126, a set of metrics has been selected on the basis
of their correlation with the respective characteris-
tics of the software product. Initially, the correla-
tions have been supposed, and then their efficiency
has been confirmed by experiments. On the other
hand, since the metrics defined are for formal speci-
fication languages, it is highly probable that a lower

complexity and size correspond to a higher quality,
since in those conditions a class can be more easily
verified and validated even by using exhaustive test-

ing. Therefore, the following guidelines have been

defined:

For each basic object class, the fulfilling of con-
straints: CC < Tee and CS < Tcs guarantees a
selected software quality in terms of meeting
maintainability and reliability constraints. The
concept of using the class complexity as a measure
of maintainability is not new as can be seen in Li

and Henry (1993).

For each basic object class, the fulfilling of con-
straint: CR > Tcr or VI > Tci guarantees the class
or system verifiability and understandability; thus,
they will be more confident in meeting the system
requirements and more reusable. If these guide-
lines have been satisfied for all basic object classes,
then the nonbasic object classes which are ob-
tained by composition will maintain the same
characteristic of verifiability and understandability
if the ECD is close to a mean value (see Table 6).
These measures can be regarded as normalized
measures of class quality.

For each class, the constraint TI < Tti must be
satisfied during the whole development process to
guarantee the testability of newly added features
with low effort and to avoid the degeneration
which often leads to testing too many new features
at the same time. The evolution of TZ can be very
useful to control if the system has been main-
tained under test.

In Table 6, the typical ranges of the main metrics
proposed are reported. The values reported in this

.f. SYSTEMS SOFI’WARE 59
1996; 34:43-65

Table 6. Typical Values for the Most Important
Metrics Proposed

measure

CC
ICC
ECC
CS
ICS
ECS
CR
EC‘D
VI

basic object classes non-basic object classes

low mean high low mean high

15.0 60.0 140.0 150.0 520.0 2000.0
8.0 42.0 100.0 140.0 450.0 1800.0
6.0 20.0 60.0 15.0 35.0 65.0
8.0 30.0 60.0 62.0 220.0 570.0
4.0 20.0 45.0 55.0 200.0 540.0
4.0 9.0 20.0 8.0 14.0 27.0
0.4 1.5 4.5 0.05 0.1 0.3

13.0 45.0 110.0 26.0 50.0 82.0
0.3 0.X 2.2 0.06 0.1 0.25

table have been used for defining the rating of our
quality criteria in accordance with IS0 9126. In
particular, for basic object classes, Tee and Tcs have

been imposed equal to the high values reported in
Table 6. For the case of nonbasic object classes, Tee

and Tcs have been imposed equal to the mean

values. This is due to the fact that in this case, the
high values are only indicative of the maximum
complexity and size of a system or subsystem. There-
fore, for nonbasic object classes, VI and CR are
more indicative measures of system/subsystem qual-
ity. For both basic and nonbasic object classes, Tcr

and Tui have been imposed to be equal to the mean
values. In Figure 5, the Kiviat diagram (directly
produced by the TOOMS tool) presents the values

of CC, CS, I/CR, l/ECD, and l/k7 for the Buoy
System previously discussed. The external circle re-

ports the values of thresholds at the intersection
with the respective axes; and the rays of the circle
have been normalized. From the Kiviat’s diagram, it
can be seen that class complexity is too high, while
the other measures are quite good. In particular,
being the BuoySystem-a nonbasic object class-the
l/CR is the most indicative measure of class qual-
ity. In fact, it shows that the class is well specified at
the external level with respect to its complexity;
thus, its behavior can be easily verified (see Bucci et
al. (1994) for the process of verification).

In regard to the application of metrics, the model

of metrics proposed is general enough to be used
with other object-oriented approaches with minor
changes-e.g., as shown by Mandrioli (1993); Coie-
man et al. (1992); Northern Telecom (1993); Braek
and Haugen (1993). Due to the presence of many
differences among projects of the same type in dif-
ferent companies, as well as in the same company, it
is important to have the possibility of performing
project-oriented tailored measures. To this end, in
the metric framework proposed, there exist weights
and coefficients. These have been included for ad-

60 J. SYSTEMS SOFTWARE
1996; 34:43-65

P. Nesi and M. Campanai

Figure 5. The TOOMS tool during the monitoring of BuoySystem class quality.

justing the metrics framework for the specific type of
project, based on the company’s experiences. In ad-
dition, weights and coefficients can also be modified
for (i) better meeting the company goals-e.g., im-
prove quality, improve reusability, etc., (ii) evidenc-
ing and measuring specific features-e.g., behavior,
communications, structure, etc., and/or (iii) for
compensating for the presence of different lan-
guages and thus using a unique metric framework in
nonhomogeneous systems (Henderson-Sellers et al.,
1994). Therefore, developers who intend to adopt
the metrics framework proposed in this paper will at
first have to measure a set of their projects by using
our weights (in this way, a mean value for each
metrics estimated on their projects is obtained), and
then they can impose their weights and thresholds
according to the company goals.

For most of the process-oriented metrics (e.g., PI,
RI) developers do not need to get an absolute value,
but they need to understand the trends of values in
order to identify 6) discontinuity and changes from
the usual trend, or (ii) when the risk to have quality
degradation exists. The process metrics such as reuse

index, RI, and productivity index, PI, can be very
useful to estimate the general quality of the develop-
ment team. In particular, they must be used to
maintain control of the efficiency of the team in
analyzing and implementing the system under speci-
fication. For the same reasons, the trend of the
expected system cost, ESCost, must also be con-
trolled (Fenton, 1991; Henderson-Sellers et al.,
1994).

4.4 Methodologies Support

The metric framework allows the estimation of
system complexity, size, cost, etc., at each level of
abstraction and specification details. This means that
most of the metrics proposed can be used during
all phases of the software life cycle according to the
new approaches of continuous metrication
(Rombach, 1990; Henderson-Sellers et al., 1994). It
should be noted that different values are obtained in
different phases of the software life cycle. The soft-
ware life cycle can be regarded as comprising five

Metric Framework for Systems Specification J. SYSTEMS SOFIWARE 61
1996; 3443-65

phases: analysis, abstract design (i.e., compo-
sition/decomposition), basic components design (i.e.,
implementation of XSM, XCM), testing (i.e., verifi-
cation and validation), and maintenance. In object-
oriented methodologies, the separation among these
phases is not well defined. In fact, the system under
specification can have some parts under analysis
while others are under design or testing, etc. The life
cycle can usually be modeled by means of the spiral
or the fountain model (Boehm, 1986; Henderson-
Sellers and Edwards, 1990; Booth, 1991; Meyer 1988;
Wirfs-Brock et al., 1990; Nesi 1994), etc. In both
these models, the metric framework proposed can
be used as a support for the approach adopted. In
fact, both of these models allow the process of
refinement and are considered to be suitable for
object-oriented development.

In the course of analysis and design, metrics can
be used for helping the designer to generate high
quality specifications. This will also guarantee low
costs of testing, extendibility, and maintenance of
the final product. In addition, further reuse of the
whole system or of system components must also be
facilitated by specifying understandable and well-
verifiable classes. In these phases, the metric frame-
work is able to keep the specification process under
control.

In Table 7, the metrics which can be used in the
phases of the software life cycle in order to guaran-
tee that the product quality and the control of
specification development and maintenance have
been reported. In this way, the adoption of metrics
can be integrated into the methodology; thus, the
developer’s decisions can be based on objective mea-
surements instead of subjective impressions. There-
fore, slightly different (in metrics and thresholds)
quality criteria must be set for each phase of the
software life cycle. In addition, special metrics can
be defined in order to: (i> measure the production of
deliverables (reports and demonstrator) during the
whole software life cycle, (ii) evaluate the costs of
reusing class libraries, and (iii) identify the most
suitable classes to be reused.

Table 7. Metrics and the Phases of Software Life Cycle

phases measurements

Analysis
Abstract Design
Components Design
Testkg

Formal Verification

CC, ECC, ESCost, CS, ECS, ECD
CS, CC, VI, CR, RI, PI
CS, CC, VI, CR, RI, PI

TI
CR. VI

ECD, cc
CC, VI, TI

Validation
Maintenance

5. CONCLUSIONS

A set of metrics for controlling the quality of an
object-oriented development process and its integra-
tion in the CASE tool named TOOMS (Bucci et al.,
1993), has been presented. This integration allows a
more effective control of specification quality and
reduces the cost for quality control. The metrics
proposed have been defined for a formal object-ori-
ented model and language and are mainly focused
on the specification of embedded reactive systems
(i.e., TROL (Bucci et al., 1994)). These metrics cover
all aspects of system specification, helping the
TOOMS users to produce well-stated applications.
Metrics are a support for maintaining control of the
quality of the specification, monitoring class, and
system complexity, size, testability, reusability, veri-
fiability, etc. This support compels the developers to
produce specifications which satisfy the imposed rat-
ing and to test the specification when it has grown
too much. The specifications are guaranteed to be
formally correct by means of the TOOMS facilities
for system verification and validation.

Most of the metrics defined in the metric frame-
work are new; while the others are equivalent in
general terms to other metrics proposed in the liter-
ature. The metrics proposed have been defined to
ensure their applicability in all phases of the soft-
ware life cycle; in fact, most of them can estimate
congruent values even if the system is only partially
specified according to the capabilities of many new
languages, such as OSDL, TRIO + , and TROL.
The TOOMS tool with metrics has been used on
several case studies showing the advantages of our
model. Most of the concepts proposed (metrics and
approaches for their definition), are general enough
to be used with other object-oriented approaches
with minor changes.

ACKNOWLEDGMENTS

The authors would like to thank Prof. G. Bucci for his valu-

able suggestions, M. Traversi and A. Borri of CO-ware for

their help, and O.T.E. S.p.A. for providing micro-telephone

projects. This work was supported in part by the Italian

Research Council.

REFERENCES

Albrecht, A. J., and Gaffney, J. E., Jr., Software Function,
Source Lines of Code, and Development Effort Predic-
tion: A Software Science Validation, IEEE Transactions
on Software Engineeting, 9(6):639-648 (November 1983).

Basili, V., and Weiss, D. M., A Methodology for Collecting
Valid Software Engineering Data, IEEE Transactions on
Sofmare Engineering, 10(6):728-738 (1984).

62 J. SYSTEMS SOFTWARE
1996; 34~43-65

P. Nesi and M. Campanai

Boehm, B. W., Software Engineeting Economics, Prentice-
Hall, 1982.

Boehm, B. W., Software Requirements Economics, IEEE
Transactions on Software Engineering, 10(1):4-21

(January 1984).

Boehm, B. W., A Spiral Model of Software Development
and Enhancement, ACM SIGSOFT Software Engineer-
ing Notes, 1 l(4): 14-24 (1986).

Booth, G., Object-Oriented Development, IEEE Transac-
tions on Software Engineering, 12(2):211-221 (February

1986).

Booth, G., Object-Otiented Design with Application, The
Benjamin/Cummings Publishing Company, California,

1991.

Braek, R., and Haugen, O., Engineering Real Time Systems:
An object-oriented methodology using SDL, Prentice-Hall,
New York, London, 1993.

Bucci, G., Campanai, M., Nesi, P., and Traversi, M., An
Object-Oriented Case Tool for Reactive System Speci-
fication, in Proc. of 6th International Conference on Sofi-
ware Engineeting and Its Applications (sponsored by:
EC2, CXP, CIGREF, and SEE), Le CNIT, Paris la
Defense, France, November 15-19, 1993.

Bucci, G., Campanai, M., Nesi, P., and Traversi, M., An
Object-Oriented Dual Language for Specifying Reactive
Systems, in Proc. of IEEE International Conference on
Requirements Engineering, ICRE’94, Colorado Springs,
Colorado, April 18-22, 1994.

Bucci, G., Campanai, M., and Nesi, P., Tools for Specify-
ing Real-Time Systems, Journal of Real-Time Systems,
(March 1995).

Card, D. N., and Glass, R. L., Measuring Software Design
Quality, Prentice-Hall, Englewood Cliffs, New Jersey,
1990.

Carrington, D., Duke, D., Duke, R., King, P., Rose, G.,
and Smith, G., Object-z: An Object-Oriented Extension
to Z, in Formal Description Techniques, (S. T. Voung,
ed.), Elsevier Science, 1990.

Coleman, D., Hayes, F., and Bear, S., Introducing Ob-
jectcharts or How to Use Statecharts in Object-Ori-
ented Design, IEEE Transactions on Software Engineer-
ing, 18(1):9-18 (January 1992).

Coulunge, B., and Roan, A., Object-Oriented Techniques
at Work: Facts and Statistics, in Proc. of the Intema-
tional Conference on Technology of Object-Oriented Lan-
guages and Systems, TOOLS Europe 93, Versailles,
France, March 8-11, 1993, pp. 89-95.

Dasarathy, B., Timing Constraints of Real-Time Systems:
Constructs for Expressing Them, Methods of Validating
Them, IEEE Transactions on Software Engineering,
11(1):80-86 (January 1985).

Diirr, E. H. H., and vanKatwijk, J., Vdm+ + : A Formal
Specification Language for Object-Oriented Designs, in
Proc. of the International Conference on Technology of
Object-Otiented Languages and Systems, TOOLS 7, (G.
Heeg, B. Mugnusson, and B. Meyer, eds.), Prentice-Hall,
1992, pp. 63-78.

ESPRIT-5494. Ami handbook. Technical report, AM1

consortium, January 1992.

Fenton, N. E., Software Metrics: A Rigorous Approach,
Chapman and Hall, London, 1991.

Gangopadhyay, D., and Mitra, S., Objchart: Tangible
Specification of Reactive Object Behavior, in Proc. of
7th European Conference on Object-Oriented Program-
ming, ECOOP’93, Lecture Notes in Computer Sciences,
(0. M. Nierstrasz, ed.), Springer-Verlag, LNCS 707,
Kaiserslautern, Germany, July 1993, pp. 432-457.

Henderson-Sellers, B., Some Metrics for Object-Oriented
Software Engineering, in Proc. of the International Con-
ference on Technology of Object-Oriented Languages and
Systems, TOOLS 6 Pacific 1991, TOOLS USA, 1991, pp.
131-139.

Henderson-Sellers, B., Modularization and McCabe’s Cy-
clomatic Complexity, Communications of the ACM,
35(12):17-19 (December 1992).

Henderson-Sellers, B., The Economics of Reusing Library
Classes, Journal of Object-Oriented Programming
(July-August 1993).

Henderson-Sellers, B., and Edwards, J. M., The Object-
Oriented Systems Life Cycle, Communications of the
ACM, 33(9):143-159 (September 1990).

Henderson-Sellers, B., Tegarden, D., and Monarchi, D.,
Object-Oriented Metrics, in Proc. of 7th European Con-
ference on Object-Onented Programming, ECOOP’93, Tu-
torial notes, (0. M. Nierstrasz, ed.), Kaiserslautern, Ger-
many, July 1993.

Henderson-Sellers, B., Tegarden, D., and Monarchi, D.,
Metrics and Project Management Support for an
Object-Oriented Software Development, in Tutorial
Notes TM2, TOOLS Europe ‘94, International Conference
on Technology of Object-Oriented Languages and Systems,
Versailles, France, March 7-10, 1994.

Jensen, R. L., Parametric Estimation of Programming
Effort: An Object-Oriented Model, Journal of Systems
and Sojtware, X:107-114 (1991).

Jensen, H. A., and Vairavan, K., An Experimental Study
of Software Metrics for Real-Time Software, IEEE
Transactions on Software Engineering, 11(2):231-234

(February 198.5).

Kemerer, C. F., An Empirical Validation of Software Cost
Estimation Models, Communications of the ACM,
30(5):416-429 (May 1987).

Laranjeira, L. A., Software Size Estimation of Object
-Oriented Systems, IEEE Transactions on Software Engi-
neering, 16(5):510-522 (1990).

Li, W., and Henry, S., Object-Oriented Metrics that Pre-
dict Maintainability, Journal of Systems Software,
23:111-122 (1993).

Mandrioh, D., The Object-Oriented Specification of
Real-Time Systems, in Tutorial Note of the International
Conference on Technology of Object-Oriented Languages
and Systems, TOOLS Europe ‘93, Versailles, France,
March 8-11, 1993.

McCabe, T. J., A Complexity Measure, IEEE Transactions
on Software Engineering, 2(4):308-320 (1976).

Metric Framework for Systems Specification J. SYSTEMS SOFTWARE 63
lYY6: 34:43-65

Meyer, B., Object-Oriented Software Construction,

Prentice-Hall. C. A. R. Hoare Series, New York, 1988.

Meyer, B.. Tools for the New Culture: Lessons Learned
from the Design of the Eiffel Libraries, Communica-

tions of the ACM, 33(9):68-88 (1990).

Morzenti, A., and SanPietro, P., Object-oriented logical
specification of time critical systems. Technical Report,
Politecnico di Milano, Dipartimento di Elettronica,
Piazza Leonardo da Vinci 32, Milano, Italy, 1992.

Ncsi, P., An object-oriented language and compiler for
reactive systems. Technical Report, RT 13/93 Diparti-
mento di Sistemi e lnformatica Facolta di lngegneria,
Universita di Firenze, Florence, Italy, 1993.

Nesi, P., Object-Oriented Paradigm for the Specification
of Real Time Systems, in Objectit’e: Quality 1994, Milan,
Italy, May 1 l-13, 1994.

Northern Telecom, Objectime: Object-oriented case for
real-time systems. Technical Report, Bell-Northern
Telecom, 1993.

Panaroni, P., and Musone, A., Design software metrics for
the hood method. Technical Report, INTECS SISTEMI
spa, Piss, Italy, 1990.

Rask, R., Laamanen, P., and Lyytinen, K., Simulation and
Comparison of Albrecht’s Function Point and Demarco’s
Function Bang Metrics in a Case Environment, IEEE

Transactionson Software Engineering, 19(7):661-671 (July
1993).

Rombach, H. D., Design Measurement: Some Lessons
Learned, IEEE Software, 17-25 (March 1990).

Sanden, B., The Case for Eclectic Design of Real-Time
Softwarc, IEEE Transaction on Software Engineering,

35(3):360-363 (March 1989).

Sanden, B., An Entity-Life Modeling Approach to the
Design of Concurrent Software, Communications of the

ACM, 32(3):330-343 (March 1989).

Shaw, A. C., Communicating Real-Time State Machines,

IEEE Transactions on Software Engineering,

18(9):805-816 (September 1992).

Stetter, F.. A Measure of Program Complexity, Computer

Language, 9(3):203-210 (1984).

Thomas, D.. and Jacobson, I., Managing Object-Oriented
Software Engineering, in Tutorial Note, TOOLS’89, In-

ternational Conference on Technology of Object-Oriented
Languages and Systems, Paris, France, November 13-15,

1989, p. 52.

Warburton, R. D. H., Managing and Predicting the Costs
of Real-Time Software, IEEE Transactions on Software

Engineering. 9(5):562-569 (September 1983).

Wearing, A., Software development metrics for real-time
embedded systems. Technical Report, Evisa System,
Disley, Cheschire, SK 12 2BH, UK, 1992.

Wirfs-Brock, R. J., Wilkerson, B., and Winer, L., Designing
Object-Oriented Softiare, Prentice-Hall, Englewood
Cliffs, New Jersey, 1990.

Yap, L.-M., and Henderson-Sellers, B., Consistency con-
siderations of object-oriented class libraries. Technical
Report, University of New South Wales, Information

Technology Research Centre, n.93/3, Sydney, Aus-
tralia, June 1993.

Zuse, H., Quality Measurement-Validation of Software
Metrics, in Proc. of the 7th International Software Quality

Week in San Francisco, QW’94, Software Research, May
17-20, 1994, pp. 4-T-2.

APPENDIX A. A Summary of TOOMS/TROL

Notation

TROL classes are defined by means of their external and
internal class descriptions, which correspond to public and
private class members according to the object-oriented
paradigm.

A. 1 External Class Description

The external class description (see Figure 6) reports the
public features of the class. These are Provided-services,
Required-services, and Clauses. Provided and required
services can be regarded as input and output ports (gates)
(i.e., IO-model by Coleman et al. (1992’)).

In the early stages of reactive systems specification,
some temporal requirements on system behavior are usu-
ally imposed. In the external class description, time is
modeled by means of temporal constraints (Dasarathy,
1985). These constraints are associated with services and
clauses-e.g., (Sections 3.2, 4.5) associated with service IA
in Figure 6, which specifies the minimum and the maxi-
mum rate (bounds) of that service in time units. Temporal
constraints can also be associated with Clauses. Clauses
represent a dependence between the services correspond-
ing to the connected 10s (i.e., they are descriptive con-
straints on class behavior). Referring to Figure 6, clause
CLAl specifies that when a new message arrives at IA,
object 01 will make ready a request on OB in the speci-
tied time interval. In this case, the constraint associated
with clauses describes the bounds for the time of reaction
(Dasarathy, 1985). Services are only a static class descrip-
tion in the TROL model, while clauses describe the exter-
nal class behavior. Since a clause describes the external
class behavior, conditions must be expressed only in terms
of public references. However, the clauses represent a
nonexhaustive description of class behavior; these are very
useful during the composition/decomposition process of a
class and for the definition of the abstract behavior in the

Figure 6. External class description of class Samplel, and
visual representation of Object 01 of class Samplel.

64 J. SYSTEMS SOFTWARE
1996; 34:43-65

early phases of system specification. The external class
description in terms of services and clauses with associ-
ated temporal constraints is the instrument by which the
class is validated. In addition, an external class description
which reports both static and dynamic aspects of the class
is a vehicle for (i) understanding the nature of the class
without inspecting the whole code, (ii) generating the final
patterns for testing the class functionalities (Bucci et al.,
1994).

A.2 Internal Class Description

The internal class description corresponds to the class
implementation. In the TROL model, classes can be re-
garded as nonbasic object classes or basic object classes.

A nonbasic object class is implemented in terms of a set
of communicating subobjects. This leads to a hierarchical
organization of the software structure.- When two objects
are connected together through their services (required-
to-provided, belonging to the same type, e.g., Boolean with
Boolean) a channel of communication is established. The
default communication model is synchronous on a uni-
directional channel, as in Shaw (1992). Client/server
communications are supported through message passing;
messages are considered as tokens irrespective of their
content-i.e., data, (control) commands, or both.

In TROL, there are two kinds of provided services:
normal and buffered’ (buffered), and two kinds of re-
quired services: normal and always available3 (available).
Through the connection of these types of services four
types of communication mechanisms are defined: (a) syn-
chronous communication where both sender and receiver
are blocked; (b) asynchronous communication with a non-
blocked sender and a blocked receiver (when the buffer
is empty); (c) asynchronous nonblocked communication
corresponding to the request of the latest information
value from the sending object (overwriting mechanism);
(d) asynchronous nonblocked communication, where a
message is stored in the buffer only if it is changed with
respect to the last value.

In Figure 1, the visual representation of class Estimator-
Buffered as composed of two subobjects, Sl and Bl,
belonging to classes Estimator and Buffer, is reported, as
produced by the TOOMS tool BlockEditor. In Figure 7
the descriptive counterpart of Figure 1 is reported.

Basic object classes are those that cannot be regarded
as a composite object and are implemented by using (i) an
extended state machine formalism called “extended State
Machine (XSM) model, or (ii) a set of pure data transfor-
mations of input into output data (without any notion of
state variables) called “extended Combinatorial Ma-
chines” (XCMs). A TROL environment presents-at the

’ Implemented by means of a buffer with an infinite dimension.
3 When the associated information is always there, that is,

when the service has its information always ready for the receiver.
Available services can be used to present outside the object state.

P. Nesi and M. Campanai

Class Estmatorhffered specializing noo_bbasicobJectrIass
Provided_serviceu

data1 : DataType;
RusbB : Signal;
elab : Signal;

Requiredservices:
results Real;
err available : EstimatarErrType;

Clauses:
ESTIMATION: Nev(elab) A err==OK - Ready(reauIta);
FLUSH New (RusbB) - err==EMPTY;
DATA : New (d&al) h err==EMPTY + err==OK;

I’*’ orivate oarts ***I
Attrbutes:’

81 Buffer;
SI Estimator.

Connections:
data1 Bl datain,
rlah Sl.eval.
SI leaIt results;
Sl cr* err,
Sl.req.datal - Bl Set;
B1 dataout Sl.thedatal;
Bl ls.empty Sl buf-90;
AushB Bl.Aush,

Figure 7. Description of the class EstimatorBuffered with
the external description of class Estimator, where Estima-
torErrType is defined as an enumeration: enum Estima-
torErrType {EMFTY,OK);. The description of the class
Buffer will be provided later.

lowest level of hierarchy-a lattice of communicating ba-
sic objects which are implemented either as XSMs or
XCMs. In Figure 1, the implementation of class Buffer as
an XSM is presented as it appears on the TOOMS visual
interface. A set of statements (either assignments, and/or
procedure calls) is associated with each state, these are
executed when the state is reached. In an XSM, temporal
constraints can be applied to different predicates, such as
the conditions associated with state transitions, requests of
provided services, sending of required services, numerical
expressions, and procedure calls (Bucci et al., 1994). In
Figure 8, the complete description of the class Buffer is
schematized.

It should be noted that, in the XSM model, a basic
object class may present a state diagram with a central
state-e.g., a state named CENTRAL in Figure 1. A

Class Buffer speeielieing XSM
Providedservices:

datain, DataType ;
w:h %&i ;

Requiredzervices:
dataout DataType ,
mampty available : Boolean,

Clauses:
GET New (get) A- issmpty - Ready (dataout);
FLUSH New (Rush) - iempty;
DATAIN New (datsin) h issmpty - - kumpty;

/ *** private parts “a/
Attributes: // auxihary variables of the state machine

1” Integer;
out Integer,
is-empty Boolean ;
Buff DataType (m 1;

States:
START { m=O; ,s.empty=TRUE: out=&)
CENTRAL ()
WRITEIN: { m=m+l, Buf$n]=datain; iumpty=FALSE;)
WRITEOUT: { dataout=Buf@ut] [0,10.3]; out=out+l;)
ISEMPTY (is_empty=TRUE;)

Paths:
lNlT (START: - CENTRAL; CENTRAL: Ner(Bwh) - START;)
PUT (CENTRAL: New(datsin) + WRITEIN; WRITEIN: -CENTRAL;]
GET. (CENTRAL, New(&) A- iswnpty - WRITEOUT;

WRITEOUT: in != out - CENTRAL; WRITEOUT: in==out + ISEMPTY;
ISEMPTY, - CENTRAL; WRITEOUT: &aII(TIMEFAIL) - CENTRAL;)

end:

Figure 8. Textual specification in TROL of the corre-
sponding visual description in TOOMS for the class Buffer.

Metric Framework for Systems Specification

number of transitions start from such a state, and each
transition identifies a typical branch or aggregate of states
called class park For example, the class Buffer in Figure 8
presents three Paths (INIT, PUT, GET). In TROL, each
class implemented as an XSM is an active object which, in
turn, is implemented with one thread of execution for
each path (the concept of path in TROL is equivalent to
that of process in SDL). In this way, an object can satisfy
concurrent requests of services if they belong to different
paths. These threads (i.e., paths) are signal sensitive,
meaning that they are waiting for a signal to change their
state; hence, their execution is causal (i.e., event-driven).

J. SYSTEMS SOFTWARE 65
1996; 34143-6.5

The XCMs are a particular case of an XSM in which
there exists only a single state, and auxiliary variables do
not maintain their values from an execution to the next.

In TROL, the specialized nonbasic object classes inherit
attributes, provided and required services, connections,
and clauses from their superclass, according to the mono-
tonic concept of inheritance (Bucci et al., 1994). Analo-
gous rules are defined for basic object classes that can
inherit attributes, provided and required services, states
and paths from their superclass.

