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Gramicidin D was incorporated in a biomimetic membrane consisting of a lipid bilayer tethered to a mercury
electrode via a hydrophilic spacer, and its behavior was investigated in aqueous 0.1 M KCl by potential-step
chronocoulometry and electrochemical impedance spectroscopy. The impedance spectra, recorded from 0.1
to 1 × 105 Hz over a potential range of 0.7 V, were fitted to a series ofRC meshes, which were related to
the different substructural elements of the biomimetic membrane. These impedance spectra were compared
with those obtained by incorporating valinomycin, under otherwise identical conditions. The potential
dependence of the stationary currents reported on bilayer lipid membranes by Bamberg and La¨uger (Bamberg,
E.; Läuger, P.J. Membrane Biol. 1973, 11, 177-194) as well as those extracted from potential-step
chronocoulometric measurements was interpreted by relating the increase in gramicidin dimerization to a
progressive increase in single-file K+ flux along the dimeric channels. An analogous approach was adopted
in explaining the difference between the impedance spectra obtained with gramicidin D and those obtained
with valinomycin. It is concluded that gramicidin has a low tendency to form dimers in the absence of ionic
flux.

Introduction

Gramicidin is a neutral linear hydrophobic pentadecapeptide
with an L,D-alternating sequence. The natural mixture of
gramicidin, produced byBacillus breVis, consists of about 80%
of gramicidin A, 5% of B, and 15% of C, with tryptophan (Trp),
phenylalanine (Phe), and tyrosine (Tyr) in position 11, respec-
tively. In organic solvents, gramicidin is present in a conforma-
tion equilibrium between different monomeric and dimeric,
double-stranded (ds) species.1-5 Ds-dimeric species predominate
in nonpolar solvents, and monomeric species dominate in polar
ones.2,5,6Upon incorporating gramicidin in a lipid bilayer from
a polar solvent, it adopts a single-strandedâ3.3

6.3-helical
conformation.7-12 It is now well accepted that this conformation
is responsible for ion-channel formation across the lipid
bilayer.13-17 The ion channels consist of N-terminus-to-N-
terminus dimers, probably via the formation of six intramo-
lecular hydrogen bonds.13,14,18 In fact, the hydrocarbon tail
portion of a bilayer, whose length ranges from 30 to 40 Å, can
only be spanned by two aligned gramicidin molecules, which
form a channel about 25-30 Å long.18 If gramicidin is
incorporated in a lipid bilayer from nonpolar solvents, the ds-
dimeric conformation initially predominates. This conformation,
which may span the whole lipid bilayer with a nonchannel
structure, is in a metastable state that slowly dissociates,
refolding into theâ3.3

6.3-helical conformation.7-12 Progressive
substitution of the four Trp residues, located at the C-terminus
end, by Phe residues tends to shift the conformational equilib-
rium from channel-forming monomers to nonconducting ds-
dimers in DOPC bilayers.19-21 In the monosubstituted analogues
of gramicidin A, the destabilization of the monomeric structure
in favor of the ds-dimeric one is greater for Trp substitution in
the 9 and 13 positions, while it is definitely smaller in the 11

and 15 positions.21 It has been suggested that hydrogen bond
formation between Trp residues and the polar head region of
the bilayer may be the driving force for the unwinding of ds-
dimers in the membrane.9,22,23 Lipid spin label measurements
indicate that the N-terminus is located deep in the membrane,
while the C-terminus is not.17 These findings, besides pointing
to the N-terminus-to-N-terminus helical dimer as the major
conformation of the gramicidin channel, support the location
of the Trp residues in the polar head region of the membranes
due to their H-bonding capability and favorable electrostatic
interactions. A gramicidin derivative negatively charged at the
C-terminus does not form channels when added to only one
side of a bilayer lipid membrane (BLM), while it forms them
when added to both sides.16 Conversely, gramicidin forms
channels even if added to one side of the BLM. This indicates
that gramicidin, as opposed to its negatively charged analogue,
can easily cross the membrane. Moreover, the two halves of
the gramicidin channel can combine via the N-termini only if
they are present on opposite sides of the bilayer, with the
C-termini embedded in the corresponding polar head regions.
The strongly hydrophobic nature and the poor water solubility
of gramicidin make it difficult to obtain reproducible values of
conductivity of lipid bilayers with given amounts of gramicidin
added to the aqueous solutions.16 Consequently, the partition
coefficient of gramicidin between a lipid bilayer and water is
not known. A partition coefficient of 4.8× 10-3 cm was
reported for its negatively charged analogue,O-pyromellityl-
gramicidin,16 which, however, has a much higher solubility in
water.

Potential steps from a zero transmembrane potential,φ2 )
0, to progressively increasingφ2 values yield current transients
that start from a small initial value,I0, and relax monoexpo-
nentially to a final stationary value,I∞.24 While I0 shows a
modest linear increase withφ2, denoting an Ohmic behavior,
I∞ increases withφ2 more than linearly, showing a roughly
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quadratic dependence uponφ2.25 The notable increase in the
I∞/I0 ratio with an increase inφ2 clearly reflects an increase in
the number of conducting channels following the potential step.
The monoexponential increase of the current with time for each
potential step was satisfactorily explained by the bimolecular
kinetics of dimer formation from gramicidin monomers. How-
ever, the notable increase in the association rate constant and
in the corresponding equilibrium constant for dimer formation
with an increase inφ2 (the dissociation rate constant is
practically independent ofφ2) has not found a satisfactory
explanation. Bamberg and La¨uger24 tentatively explained this
increase with a voltage-induced decrease in the membrane
thickness, which favors a more precise matching of the two
monomers. Subsequently, Bamberg and Benz25 showed that the
increase in the association rate constant withφ2 does not
correlate with the thickness change of the lipid membrane and
suggested a more direct effect of the electric field, based on a
proposal by Urry.14 According to the latter author, gramicidin
may exist in two kinetically interconvertible and energetically
similar conformations, one conducting and the other noncon-
ducting; the conducting one is theâ3.3

6.3-helical conformation
originally proposed by Urry himself13 and nowadays universally
accepted as being responsible for the formation of the N-
terminus-to-N-terminus conducting dimer. While Urry’s non-
conducting conformation is nonpolar, theâ3.3

6.3-conformation
has a dipole moment of more that 0.5 Debye perL,D-dipeptide
unit.14 According to Bamberg and Benz,25 the increase in the
association rate constant with an increase inφ2 can be tentatively
explained by a gradual shift from the nonpolar, nonconducting
conformation to the polar, conducting one. These authors also
observed that “a field change that is energetically favorable for
the active form of the monomer in one-half of the bilayer is
unfavorable in the other half”. Nonetheless, in their treatment,
they ignored that the number densities of the two gramicidin
monomers forming the channel have an opposite dependence
upon the transmembrane potential, in view of the opposite
orientation of their dipoles with respect to the applied electric
field. If this feature is accounted for, it is intuitive that the
maximum stability of the dimeric channel is attained at zero
transmembrane potential; a potential shift in any of the two
directions will favor one monomeric orientation at the expense
of the other, destabilizing the dimer. The reason for the increase
in the stability of the conducting dimeric channel with an
increase in field strength must, therefore, find a different
explanation.

This Letter aims at providing evidence that the stability of
the dimeric channels increases with the ionic flux along them.
In other words, the more rapid the single-file motion of ions
along the gramicidin channels is, the more it prevents their
dissociation. In fact, when the time elapsed between the passage
of two consecutive cations through the junction between the
two monomers forming the conducting dimer starts to become
comparable with, and ultimately shorter than, the time required
for the mismatch between the two monomers with dimer
dissociation, the latter event is expected to become less probable.

In this respect, the potential dependence of the equilibrium
constant for dimer formation assumes a dynamic character.
Measurements were carried out by incorporating gramicidin in
a mercury-supported biomimetic membrane. This was obtained
by tethering to a mercury electrode a “thiolipid” consisting of
a tetraethyleneoxy (TEO) hydrophilic chain terminated at one
end with a disulfide group, for anchoring to the mercury surface,
and covalently linked at the other end to two phytanyl chains
mimicking the hydrocarbon tails of a phospholipid.26-30 By self-
assembling a diphytanoylphosphatidylcholine monolayer on top
of the thiolipid monolayer, a lipid bilayer is obtained, which is
interposed between the TEO hydrophilic “spacer” and a 0.1 M
KCl aqueous electrolyte. The primary structure of a thiolipid
molecule anchored to a metal surface and of a diphytanoylphos-
phatidylcholine molecule in contact with it is shown in Figure
1. The behavior of the resulting tethered bilayer lipid membrane
(tBLM) was investigated by electrochemical impedance spec-
troscopy and potential-step chronocoulometry.

Experimental Methods

The water used was obtained from water produced by an
inverted osmosis unit, upon distilling it once and then distilling
the water so-obtained from alkaline permanganate. Merck
suprapur KCl was baked at 500°C before use to remove any
organic impurities. Diphytanoylphosphatidylcholine (DphyPC)
was purchased from Avanti Polar Lipids (Birmingham, AL).
The advantage of diphytanoyl lipids over unbranched lipids of
equal chain length is that they have a gel-to-liquid-crystalline-
state transition temperature much lower than room temperature
without having double bonds, which makes lipids oxidizable
by air. Gramicidin D was purchased from Sigma and used
without further purification. The 2,3-di-O-phytanyl-sn-glycerol-
1-tetraethylene-glycol-D,L-R-lipoic acid ester lipid (DPTL) was
provided by Professor Adrian Schwan (Department of Chem-
istry, University of Guelph, Canada). The other chemicals and
solvents were commercially available and used as received.

DphyPC solutions were prepared by diluting a proper amount
of stock solution of this phospholipid with pentane. Solutions
of 0.2 mg/mL DPTL in ethanol were prepared from a 2 mg/
mL solution of DPTL in ethanol. Stock solutions of this thiolipid
were stored at-18 °C. Stock solutions of 3.6× 10-4 M
gramicidin were prepared in ethanol and stored at+4 °C.

All measurements were carried out in aqueous 0.1 M KCl.
A homemade hanging mercury drop electrode (HMDE) de-
scribed elsewhere,31 8.4 × 10-2 cm in radius, was employed.
Use was made of a homemade glass capillary with a finely
tapered tip, about 1 mm in outer diameter and 0.2 mm in inner
diameter. Capillary and mercury reservoirs were thermostated
at 25( 0.1 °C by the use of a water-jacketed box to avoid any
changes in drop area due to a change in temperature. One glass
electrolysis cell containing the aqueous solution and a small
glass vessel containing the ethanol solution of the thiolipid were
placed on a movable support inside of the box.32 The HMDE
and the support were moved vertically and horizontally,

Figure 1. Schematic picture of the different substructures of a tBLM with the primary structure of the DPTL thiolipid in contact with that of a
diphytanoylphosphatidylcholine molecule. The figure shows the electric potential differences across the different substructures and the proposed
location of the different charges.
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respectively, by means of two oleodynamic systems that ensured
the complete absence of vibrations.

AC voltammetry, potential-step chronocoulometry, and elec-
trochemical impedance spectroscopy measurements were carried
out with an Autolab instrument PGSTAT 12 (Echo Chemie)
supplied with FRA2 module for impedance measurements, a
SCAN-GEN scan generator, and GPES 4.9 software. Potentials
were measured versus an Ag|AgCl electrode immersed in the
KCl working solution but are referred to a saturated calomel
electrode (SCE).

Monolayers of DPTL were self-assembled on the HMDE by
keeping the mercury drop immersed in the small vessel
containing the thiolipid solution for 20 min. In the meantime,
a pentane solution of DphyPC was spread on the surface of the
aqueous solution in the glass cell in an amount corresponding
to five to six phospholipid monolayers, and the pentane was
allowed to evaporate. Using the oleodynamic system, the DPTL-
coated HMDE was then extracted from the vessel, washed with
ethanol to remove the excess of adsorbed thiolipid, and kept in
a N2 atmosphere for the time strictly necessary to allow the
solvent to evaporate. Immediately afterward, the electrolysis cell
containing the aqueous solution on whose surface DphyPC had
been previously spread was brought below the HMDE, and the
latter was lowered so as to immerse it into the aqueous solution
across the phospholipid film; this procedure caused a DphyPC
monolayer to self-assemble on top of the DPTL monolayer,
giving rise to a lipid bilayer interposed between the hydrophilic
moiety of the thiolipid and the aqueous solution. The applied
potential was then repeatedly scanned over a potential range
from -0.200 to-1.200 V while continuously monitoring the
curve of the quadrature component,Y′′, of the electrode
admittance at 75 Hz against the applied potential,E, until a
stableY′′ versusE curve was attained. The minimumY′′/ω value
for the resulting DPTL|DphyPC-coated mercury, whereω is
the angular frequency, ranged from 0.55 to 0.65µF cm-2 and
was therefore close to the capacity,∼0.8µF cm-2, of a solvent-
free black lipid membrane. Gramicidin was incorporated in this
tBLM by simply adding its stock solution to the electrolysis
cell in an amount corresponding to 1.0× 10-7 M. The solution
was then stirred for a few minutes while keeping the electrode
at an applied potential of-0.500 V.

Results

In the absence of ionic flux, the zero potential difference
across the lipid bilayer moiety of the tBLM (namely, the zero
transmembrane potentialφ2), as estimated from independent
measurements, was attained at an applied potential of about
-0.500 V/SCE;33,34 moreover, in view of the values of the
capacities of the three substructures composing the tBLM (see
Figure 1), the fraction of the potential difference across the
whole tBLM that was localized in the lipid bilayer moiety
amounted to about 70%. Therefore, the transmembrane potential
φ2 depends upon the applied potentialE according to the
equationφ2 ) 0.7 × (E + 0.500 V).

Figure 2 shows a number of charge versus time curves
following a series of potential steps from a fixed initial potential
of -0.200 V to progressively more negative final potentials,
Ef, on a tBLM incorporating gramicidin from its 1.0× 10-7 M
solution in aqueous 0.1 M KCl. The electrode was kept at the
initial potential of -0.200 V for 5 min before each potential
step. During this rest time, potassium ions were almost
completely expelled from the TEO moiety by electrostatic
repulsion. The higher the negative potential step, the larger the
amount of K+ ions moved into the TEO moiety along the

gramicidin channels. Ultimately, the TEO moiety was saturated
with K+ ions, and the charge attained a constant limiting value.
The plateau of the charge versus time curves was attained at
shorter times asEf was made more negative. The height of the
plateau amounted to about-45 µC cm-2; it can be regarded as
a measure of the maximum charge of potassium ions that can
be accommodated in the hydrophilic TEO moiety. In fact, the
flux of K+ ions into the TEO moiety along the gramicidin
channels, following a potential step, created a potential differ-
ence across the lipid bilayer moiety, positive toward the metal.
At a constant final potentialEf, this potential difference was
compensated for by an equal and opposite potential difference
created by a flow of electrons to the metal surface along the
external circuit; this gave rise to a negative contribution to the
capacitive current, in addition to the capacitive current recorded
in the absence of gramicidin. When the TEO moiety was
completely saturated by the K+ ions, this negative contribution
attained a maximum limiting value, just as the corresponding
charge. Before tending to the above limiting value, the curves
of the chargeQ against the timet exhibited an initial, roughly
linear section, whose slope measured the “stationary current”
that would be maintained if there were no limitation to K+

diffusion on the metal side of the lipid bilayer moiety, as is the
case with traditional BLMs. The fitting of the initial linear
section of theQ versust curves to a straight line was carried
out over the maximum time range, ensuring a level of confidence
of no less that 99.9%. The resulting slope is plotted against the
transmembrane potentialφ2 in Figure 3 (solid triangles). For
comparison, Figure 3 also shows the stationary current at a BLM
in an aqueous solution of 1 M NaCl and 2× 10-11 M gramicidin
A (open squares), as reported in Figure 2 of ref 24. In the figure,
the transmembrane potential was taken as negative on the side
of the lipid bilayer toward which the K+ ions moved. It is
apparent that the stationary current increased with|φ2| much
more than linearly.

Impedance spectra of tBLMs incorporating gramicidin were
recorded in aqueous 0.1 M KCl, upon varying the bias potential
from -0.30 to -1.00 V by -25 mV steps and varying the
frequency from 0.1 to 1× 105 Hz at each potential. The presence
of gramicidin increased both the in-phase and the quadrature
components of the tBLM admittance. Figure 4 shows a plot of
ωZ′ versusωZ′′ for a tBLM incorporating gramicidin from its
1.0 × 10-7 M solution in 0.1 M KCl, at a potential of-0.525
V; ω is the angular frequency, andZ′ andZ′′ are the in-phase
and quadrature components of the impedance. Three partially

Figure 2. Charge versus time curves following potential steps from a
fixed initial potential of-0.200 V to progressively more negative final
potentials, Ef, varying from -0.525 to -0.925 V by -25 mV
increments, at a tBLM incorporating gramicidin from its 1.0× 10-7

M solution in aqueous 0.1 M KCl.
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fused semicircles, denoted by numbers from 1 to 3, are clearly
visible. In aωZ′ versusωZ′′ plot, a semicircle corresponds to
a RC mesh;28 the diameter of the semicircle measures the
reciprocal, 1/C, of the capacity of theRC mesh, while theω
value at the maximum of the semicircle measures the reciprocal
of its time constant,τ ) RC. The frequency increases in the
direction of increasingωZ′′. Therefore, the time constants of
the RC meshes in Figure 4 decrease as we proceed along the
ωZ′′ axis. This behavior is similar to that observed with an
identical tBLM incorporating the ion carrier valinomycin, under
otherwise identical conditions.28 By following the gradual
evolution of semicircles 1 and 2 by varying the applied potential
E, the corresponding values of the capacity and conductance
were determined as a function ofE.

Figures 5-7 show plots of these quantities againstE, upon
subtracting the corresponding quantities in the absence of
gramicidin. Therefore, these curves exclusively express the
contribution to these quantities from the progressive flow of
potassium ions into the tBLM with a negative shift in the applied
potential. The quantities in these figures have an overbar to
distinguish them from the capacities and conductances obtained
in the absence of gramicidin. Both the capacityCh 2 and the
conductancegj2 ≡ 1/Rh2 of mesh 2 tend to a maximum in the
proximity of -1.0 V, while those,Ch 1 andgj1 ≡ 1/Rh1, of mesh
1 show maxima at about-0.60 V.

In the Discussion section, it will be shown thatCh 2, gj2 and
Ch 1, gj1 are to be ascribed to the movement of K+ ions across
the lipid bilayer moiety and across the TEO moiety, respectively.
For comparison, in Figure 7, thegj1versusE plot for gramicidin
is reported together with the corresponding plot for valinomycin,
as obtained in ref 28 by incorporating valinomycin from its 1.5
× 10-7 M solution in aqueous 0.1M KCl in an identical tBLM.
In analogy with the behavior of a tBLM incorporating valino-
mycin,28 the large semicircle 3 in Figure 4, which is independent
of the applied potential, is due to the aqueous solution adjacent
to the tBLM; it will not be considered further.

Discussion

Let us denote the dipole moment of the gramicidin molecule
by µ, the transmembrane potential byφ2, and the corresponding
electric field by -φ2/d, where d is the thickness of the
hydrocarbon tail region of the lipid bilayer. The ratio of the
number density,N′, of the gramicidin dipoles aligned in the

Figure 3. The solid triangles are values of the slope of the linear
portion of the charge versus time curves in Figure 2, plotted against
the transmembrane potentialφ2 estimated as described in the text. The
open squares are values of the stationary current at a BLM incorporating
gramicidin A from its 2× 10-11 M solution in aqueous 1 M NaCl
plotted againstφ2 (from Figure 2 in ref 24). The dashed curve was
calculated as described in the text, just as thek′′a versusφ2 plot in the
inset.

Figure 4. Plot of ωZ′ versusωZ′′ at a tBLM incorporating gramicidin
from its 1.0 × 10-7 M solution in aqueous 0.1 M KCl recorded at
-0.525 V.

Figure 5. Plots ofCh 2(solid triangles) andCh 1 (solid squares) againstE
at a tBLM incorporating gramicidin from its 1.0× 10-7 M solution in
aqueous 0.1 M KCl. The corresponding solid curves are the fits obtained
for K1 ) 5 × 10-3 andK2 ) 3 × 105 cm3 mol-1, C0 ) 4, C1 ) 7, and
C2 ) 1 µF cm-2, ø1 ) -0.250 V, andΓm ) 1 × 10-11 mol cm-2. The
increase in gramicidin dimer formation with an increase in conductivity
was accounted for as described in the text.

Figure 6. Plot ofgj2(solid triangles) againstE at a tBLM incorporating
gramicidin from its 1.0× 10-7 M solution in aqueous 0.1 M KCl. The
solid curve is the fit obtained for the same equilibrium parameters as
those in Figure 5 and forR ) 0.5, k1,f ) 2.25× 1013 cm2 s-1 mol-1,
andk2,f ) 2.2 × 109 cm3 s-1 mol-1. The increase in gramicidin dimer
formation with an increase in conductivity was accounted for as
described in the text.
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direction of increasingφ2 to that,N′′, of the dipoles aligned in
the opposite direction is, therefore, given by

whereφ2 is negative. Denoting byN andN2 the number densities
of all gramicidin molecules and of the dimeric ion channels,
respectively, we have

Let ka and kd denote the association and dissociation rate
constants for dimer formation. The rate of change ofN2 is given
by

Combining eqs 1-3 and denoting the fraction,N2/N, of dimers
by y, we obtain

with

When the currentI following a potential step attains stationary
conditions, dy/dt equals zero, andy is given by

It is evident that the potential-dependent association rate constant
k′a expressed by eq 5 decreases with an increase in|φ2|,
causing the stationary currentI to increase with|φ2| less than
linearly. This prediction contrasts with the experimental behavior
in Figure 3, whereI increases withφd more than linearly.

To account for the experimental behavior, it is assumed that
the increase ofk′a with |φ2| is due to the dimeric gramicidin
channels being stabilized by the single-file ionic flux along them.

In other words, the increase ink′a is related to the increase in
the ionic flux and, hence, in the ionic currentI. To fit eqs 5
and 6 to the experimental plots in Figure 3 on the basis of this
assumption, the following “feedback” procedure was adopted.
In the case of Ohmic behavior, the stationary current is
proportional to the product of the fraction,y∞, of channels by
|φ2|. The absolute value,|φ2|, of the transmembrane potential
is increased progressively by 1 mV steps, and at each step,k′a
is multiplied by the quantity y∞|φ2|, which is taken as a measure
of the ionic flux and is treated as dimensionless. The difference
between the value of the quantity (y∞|φ2| k′a) at any givenjth
step and its value at the (j - 1)th step is then divided by a
suitable “damping factor”, df. The value ascribed to the “actual”
association rate constant at thejth step is then given byk′′a )
(y∞|φ2|k′a)j-1 + [(y∞|φ2|k′a)j - (y∞|φ2|k′a)j-1]/df. This iterative
procedure starts at the second step, with the association rate
constant at the first step being set equal tok′a. The damping
factor serves to moderate the increase of the association rate
constant with the increase in ion flux. To fit theI versusφ2

plots in Figure 3, the potential-independent dissociation rate
constantkd was set equal to the value 1.6 s-1 determined by
Bamberg and La¨uger on BLMs,24 andd was set equal to 30 Å.
The best fit to the experimental plots in Figure 3 was obtained
by setting the gramicidin dipole momentµ equal to 9 Debye.
This value is somewhat higher than that,∼4 Debye, estimated
by Urry14 from the C-O bond moments of the conducting
â3.3

6 -helix. However, the dipole moment of the whole peptide
molecule may be higher due to the side chains of the amino
acid residues. Thus, for instance, the dipole moments,∼2 Debye,
of the four Trp residues have a positive component in the
direction from the C- to the N-terminus in the right-handed
structure of the helix.35 The dashed curve in Figure 3 is the
calculated plot of (y∞|φ2|) versusφ2 that provides the best fit to
the two experimental plots. It was obtained by settingk′a at φ2

) 0 equal to 0.1 s-1 and the damping factor df equal to 50 and
by then normalizing the vertical axis of the calculated curve to
those of the corresponding experimental plots. The inset of
Figure 3 shows the calculated value of the actual association
rate constantk′′a againstφ2. For |φ2| < 100 mV, this quantity is
low and almost independent ofφ2 due to the compensation
between the decrease in the exp(âφ2)/[1 + exp(âφ2)]2 factor
and the increase in current. Then, at higher|φ2| values, the last
contribution prevails, andk′′a increases rapidly. Extrapolation to
φ2 ) 0 yields ak′′a value of 0.037 s-1, which, once divided by
kd)1.6 s-1, yields a value of 0.023 fork′′a/kd ) KdN/4, where
Kd is the equilibrium constant for dimer formation atφ2 ) 0.
The latter equation accounts for the fact thatk′′a embodies the
quantityN exp(âφ2)/[1 + exp(âφ2)]2, which is not included in
Kd and equalsN/4 atφ2 ) 0. At zero transmembrane potential,
we also haveN′ ) N′′ ) N1/2, whereN1 is the total number
density of the gramicidin monomers. Consequently, atφ2 ) 0,
we can writeKd ) 4N2/N1

2 andN ) 2N2 + N1. Combining the
two latter equations and settingKdN/4 ) 0.023, we obtain a
N1/N ratio equal to 0.96. This implies that atφ2 ) 0, when no
ionic flux along the gramicidin channel takes place, gramicidin
is present almost exclusively in the monomeric form. In other
words, it is the single-file ionic flux along the gramicidin dimers
that stabilizes them.

That the gramicidin dimer-to-monomer ratio is very low in
the absence of ionic flux and increases notably with an increase
in the latter is also apparent from a comparison of the impedance
spectra of a tBLM incorporating gramicidin with those of an
identical tBLM incorporating the ion carrier valinomycin. Both
gramicidin and valinomycin have a high selectivity for the

Figure 7. Curve a is a plot of the conductancegj1 againstE at a tBLM
incorporating gramicidin from its 1.0× 10-7 M solution in aqueous
0.1 M KCl. The solid squares are experimental values, while the solid
curve was calculated from the model for the same values as those in
Figures 5 and 6. The increase in gramicidin dimer formation with an
increase in conductivity was accounted for as described in the text.
Curve b is an analogous plot obtained at a tBLM incorporating 1.5×
10-7 M valinomycin under otherwise identical conditions. Open squares
are experimental values, while the solid curve was calculated for the
same equilibrium parameters as those in Figure 5 and forR ) 0.5,k1,f

) 2 × 1012 cm2 s-1 mol-1, andk2,f ) 4.5 × 106 cm3 s-1 mol-1. The
left-hand axis refers to curve a and the right-hand one to curve b.

N′/N′′ ) exp(2µφ2/dkT) (1)

N ) N′ + N′′ + 2N2 (2)

dN2/dt ) kaN′ N′′ - kdN2 (3)

dy/dt ) k′a (1 - 2y)2 - kdy (4)

k′a ≡ kaNeâO2/(eâO2 + 1)2 â ≡ 2µ/dkT (5)

y∞ ) 1/2 + (kd - xkd
2 + 8k′akd)/(8k′a) (6)
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monovalent cation K+. Figure 7 shows that thegj1 versusE plot
for the TEO moiety is shifted by more than 100 mV toward
more negative potentials when passing from valinomycin to
gramicidin. This points to a more sluggish increase in conduc-
tivity by gramicidin than by valinomycin, as K+ ions start to
be attracted into the TEO moiety by a negative shift in the
applied potential. Nonetheless,gj1 attains a maximum value that
is 1 order of magnitude higher with gramicidin than that with
valinomycin, in agreement with the higher turnover rate expected
for a channel with respect to an ion carrier. The driving force
that moves K+ ions into the TEO moiety across the lipid bilayer
at a given applied potentialE is necessarily the same in the
same tBLM, independent of the incorporation of valinomycin
or gramicidin. Consequently, gramicidin is scarcely active in
conducting K+ ions at potentials at which valinomycin is already
very active in complexing K+ ions and shuttling them across
the lipid bilayer moiety. This points to a low percentage of
gramicidin conducting dimers at these potentials.

A detailed analysis of the impedance spectra of tBLMs
incorporating gramicidin from aqueous 0.1 M KCl was carried
out by using an approach analogous to that adopted for the
incorporation of valinomycin,28 OmpF porin,29 and melittin30

in the same tBLM. According to this approach, the whole
electrified interface is regarded as consisting of four substruc-
tures with different dielectric properties, namely, the lipoic acid
residue, the TEO hydrophilic spacer, the lipid bilayer moiety,
and the aqueous solution adjacent to the tBLM. The interphase
is represented by an equivalent circuit consisting of fourRC
meshes in series, one per each substructural element. The
elements of this equivalent circuit represent ideal lumped-
constant properties, even though the K+ ions are distributed in
space across the tBLM. This general approach28 assumes that
the charges within the tBLM are located as shown in Figure 1:
a free electronic charge densityq on the surface of the mercury
electrode, a charge density FΓ1 at the boundary between the
lipoic acid residue and the TEO moiety, and a charge density
FΓ2 at the boundary between the TEO moiety and the lipid
bilayer moiety. Here,Γ1 andΓ2 are surface concentrations of
K+.

The potential differenceφt across the whole tBLM due to
this charge distribution is expressed by the equation

In this equation,C0, C1, andC2 are, in the order, the “intrinsic”
capacities of the lipoic acid residue, the hydrophilic spacer, and
the lipid bilayer moiety, as measured in the absence of
ionophores, whileφ0, φ1, andφ2 are the potential differences
across these dielectric slabs.φ1 includes the dipole potential,
ø1, of the hydrophilic spacer, which was estimated at about
-0.250 V, negative toward the metal, on the basis of indepen-
dent measurements.34 The extrathermodynamic absolute poten-
tial differenceφt across the whole mercury|(aqueous solution)
interphase is more positive than the potentialE measured versus
a SCE by about 0.250 V33. Therefore,φt can be directly related
to the applied potentialE.

The incorporation of a channel-forming peptide or protein
alters the conductance and capacity of the substructural elements
with respect to their “intrinsic” values by an amount denoted
by an overbar. Roughly speaking, the alteration,gji, in the
conductance of any given substructural elementi is set equal
to the rate of change withE of the current that flows to and fro

along the element, while the alteration,Ch i, in its capacity is set
equal to the rate of change withE of the charge that accumulates
at the boundary of the element, on its metal side. To this end,
the current,j2, which flows along the lipid bilayer moiety, is
expressed by a Butler-Volmer-like equation.28 The forward and
backward rate constants for the surmounting of the potential
energy barrier associated with the lipid bilayer moiety are
denoted byk2,f andk2,b whenφ2 equals zero. Under equilibrium
conditions (that is, forj2 ) 0), this equation reduces to a
Langmuir isotherm, with a potential-independent adsorption
equilibrium constant,K2 ) k2,f/k2,b. An analogous expression
is used for the current,j1, flowing along the TEO hydrophilic
spacer. The forward and backward rate constants for the
surmounting of the potential energy barrier associated to the
TEO moiety are denoted byk1,f andk1,b whenφ1 equals zero,
and the corresponding adsorption equilibrium constant is given
by K1 ) k1,f/k1,b. The procedure adopted to fit the equivalent
circuit to the experimental data is outlined in the Supporting
Information. The same equilibrium parameters providing the
best fit to the impedance spectra of tBLMs incorporating
valinomycin were adopted for the fitting, while the kinetic
parametersk1,f andk2,f were increased with respect to those used
for valinomycin to account for the notable increase in the
maximum values ofgj1 andgj2 when passing from valinomycin
to gramicidin. Thus, the following parameters were employed:
C0 ) 4, C1 ) 7, andC2 ) 1 µF cm-1; ø1 ) -0.250 V;K1 )
5 × 10-3, K2 ) 3 × 105 cm3 mol-1; and k1,f ) 2.25 × 1013

cm2 s-1 mol-1, andk2,f ) 2.2 × 109 cm3 s-1 mol-1.
To relate the increase in gramicidin dimers to the increase in

the conductivitygj2 across the lipid bilayer, a feedback procedure
analogous to that previously used for the stationary current
measurements was adopted. Thus, capacities and conductances
were calculated starting from an applied potentialE ) -0.200
V, where no K+ flux occurs due to the unfavorable electric field.
The potentialE was then progressively decreased by-10 mV
steps, and, at each step the fraction,y∞ ) N2/N, of dimers was
estimated by the procedure already described, with the same
k′a, kd and df values used for the dashed curve in Figure 3,
namely, k′a ) 0.1 s-1, kd)1.6 s-1, and df ) 50; the only
difference consisted in multiplyingk′a by gj2, normalized to its
maximum value attained at-1.00 V, rather than byy∞|φ2|. The
adsorption equilibrium constant,K2, and the forward rate
constant,k2,f relative to K+ movement across the lipid bilayer
were assumed to increase proportionally to the number density,
y∞, of dimers. The maximum value attainable byy∞ is 0.5. At
each step,K2 andk2f were, thus, multiplied by the quantity 2y∞,
so as to giveK2 the possibility of attaining the value that
provides the best fit to the impedance spectra of a tBLM
incorporating valinomycin.28 In principle, the equilibrium
constantK2 for ion translocation across the lipid bilayer moiety
should not depend on the nature of the incorporated ionophore
but only on the two phases separated by the bilayer. In practice,
however, true equilibrium conditions are not attained even at
the lowest frequencies adopted in the present ac measurements.
Consequently,K2 should be regarded as a “pseudo-equilibrium”
constant.

The fact that the quantitiesCh 1 and gj1, relative to the TEO
moiety, attain a maximum at less negative potentials than the
quantitiesCh 2 andgj2, relative to the lipid bilayer moiety, is due
to the negative dipole potential,ø1, located in the TEO moiety,
which favors an incipient accumulation of K+ ions on the metal
side of this hydrophilic spacer as the potential is progressively
shifted in the negative direction. On the other hand, the height
of the potential energy barrier due to the lipid bilayer decreasing

φt ) q
C0

+ [q + FΓ1

C1
+ ø1] + [q + F(Γ1 + Γ2)

C2
] ≡

φ0 + φ1 + φ2 (7)
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toward more negative potentials causes the conductancegj2,
which is responsible for the accumulation of K+ on the solution
side of the TEO moiety, to become ultimately much greater
thangj1.

The solid curves in Figures 5-7 are fits of the above
equivalent circuit to the experimental plots ofCh 1, Ch 2, gj2, and
gj1 againstE, calculated as described in the Supporting Informa-
tion, using the parameters reported in the legends. Agreement
is only semiquantitative. The solid curve b in Figure 7 is the fit
to the experimentalgj1 versusE plot for valinomycin, calculated
using the same equivalent circuit and the same equilibrium
parameters as those for gramicidin. Only the kinetic parameter
k1,f was decreased from 2.25× 1013 to 2× 1012 cm2 s-1 mol-1

to account for the lower conductivitygj1 of valinomycin. It
should be noted that the negative shift in the calculated solid
curves of Figure 7, in passing from valinomycin to gramicidin,
is only determined by the feedback procedure used to relate
the gramicidin dimer formation to the conductivity,gj2, across
the lipid bilayer moiety.

In conclusion, potentiostatic current and charge versus time
curves as well as impedance spectroscopy measurements
indicate that gramicidin monomers incorporated in a lipid bilayer
have a low tendency to form conducting dimers in the absence
of ionic flux; dimer formation is notably increased by single-
file movement of monovalent cations along the dimeric chan-
nels.
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