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Singular Perturbation for Controlled Wave

Equations�
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Abstract

In this paper we study the approximation of the solutions to an

optimal control problem with distributed parameters for the wave

equation, let's say P, through solutions of a sequence of regularized

problems P�. We consider both the �nite and in�nite time horizon

case. We deduce convergence of the optimal pairs of P� to those of

P, as � tends to zero, by means of continuous dependence on data

theorems for the associated integral/algebraic Riccati equations.
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Introduction

Throughout this paper 
 will be an open, bounded domain in Rn, with

smooth boundary @
. We consider the controlled boundary value problem8><
>:

ytt(t; x) = �y(t; x) + u(t; x) (t; x) 2]0; T [�

y(0; x) = y0(x); yt(0; x) = y1(x) x 2 


y(t; x) = 0 (t; x) 2]0; T [�@
;
(1)

where y0 2 H1
0 (
), y1 2 L2(
), T > 0 is given (possibly T = +1), and

u 2 L2(0; T ;L2(
)).

The purpose of the present work is to obtain approximation results for

two optimal control problems associated with (1)|both in the �nite and
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F. BUCCI

in�nite time horizon case|by using parabolic regularization on one side,

and convergence results for Riccati equations on the other side.

Our motivation comes from well-known regularity properties of both

the solutions to Riccati equations and the optimal pairs for optimal control

problems in the case of parabolic-like dynamics, whose distinctive feature

is the analyticity of the underlying semigroup.

At the outset, we �x T 2 (0;+1) and consider the problem of mini-

mizing the quadratic cost functional

J(u) =

Z T

0

Z



(jry(t; x)j2 + jyt(t; x)j2+ ju(t; x)j2)dx dt+

+

Z



(jry(T; x)j2 + jyt(T; x)j2)dx; (2)

overall u 2 L2([0; T ]� 
), where y is subject to (1). As a consequence of

general theory on minimization of coercive forms it is known that problem

(1)� (2) admits a unique optimal control (see [7]).

Following Lions [7], for given � > 0, we consider the natural regularized

boundary value problem, namely8><
>:

y�tt(t; x) = �y�(t; x) + �� y�t(t; x) + u(t; x) (t; x) 2 ]0; T [�

y�(0; x) = y0(x); y

�
t (0; x) = y1(x) x 2 


y�(t; x) = 0 (t; x) 2 ]0; T [�@
:
(3)

With this we associate the cost functional

J�(u) =

Z T

0

Z



(jry�(t; x)j2 + jy�t(t; x)j2 + ju(t; x)j2)dx dt+

+

Z



(jry�(T; x)j2 + jy�t(T; x)j2)dx: (4)

As for the existence and uniqueness of an optimal control for problem

(3)� (4), the same comment holds true as in the case � = 0.

Regularization methods were introduced by J.L. Lions as an approach

to the study of some boundary value problems and related optimal control

problems (see [9] and [7, 8]). In [7] the author obtains convergence of the

solutions of problem (3) to those of problem (1), as � tends to zero, and

gives applications to di�erent linear quadratic optimal control problems.

The arguments used therein are purely variational.

In the present paper, according with the direct approach, we shall focus

our attention on integral Riccati equations associated with problem (1)�(2)
and (3) � (4): our goal is then to prove an approximation result for the

related solutions, let say P , P� respectively. (As for di�erential Riccati
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CONTROLLED WAVE EQUATIONS

equations in in�nite dimensional spaces we refer to [3]; see also [1] for a

complete treatment and references).

In fact we shall show, by means of a continuous dependence on data

theorem for sequences of Riccati equations, that P� converges to P|in

a sense to be speci�ed below|as � tends to zero (Theorem 2:1). As a

corollary we recover the cited result in [7]. As we shall see below, to achieve

our goal in the �nite time horizon case we use a convergence result which

is contained in the paper [4].

This work, although ultimately directed to numerical purposes, deals

with the problem of approximating Riccati equations in the case where

the control operator is bounded, as in (1), which is a typical feature of

distributed parameters systems. A more general approximation theory

for Riccati equations, particularly dedicated to the case where the input

operator is genuinely unbounded|such as it arises in boundary control and

point control for p.d.e.|has been developed by I. Lasiecka and R. Triggiani

(see, among all, the review book [6] and the references contained therein).

In the second part of this work we shall treat the more challenging

in�nite time horizon case. Accordingly, we set T = +1 and consider the

problem of minimizing the quadratic functional

J1(u) =

Z 1

0

Z



�jry(t; x)j2 + jyt(t; x)j2 + ju(t; x)j2� dx dt (5)

overall u 2 L2(0;1;L2(
)), with y subject to (1).

Analogously to the case T < +1, we take, as regularized parabolic

problem, the boundary value problem (3) with corresponding cost func-

tional given by

J1;�(u) =

Z 1

0

Z



�jry�(t; x)j2+ jy�t(t; x)j2 + ju(t; x)j2�dx dt: (6)

Thus we consider the algebraic Riccati equations associated with problems

(1)� (5), (3)� (6), which formally read, in the space H1
0(
) � L2(
), as

A�X +XA �XBB�X + I = 0; (7)

A��X� +X�A� �X�BB
�X� + I = 0; (8)

respectively, where A, A�, B are suitable linear operators to be speci�ed in

Section 2.

It is known ([12], [1]) that a necessary and su�cient condition for the

existence of a minimal nonnegative solution to (7) ((8)) is given by sta-

bilizability of the pairs (A;B), ((A�; B)) with respect to the observation

operator (I in this case). In other words it is su�cient that, for any initial

data (y0; y1), an admissible control does exist. If this happens, the dynamic

programmingmethod provides the unique optimal control in feedback form.
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In fact it is known that the stabilization property holds true in both cases

(see Section 3).

Actually we shall see that in this case, in order to apply a continu-

ous dependence on data theorem for sequences of algebraic Riccati equa-

tions, we need additional information, namely stabilizability of the pair

(A�; B) with respect to I which has to be uniform in � (see [4], [5]).

Therefore our goal will be to prove that for any initial data (y0; y1) 2
H1

0 (
)� L2(
), there exists a feedback control u� 2 L2(0;1;L2(
)) such

that sup�>0 J1;�(u�) < +1 (Proposition 3:1).

The basic idea in the proof of Proposition 3:1 is the following: Given

the data (y0, y1), we build up a feedback control u� such that the closed

loop equation resulting from (3) has a \stronger" damping than the one

of the free system and therefore we can show|by means of energy esti-

mates techniques|that it has solutions (y�; y�t ) with a uniform exponential

rate of decay (uniform in �, too). We stress that the feedback used above

is exactly of the same type as the one we can use to stabilize the wave

equation. Finally, in the same framework of Theorem 2:1, we can show an

approximation result even in the more delicate case T = +1, which is not

contained in [7].

It should be noted that similar arguments can be applied to the case of

other hyperbolic equations, such as for instance the Euler-Bernoulli equa-

tion, with natural associated cost functional. More generally, we can take

ytt(t; x) = �A(x)y(t; x) + u(t; x); (t; x) 2]0; T [�
 (9)

provided that A is a strongly elliptic operator of order 2m, m � 1, whose

realization in L2(
) - with homogeneous Dirichlet/Neumann/mixed bound-

ary conditions - is a non-negative, self-adjoint operator. The parabolic reg-

ularized problem is still obtained by adding in the P.D.E. a strong damping

depending on a little parameter � > 0.

The outline of the paper is the following.

In Section 1 we �x the notations and recall some known results on

Riccati equations which are needed in the sequel.

In Section 2 we introduce the abstract setting for the concrete prob-

lems (1) � (2), (3) � (4), and we present a straightforward proof of the

approximation result in the �nite time horizon case.

Section 3 is mostly devoted to showing uniform stabilizability for the

strongly damped wave equation (with respect to the parameter �). Thus

we present the approximation result in the in�nite time horizon case.

1 Notations and Preliminaries

Let X and Y be two Hilbert spaces. We denote norms and inner products

with j � j and < �; � > respectively. We represent with L(X;Y ) (L(X) if

4
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X = Y ), �(X), �+(X) the space of all bounded linear operators from X

to Y , the space of all bounded self-adjoint operators in X, and the subset

of �(X) of non-negative de�nite operators respectively.

We denote by jj � jj norms in L(X;Y ). For any interval I � R, we shall

denote by C(I;L(X)) the set of all continuous mappings from I to L(X).

We denote by Cs(I;L(X)) the set of all mappings F : I ! L(X) such that

F (�)x is continuous for any x 2 X. For more details on the topological

structure of Cs(I;L(X)), see [1].

If A is a linear closed operator with dense domain D(A), we denote its

adjoint with A�. We denote by %(A), �(A) and R(�;A) = (� � A)�1 the

resolvent set, the spectrum and the resolvent operator of A, respectively.

If A is the in�nitesimal generator of a strongly continuous semigroup

G(t) on X, we set G(t) = etA. Moreover, we will use the notation A 2
G(M;!) for an operator A which is the generator of a C0-semigroup etA

satisfying jjetAjj �M e!t, t � 0, for some M > 0, ! 2 R.

We recall some general results on continuous dependence on data for

both di�erential and algebraic Riccati equations.

Let H, Y , U be three Hilbert spaces, T > 0. Consider the optimal

control problem consisting in minimizing the quadratic functional

J(u) =

Z T

0

(jCy(s)j2Y + ju(s)j2U) ds+ < P0y(T ); y(T ) >H (1:1)

overall controls u 2 L2(0; T ;U ), where y is subject to the di�erential equa-

tion �
y0(t) = Ay(t) + Bu(t); t 2]0; T [;
y(0) = y0 2 H: (1:2)

Concerning the operators A;B;C; P0 we shall assume that

(i) A generates a C0-semigroup etA in H ;

(ii) B 2 L(U;H);

(iii) P0 2 �+(H);

(iv) C 2 L(H;Y ):
(1:3)

It is well known that, if (1:3i), (1:3ii) are ful�lled, then for any y0 2 H

problem (1:2) has a unique mild solution y in L2(0; T ;H), that is y belongs

to C([0; T ];H) and is given by the formula

y(t) = etAy0 +

Z t

0

e(t�s)ABu(s) ds:

It is also well known ([3], and [1] for complete references as for Riccati

equations in in�nite dimensional spaces) that under hypotheses (1:3) there
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exists a unique mild solution to the Riccati equation associated with prob-

lem (1:1)� (1:2), which reads as follows:�
P 0 = A�P + PA� PBB�P + C�C

P (0) = P0:
(1:4)

Here, as a mild solution of (1:4), we mean a P 2 Cs([0; T ]; �
+(H)) which

solves the following integral equation

P (t)x = etA
�

P0e
tAx�

Z t

0

e(t�s)A
�

[C�C�P (s)BB�P (s)]e(t�s)Axds; x 2 H:

Moreover, if this is the case, the dynamic programming method provides

the feedback optimal control by means of the closed loop equation (see for

instance [7]).

Consider now a sequence of Riccati equations�
P 0
k
= A�

k
Pk + PkAk � PkBkB

�
k
Pk + C�

k
Ck

Pk(0) = Pk;0
(1:5)

and suppose that the following hypotheses hold:

(i) for any k 2N (Ak; Bk; Ck; Pk;0) ful�ll (1:3), with e
tAk 2 G(M;!);

(ii) lim
k!1

etAkx = etAx uniformly in [0; T ]; 8T > 0; x 2 H;

(iii) lim
k!1

etA
�

kx = etA
�

x uniformly in [0; T ]; 8T > 0; x 2 H;

(iv) the sequences Bk; B
�
k
; Ck; C

�
k
; Pk;0 are strongly convergent

respectively to B;B�; C; C�; P0:

(1:6)

Denote by (u�; y�) the optimal pair for problem (1:1)�(1:2), and by (u�
k
; y�
k
)

the approximating optimal pair.

Then we have the following [4, Theorem 5.1]:

Theorem 1.1 Assume (1:3) and (1:6). Let P and Pk be the mild solutions

to (1:4) and (1:5) respectively. Let (u�; y�) and (u�
k
; y�
k
) the related optimal

pairs.

Then, for any T > 0 we have

lim
k!1

Pk = P in Cs([0; T ]; �
+(H));

lim
k!1

u�k(t) = u�(t) strongly and in L2(0; T ;U );

lim
k!1

y�k(t) = y�(t) strongly and in L2(0; T ;H):

6
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In the in�nite time horizon case we are concerned with a dynamical

system of type (1:2) with T = 1, and we want to minimize the cost

functional

J1(u) =

Z 1

0

(jCy(s)j2Y + ju(s)j2U) ds: (1:7)

We recall that (A;B) is said C-stabilizable if, for any y0 2 H, there exists

u 2 L2(0;1;U ) such that the corresponding solution y of system (1:2) is

such that J1(u) < +1.

It is well known ([12]) that if (A;B) is C-stabilizable, then the algebraic

Riccati equation

A�X +XA �XBB�X +C�C = 0 (1:8)

has a minimal nonnegative solution P1min which provides the way to solve

the above optimal control problem by means of dynamic programming.

Consider now a sequence of algebraic Riccati equations

A�kXk +XkAk �XkBkB
�
kXk +C�kCk = 0: (1:9)

Before stating the corresponding approximation result, we need to intro-

duce the following de�nitions.

De�nition 1.1 We say that (Ak; Bk) is stabilizable with respect to Ck uni-

formly in k if for any y0 2 H there exists u 2 L2(0;1;U ) such that

sup
k

J1;k(u) < +1:

Remark 1.1Uniform stabilization trivially impliesCk-stabilization of each

pair (Ak; Bk) for k �xed. Under this assumption the feedback operator

Fk = Ak � BkB
�
k
P1
k;min

is obviously well de�ned, where P1
k;min

is the

minimal nonnegative solution to (1:9).

De�nition 1.2 We say that (Ak; Ck) is detectable uniformly in k if there

exist Kk 2 L(Y;H) and positive constants M , N , a, independent of k, such

that jKkxj �M jxj and
jjet(Ak�KkCk)jj � Ne�at; for any t > 0. (1:10)

The following theorem holds (see [5]):

Theorem 1.2 Assume (1:3), (1:6) and, in addition, that (Ak; Bk) is sta-

bilizable with respect to Ck uniformly in k and the uniform detectability

condition holds true. Then, as k!1, we have

jP1
k;min

x� P1minxj ! 0 for any x 2 H;

jy�
k
� y�j ! 0 in L2(0;1;H) and in C(0;1;H);

ju�k � u�j ! 0 in L2(0;1;U ):

7
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2 The Finite Time Horizon Case

Concerning the abstract formulation of problems (1)� (2) and (3)� (4), we

set K = L2(
), �:H2(
) \H1
0 (
) = D(�) � K ! K the Dirichlet realiza-

tion of �� in K. Therefore � is a strictly positive self-adjoint operator on

K with discrete spectrum �(�) = f�n j �n � �1 > 0; �n !1g.
We introduce the Hilbert space H = D(

p
�) + K, endowed with the

inner product

<

�
v0
v1

�
;

�
z0
z1

�
>H=<

p
�v0;

p
�z0 >K + < v1; z1 >K ;

and de�ne A : D(A) � H ! H,D(A) = D(�) +D(
p
�), as follows:

A

�
v0
v1

�
=

�
0 I

�� 0

��
v0
v1

�
:

For any function w(t; x) we set w(t) = w(t; �). Then, introduced
Y (t) =

�
y(t)

y0(t)

�
, problem (1) may be written in the abstract form

�
Y 0(t) = AY (t) + Bu(t) t 2 ]0; T [
Y (0) = Y0

; (2:1)

where Y0 =

�
y0
y1

�
and B is de�ned by Bu(t) =

�
0

u(t)

�
, while the

functional (2) becomes

J(u) =

Z T

0

(jY (t)j2H + ju(t)j2U)dt+ jY (T )j2H ; (2:2)

U = L2(
) being the controls space.

Since A = �A�, it is well known that A is the in�nitesimal generator

of a C0-group of contractions etA in H (see for instance [10]). As (1:3) are

ful�lled, [3] applies to problem (2:1) � (2:2) and guarantees the existence

of a unique mild solution P 2 Cs([0; T ]; �
+(H)) to the related Riccati

equation.

In a completely similar way the abstract formulation of (3) in H is given

by �
Y 0� (t) = A�Y�(t) +Bu(t) t 2 ]0; T [
Y (0) = Y0

; (2:3)

where A� : D(A�) � H ! H is de�ned by

A�

�
v0
v1

�
=

�
0 I

�� ���
��

v0
v1

�

8
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for any

�
v0
v1

�
2 D(A�) =

��
v0
v1

�
2 H : v1 2 D(

p
�); v0 + �v1 2 D(�)

�
and B is the same as in (2:1). The corresponding cost functional is given

by

J�(u) =

Z T

0

(jY�(t)j2H + ju(t)j2U)dt+ jY�(T )j2H : (2:4)

Since A� and A
�
� are dissipative for any � > 0, it is well known [10] that A�

is the in�nitesimal generator of a C0-semigroup of contractions etA� in H,

which moreover is analytic (see for instance [2]).

Remark 2.1 Note that A;A�; A
�; A�� 2 G(1; 0). Even in this case, as (1:3)

are trivially ful�lled for any � > 0, the Riccati equation associated with

problem (2:3) � (2:4) admits a unique solution P� 2 Cs([0; T ]; �
+(H)) for

any � > 0.

Before coming to the main theorem of this section we prove some pre-

liminary result.

Lemma 2.1 For any Y 2 H and � 2 C, with Re� > 0, we have

(i) R(�;A�)Y ! R(�;A)Y

(ii) R(�;A�� )Y ! R(�;A�)Y
(2:5)

as � tends to zero (in the H norm).

Proof: It is su�cient to write down the expressions of the resolvent op-

erators R(�;A), R(�;A�), R(�;A
�), R(�;A�� ) in terms of the resolvent of

��.
Easy calculations show that

R(�;A) =

�
�R(�2;��) R(�2;��)

��R(�2;��) �R(�2;��)
�

for any � 2 %(A) = f� 2 C : � 6= �ip�k; �k 2 �(�)g, and, respectively,

R(�;A�) =
1

��+ 1

 
(� + ��)R( �

2

��+1
;��) R( �

2

��+1
;��)

��R( �
2

��+1
;��) �R( �

2

��+1
;��)

!

for � 2 %(A�) = f� 2 C : � 6= �1
�
; � 6= ���k�

p
�2�2

k
�4�k

2
; �k 2 �(�)g.

Hence 2:5(i) is a trivial consequence of the continuity of the function

�! R(�;��). 2:5(ii) can be showed exactly in the same way. 2

Lemma 2.2 Let etA, etA� , etA
�

, etA
�

� be the semigroups generated by

A,A�,A
�,A�� respectively. Then, for any Y 2 H and t � 0

(i) etA�Y ! etAY

(ii) etA
�

�Y ! etA
�

Y
(2:6)

9
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as � tends to zero. Moreover the convergence in (2:6) is uniform on bounded

t-intervals.

Proof: (2:6(i)) ((2:6(ii))) follows immediately from (2:5(i)) ((2:5(ii))) of

Lemma 2:1 and the Trotter approximation theorem (see [10, p.85]) taking

into account Remark 2:1. 2

Now, given the sequence of Riccati equations�
P�
0 = A��P� + P�A� � P�BB

�P� + I

P�(0) = I
(2:7)

associated with problem (2:3)� (2:4), and the Riccati equation�
P 0 = A�P + PA� PBB�P + I

P (0) = I
(2:8)

associated with problem (2:1)� (2:2), we can �nally state

Theorem 2.1 Let P�, P be the mild solutions to (2:7); (2:8) respectively.

Let Y0 2 H and T > 0 be given, and let (Y �; u�), (Y �� ; u
�
� ), be the optimal

pairs of the problems (2:1)� (2:2), (2:3)� (2:4) respectively.

Then, as �! 0, we have

P� ! P in Cs([0; T ]; �
+(H));

J�(u
�

� )! J(u�);

Y �� (t)! Y �(t) strongly and in L2(0; T ;H);

u�� (t)! u�(t) strongly and in L2(0; T ;U ):

Proof: It is su�cient to invoke the continuous dependence on data theorem

(Section 1, Theorem 1:1) and take into account Lemma 2:2. 2

Remark 2.2 As we have already noticed in the introduction, the con-

vergence results obtained in this chapter are stated for problem (1) � (2)

mainly for the sake of simplicity. In fact they can be extended to more

general situations, at least in the following directions.

(I) If one replaces in (1) the Dirichlet with Neumann boundary condi-

tion, all the above considerations still hold true, except for some details in

the abstract formulation of the concrete problem, which actually do not

change the substance of the proofs.

We just remark that the state space H is given now by the Hilbert space

H1(
)� L2(
), endowed with the natural scalar product

<

�
v0
v1

�
;

�
z0
z1

�
>H =

Z



(v0(x)z0(x) +rv0(x)rz0(x))dx+

+

Z



v1(x)z1(x)dx:

10
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Accordingly, we shall take y0 2 H1(
). Moreover we stress that the Neu-

mann realization of �� in L2(
) is no longer a strictly positive operator.

Nevertheless, Lemma 2:1 (and Lemma 2:2) still applies, since the proof is

essentially based on the fact that � is a self-adjoint nonnegative operator.

(II) We can also consider di�erent boundary value problems for con-

trolled hyperbolic equations of type (9), provided we can still reduce to an

abstract problem|in a suitable Hilbert space H|of the form (2:1), with

� self-adjoint and nonnegative.

3 The In�nite Time Horizon Case

In this section we consider the in�nite time horizon case for the boundary

value problem (1).

According with the abstract setting introduced in Section 2, the cost

functionals (5) and (6) may be expressed as follows:

J1(u) =

Z 1

0

(jY (t)j2H + ju(t)j2U)dt; (3:1)

J1;�(u) =

Z 1

0

(jY�(t)j2H + ju(t)j2U)dt; (3:2)

where H = D(
p
�)+K is the states space, U = K is the controls space, u

belongs to L2(0;1;U ) and Y , Y� satisfy (2:1), (2:3) respectively.

Let now P1�;min, P
1
min be the minimal non-negative solutions to the

algebraic Riccati equations

A��X� +A�X� �X�BB
�X� + I = 0 (3:3)

A�X +AX �XBB�X + I = 0 (3:4)

associated with problems (2:3)� (3:2), (2:1)� (3:1) respectively, whose ex-

istence is guaranteed by the I-stabilizability of the pairs (A�; B), � > 0

�xed, (A;B) respectively. In fact the �rst case is trivial, since the free

system is exponentially stable; for the case � = 0 see for instance [11].

Now we are interested in proving an approximation result on P1min
through P1�;min. As we want to apply Theorem 1.2, we will show that

(A�; B) is stabilizable with respect to I uniformly in � > 0. It is clear that

this is the most crucial condition to be veri�ed: indeed here the proof of the

uniform detectability condition is trivial, since the observation operator is

the identity (see (3:2)).

Thus, we �x Y0 2 H, and let

u�(t) = ��B�Y�(t); t > 0; (3:5)

11
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where B� is the adjoint of B, Y� is the mild solution of (2:3) with u = u�
as in (3:5), and � is a real positive number.

We will show thatZ 1

0

jY�(t)j2 dt < C(Y0); t > 0;

for any � > 0, and therefore

sup
�>0

J1;�(u�) < +1:

Proposition 3.1 Let � > 0, and let Y0 2 H be �xed.

Moreover, let Y� be the mild solution of (2:3), with u given by (3:5).

Then we have Z 1

0

jY�(t)j2 dt < C(Y0); t > 0: (3:6)

Proof: First we assume Y0 2 D(�)�D(�). Let Y (t) � Y�(t) =

�
y(t)

y0(t)

�
,

Y0 =

�
y0
y1

�
(we suppress the index � to simplify the notation; the depen-

dence of Y on � will be clear from the context).

As D(�)�D(�) � D(A�) for any � > 0, from (2.3) we obtain that y(t)

is a classical solution of8<
:

y00(t) + (��+ �)y0(t) + �y(t) = 0; t > 0

y(0) = y0
y0(0) = y1:

(3:7)

(I step) We �rst multiply the di�erential equation in (3:7) by y0 and inte-

grate between 0 and t. Then we obtain

Z t

0

(
1

2

d

ds
jy0(s)j2+ < (��+ �)y0(s); y0(s) > +

1

2

d

ds
< �y(s); y(s) >)ds = 0;

that is

1

2
(jy0(t)j2 + < �y(t); y(t) >) +

Z t

0

< (�� + �)y0(s); y0(s) > ds =

=
1

2
(jy1j2 + j

p
�y0j2);

and therefore we deduce that

1

2
sup
t>0

(jy0(t)j2+ j
p
�y(t)j2) +�

Z 1

0

jy0(s)j2ds � 1

2
(jy1j2+ j

p
�y0j2): (3:8)

12
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This shows that Z
1

0

jy0(s)j2ds < c1(Y0): (3:9)

(II step) By multiplying by y in (3:7) we have:

< y00; y > + < (��+ �)y0; y > + < �y; y >= 0;

that is

d

ds
< y0(s); y(s) > �jy0(s)j2+ 1

2

d

ds
< (��+�)y(s); y(s) > +j

p
�y(s)j2 = 0:

We now integrate between 0 and t:

< y0(t); y(t) > � < y1; y0 > �
Z t

0

jy0(s)j2 ds+
Z t

0

j
p
�y(s)j2 ds

+
1

2
[< (��+ �)y(t); y(t) > � < (��+ �)y0; y0 >] = 0;

or

1

2
< (��+ �)y(t); y(t) > +

Z t

0

j
p
�y(s)j2ds =

=< y1; y0 > +

Z t

0

jy0(s)j2ds+ 1

2
< (��+ �)y0; y0 > � < y0(t); y(t) > :

Since

� < y; y0 >� �

4
jyj2 + 1

�
jy0j2;

then we �nally obtain

�

4
jy(t)j2 +

Z t

0

j
p
�y(s)j2ds �

� 1

�
jy0(t)j2 +

Z 1

0

jy0(s)j2ds + jy1jjy0j+ 1

2
(�j
p
�y0j2 + �jy0j2): (3:10)

From (3:8) and (3:10) we have
R1
0
jp�y(s)j2ds < c2(Y0) and this, together

with (3:9), yields the estimate (3:6).

Let now Y0 2 H. Since D(�) � D(�) is dense in H, the conclusion

easily follows by using regularization arguments. 2

We �nally state the main result of this section:

Theorem 3.1 Let P1�;min,P
1
min be the minimal solutions to the algebraic

Riccati equations (3:3) � (3:4) respectively. Let Y0 2 H be given, and let

(Y �; u�), (Y �� ; u
�
�), be the optimal pairs of the problems (2:3)�(3:2), (2:1)�

(3:1) respectively.

13
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Then, as �! 0, we have

jP1�;minY � P1minY j ! 0 for any Y 2 H;

J1;�(u
�
� )! J1(u

�);

jY �� � Y �j ! 0 in L2(0;1;H) and in C(0;1;H);

ju�� � u�j ! 0 in L2(0;1;U ).

Proof: It is su�cient to apply Theorem 1:2. As we already noticed in sec-

tion 2, the conditions (1:3) and (1:6) are satis�ed. The uniform detectabil-

ity condition is easily veri�ed by simply taking, for instance, Kk = I.

Finally, the decisive stabilization property has been showed in Proposition

3:1. 2

Remark 3.1 Similar considerations as in Remark 2:2 can be repeated in

the in�nite time horizon case. We just point out that if we want to show

uniform (in �) stabilizability of the strongly damped wave equation with

Neumann boundary condition, we have to replace the feedback control u�
in (3:5) by the following

u�(t) = �KY�(t);

where K 2 L(H;U ) is given by

K

�
v0
v1

�
= �v0 + �v1;

with � and � positive constants.

Then it is easy to follow the scheme of the proof of Proposition 3:1 to

obtain a completely similar result. Therefore Theorem 3:1 still holds true.
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