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In this paper, a framework for maintaining control of 

and analyzing object-oriented system specifications of 

real-time systems by using a set of metrics covering 

technical, cognitive, and process-oriented views is 

presented. The indicators defined can be used for 

monitoring the evolution of system quality and for 

effort prediction. The use of metrics for the estimation 

of reusability, verifiability, and testability is analyzed. 

The metric framework is integrated in a CASE tool 

named TOOMS, which is based on TROL, a dual 

object-oriented language with both descriptive and 

operational capabilities. TOOMS allows one to de- 

scribe the system at different levels of structural ab- 

stractions and at different levels of specification detail, 

such as many other languages and models for 

real-time systems (e.g., OSDL, ObjectTime, Ob- 

jectchart). According to this, the metrics proposed are 

capable of producing estimations at each level of sys- 

tem specification, thus allowing incremental specifica- 

tion/metrication. The metric framework must be re- 

garded as a support for controlling the process of 

software development in order to guarantee the final 

quality. 

1. INTRODUCTION 

There is an overabundance of metrics in the litera- 
ture. Complexity and size are often defined on the 
basis of available metrics; many attempts at metrics 
validation have been made, but unfortunately, for 
each positive validation there is a negative one. 
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Some studies with metrics and measurement frame- 
works for object-oriented systems have been pre- 
sented (Laranjeira, 1990; Meyer, 1990; Panaroni and 
Musone, 1990; Jensen, 1991; Coulunge and Roan, 
1993; Li and Henry, 1993; Henderson-Sellers, 1993; 
Yap et al., 1993) where general concepts for the 
estimation of system size, complexity, and reuse level 
have been proposed. Furthermore, an analysis of the 
impact of the “reuse, as the most enticing promise” 
in object-oriented system development has been car- 
ried out by Henderson-Sellers (1993). However, it 
should be noted that in the measurement of object- 
oriented systems, a generally poor design and a lack 
of adherence to proper measurement principles are 
still present. This lack is also due to the different 
definitions of what the object-oriented paradigm is. 

Moreover, several formal definitions of the correct 
measurement principles have been presented (e.g., 
Fenton, 1991; ESPRIT-5494, 1992; Zuse, 19941, but 
they are still oriented to the structured approach. In 
addition, it should be noted that to define a specific 
framework for measuring the quality of the specifi- 
cations given in languages suitable for real-time 
system specification, many specific metrics must be 
defined (Warburton, 1983; Jensen and Vairavan, 
1985; Wearing, 19921. This is due to several factors, 
including, (a) the need of using particular languages 
for specifying real-time systems (e.g., TROL by Bucci 
et al., 1994; TRIO+ by Morzenti and SanPietro, 
1992; OSDL by Braek and Haugen, 1993, etc., as can 
be observed by Bucci et al., 19951, (b) the need to 
give more evidence to system behavior-i.e., to the 
presence of temporal and logical constraints on sys- 
tem behavior, (c) the need for verifiability metrica- 
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tion of the specification consistency of the system 
under analysis, (d) the need to obtain valid measure- 
ments, even if the system is only partially specified 
(this is very useful for many algebraic and logical 
languages such as Object-Z by Carrington et al., 
1990; VDM + + by Diirr and vanKatwijk, 1992; 
TRIO + by Morzenti and SanPietro, 1992; TROL by 
Bucci et al., 1994, etc.). 

Recently, an increase in attention to the process 
of software development has created the need to 
obtain process-oriented information and to integrate 
metrics into the software development process. Fur- 
thermore, due to the presence of many differences 
among projects by the same company, it is impor- 
tant to create an integrated environment to perform 
project-oriented tailored measures. This means that 
it is important for a company to adopt a unique 
method and approach for project measurement, but 
its approach must be capable of adapting its features 
to different types of projects and languages. This 
process of adaptation is usually performed by using 
adjusted weights and thresholds (Henderson-Sellers 
and Edwards, 1994). 

In this paper, a shift of prospective is presented 
(a) in the definition of metrics and (b) in the integra- 
tion of metrics in the development process by pro- 
viding an integrated framework for system measure- 
ments. In fact, the metrics proposed have been inte- 
grated into TOOMS, which is a CASE tool for the 
specification of real-time systems (Bucci et al., 1993). 
The structure of the TOOMS tool is comprised of a 
set of visual editors and utilities. In TOOMS, the 
user interacts with the visual editors describing the 
system under specification by means of few graphical 
symbols. In particular, the Block Editor is adopted 
to specify nonbasic object classes which model the 
system decomposition/composition defining a class 
and a set of communicating subobjects; while the 
Machine Editor is used to specify basic object classes 
as extended state machines (i.e., XCMs and XSMs), 
for modeling classes which cannot be further decom- 
posed (see Figure 1); the Type Editor is used to 
define new data types (Bucci et al., 1993) (see Ap- 
pendix A). Utilities for providing metrication, verifi- 
cation, validation, and simulation are directly inte- 
grated into the visual editors. A code generator, 
which transforms the system specification from the 
TROL language into C ++ code, is also available. 
TOOMS is based on an object-oriented formal lan- 
guage and model named TROL (Nesi, 1993; Bucci 
et al., 1994). TROL adopts a dual model which 
is capable of integrating the operational and the 
descriptive formalism; its operational or descrip- 
tive features are similar to other IO-based object- 

oriented specification languages and methods- 
e.g., TRIO + by Morzenti and SanPietro (1992); 
ObjectCharts by Coleman et al. (1992); Object- 
Oriented version of SDL (OSDL) by Braek and 
Haugen (1993); Object-Time by Northern Telecom 
(1993). Most of these approaches have the capabili- 
ties of specifying system behavior, structure, and 
functionality and allow the verification and valida- 
tion of composition/decomposition mechanisms. In 
addition, the incremental specification of system de- 
scription is allowed where classes are defined by 
means of their external and internal class descrip- 
tions (which correspond to public and private class 
members according to the object-oriented paradigm). 

Even though the metric framework proposed in 
this paper has been defined for the TOOMS/TROL 
model, it can also be applied to the above-men- 
tioned formalisms with minor changes, since most of 
the metrics proposed are independent of the pro- 
gramming language, as will be shown later. The 
metric model was integrated into the TOOMS tool 
in order to maintain control of the evolution (i.e., 
quality and effort) of real-time systems under speci- 
fication; thus, quantitative parameters and related 
metrics have been defined to evaluate all aspects of 
the system under specification with a greater atten- 
tion to the specification quality, reusability, verifia- 
bility, testability, and cost prediction. 

The paper is organized as follows. In Section 2, 
the metrics which have been integrated into the 
TOOMS tool are discussed. The validation of the 
most important metrics proposed is presented in 
Section 3. The mapping of the general concepts 
(with respect to the metrics proposed) together with 
the discussion about the language dependency and 
methodologies support, are reported in Section 4. In 
the same section, the quality model is presented 
together with a discussion about the suggested 
guidelines. Conclusions are drawn in Section 5. To 
improve understanding of this article, the main fea- 
tures of the TOOMS/TROL notation are reported 
in Appendix A, while detailed descriptions of the 
TOOMS tool and TROL languages can be found in 
Bucci et al., (1993) and in Bucci et al. (1994); Nesi 
(1993), respectively. 

2. METRIC FRAMEWORK OF TOOMS 

In this section, the metrics of the metric framework 
integrated in the TOOMS tool are presented. The 
metrics proposed have been defined in order to 
provide the TOOMS/TROL users assistance in 
maintaining control of and evaluation of their work. 
The aim of the integration is to cover the entire life 
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Figure 1. Some Visual Editors of the TOOMS tool. 
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cycle of the system under specification by using a 
unique tool that provides software developers and 
managers appropriate instruments for establishing 
software quality from the early stages of system 
development. In specification languages, such as 
OSDL, TROL, TRIO + , etc., partially defined spec- 
ifications can also be validated and tested (by prov- 
ing properties through mathematics or by simula- 
tion). In Figure 2, different phases of the specifica- 
tion life cycle are reported, where the system can be 
simulated and metricated. In TROL, as in other 
languages, when a class is only described by means 
of its external class description (services and clauses 
or assertions) the simulation can be performed by 
using clauses or other high-level descriptions of class 
behavior. Analogously, the class complexity and size 
can be predicted approximately by using only the 
information available in the external class descrip- 
tion (complexity and size). For these reasons, the 

Figure 2. Different phases of system specification. In (a), 
A is defined and implemented as a nonbasic object class, 
while for B, C, and D the only external class description 
has been defined. In (b), C has been implemented as an 
extended state machine (i.e., XSM) while D has been 
implemented as a nonbasic object class, etc. 
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model proposed allows the application of metrics at 
each level of specification detail, and thus the system 
development can be continuously maintained under 
metrication (see Figure 3). Therefore, metrics are 
used as a prevision model, as well as to control the 
software quality (see Section 4.3). 

In the literature, many metrics frameworks have 
been presented, e.g., (Henderson-Sellers, 1991; Zuse, 
1994). Our approach is based on three different 

system views: a technical, a cognitive, and a process- 
oriented view. The technical view refers to the soft- 
ware engineering aspects of system specification 

(size, complexity, etc.); the cognitive view takes into 
account the external understandability and verifia- 
bility of system components and libraries; and, the 
process-otiented view refers to system aspects that 
are influenced by or which can influence the process 
of system development (productivity, reuse, size, cost, 
etc.). These three views are evaluated in a common 
measurement framework in which each view can 
influence the others. Metrics of each view can be 
used in different phases of system evolution: the 
cogrtitive metrics during system development and/or 
in system maintenance; the technical metrics for the 
evaluation/certification of some specific characteris- 
tics of the system; the process-oriented metrics for 
evaluating the impact of technology on the whole 
development process. All these measurements should 
be estimated even if the system under development 
is not yet completely specified according to the 
above-mentioned specification languages for real- 
time systems. In object-oriented systems develop- 
ment, a greater effort is required in the design 
phase, and considerably less is required for program 
maintenance. For these reasons, the metrication of 
system specifications has been very important since 

the early stages of system design. 

2.1 Technical Metrics 

In this section, technical metrics to evaluate the 
class complexity and size are reported. For noncon- 

Figure 3. A continuous approach to quality improvement 
through metrics. 

current systems, the class complexity can easily be 
related to class size, while in the case of real-time 

systems (where the system behavior is defined by 
that of many concurrent processes, frequently mod- 
eled by means of state machines), these two con- 
cepts can be very different. Most of the traditional 
technical metrics for the estimation of size or com- 
plexity have been defined in order to predict the 
system cost (Fenton, 1991; Laranjeira, 1990). These 
measurements of size are mainly based on the esti- 
mation of the number of Lines Of Code (LOC). In 
the case of formal languages for the specification of 

real-time systems, the LOC estimation is not a suit- 
able measure because the dynamic aspects of the 
system under measurement are neglected (the cor- 
rections which are usually performed on the basis of 
the development context and on the kind of applica- 
tion are hardly applicable to formal specification 
languages for real-time systems). In fact, it is likely 
that two specifications having the same size can be 
very different in cost if they are implemented by 
using a different number of communicating pro- 
cesses, In addition, traditional methods for measur- 
ing system size do not take into account the pres- 
ence of temporal constraints or assertions (Thomas 
and Jacobson, 19891, i.e., clauses for describing the 
class or system behavior. For this reason, more spe- 
cific technical metrics have been proposed. 

Given a class c, the following symbols will be used 
in the rest of the paper: NRS, for the number of 
required services, NPS, for the number of provided 
services, NA, for the number of attributes, NC, for 
the number of clauses, and NP, for the number of 
paths (for the meaning of “path,” see Appendix 
A.2). The above numbers also include the features 
inherited from the superclasses of the class under 

consideration, according to the object-oriented 
paradigm. In the case of a method-based approach, 
the number of paths corresponds approximately to 
the number of concurrent class methods or class 
processes (as in OSDL). A list of symbols adopted in 
this paper is reported in Table 5 of Section 4 to 
improve the paper readability. 

2.1.1 Class complexity, CC. Following the object- 
oriented paradigm, the estimation of class complex- 
ity of the system under analysis corresponds to the 
estimation of the class complexity of the class which 
models the system itself. The typical methods to 
estimate the complexity which are based on fan-in 
and fan-out, such as those in Card and Glass (19901, 
are less suitable in this context (i.e., I/O-based 
object-oriented specification languages for real-time 
systems) because the input/output complexity is only 



Metric Framework for Systems Specification 

a small part of the whole class complexity. There- 
fore, the Class Complexity (CC) can be seen as the 

weighted sum of the Internal and the External Class 
Complexity (ICC and ECC): 

CC = w,<.( ICY’ + w,,.,.ECC 

where w,( c and wEcTc are tailorable weights. Note 
that since ICC and ECC take into account the 

complexity of the class by considering all of its 
superclasses, then CC also includes such complexi- 
ties. The class complexity can be very useful to 
evaluate the system maintainability and reliability 
(Li and Henry, 1993). In addition, basic object classes 
should have a complexity lower than a given thresh- 
old to ensure a selected software quality in terms of 
satisfying maintainability and reliability constraints. 

2.1.2 Internal class complexity, ICC. The Internal 
Class Complexity (ICC) takes into account the Class 
Path Complexity (UC) and the Class Attribute 
Complexity (UC). In addition, the ICC also de- 
scribes how the Paths of a given class are internally 
coupled in using class attributes by means of the 
term CCPC, (Class Coupling Path Complexity). The 
ICC is also influenced by the intrinsic concurrency 
of the class (Class Internal Task Complexity, CZTC), 
c.g., a class comprised of only one Path is obviously 
less complex than the same class implemented with 
two Paths (i.e., which correspond to two processes). 
The object-oriented design usually consists of a pro- 

cess of class decomposition and/or object composi- 
tion for defining new classes. At this level, the Class 
Path Complexity has no meaning because the paths 

are not yet implemented. On the contrary, in the 
design phase, it is very important to evaluate the 
class complexity on the basis of the exchange infor- 

mation by the class attributes (which in turn are 
instances of some classes). This fact is measured 
with the Class Internal Communication Complexity, 

CICC. 
Therefore, the internal class complexity has been 

defined as: 

ICY‘ = u‘(. ,(.(;lC + M’( ,,( CPC + w(.(.r>(-cCPC 

+ ‘I’( I/(. CITC + u’( ,( ( CICC, 

where w( ,,( , w(,,,(., w( ,(.(., w~(.~~, and wcI,.(. are 
application-dependent weights. In the following, we 

provide details about the above terms. 

C1rr.s.s uttrihute complexity, CAC. The complexity of 
each attribute (Attribute Complexity, AC) is equal 
to the class complexity of the attribute itself, thus 
,4C = CC. Hence, the class attribute complexity, 

CAC, is obtained 
tributes: 

NA 
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by considering all the class at- 

CAC = c AC, 

In many object-oriented languages, such as in 
C + + , there is a set of predefined basic types which 
are not implemented as classes. For these basic 
types, the class complexity CC must be predefined. 
In TROL, a suitable class has been defined for each 
basic type (Bucci et al., 1993). 

Class path complexity, CPC. The Class Path Com- 
plexity is estimated by using the expression: 

NP 

CPC = c PTC,, 
i 

where PTC is the Path Complexity defined as: 

PCT, = WPMC. PMC, + wPE(. PEC, + w,,,(. PIG,, 

where PMC, is the sum of McCabe-like complexities 
of the statements which are present in the class path 
j (McCabe, 1976; Henderson-Sellers, 1992); PECj is 
the path external complexity which estimates the 
cost of the external procedure calls, considering the 
calls which are present in path j: 

Allcoll\ln(J) 
PEC, = C CallComplexify~ i, j ), 

I 

where the CallComplexity(i, j) is evaluated by con- 
sidering the complexity of the procedure parameters 
(the term ‘call’ means the use of a function from the 
library); PIC is the path internal complexity which 
estimates the cost of the access to the class at- 

tributes. The PZC for path j holds: 

.Vvn 
PIG, = c AC,USE(i, j). 

I 

where USE(i, j) assumes the following value: 0 if the 
attribute i is not used by path j, 1 if it is only read, 
and 2 if it is read and/or written; and AC is the 
already defined Attribute Complexity. 

In TROL, the concept of Path is present only for 
basic object classes; therefore, for nonbasic object 
classes NP = 0 and, thus, the CPC is equal to zero. 

The weights wPM(., wpEc, and wp,(. mainly depend 
on the application field under analysis. In the case of 
real-time system specification, they are assumed to 
be equal to 1, 1, and 2, respectively. In this way, a 
higher importance is given to the costs of attribute 
sharing among internal processes (i.e., paths) of an 
object. 
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Class coupling path complexity, CCPC. This fac- 
tor indicates to what extent the class paths act on 
class attributes. In fact, as in method-based object- 
oriented languages, several class methods can work 
on the same attributes; thus, in TROL, several paths 
can work on the same attributes. For this reason, the 
complexity of path coupling when working on at- 
tributes can be estimated by using: 

NA NP 

CCPC = c c AC,PRS(i, j), 

where PRS(i, j) is the number of times attribute i is 
present in path j; AC is the already defined at- 
tribute complexity. Note that CCPC is higher when 
the same attribute is frequently used in more than 
one path. Since in TROL (as in OSDL) the concept 
of Path (i.e., process in OSDL) is present only for 
basic object classes (basic block in OSDL), for non- 
basic object classes NP = 0 and, thus, CCPC is 
equal to zero. 

Class internal task complexity, CITC. As for con- 
currency, the class internal complexity mainly de- 
pends on the number of tasks which are present 
inside the class itself. For this reason, the CZTC has 
been considered equal to the number of internal 
processes of the class. If the class is a basic object 
class, the number of internal processes of a class is 
equal to the number of paths, i.e., CITC = NP. On 
the contrary, at the level of nonbasic object classes, 
when the system under specification is only partially 
defined, the number of class paths is not yet defined, 
since the low-level classes are still undefined; in that 
case, it is supposed that the number of tasks is at 
least equal to the number of class subobjects (i.e., 
attributes), thus CZTC = NA. 

Class internal communication complexity, CICC. 

The measure of Class Internal Communication 
Complexity has a meaning only for nonbasic object 
classes, while for basic object classes it is equal to 
zero, CICC = 0. Therefore, it is a complementary 
measure with respect to the already presented Class 
Path Complexity (CPC) where the relationships 
among paths and attributes are measured. The 
structure of nonbasic object classes is defined in 
terms of communicating subobjects: 

NCON 

CICC = c MSGC,CTYPE(i), 

where NCON is the number of connections among 
the subobjects of the class (see Appendix A.2); 
MSGC, is the message complexity that depends on 

the complexity of the message class; CTYPEW is a 
coefficient which takes into account the kind of 
communication between objects. In TROL (see Ap- 
pendix A.2), four types of communication mecha- 
nisms are obtained by combining different service 
types; hence, CTYPE is equal to four for normal- 
to-normal, three for normal-to-buffered, two for 
available-to-buffered, and one for available-to- 
normal communications. The complexity of a mes- 
sage, MSGC, depends on the complexity of the class 
which has been used to define the message structure 
because in the object-oriented approach, messages 
are also class instances (i.e., objects), and MSGC is 
equal to the CC of the message. With this assump- 
tion, the costs for manipulating the message itself 
are also included in that measure. 

It should be noted that a value for CZCC can be 
obtained at the early stages of system specification. 
Therefore, this can be very useful as a basis for 
defining process-oriented metrics. 

2.13 External Class Complexity, ECC. The Ex- 
ternal Class Complexity (ECC) takes into account 
the complexity of provided and required services 
(Provided Service Interface Complexity, PSIC, and 
Required Service Interface Complexity, RSZC, re- 
spectively) of the class, considering also their inter- 
dependencies by means of the measure of Service 
Complexity, SC. The SC term also measures to what 
extent the class is capable of producing autonomous 
requests for the outer objects: 

ECC = wpslc PSIC f wRslc RSIC + w&C. 

In the following, the terms PSZC, RSZC, and SC are 
discussed separately. The values of weights wpsIc, 

wRSIC, and wSC depend on the application field 
under analysis. In the case of real-time systems 
specification, they are usually assumed to be 1, 1, 
and 1.5, respectively. This choice is due to the fact 
that in real-time systems, the dependency among 
objects through services is an index of the event 
propagation inside the system. Therefore, SC must 
have a greater influence on ECC with respect to the 
others. 

Provided service interface complexity, PSIC. The 
complexity of the provided interface of a class is 
estimated with: 

NPS 

PSIC = c MSCC, PMEC, PTCPS,, 

where NPS is the number of provided services; 
MSGC is the already defined message complexity 
(equal to the CC of the message); PMEC is a weight 



Metric Framework for Systems Specification J. SYSTEMS SOFTWARE 49 
1996; 34:43-65 

which takes into account the type of communication 
mechanism of a provided service (equal to one if the 
provided service is buffered or two if it is normal); 
PTCPS, marks the presence of a temporal constraint 
for the provided service i (it is equal to two if the 
temporal constraint specifying the service rate has 
been defined; otherwise, a value equal to one is 
assigned). 

Required service interface complexity RSIC. As op- 
posed to the method-based object-oriented models 
in which the requests of services are hidden inside 
the methods body, the complexity of the required 
interface of a class in the IO-based model (such as 
in TROL or OSDL languages), can simply be esti- 
mated by means of 

NRS 

RSIC = c MSGC, RMECi PTCRS,, 

where NRS is the number of required services; 
MSGC is the already defined message complexity; 
RMEC takes into account the type of communica- 
tion mechanism of a required service (equal to one, 
if the required service is available, or two if it is 
normal); PTCRS, marks the presence of the tempo- 
ral constraint for the required service i (it is equal to 
two if the temporal constraint specifying the service 
rate has been defined, otherwise a value equal to 
one is assigned). 

Service complexity, SC. The complexity of class 
services, SC, indicates to what extent the required 
services (outputs) of a class depend on the provided 
services of the same class. Therefore, it can be 
considered as a measure of the class behavior com- 
plexity. In general, for a class, two kinds of required 
services can be present, i.e., autonomous and nonau- 
tonomous. The former are those which are gener- 
ated directly from the class without receiving any 
external request; the latter are those which are 
indirectly due to requests of other system objects. 
For these reasons, the Service Complexity is defined 
as: 
SC = NAR + NASC, 

where NAR is the Number of Autonomous Re- 
quests. This is equal to the number of required 
services which are generated by paths independently 
of the provided services of the class. On the con- 
trary, the Number of Nonautonomous Requests of a 
class, NNAR, is equal to (NRS-NAR). Hence, the 
complexity of nonautonomous services of a class, 
NASC is estimated by 

NNAR 

NASC = c NPS(Puth(i)), 

where NPS(Path(i)) is the number of provided ser- 
vices which are present in the Path(i), and function 
Path(i) identifies the path which generates the 
nonautonomous request i. 

The measure of SC can be directly obtained by 
measuring the definition of class clauses since the 
early phases of the software life cycle. 

2.1.4 Class Size, CS. The Class Size (CS) is the 
weighted sum of the Internal and the External Class 
Size (KS and ECS) 

CS = wlcs ICS + wECsECS, 

where wIcs and wECS are tailorable weights. Note 
that because ZCS and ECS take into account the 
size of the class by considering all its superclasses, 
CS also includes such a measure. 

The class size can be very useful for evaluating the 
productivity and for predicting the dimensions of the 
system under analysis and, thus, the effort of devel- 
opment, since the ECS can be estimated even if the 
system (i.e., the class) is only defined at its external 
level. 

2.1.5 Internal Class Size, KS. The Internal Class 
Size (ZCS) takes into account the Class Path Size 
(CPS) and the Class Attribute Size (CAS) according 
to the TROL and OSDL models. The size of the 
class also depends on the communications among its 
subobjects; this fact is measured with the Class 
Internal Communication Size, CZCS. Therefore, the 
internal class size is defined as: 

KS = wCAsCAS + wcpsCPS + wclcsCICS, 

where wcAS, wcps, and wcIcs are application-depen- 
dent weights. In the following, the above terms are 
discussed. 

Class attribute size, CAS. The size of each at- 
tribute (Attribute Size, AS) is equal to the class size 
of the attribute itself, thus AS = CS. Hence, the 
class attribute size, CAS, is obtained by considering 
the class attributes 

CAS = F AS;. 

In many object-oriented languages, such as in 
C + + , there is a set of predefined basic types which 
are not implemented as classes. For these basic 
types, the class size must be predefined. 
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Class path size, CPS. The Class Path Size is esti- 
mated by using the expression 

CPS = E PTSi, 

where PTSj is the size of path j 

NS, 
PTSi = NT + c NIST,, 

where NSj is the number of states of path j; N?; is 
the number of conditions for transitions of path j; 
NZST, is the number of statements (assignment or 
procedure call) associated with the state i of path j. 
In TROL, the concept of Path is present only for 
basic object classes, while for nonbasic object classes 
NP = 0; therefore, the value of CPS is equal to 
zero. 

Class internal communication size, CICS. In the 
TROL model, the measure of Class Internal Com- 
munication Size has a meaning for nonbasic object 
classes where it is equal to the number of communi- 
cations (i.e., connections in TROL) among subob- 
jects (i.e., attributes); therefore, CICS = NCON. In 
basic object classes, the connections are missing; 
hence, CICS = 0. A value for CICS can be obtained 
from the early stages of system specification. There- 
fore, it can be very useful as a basis for defining a 
process-oriented metric. 

2.1.6 External Class Size, ECS. The External 
Class Size (KS) takes into account the size of the 
external class interface by considering the number 
of clauses and that of provided and required ser- 
vices: 

ECS = NPS + NRS •t NC. 

2.2 Cognitive Metrics 

In the object-oriented approach, cognitive metrics 
should provide a measure of how easy it is for the 
user to understand the nature of a class by observing 
its external description. To this end, a significant 
cognitive measure is given by the Complexity Ratio, 
CR. Moreover, the estimation of system and subsys- 
tem verifiability is another important cognitive met- 
ric, this factor being measured by the Verifiability 
Index, VI. 

2.2.1 Complexity Ratio, CR. The Complexity Ra- 
tio indicates to what extent the nature of a given 
class can be understood through its external descrip- 

tion. This measure is very useful to estimate the cost 
of reuse of a class by means of its understandability. 
In fact, during the reuse of a class, the analyst 
usually does not read all the details of class imple- 
mentation and observes only the class description. 
Therefore, CR is defined as 

ECD 
CR = - 

ICC ’ 

where ECD is a measure of the External Class 
Description, and ICC is the Internal Class Complex- 
ity. A high CR means that the class external descrip- 
tion is very detailed with respect to its internal 
complexity; therefore, much of the whole class be- 
havior can be understood by observing the external 
class description. It has been necessary to define 
ECD instead of using the already defined ECC 

because the latter does not represent only the exter- 
nal class complexity-as can be observed by the 
external class description. In fact, ECC has also 
been defined by considering the SC, which, in turn, 
is based on the knowledge of dependencies between 
required services and class paths. The ECD gives a 
measure of the external class description, as can be 
observed by the analyst in the phase of class reuse. 
In method-based models, the external class descrip- 
tion consists of the description of methods domain 
plus their preconditions and postconditions-if these 
are available at the external class level. In other 
languages, assertions or clauses for describing the 
internal class behavior at the external level can be 
present. In this case, the External Class Description 
is more complete as in TROL. Note that in TROL, 
the external class description includes provided and 
required services measuring the class static inter- 
face, augmented by clauses measuring the class be- 
havior. 

ECD is defined as the weighted sum of Class 
Static Description, CSD, and Class Dynamic De- 
scription, CDD. The static description covers the 
structural aspect, and the dynamic description the 
behavioral aspect; 

ECD = wcsDCSD + wcn&DD, 

where wcsD and wcDD are application-dependent 
weights. For example, in measuring real-time system 
specifications, values one and two, respectively, have 
usually been assumed in order to gi-s more impor- 
tance to the description of system behavior. CSD is 
obtained by means of the PSIC and RSIC already 
defined in Section 2.1.3: 

CSD = wpsIc PSIC + wRSIC RSIC 
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CDD describes how many details regarding the class 

behavior are reported in the class external descrip- 
tion. For the TROL model, this measure holds: 

NSPSR NSRSR 
CDD = ~ + 

NPS 
~ i- ccc, 

NRS 

where NSPSR is the number of specified Provid- 
ed-service rates; NSRSR the number of specified 
Required-service rates; and CCC is the Class Clause 
Complexity defined as 

NC 

(‘CC = c CLC,, 

where CLC is the CLause Complexity estimated 
with 

C‘LC, = NPS, + NRS, + NOP, + PTCC,, 

while NOP, is the number of Boolean and compara- 
tive operations in clause i; NPS, is the number of 
provided services in clause i; NRS, is the number of 
required services in clause i; PTCC, marks the pres- 
ence of temporal constraint for clause i (it is equal 
to one if the temporal constraint has been defined; 
otherwise, it receives a value equal to zero). 

2.2.2 Verifiability Index, W. In TROL, class and 
system verifiability is guaranteed by means of the 
definitions of provided services, required services, 
and clauses with their respective temporal con- 
straints. Basic object classes, such as XSMs and 
XCMs, are implemented according to the clauses 

defined in their external class interface. Therefore, 
the external class description given in terms of 
clauses must verify the class implementation ex- 
pressed by means of a set of communicating subob- 
jects (i.e., nonbasic object class) or as a basic object 
class (i.e., XSMs, XCMs). To this end, the verifiabil- 
ity index for a given class is defined by the ratio 

between the ECD and CC 

ECD 
VI = ___ 

cc 

This index indicates to what extent the class can be 
verified by using the information contained in the 
external class description with respect to its actual 
complexity. For example, if a given class reports 

many details to the external level (by means of 
provided services, required services, and clauses) 
with respect to its total complexity, then it is more 

verifiable than a class that, having the same total 
complexity, is less described in detail at the external 
level. Therefore, I4 can be regarded as measure of 
class verifiability. 

In TROL,, this measure can also be used to evalu- 
ate the testability of the system under development. 

In fact, in the TROL language, the patterns for 
testing the application can be generated by using the 

external class description with services and clauses. 

2.3 Process-Oriented Metrics 

When managers and software quality assurancers 

plan budgetary and personnel resources for a new 
project, they feel more comfortable to use estima- 
tion models than just to rely on rules of thumb or 
entirely subjective judgments. For this reason, they 
need objective information from the projects under 
development. At the process level, the metrics which 
can be useful to control the development are pro- 
ductivity and expected cost (Henderson-Sellers et 
al., 1993). These measures are usually based on the 
trend of technical metrics, which in turn, to be 
suitable, must be capable of producing significant 
results at each level of system development. In fact, 
according to the TOOMS/TROL model, congruent 
values for the technical metrics can be estimated 
from the early stages of the software life-cycle. In 
the following, coefficients to estimate team produc- 
tivity, system reuse level, and expected cost are 
reported. Another very important factor is the evalu- 
ation of the need for testing during the development 

process. Though the phases of system testing should 
be defined in advance, it is also important to detect 
when a class or a subsystem under development has 
grown too much without being tested. These condi- 
tions can easily be detected by using the last metric 
of this section. 

2.3.1 Productivity Index, PI. The measurements 
of productivity are very complex for object-oriented 
systems since in these cases these cannot be reduced 
to a simple ratio between the quantity of developed 
software and the effort of development. In fact, a 
good measure of productivity should be defined as 
the ratio between the increase in implemented sys- 
tem functionalities and the effort to add them. In 
effect, in the case of object-oriented languages and 
methodologies, productivity should often reach 
higher levels than those obtained in classical proce- 
dural development environments, since the mecha- 
nisms of specialization and aggregation are powerful 
tools for software reuse and thus, for increasing 
productivity. This fact must be considered when 
estimating productivity. Therefore, at each time in- 
stant of system development, a measure of produc- 
tivity can be given by a Productivity Index, PI, 

defined as 
NewC‘h. NewSpcc.Ch. 

PI = c CS, + c PINCCS,, 
1 i 
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where NewCls. are the classes which have been 
added (without any specialization) with respect to 
the last check point of PI estimation; NewSpec.Cls. 

are the classes which have been specialized with 
respect to the last PI estimation. PZNCCS is the 
productivity in incrementing the size of class i 

SuperClassesOf 

PINCC& = CS, - c CS, CR,, 

where SuperClassesOf are only the direct super- 
classes of class i. The increment of class size is 
obtained by considering the class size, CS,, of class i, 

minus the sum of the size of superclasses of class i. 

This last term is obtained by weighing the class size 
of each superclass with its complexity ratio, CR. In 
this way, a higher productivity is assigned to less 
understood classes and a lower productivity to classes 
which are easily understood. 

Note that PI indicates to what extent the software 
has been produced by the designer with respect to 
the last PI estimation and is obtained in terms of 
class size. Since this measure is obtained with re- 
spect to the last value, the sequence of PI should be 
estimated by using a constant interval in terms of 
working days. A version of this metric, independent 
of the interval duration, can be obtained by dividing 
PI for the time interval expressed in days of work, 
i.e., NPZ = PZ/DW. 

2.3.2 Reuse index of the system, RI. The reuse 
index indicates to what extent the reuse mechanism 
has been exploited in the system specification. The 
most important and used mechanism of reuse of 
the object-oriented paradigm is the specialization. 
Therefore, a good measure of the reuse level in the 
system is given by the Reuse Index, RI, defined as 

RZ= 
E~IISFec.Cls.ZNCCSi 

ENCLCS. ’ I I 

where ZNCCS, is the increment of class size for the 
specialized class i; AZISpec.Cls. are the classes which 
have been specialized with respect to the initial 
condition of class library. In this case, ZNCCS is 
estimated by considering as superclasses only those 
which belong to the class library 

SuperClassesOf 
INCCS, = CS, - c csj . 

j 

RZ can be estimated at each time instant of system 
development giving in this way the trend of reusabil- 
ity. 

2.3.3 Expected System Cost, ESCost. Most of the 
methods proposed in the literature express the ef- 

fort as a function of a number of quantities which 
can usually be determined in the early phases of the 
software life cycle or directly from system require- 
ments. For example, according to the Albrecht’s 
method, the effort estimation is based on the system 
size, which in turn, is evaluated by using a set of 
features such as the number of internal and external 
files, the number of inputs and outputs, and the 
number of external inquiries, etc. Finally, the system 
size is multiplied by a factor depending on the 
technical complexity of the application. This factor is 
heuristically estimated by means of a set of ques- 
tions which are used to tune the effort estimation 
with respect to the application domain context (Al- 
brecht and Gaffney, 1983; Rask et al., 1993). An- 
other example is the COCOMO model (Boehm, 
1982; Boehm, 19841, which estimates the effort on 
the basis of the system size in LOC and the use of 
15 cost drivers. The values of these drivers are 
identified according to the development context, i.e., 
type of computer, qualification of personnel staffing, 
etc. Other techniques following the same path have 
been compared in Kemerer (1987) and Laranjeira 
(1990). The drivers usually adopted cannot be easily 
tuned for tailoring the method for measuring the 
specifications of real-time systems in formal lan- 
guages. In fact, this fails to take into account the 
effort of defining class behavior when it is strongly 
dependent on temporal constraints. Therefore, dif- 
ferent parameters must be taken into account to 
measure the effort for specifying real-time systems. 
In these cases, the effort is dependent on system 
complexity and specification requirements rather 
than on the number of inputs and outputs files that 
sometimes can be missing (for example, in embed- 
ded systems). In addition, as has been previously 
pointed out, in the case of object-oriented real-time 
specification languages, the measure of system size 
in LOC is not adequate to express the system size 
and, hence, the effort of development. This is due to 
the fact that the size of the specification in dedi- 
cated languages is not directly correlated to the size 
of the final code (usually specification 
languages-e.g., OSDL, TROL, etc.-are translated 
in conventional languages such as C + + , ADA, etc.). 

For these reasons, the Expected System Cost, 
ESCost, can be regarded as the sum of costs which 
are due to the reuse of old classes, ESCost,,,,, , plus 
the cost of development of new classes, ESCost,,,. , 
plus the cost of specialization of already imple- 
mented classes, ESCost,,,,, : 

ESCost = ESCost,,,.+ ESCost,,,,.+ ESCost,,,,, . 

The cost related to the development of new classes 
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takes the form: 

NWClS. 

ESCost,,,..= CMA,,, c CC,, 

where CMA,,,,, is a company-dependent coefficient 
which expresses the mean cost of development per 
class in man months (estimated by considering the 
average costs observed in a congruent category of 
already developed applications); and NewCls. are 
the classes which have been implemented without 
any specialization or reuse in general. The costs of 
reuse and specialization hold: 

ESCo%,.~.= CMA,,,.,. 
RyiCk 2; 

I I 

NewSpec.Cl~. 

ESCost,,,,.,= CMA,,,,,. c INCCS, 

where CIVA,,,,~, and CIUA,~,,,. are company-depen- 
dent coefficients. The first expresses the mean cost 
of reuse per class in man month, while the second is 
the cost of specialization in man months; ZNCCS 
is the already defined increment of class size. 

ESC%,ll,. is defined on the basis of the ratio be- 
tween CC and CR for each reused class. This ratio 
is lower when the class reuse is easier, since CR is 
bigger. The coefficients C’MAs also depend on the 
language used such as the estimation of the Al- 
brecht’s Function Point (Albrecht and Gaffney, 1983; 
Fenton, 1991). The definition of CMA values is 
statistically based; they allow applying past experi- 
ences to project the future. Software process data 
may be gathered as a part of the everyday process 
control activities. 

It should be noted that for the estimation of 
the general cost, both technical and cognitive 
metrics defined in the previous sections have been 
used. This is possible because most of those measures 
lead to a value even if the system is only partially 
specified. This characteristic is congruent with 
TOOMS/TROL, TRIO + , OSDL, etc., capabilities. 

2.3.4 Test Index, TZ. During the development pro- 
cess, it is very useful to identify the classes (i.e., 
subsystems) for which the test is needed before 
continuing with the development process. With this 
metric, it is assumed that the test of a class is 
needed when its complexity has grown too much 
with respect to the last testing section. In TROL, the 
testing can correspond to 6) the verification of the 
high-level class behavior by means of clauses execu- 
tion, (ii) the validation of system composition/de- 
composition and (iii) the validation of an XSM in 

terms of clauses (Nesi, 1993). Analogous mecha- 
nisms are present in similar languages. 

Therefore, the Test Index for a given class i is 
estimated as a relative change in class complexity 

TI; = 
CC,( ActualVersion) - CC,( LastTestedVersion) 

CC,( LastTestedVersion) 

As a conclusion, classes which have a TI which is 
larger than a predefined threshold must be tested 
before continuing with the development process. 
The threshold is defined on the basis of company 
experience in the specific field of the application 
measured. This measure can be extended to the 
entire system by evaluating the TI of the class repre- 
senting the system itself. 

3. METRIC VALIDATION 

In general, metrics can be divided into predictive 

and descrzptive categories. Predictive metrics try to 
predict the future value of a system characteristic by 
using simple and early measurements on the system 
itself. This type of metrics is very difficult to be 
validated because the entire process of system devel- 
opment must be controlled. Several projects must be 
monitored, and the results are only a picture of the 
company under control. Descriptive metrics try to 
estimate a given characteristic of the software sys- 
tem under metrication by means of direct or indirect 

measures (the aim of direct measure is usually to 
estimate values for predictive metrics and for mea- 
suring the product quality). In the case of direct 

measure, the metric obviously does not need to be 
validated, as in the case of the measure of the LOC 
for estimating the program length. It should be 
noted that direct estimations are usually complex 
and computationally heavy to be performed. For 
these reasons, they are usually not preferred. In the 
case of indirect estimations, the parameters mea- 
sured must be related to the characteristic under 
measure (for example, the measure of the number of 
classes may be related to the system complexity by 
means of a mathematical relationship). In this case, 
the process of metric validation consists of (i) evalu- 
ating the mathematical relationships between the 
parameters measured and the real value of the sys- 
tem characteristic under evaluation (i.e., the mathe- 
matical model), and (ii) verifying the robustness of 
the identified relationship. This relationship can 
be linear or not, and it must be identified by using 
both mathematical and statistical techniques-e.g., 
(Stetter, 1984; Fenton, 1991; Zuse, 1994). 

The metrics mentioned above have been defined 
according to the evaluation process model of IS0 
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9126. In the proposed model, there are many de- 
scriptive metrics, such as CC, CS, CR, VZ, PI, RI, 
TI. Among these, a discussion about the validation 
of CC, CS, I/I, and CR is presented. These have 
been used for measuring a set of test projects in 
order to validate them. Therefore, it will be demon- 
strated that (i) the class complexity (CC) and the 
real class complexity (RCC) are linearly correlated 
(correlation of Pearson (Fenton, 1991) and (ii) the 
class size (CS) and the real class size (RCS) are 
linearly correlated. Since most of the other cognitive 
and process-oriented metrics proposed depend on 
the above-mentioned technical metrics, once these 
are validated, PI, RI, and TI can be considered 
direct descriptive metrics. 

The metric validation has been performed with 
respect to real data. The data comes from the Uni- 
versity of Florence and O.T.E. Spa., a company 
which manufactures micro-telephones and other 
real-time embedded systems. The projects are a sig- 
nificant set of software for embedded systems: (i) the 
buoy system proposed by Booth (1986), and revised 
by Sanden (1989a); (ii) an elevator system with two 
columns and six floors proposed by Sanden (1989b) 
and Gangopadhyay and Mitra (1993); (iii) and 
a filter for digital signals, (iv) to (vi) the control 
software for different hand-held wireless micro- 
telephones. In Table 1, the main characteristics of 
this data are reported. It should be noted that lan- 
guages such as OSDL and TROL need to be trans- 
lated into a standard language (e.g., ADA, C + +) to 
be compiled and executed at run time. In particular, 
once a system specified in TROL is translated into 
C + + , it has to be compiled and linked with approx- 
imately 70 classes of the TROL kernel. Many of 
these classes are superclasses of those obtained from 
translating the TROL classes into C + + (Bucci et 
al., 1993). Therefore, the projects adopted represent 
real problems and not simple textbook examples. 

In Table 2 and Table 3, the correlations among 
the most important metrics previously proposed are 
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reported. Since the measurement values are strongly 
different in the cases of basic and nonbasic object 
classes according to TROL, OSDL (blocks and pro- 
cesses, respectively) languages, two different tables 
of correlations have been used for basic and nonba- 
sic object classes. The values for the metrics defined 
have been estimated by assuming all the weight 
values to be equal to 1.0 except for wsc and wcDD, 
which have been posed to be equal to 1.5 and 2.0, 
respectively (for the previously discussed reasons). 
The real class complexity, RCC, has been estimated 
by evaluating the state domain of the class or subsys- 
tem under estimation, while the real class size, RCS, 
has been measured by counting the LOC in the 
run-time version of the project (obviously neglecting 
the TROL kernel and support library). 

As can be seen from the correlation matrices, the 
metrics proposed are only partially correlated, while 
metrics for estimating class complexity and size are 
strongly correlated with the respective real values. It 
can also be observed that the class complexity, CS, 
cannot be considered to be a good measure of the 
real class complexity, RCC, as usually assumed for 
traditional languages. This is confirmed by the corre- 
lations between RCC and RCS for both basic and 
nonbasic object classes. In fact, in both cases, the 
correlation between CC and RCC is greater than 
that of CS with RCC. This is particularly true in the 
case of basic object classes, where the details of class 
behavior are dominant with respect to the structural 
aspects considered in the ECC. In fact, the best 
estimation of class complexity is obtained by using 
the internal class complexity, ICC. In Figure 4, the 
diagrams of the relationships between the class com- 
plexity and class size with respect to their respective 
real values are reported. 

As can be noted from the correlation matrices, 
the ECC and ECS are quite correlated with RCC 
and RCS, respectively. This fact is very useful for 
estimating the class complexity and size even if the 
class is only partially defined. This means that the 

Table 1. Summary of the Main Characteristics of the Data Adopted for Metrics Validation 

Project NCL NNBOC NBOC N Proc. NInst. Eff. Leu 

buoy system 10 3 7 14 295 5 exp. 
elevator 10 2 8 18 433 6 exp. 

filter 4 1 3 6 168 2 exp. 
microtel. 1 18 6 12 22 570 20 beg. 
microtel.2 35 6 29 49 1352 26 beg. 
microtel.3 31 6 25 42 1050 35 beg. 

Note: NCL is the number of classes of the system, NNBOC is the number of nonbasic object classes in the system, NBOC is the number of basic 

object classes in the system, NProc. is the number of concurrent processes which are present in the application, Nlnsr. is the number of TROL 
instructions of control, QT. is the effort in working days for specifying the system under development (hence, without considering the costs of 
analysis). Let,. is the experience of developers in using TROL (exp. for experts and beg. for beginners). 



Metric Framework for Systems Specification J. SYSTEMS SOFTWARE 55 
1996; 34:4X-65 

Table 2. Correlations among the Technical and Cognitive Metrics Proposed for Nonbasic Object Classes with Respect 
to the Actual Values of Complexity and Size (RCC and RCS, Respectively) 

non-basic object classes 

cc ICC ECC CS KS ECS CR ECD VI NC‘C RC’S 

CC 
ICC 
ECC 
CS 
ICS 
ECS 
CR 
ECD 
VI 
RCC 
RC‘S 

1 .ooo 

0.994, 
0.974 
O.Y8Y 
0.98 1 
O.Y72 

1 .ooo 

0.972 
0.989 
0.989 
0.972 

- 0.755 ~ 0.754 
0.767 0.763 

- 0.744 - 0.743 
0.982 0.971 
0.880 0.99 I 

1 .ooo 
0.960 
0.959 
0.964 

- 0.760 
0.836 

- 0.746 
0.955 
0.963 

1 .ooo 

0.999 1.000 
0.98 I 0.980 I .ooo 

- 0.727 - 0.730 ~ 0.647 1 .ooo 

0.704 0.700 0.795 -0.128 1 .ooo 
-0.719 - 0.722 ~ 0.636 0.985 -0.401 I .ooo 

0.904 0.997 0.972 - 0.732 0.700 - 0.723 .ooo 
0.998 0.998 KY83 - 0.746 (LhY3 - 0.73’) (I.083 I .ooo 

estimation of system complexity and size can be 
obtained even if the system is only partially specified 
(see Figure 2). For example, in case (b) of Figure 2, 
the CC of class A is estimated by considering the 
ECC of class B, the CC of class C, and the CC of 
class D, which in turn is estimated by considering 
the ECCs of classes G and H. When a class com- 
plexity is estimated by using only a part of the 
information (e.g., CC is estimated by using only 
ECC since the ICC is not yet available) the weights 

in the expression of CC can be modified in order to 
compensate the loss. In these cases, the values of 
weights are estimated by using the mean values of 

the metrics and, thus, by the previous experiences 
(our values are reported in the following). For exam- 
ple, in the case of a basic object, if the ICC is 

missmg, u’~-(.( is assumed to be equal to three. For 
these reasons, the model proposed allows the metri- 
cation at each level of specification detail; thus, the 

system development can be continuously maintained 
under metrication. 

The validation of complexity ratio, CR, to demon- 
strate its efficiency in measuring to what extent a 

class can be understood (by observing its external 
class description) is quite unfeasible because the 
measure of understandability is subjective. In addi- 
tion, it should be noted that CR is strongly corre- 
lated with the verifiability index, VI (see Table 2 and 
Table 3). Our experiments have shown that the 

verifiability of basic object classes in the sense of 
formal verification of class behavior (Bucci et al., 
1994) is guaranteed when VI > 1. For nonbasic ob- 
ject classes, VI depends on CC, which tends to grow 
with the system size; therefore, to get a measure of 
VI, independent of the system size, V1 should be 
obtained by dividing ECD by a normalized version 

of CC with respect to the number of class at- 
tributes. For these reasons, VI can be used for 
measuring both understandability and verifiability. 

4. GENERAL APPLICATION OF METRIC 
FRAMEWORK 

The integration of the metric framework into the 

specification tool saves the measurement time since 
watchdogs on the values of certain metrics can be 

Table 3. Correlations among the Technical and Cognitive Metrics Proposed for Basic Object Classes with Respect 
to the Actual Values of Complexity and Size (RCC and RCS, Respectively) 

basic object classe.~ 

C‘C ICC ECC cs ICS ECS CR EC‘D VI RC( RC‘S 

(‘C’ 1.000 
IC‘C 0.030 I .ooo 
EC‘C’ 0.720 0.449 1 .ooo 
c ‘S 0.714 0.614 0.631 I .ooo 
ICS 0.776 0.714 0.595 O.Yhl 1 .ooo 
EC‘S 0.301 0. I45 0.402 0.734 0.252 1 .OOO 
C‘R - 0.330 - 0.544 0.200 - O.OY3 - 0.28 I 0.406 1 .ooo 
EC‘11 0.553 0.325 0.790 0.814 0.668 0.880 0.42’) 1 .ooo 
VI -0.314 - 0.485 0.148 O.OY5 -0.141 0.465 0.902 0.542 I.000 
RC’C‘ 0.864 0.771 0.771 0.700 0.801 0.197 - 0.292 0.428 - 0.292 I .I)00 
R(‘S 0.632 0.601 0.447 0.934 0.877 0.7 13 - 0. IO4 0.724 0.1 1 I 0.713 I .ooo 
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Figure 4. Relationships between (a) the class complexity 
and the real class complexity and (b) the class size and the 
real class size. 

set in order to maintain the quality at the imposed 
values. This is also a way to compel the developers 
to produce specifications with a predefined quality. 
The quality model proposed has been implemented 
according to the evaluation process model of IS0 
9126 and the GQM approach (Basili and Weiss, 
1984). Therefore, quality requirement definition, eual- 
uation preparation, and evaluation procedure, have 
been the steps accomplished to reach the results 
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presented in this article. According to IS0 9126, 
quality metrics have been selected, and for these, 
the rating values are defined; hence, the validation 
of metrics with respect to real measures has been 
proposed. Thus, the model proposed consists of a set 
of metrics capable of expressing meaningful indica- 
tors and some conformance to the IS0 9126 stan- 
dard. 

In the next subsections, four aspects will be dis- 
cussed: (i) the selection of metrics defined for mea- 
suring general concepts, (ii) a discussion about the 
language dependence of the metrics proposed, (iii) 
the quality guidelines based on the metric frame- 
work proposed, and (iv) a discussion about the adop- 
tion of the metric proposed as a support for object- 
oriented methodologies. 

4.1 Classification Scheme 

The classification scheme reported in Table 4 ex- 
plains some aspects of the metric framework inte- 
grated in the TOOMS tool. This table shows the 
mapping of the metrics proposed in the general 
concepts of system measurements. As was pointed 
out by many authors, metrics must fit the main 
needs of developers and managers; data collection 
and data gathering have to be an automatic support 
for the development process. In fact, the classifica- 
tion is related to a real need for gathering different 
kinds of metrics and for inducing metrics to produce 
a readable and understandable data output. 

In Table 4, four levels are given, that is, class-level, 
test-level, reuse-level, and process-oriented level. In 
the metrics framework proposed, a correlation exists 
among the different levels and metrics. In fact, some 
metrics assume different meanings according to the 
level at which they are adopted. Thus, the same 
metrics can be used by different levels for analyzing 
distinct aspects. The first two levels are very useful 
for estimating specific properties of the software 
produced. For each class, the size and complexity 
can be estimated. In particular, a strong emphasis is 
given to the internal concurrency of the class and to 
the possibility of taking into account the presence of 
temporal constraints, making this model very suit- 
able for analyzing object-oriented formal languages 
for real-time systems. Moreover, by using the met- 
rics of test-level, the testability and verifiability of 
each class as well as of the whole system can be 
estimated. The metrics classified into the reuse-level 
can indicate to what extent the available class li- 
braries have been exploited and what the cost is of 
reuse for a given class. For example, CR is used 
during the class reuse for measuring the effort 
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Table 4. Mapping of General Concepts Towards TOOMS Metrics 

General Concepts 

Class-Level 

Measurements 

Class External Interface 
Complexity 
Expressivity 

Class Internal Features (attributes, operations, etc.) 
Class size 

Attributes 
Methods 

Class complexity 
Attributes 
Methods (logic complexity, paths or processes) 
Method coupling, cohesion, etc. 
Timed complexity (temporal constraint on services and clauses) 
Input/Output 
Communication 

Test-Level 

ECC, ECD 
ECC, PSIC, RSIC, SC 

ECD, CSD, CDD 
CAC, CPC 

CS, EC& ICS 
AS, CAS 

PTS 
CC, ECC, ICC, VI 

AC, CAC 
CPC, PIC, CITC 

CCPC 
PSIC, RSIC, CCC 
NRS, NPS, PEC 

CICC, RSIC, PEC, PSIC 

Complexity Metrics 
Timed complexity (temporal constraint on services and clauses) 
Logic complexity (class paths) 
Test coverage 

Reuse-Level 

CR, ECD, CC 
CCC, PSIC, RSIC 
ECD, CCPC, CITC 

VI, TI 

Inheritance 
Class Features (attributes, services, etc.) 
System/Subsystem 
Cognitive Metrics 

Process-Oriented Level 

RI 
CR, ECD, ECC 

ECC, ECD, CICC 
CR, VI 

Productivity PI 

Reuse RI 

Size estimation cs, KS 
Complexity estimation CC, ICC, ECC 

Cost estimation ESCost 

needed to understand the class nature and, thus, to 
reuse it; while RZ is very useful to evaluate the level 
of reuse in a given application. This category of 
metrics plus those of the process-otiented led can 
be employed to keep the quality of software devel- 
opment under control. In TOOMS, this is possible 
because the user can evaluate several metrics in 
each instant of the system specification, even if the 
system is only partially specified. 

4.2 Language Dependency 

The metrics proposed can be classified as high- and 
low-level metrics depending on their relationships 
with the other metrics of the framework (see Table 
5’), where: 

l Leu. is the metric level (H for high-level metrics, 
L for low-level metrics, M are parameters ob- 

’ In the same table, the direct measures which can be estimated 
by the observation of elementary measurable characteristics are 
also reported. 

tained by a direct measure, I/ are coefficients with 
an assigned value.). The low-level metrics are 
mainly based on the direct measures, while the 
high-level metrics are defined on the basis of the 
low-level metrics. 

L.Dep. is a vote from 0 to 4 expressing to what 
extent the definition of the metric depends on the 
language adopted, where 0 means that the metric 
is independent of the language used for imple- 
menting the system under metrication, while for 
higher values an increasing dependence is pres- 
ent. As can be observed, most of the high-level 
metrics are language independent. For these rea- 
sons, the tailoring of the metrics framework for a 
language other than TROL consists only in re- 
defining some of the low-level metrics. 

Type is the main classification of the paper and 
reports the prominent nature of the metrics pro- 
posed: T for technical, C for cognitive, and P for 
process-oriented metrics. As can be noted, the 
process-oriented metrics are completely language 
independent, while the cognitive metrics are lightly 
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Table 5. Classification of the Metrics Proposed 

Metric Lev. L.Dep. Type Note 

AC 
AS 
CAC 
CAS 
cc 
ccc 
CCPC 
CDD 
CICC 
CICS 
CITC 
CLC 
CMA 
CPC 
CPS 
CR 
cs 
CSD 
mYPE(i) 
DW 
ECC 
ECD 
ECS 
ESCost 
ICC 
ICS 
INCCS 
MSGC 
NA 
NAR 
NASC 
NC 
NCL 
NCON 
NIST 
NNAR 
NOP 
NP 
NPI 
NPS 

NPS( j) 
NRS 
NSPSR 
NSRSR 
NT 
Path(i) 
PEC 
PI 
PIG 
PINCCS 
PMC 
PMEC 
PRSC(i, j) 
PSIC 
PTC 
PTCC 
PTCPS 
PTCRS 
PTS 
RI 
RSIC 
RMEC 
SC 
TI 
VI 

H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
L 
V 
L 
L 
H 
H 
H 
V 
M 
H 
H 
H 
H 
H 
H 
H 
L 
M 
M 
L 
M 
M 
M 
M 
L 
M 
M 
H 
M 
M 
M 
M 
M 
M 
M 
L 
H 
H 
H 
L 
L 
M 
L 
H 
M 
M 
M 
H 
H 
L 
L 
H 
H 
H 

0 
0 
0 
0 
0 
2 
0 
2 
0 
0 
0 
3 
2 
0 
0 
0 
0 
1 
2 
0 
0 
0 
1 
0 
0 
0 
0 
2 
0 
0 
0 
2 
0 
0 
0 
0 
2 
0 
0 
0 
1 
2 
3 
3 
2 
2 
1 
0 
0 
0 
1 
2 
1 
2 
1 
4 
4 
4 
1 
0 
2 
2 
0 
0 
0 

T 
T 
T 
T 
T 
C 
T 
C 
T 
T 
T 
C 

T 
T 
C 
T 
C 

T 
C 
T 
P 
T 
T 
P 
T 

T 

T 

P 

T 
P 
T 
P 
T 
T 

T 
T 

- 

T 
P 
T 
T 
T 
P 
C 

Attribute Complexity, CC of attribute; 
Attribute Size, CS of attribute; 
Class Attribute Complexity; 
Class Attribute Size; 
Class Complexity; 
Class Clause Complexity; 
Class Coupling Path (or process) Complexity; 
Class Dynamic Description; 
Class Internal Communication Complexity; 
Class Internal Communication Size; 
Class Internal Task Complexity; 
CLause Complexity; 
A company-dependent coefficient; 
Class Path (internal process) Complexity; 
Class Path (or process) Size; 
Complexity Ratio; 
Class Size; 
Class Static Description; 
Communication Type of connection i; 
Days of work; 
External Class Complexity; 
Measure of the External Class Description; 
External Class Size; 
Expected System Cost; 
Internal Class Complexity; 
Internal Class Size; 
Increment of Class Size; 
Message Complexity; 
Number of class Attributes; 
Number of Autonomous Requests in the class; 
Complexity of Non-Autonomous Services of a Class; 
Number of Clauses in the class; 
Number of system Classes; 
Number of Connections in the class; 
Number of statements; 
Number of Non-Autonomous Required services in the class; 
Number of Boolean and comparative operations; 
Number of class Paths; 
Normalized PI; 
Number of Provided Services; 
Number of Provided Services used in Path j; 
Number of Required Services; 
Number of Specified Provided Services Rates; 
Number of Specified Required Services Rates; 
Number of conditions for Transition in a Path or process; 
Path generating the required service i; 
Path (or process) External Complexity; 
Productivity Index; 
Path (or process) Internal Complexity; 
Productivity Increment of Class Size; 
McCabe-like Complexity of statements in a Path; 
Weight of communication Mechanism of Provided services; 
Number of Presences of attribute i in path j; 
Provided Service Interface Complexity; 
Class Path (or process) Complexity; 
Presence of Temporal Constraint for the Clause; 
Presence of Temporal Constraint for the Provided Service; 
Presence of Temporal Constraint for the Required Service; 
Class Path (or process) Size; 
Reuse Index of a system or a sub-system; 
Required Service Interface Complexity; 
Weight of communication mechanisms of Required service: 
Service Complexity of a class; 
Test Index of a class; 
Verifiability Index of a class; 
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dependent, and the technical metrics are the most 

dependent on the language. Measures having Leu. 

equal to M or V have not been classified since 
they are simple direct measures or constants, 
though some of them, such as the number of class 
attributes, could be considered technical or cogni- 
tive metrics. 

4.3 Quality Guidelines 

According to the evaluation process model of IS0 
9126, a set of metrics has been selected on the basis 
of their correlation with the respective characteris- 
tics of the software product. Initially, the correla- 
tions have been supposed, and then their efficiency 
has been confirmed by experiments. On the other 
hand, since the metrics defined are for formal speci- 
fication languages, it is highly probable that a lower 

complexity and size correspond to a higher quality, 
since in those conditions a class can be more easily 
verified and validated even by using exhaustive test- 

ing. Therefore, the following guidelines have been 

defined: 

For each basic object class, the fulfilling of con- 
straints: CC < Tee and CS < Tcs guarantees a 
selected software quality in terms of meeting 
maintainability and reliability constraints. The 
concept of using the class complexity as a measure 
of maintainability is not new as can be seen in Li 

and Henry (1993). 

For each basic object class, the fulfilling of con- 
straint: CR > Tcr or VI > Tci guarantees the class 
or system verifiability and understandability; thus, 
they will be more confident in meeting the system 
requirements and more reusable. If these guide- 
lines have been satisfied for all basic object classes, 
then the nonbasic object classes which are ob- 
tained by composition will maintain the same 
characteristic of verifiability and understandability 
if the ECD is close to a mean value (see Table 6). 
These measures can be regarded as normalized 
measures of class quality. 

For each class, the constraint TI < Tti must be 
satisfied during the whole development process to 
guarantee the testability of newly added features 
with low effort and to avoid the degeneration 
which often leads to testing too many new features 
at the same time. The evolution of TZ can be very 
useful to control if the system has been main- 
tained under test. 

In Table 6, the typical ranges of the main metrics 
proposed are reported. The values reported in this 
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Table 6. Typical Values for the Most Important 
Metrics Proposed 

measure 

CC 
ICC 
ECC 
CS 
ICS 
ECS 
CR 
EC‘D 
VI 

basic object classes non-basic object classes 

low mean high low mean high 

15.0 60.0 140.0 150.0 520.0 2000.0 
8.0 42.0 100.0 140.0 450.0 1800.0 
6.0 20.0 60.0 15.0 35.0 65.0 
8.0 30.0 60.0 62.0 220.0 570.0 
4.0 20.0 45.0 55.0 200.0 540.0 
4.0 9.0 20.0 8.0 14.0 27.0 
0.4 1.5 4.5 0.05 0.1 0.3 

13.0 45.0 110.0 26.0 50.0 82.0 
0.3 0.X 2.2 0.06 0.1 0.25 

table have been used for defining the rating of our 
quality criteria in accordance with IS0 9126. In 
particular, for basic object classes, Tee and Tcs have 

been imposed equal to the high values reported in 
Table 6. For the case of nonbasic object classes, Tee 

and Tcs have been imposed equal to the mean 

values. This is due to the fact that in this case, the 
high values are only indicative of the maximum 
complexity and size of a system or subsystem. There- 
fore, for nonbasic object classes, VI and CR are 
more indicative measures of system/subsystem qual- 
ity. For both basic and nonbasic object classes, Tcr 

and Tui have been imposed to be equal to the mean 
values. In Figure 5, the Kiviat diagram (directly 
produced by the TOOMS tool) presents the values 

of CC, CS, I/CR, l/ECD, and l/k7 for the Buoy 
System previously discussed. The external circle re- 

ports the values of thresholds at the intersection 
with the respective axes; and the rays of the circle 
have been normalized. From the Kiviat’s diagram, it 
can be seen that class complexity is too high, while 
the other measures are quite good. In particular, 
being the BuoySystem-a nonbasic object class-the 
l/CR is the most indicative measure of class qual- 
ity. In fact, it shows that the class is well specified at 
the external level with respect to its complexity; 
thus, its behavior can be easily verified (see Bucci et 
al. (1994) for the process of verification). 

In regard to the application of metrics, the model 

of metrics proposed is general enough to be used 
with other object-oriented approaches with minor 
changes-e.g., as shown by Mandrioli (1993); Coie- 
man et al. (1992); Northern Telecom (1993); Braek 
and Haugen (1993). Due to the presence of many 
differences among projects of the same type in dif- 
ferent companies, as well as in the same company, it 
is important to have the possibility of performing 
project-oriented tailored measures. To this end, in 
the metric framework proposed, there exist weights 
and coefficients. These have been included for ad- 
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Figure 5. The TOOMS tool during the monitoring of BuoySystem class quality. 

justing the metrics framework for the specific type of 
project, based on the company’s experiences. In ad- 
dition, weights and coefficients can also be modified 
for (i) better meeting the company goals-e.g., im- 
prove quality, improve reusability, etc., (ii) evidenc- 
ing and measuring specific features-e.g., behavior, 
communications, structure, etc., and/or (iii) for 
compensating for the presence of different lan- 
guages and thus using a unique metric framework in 
nonhomogeneous systems (Henderson-Sellers et al., 
1994). Therefore, developers who intend to adopt 
the metrics framework proposed in this paper will at 
first have to measure a set of their projects by using 
our weights (in this way, a mean value for each 
metrics estimated on their projects is obtained), and 
then they can impose their weights and thresholds 
according to the company goals. 

For most of the process-oriented metrics (e.g., PI, 
RI) developers do not need to get an absolute value, 
but they need to understand the trends of values in 
order to identify 6) discontinuity and changes from 
the usual trend, or (ii) when the risk to have quality 
degradation exists. The process metrics such as reuse 

index, RI, and productivity index, PI, can be very 
useful to estimate the general quality of the develop- 
ment team. In particular, they must be used to 
maintain control of the efficiency of the team in 
analyzing and implementing the system under speci- 
fication. For the same reasons, the trend of the 
expected system cost, ESCost, must also be con- 
trolled (Fenton, 1991; Henderson-Sellers et al., 
1994). 

4.4 Methodologies Support 

The metric framework allows the estimation of 
system complexity, size, cost, etc., at each level of 
abstraction and specification details. This means that 
most of the metrics proposed can be used during 
all phases of the software life cycle according to the 
new approaches of continuous metrication 
(Rombach, 1990; Henderson-Sellers et al., 1994). It 
should be noted that different values are obtained in 
different phases of the software life cycle. The soft- 
ware life cycle can be regarded as comprising five 
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phases: analysis, abstract design (i.e., compo- 
sition/decomposition), basic components design (i.e., 
implementation of XSM, XCM), testing (i.e., verifi- 
cation and validation), and maintenance. In object- 
oriented methodologies, the separation among these 
phases is not well defined. In fact, the system under 
specification can have some parts under analysis 
while others are under design or testing, etc. The life 
cycle can usually be modeled by means of the spiral 
or the fountain model (Boehm, 1986; Henderson- 
Sellers and Edwards, 1990; Booth, 1991; Meyer 1988; 
Wirfs-Brock et al., 1990; Nesi 1994), etc. In both 
these models, the metric framework proposed can 
be used as a support for the approach adopted. In 
fact, both of these models allow the process of 
refinement and are considered to be suitable for 
object-oriented development. 

In the course of analysis and design, metrics can 
be used for helping the designer to generate high 
quality specifications. This will also guarantee low 
costs of testing, extendibility, and maintenance of 
the final product. In addition, further reuse of the 
whole system or of system components must also be 
facilitated by specifying understandable and well- 
verifiable classes. In these phases, the metric frame- 
work is able to keep the specification process under 
control. 

In Table 7, the metrics which can be used in the 
phases of the software life cycle in order to guaran- 
tee that the product quality and the control of 
specification development and maintenance have 
been reported. In this way, the adoption of metrics 
can be integrated into the methodology; thus, the 
developer’s decisions can be based on objective mea- 
surements instead of subjective impressions. There- 
fore, slightly different (in metrics and thresholds) 
quality criteria must be set for each phase of the 
software life cycle. In addition, special metrics can 
be defined in order to: (i> measure the production of 
deliverables (reports and demonstrator) during the 
whole software life cycle, (ii) evaluate the costs of 
reusing class libraries, and (iii) identify the most 
suitable classes to be reused. 

Table 7. Metrics and the Phases of Software Life Cycle 

phases measurements 

Analysis 
Abstract Design 
Components Design 
Testkg 

Formal Verification 

CC, ECC, ESCost, CS, ECS, ECD 
CS, CC, VI, CR, RI, PI 
CS, CC, VI, CR, RI, PI 

TI 
CR. VI 

ECD, cc 
CC, VI, TI 

Validation 
Maintenance 

5. CONCLUSIONS 

A set of metrics for controlling the quality of an 
object-oriented development process and its integra- 
tion in the CASE tool named TOOMS (Bucci et al., 
1993), has been presented. This integration allows a 
more effective control of specification quality and 
reduces the cost for quality control. The metrics 
proposed have been defined for a formal object-ori- 
ented model and language and are mainly focused 
on the specification of embedded reactive systems 
(i.e., TROL (Bucci et al., 1994)). These metrics cover 
all aspects of system specification, helping the 
TOOMS users to produce well-stated applications. 
Metrics are a support for maintaining control of the 
quality of the specification, monitoring class, and 
system complexity, size, testability, reusability, veri- 
fiability, etc. This support compels the developers to 
produce specifications which satisfy the imposed rat- 
ing and to test the specification when it has grown 
too much. The specifications are guaranteed to be 
formally correct by means of the TOOMS facilities 
for system verification and validation. 

Most of the metrics defined in the metric frame- 
work are new; while the others are equivalent in 
general terms to other metrics proposed in the liter- 
ature. The metrics proposed have been defined to 
ensure their applicability in all phases of the soft- 
ware life cycle; in fact, most of them can estimate 
congruent values even if the system is only partially 
specified according to the capabilities of many new 
languages, such as OSDL, TRIO + , and TROL. 
The TOOMS tool with metrics has been used on 
several case studies showing the advantages of our 
model. Most of the concepts proposed (metrics and 
approaches for their definition), are general enough 
to be used with other object-oriented approaches 
with minor changes. 
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APPENDIX A. A Summary of TOOMS/TROL 

Notation 

TROL classes are defined by means of their external and 
internal class descriptions, which correspond to public and 
private class members according to the object-oriented 
paradigm. 

A. 1 External Class Description 

The external class description (see Figure 6) reports the 
public features of the class. These are Provided-services, 
Required-services, and Clauses. Provided and required 
services can be regarded as input and output ports (gates) 
(i.e., IO-model by Coleman et al. (1992’)). 

In the early stages of reactive systems specification, 
some temporal requirements on system behavior are usu- 
ally imposed. In the external class description, time is 
modeled by means of temporal constraints (Dasarathy, 
1985). These constraints are associated with services and 
clauses-e.g., (Sections 3.2, 4.5) associated with service IA 
in Figure 6, which specifies the minimum and the maxi- 
mum rate (bounds) of that service in time units. Temporal 
constraints can also be associated with Clauses. Clauses 
represent a dependence between the services correspond- 
ing to the connected 10s (i.e., they are descriptive con- 
straints on class behavior). Referring to Figure 6, clause 
CLAl specifies that when a new message arrives at IA, 
object 01 will make ready a request on OB in the speci- 
tied time interval. In this case, the constraint associated 
with clauses describes the bounds for the time of reaction 
(Dasarathy, 1985). Services are only a static class descrip- 
tion in the TROL model, while clauses describe the exter- 
nal class behavior. Since a clause describes the external 
class behavior, conditions must be expressed only in terms 
of public references. However, the clauses represent a 
nonexhaustive description of class behavior; these are very 
useful during the composition/decomposition process of a 
class and for the definition of the abstract behavior in the 

Figure 6. External class description of class Samplel, and 
visual representation of Object 01 of class Samplel. 
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early phases of system specification. The external class 
description in terms of services and clauses with associ- 
ated temporal constraints is the instrument by which the 
class is validated. In addition, an external class description 
which reports both static and dynamic aspects of the class 
is a vehicle for (i) understanding the nature of the class 
without inspecting the whole code, (ii) generating the final 
patterns for testing the class functionalities (Bucci et al., 
1994). 

A.2 Internal Class Description 

The internal class description corresponds to the class 
implementation. In the TROL model, classes can be re- 
garded as nonbasic object classes or basic object classes. 

A nonbasic object class is implemented in terms of a set 
of communicating subobjects. This leads to a hierarchical 
organization of the software structure.- When two objects 
are connected together through their services (required- 
to-provided, belonging to the same type, e.g., Boolean with 
Boolean) a channel of communication is established. The 
default communication model is synchronous on a uni- 
directional channel, as in Shaw (1992). Client/server 
communications are supported through message passing; 
messages are considered as tokens irrespective of their 
content-i.e., data, (control) commands, or both. 

In TROL, there are two kinds of provided services: 
normal and buffered’ (buffered), and two kinds of re- 
quired services: normal and always available3 (available). 
Through the connection of these types of services four 
types of communication mechanisms are defined: (a) syn- 
chronous communication where both sender and receiver 
are blocked; (b) asynchronous communication with a non- 
blocked sender and a blocked receiver (when the buffer 
is empty); (c) asynchronous nonblocked communication 
corresponding to the request of the latest information 
value from the sending object (overwriting mechanism); 
(d) asynchronous nonblocked communication, where a 
message is stored in the buffer only if it is changed with 
respect to the last value. 

In Figure 1, the visual representation of class Estimator- 
Buffered as composed of two subobjects, Sl and Bl, 
belonging to classes Estimator and Buffer, is reported, as 
produced by the TOOMS tool BlockEditor. In Figure 7 
the descriptive counterpart of Figure 1 is reported. 

Basic object classes are those that cannot be regarded 
as a composite object and are implemented by using (i) an 
extended state machine formalism called “extended State 
Machine (XSM) model, or (ii) a set of pure data transfor- 
mations of input into output data (without any notion of 
state variables) called “extended Combinatorial Ma- 
chines” (XCMs). A TROL environment presents-at the 

’ Implemented by means of a buffer with an infinite dimension. 
3 When the associated information is always there, that is, 

when the service has its information always ready for the receiver. 
Available services can be used to present outside the object state. 

P. Nesi and M. Campanai 

Class Estmatorhffered specializing noo_bbasicobJectrIass 
Provided_serviceu 

data1 : DataType; 
RusbB : Signal; 
elab : Signal; 

Requiredservices: 
results Real; 
err available : EstimatarErrType; 

Clauses: 
ESTIMATION: Nev(elab) A err==OK - Ready(reauIta); 
FLUSH New (RusbB) - err==EMPTY; 
DATA : New (d&al) h err==EMPTY + err==OK; 

I’*’ orivate oarts ***I 
Attrbutes:’ 

81 Buffer; 
SI Estimator. 

Connections: 
data1 Bl datain, 
rlah Sl.eval. 
SI leaIt results; 
Sl cr* err, 
Sl.req.datal - Bl Set; 
B1 dataout Sl.thedatal; 
Bl ls.empty Sl buf-90; 
AushB Bl.Aush, 

Figure 7. Description of the class EstimatorBuffered with 
the external description of class Estimator, where Estima- 
torErrType is defined as an enumeration: enum Estima- 
torErrType {EMFTY,OK);. The description of the class 
Buffer will be provided later. 

lowest level of hierarchy-a lattice of communicating ba- 
sic objects which are implemented either as XSMs or 
XCMs. In Figure 1, the implementation of class Buffer as 
an XSM is presented as it appears on the TOOMS visual 
interface. A set of statements (either assignments, and/or 
procedure calls) is associated with each state, these are 
executed when the state is reached. In an XSM, temporal 
constraints can be applied to different predicates, such as 
the conditions associated with state transitions, requests of 
provided services, sending of required services, numerical 
expressions, and procedure calls (Bucci et al., 1994). In 
Figure 8, the complete description of the class Buffer is 
schematized. 

It should be noted that, in the XSM model, a basic 
object class may present a state diagram with a central 
state-e.g., a state named CENTRAL in Figure 1. A 

Class Buffer speeielieing XSM 
Providedservices: 

datain, DataType ; 
w:h %&i ; 

Requiredzervices: 
dataout DataType , 
mampty available : Boolean, 

Clauses: 
GET New (get ) A- issmpty - Ready (dataout ); 
FLUSH New (Rush) - iempty; 
DATAIN New (datsin) h issmpty - - kumpty; 

/ *** private parts “a/ 
Attributes: // auxihary variables of the state machine 

1” Integer; 
out Integer, 
is-empty Boolean ; 
Buff DataType (m 1; 

States: 
START { m=O; ,s.empty=TRUE: out=& ) 
CENTRAL ( ) 
WRITEIN: { m=m+l, Buf$n]=datain; iumpty=FALSE; ) 
WRITEOUT: { dataout=Buf@ut] [0,10.3]; out=out+l; ) 
ISEMPTY ( is_empty=TRUE; ) 

Paths: 
lNlT ( START: - CENTRAL; CENTRAL: Ner(Bwh) - START; ) 
PUT ( CENTRAL: New(datsin) + WRITEIN; WRITEIN: -CENTRAL; ] 
GET. ( CENTRAL, New(&) A- iswnpty - WRITEOUT; 

WRITEOUT: in != out - CENTRAL; WRITEOUT: in==out + ISEMPTY; 
ISEMPTY, - CENTRAL; WRITEOUT: &aII(TIMEFAIL) - CENTRAL; ) 

end: 

Figure 8. Textual specification in TROL of the corre- 
sponding visual description in TOOMS for the class Buffer. 
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number of transitions start from such a state, and each 
transition identifies a typical branch or aggregate of states 
called class park For example, the class Buffer in Figure 8 
presents three Paths (INIT, PUT, GET). In TROL, each 
class implemented as an XSM is an active object which, in 
turn, is implemented with one thread of execution for 
each path (the concept of path in TROL is equivalent to 
that of process in SDL). In this way, an object can satisfy 
concurrent requests of services if they belong to different 
paths. These threads (i.e., paths) are signal sensitive, 
meaning that they are waiting for a signal to change their 
state; hence, their execution is causal (i.e., event-driven). 
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The XCMs are a particular case of an XSM in which 
there exists only a single state, and auxiliary variables do 
not maintain their values from an execution to the next. 

In TROL, the specialized nonbasic object classes inherit 
attributes, provided and required services, connections, 
and clauses from their superclass, according to the mono- 
tonic concept of inheritance (Bucci et al., 1994). Analo- 
gous rules are defined for basic object classes that can 
inherit attributes, provided and required services, states 
and paths from their superclass. 


