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The antinociceptive effect of the antimigraine drug sumatnptan
was assessed in mice and rats (hot-plate, abdominal constnc-
tion and paw-pressure tests) and in guinea pigs (paw-pressure
test). The ACh extracellular concentration also was detected in
the hippocampus of freely moving rats by microdialysis exper-
iments. Antinociception was induced by sumatriptan adminis-
tered both parenterally (5-1 0 mg - kg1 i.V.; 1 0-30 mg - kg1
i.p.) and i.c.v. (50-100 .tg per mouse). Sumatriptan antinoci-
ception was potentiated by physostigmine (0.05 mg - kg1 i.p.)
and was prevented by the muscarinic antagonist atropine (5
mg - kg1 i.p.), the ACh depletor HC-3 (1 �tg per mouse i.c.v.)
and the 5-hydroxytryptamine1� antagonist 1 -(2-methoxyphenyl)-
4-[4-(2 phthalimido)butyl] piperazine (0.5 mg - kg1 i.p.). Nalox-
one, 3-aminopropyl-diethoxy-methyl-phosphinc acid, 2-methoxy-
4-amino-5-chlorobenzoic acid 2-(diethylamino) ethyl ester and

reserpine, administered in doses suitable for blocking analgesia
induced by morphine, baclofen, 5-hydroxytryptamine4 agonists
and clomipramine, respectively, did not modify sumatriptan an-
tinociception. Sumatnptan, administered in the range of antinoci-
ceptive doses, was able to increase the level of ACh present in
extracellular hippocampal space. On the basis of these findings,
we can deduce that sumatnptan was able to induce antinocicep-
tion by increasing cholinergic activation in the CNS. Such acti-
vation, as indicated by the antagonism exerted by 1 -(2-methoxy-
phenyl)-4-[4-(2 pethalimido)butyflpiperazine, may depend on
stimulation of 5-hydroxytryptamine1� autoreceptors. It remains to
be clarified whether the antimigraine activity of sumatnptan in
humans is totally dependent on cranial vessel vasoconstnction or
whether its central cholinergic antinociception also plays a role.

Modulation of antinociception can occur via different neu-

ronal systems. Many neuromediators, such as enkephalines,

y-aminobutyric acid, catecholamines, 5-HT and histamine,

are able to induce an enhancement of the pain threshold. In

particular, muscarmnic antinociception can be obtainable

through the stimulation of postsynaptic M1 receptors (Barto-

lini et at., 1992), the antagonism of muscarinic autoreceptors

(M2-M4) and receptors (D2, A1 and H3) (Ghelardini et at.,

1992) or the activation of 5-HT4 heteroreceptors (Ghelardini

et at., 1993).

Recently it was reported that 8-OH-DPAT, a 5-HT1 agonist

endowed with high selectivity compared with 5-HT� subtypes,

is able to induce antinociception in rodents (Ghelardini et at.,

1992; 1994; Milan 1994). This naloxone-resistant antinocicep-

tion is mediated by the central cholinergic system because it is

prevented by ACh depletion or by atropine administration

(Ghelardini et at., 1994). This observation is in agreement with
the results ofBianchi et at. (1990), which showed an increase in

ACh effiux from the cerebral cortex offreely moving guinea pigs

after administration of 8-OH-DPAT.

Sumatriptan (GR43175) is a novel 5-HT1D receptor agonist

that is effective in migraine attack (Doemcke et at., 1988; Hum-

phrey and Feniuk, 1991). However, sumatriptan also has aflin-
ity for 5-HT1A and 5-HT1B receptors (McCarthy and Peroutka
1989; Dechant and Clissold, 1992). In order to ascertain

whether sumatriptan, in addition to cranial vessel vasoconstric-

tion (Humphrey et at., 1990; Friberg et at., 1991; Maclntyre et

at., 1993; Humphrey and Goadsby, 1994), is able to induce

antinociception by increasing cerebral ACh release, we carried
out various common analgesic tests and determined hippocam-

pal ACh extracellular levels in laboratory animals.
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The number of mice is shown in parentheses. Physostigmine was injected 5 mm before sumatriptan. P < .05; ‘ � < .01 compared with saline controls. ‘ P < .05
vs. sumatnptan-treated mice.

1996 Sumatriptan Antinociception 885

26

24

22

,� 20
U

U

-� 18
as
.-�

C)

.-�
16

14

12

10

inn after treatment

45

Fig. I . Dose-response curves of sumatriptan in the mouse hot-plate
test. The doses are expressed as mg - kg1 i.p. Vertical lines show
S.E.M. - P < .05; ‘ P < .01 compared with saline controls. Each point
represents the mean of at least 10 mice.

Materials and Methods

Animnis. Male Swiss-Webster mice (22-28 g), male Wistar rats

(120-200 g) from Mon (San Polo d’Enza, Italy), male Sprague-
Dawley rats (220-250 g) from Charles River (Calco, Italy) and female
guinea pigs (150-200 g) from Rodentia (Bergamo, Italy) were used.
The animals were kept at 23#{176}C± 1#{176}C,with a 12-h light/dark cycle,
light at 7 A.M., and had food and water ad libitum. All experiments

were carried out according to the guidelines of the European Com-

munity Council on animal care.

Rota-rod. The integrity ofmotor coordination was assessed on the
basis of the endurance time of the animals on the rotating rod in
accordance with Vaught et al. (1985). The performance time was
measured before treatment and 15, 30 and 45 mm after treatment.

Hot-plate test. We adopted the method described by O’Callaghan
and Holtzman (1976), using a stainless steel container (36 X 28 X 30
cm), thermostatically set at 52.5#{176}C± 0.1#{176}C,in a precision water
bath. Mice with a licking latency below 12 and over 18 s in the test

before drug administration (30%) were rejected. An arbitrary cutoff

time of 45 5 was adopted.

Abdominal constriction test. The test was performed in mice in
accordance with Koster et al. (1959). The number ofstretching move-

TABLE 1

ments was counted for 10 mm, starting 5 mm after 0.6% acetic acid
injection.

Paw-pressure test. The nociceptive threshold in the Wistar rats
and guinea pigs was determined with an analgesimeter (Ugo Basile,
Varese, Italy), according to the method described by Leighton et at.

(1988). Rats and guinea pigs that scored below 40 g or over 80 g

during the test before drug administration were rejected. An arbi-

trary cutoff value of 250 g was adopted.

Determination of ACh extracellular levels by cerebral mi-
crodialysis. Sprague-Dawley rats were anesthetized with chloral

hydrate (0.4 gilg i.p.) and implanted with a dialysis tube (AN 69-HF,
wet tube outer diameter 320 pin; Hospal-Dasco, Bologna, Italy) at

the level ofdorsal hippocampus (A = -3 from bregma; V = -3.5 from

skull) according to the Konig and Klippel atlas (Konig and Klippel,

1963). Surgery was carried out by using the transversal microdialy-

sis technique, recently revised in order to cause less tissue damage

and reduce the glia reaction around the dialysis tube (Imperato et at.,

1992). Ringer’s solution containing (mM) KC1 3, NaC1 125, CaC12 1.3,

MgCl2 1.0, NaHCO3 23 and aqueous potassium phosphate buffer 1.5,

pH 7.3, was pumped through the dialysis probe at a constant rate of
2 �d/min. To achieve a detectable amount of ACh in the dialysate,

neostigmine 10� M was added to the Ringer’s solution. The extra-

cellular concentration of ACh was estimated in 20-mm samples (40
pJ) of dialysate by high-performance liquid chromatography with
electrochemical detection according to the technique described by

Damsma and Westerink (1991). The detection limit for ACh was 0.05

pmol per injection. Experiments were started 24 h after implantation

of the dialysis tube. Values of ACh after saline or sumatriptan

injection are expressed as percent ofbasal ACh extracellular concen-

trations. Each data point represents the mean ± S.E.M. of at least
eight rats. Basal values for each rat were calculated by taking the

mean ofthree or four samples that were not different from each other

by more than 10%.

Drugs. The following drugs were used: atropine sulfate and phy-
sostigmine sulfate (Sigma), hemicholimum-3 hydrobromide, nalox-

one hydrochloride, NAN-190 hydrobromide and ketanserine tartrate

(RB!), CGP-35348, clomipramine hydrochloride (Anafranil; Ciba-
Geigy), sumatriptan succinate (Glaxo). SDZ-205557 ethyl ester hy-

drochloride was prepared in the Department of Pharmaceutical Sci-

ences of Florence according to the method described by Romanelli et

al. (1993). Other chemicals were ofthe highest quality commercially
available. The doses given in the text are expressed as salts. All
drugs were dissolved in isotonic (NaCl 0.9%) saline solution imme-

diately before use. Drug concentrations were prepared so that the

necessary dose could be injected into a volume of 10 ml . kg ‘ by both

s.c. and i.p. routes. Intracerebroventricular administration was per-

formed under short ether anesthesia according to the method de-

scribed by Haley and McCormick (1957) for mice, which we adapted

for rats. In mice and rats (rat coordinates are reported in parenthe-

Effect of physostigmine on sumatriptan antinociception in the mouse hot-plate test

Treatment

Licking Latency (s)

Before

Pretreatment

After Treatment

15 mm 30 mm 45 mm

Saline 13.9 ± 0.9
(8)

14.3 ± 1.6

(8)

14.6 ± 1.2

(8)

13.8 ± 1.5

(8)
Physostigmine 13.7 ± 1 .1 16.7 ± 1 .5 14.1 ± 1 .2 13.6 ± 1.4

0.05 mg/kg i.p. (15) (15) (15) (15)
Sumatriptan 14.1 ± 1.3 26.2 ± 2.2’ 21.9 ± 2.6 17.5 ± 1.8
20 mg/kg s.c. (8) (8) (8) (8)
Physostigmine 14.3 ± 0.7 37.2 ± 3.1’#{176} 28.5 ± 2.7’#{176} 25.4 ± 1.9*0

and sumatnptan (10) (1 0) (1 0) (10)
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TABLE 2

EffeCtS of atropine, HC-3, naloxone, CGP-35348, NAN-190, ketanserine, SDZ-205557 and quinpirole on sumatriptan antinociception in
the mouse hot-plate test

Pretreatment Treatment mg . kg ‘ p.

Licking Latency (s)

Before
Pretreatment

After Treatment

15 mm 30 mm 45 mm

Saline Saline 13.7 ± 0.6 14.2 ± 0.8 14.5 ± 0.9 13.9 ± 0.9

10 ml - kg1 i.p. (22) (22) (22) (22)
Saline Saline 13.9 ± 0.4 14.7 ± 0.9 14.3 ± 0.8 14.1 ± 1.1

5 �I i.c.v. (29) (29) (29) (29)
Saline Sumatriptan 20 14.1 ± 0.6 25.7 ± 2.1** 22.0 ± 1.5** 17.6 ± 1.4

i.p.or i.c.v.
Sumatnptan 30

(23)

13.1 ± 1.0

(20)

(23)

25.1 ± 1.5**

(20)

(23)

24.4 ± 1.2*0
(20)

(23)
19.5 ± 1.3*

(20)
Atropine Saline 14.8 ± 0.6 13.9 ± 0.9 14.1 ± 0.5 14.8 ± 0.8

5 mg . kg1 i.p.
Sumatriptan

Sumatriptan

20

30

(23)
13.9 ± 1.2

(15)

14.1 ± 1 .1

(12)

(23)
15.7 ± 1.9�

(15)

20.6 ± 1 .7�

(12)

(23)
15.8 ± 27

(15)

19.9 ± 2.0*

(12)

(23)
16.1 ± 1.6

(15)

14.5 ± 1.9

(12)
HC-3 Saline 13.7 ± 1.8 13.5 ± 0.8 16.2 ± 0.6 15.3 ± 0.7

1 �.tg per mouse i.c.v.
Sumatriptan 20

(26)
1 3.8 ± 1 .1

(13)

(26)
1 4.0 ± 1 .9

(13)

(26)
1 3.6 ± 1 .9

(13)

(26)
1 3.0 ± 1.3

(13)
Naloxone Saline 13.8 ± 0.4 14.4 ± 0.7 13.4 ± 0.9 15.0 ± 0.7

1 mg . kg1 i.p.

CGP 35348

Sumatriptan

Saline

20
(15)

13.6 ± 0.5
(12)

13.6 ± 0.7

(15)
25.1 ± 2.90*

(12)
11.6 ± 0.9k

(15)
24.0 ± 2.2*0

(12)
12.7 ± 1.1

(15)
17.3 ± 1.7

(12)
12.3 ± 1.0

100 mg - kg1 i.p.
Sumatriptan 20

(8)
13.7 ± 0.5

(8)

(8)
24.5 ± 1.50*

(8)

(8)
18.7 ± 1.5

(8)

(8)
16.6 ± 1.3

(8)
NAN-190 Saline 15.6 ± 1.4 15.1 ± 2.1 16.3 ± 2.1 13.7 ± 1.8
0.5 mg - kg1 i.p.

Sumatnptan 20
(8)

1 4.4 ± 0.9

(10)

(8)
1 6.7 ± 1 .6�

(10)

(8)
14.9 ± 1 .T

(10)

(8)
1 3.6 ± 1.8

(10)

Ketanserine Saline 14.1 ± 1.0 15.1 ± 1.8 13.7 ± 2.1 13.9 ± 1.3

0.5 mg - kg1 i.p.

SDZ-205557

Sumatriptan

Saline

20
(1 0)

13.6 ± 1.1
(12)

13.7 ± 1.1

(1 0)

28.0 ± 2.20*
(1 2)

13.2 ± 1.9

(1 0)

26.5 ± 1.4*

(1 2)
14.1 ± 1.7

(10)

18.9 ± 1.6

(12)
14.4 ± 1.5

10 mg - kg1 i.p.
Sumatnptan 20

(10)
13.9 ± 0.9

(10)

(10)
26.1 ± 1.70*

(10)

(10)
21.6 ± 2.0*

(10)

(10)
17.6 ± 1.8

(10)
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The number of mice is shown in parentheses.
0* p < .oi ; � � < .05 compared with saline-saline; P < .01 vs. saline-sumatnptan.

ses), hypodermic needle a 0.5 mm in external diameter attached to a
10-�tl syringe was inserted perpendicularly through the skull and no

more than 2 (4) mm into the brain, where 5 (10)-pd solution was
injected. The injection site was 1.5 (2.5) mm from either side of the

midline on a line drawn through the anterior base of the ears. To

ascertain the exact site of i.c.v. injection, some mice and rats were
injected i.c.v. with 5 (10) pi of 1:10 diluted Indian ink, and their
brains were examined macroscopically after sectioning.

Statistical analysis. Results are given as the mean ± S.E.M. Anal-
ysis ofvariance, followed by Fisher’s PLSD procedure forpost-hoc com-

parison, was used to verify significance between two means. P-values of
less than .05 were considered significant. Data were analyzed with the
StatView for the Macintosh computer program (1992).

Results

Effect on pain threshold. The antinociceptive effect of

sumatriptan was investigated with the hot-plate test and

abdominal constriction test in mice and the paw-pressure
test in rats and guinea pigs. In the hot-plate test, sumathptan

injected i.p. at doses between 10 and 30 mg - kg’, induced a

significant increase in the pain threshold (fig. 1). The antinoci-

ceptive effect reached a maximum 15 mm after administration

and then diminished, disappearing within 45 mm. Table 1

shows that the antinociception induced by sumatriptan (20

mg - kg’ s.c.) is significantly increased and prolonged by a

physostigmine dose (0.05 mg - kg’ i.p.) that by itself neither

modifies the pain threshold nor exhibits cholinomimetic symp-

toms. Table 2 shows that sumatriptan antinociception was com-

pletely prevented by atropine (5 mg - kg’ i.p.), by the choline

uptake blocker HC-3 (1 �ig per mouse i.c.v.) and by the 5-HT1A

antagonist NAN-190 (0.5 mg - kg� i.p.), all injected 15 mm

before sumatriptan with the exception of HC-3, which was

administered 5 h before the analgesic test. Conversely, no mod-

ification in sumatriptan antinociception was obtained by pre-

treating the mice with the opioid antagonist naloxone (1

mg - kg’ i.p.), the GABAB antagonist CGP-35348 (100

mg - kg’ i.p.), the 5-HT2 antagonist ketanserine (0.5 mg - kg’

i.p.) or the 5-HT4 antagonist SDZ-205557 (10 mg - kg’ i.p.).

CGP-35348 was injected 5 mm before sumatriptan, and nalox-

one, ketanserine and SDZ-205557 were injected 15 mm before

sumatriptan administration.
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TABLE 3

Effect of sumatriptan injected i.c.v. in the mouse hot-plate test

Sumatriptan Antinociception 887

Treatment
(icy.)

Dose
(p.g per mouse)

Licking L atency (s)

Before
Treatment

After Treatment

.
15 mm

.
30 mm

.
45 mm

Saline 13.9 ± 0.9 15.0 ± 2.0 14.9 ± 1.7 14.0 ± 1.9

Sumatriptan 1 14.0 ± 0.9 13.6 ± 2.1 14.1 ± 1.8 14.0 ± 2.7
Sumatriptan 5 13.6 ± 1.1 14.1 ± 2.0 14.6 ± 2.1 14.9 ± 1.9
Sumatnptan 10 14.5 ± 1.1 16.8 ± 2.1 16.7 ± 1.8 15.4 ± 1.3
Sumatriptan 50 13.9 ± 0.9 20.5 ± 1.3* 21.2 ± 1.3* 15.8 ± 1.2
Sumatriptan 100 14.2 ± 1.3 24.6 ± 1.3* 21.4 ± 1.3* 17.1 ± 1.2

The number of mice ranged from 10 to 20.
0 p < .oi compared with saline controls.
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Fig. 2. Dose-response curves of
sumatriptan administered p. (A),

i.c.v. (B) and iv. (C) in the mouse
abdominal constriction test. (D) Ef-

fect of HC-3 (1 i�g per mouse icy.)
pretreatment on antinociception
induced by sumatriptan. HC-3 was
injected 5 h before the test.

Sumatriptan in panel D was in-
jected 1 5 mm before the test. Ver-

tical lines show S.E.M. P < .05;
0 p < o.oi compared with saline
controls. #{176}P < .05 compared with
sumatriptan (30 mg . kg�’ p.).
Each column represents the mean

20 of at least eight mice.
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The numbers of rats and guinea-pigs are shown in parentheses.
* P < .01 compared with saline-saline; P < .01 vs. saline-sumatnptan.

Table 3 shows the results obtained on the hot-plate test in
the mouse after i.c.v. administration of sumatriptan. The
antinociception obtained was of comparable intensity to that

observed after i.p. injection.
The dose-response curves ofsumatriptan administered i.p.,

i.c.v. and i.v. on the abdominal constriction test are shown in

figure 2 (panels A, B and C). Sumatriptan, injected i.p. at the
doses of 20 and 30 mg - kg ‘, induced antinociception that
lasted 2h (fig. 2A). Both doses decreased the number of ab-

dominal constrictions and had a maximum effect 15 and 30
mm after treatment. Likewise, sumatriptan, injected i.c.v. at

50 to 100 i.�g per mouse and i.v. at 5 to 10 mg - kg’ induced
antinociception (fig. 2, B and C). HC-3 prevented the antino-
ciceptive effect ofsumatriptan at the dose of 20 mg - kg ‘ i.p.
but did not completely block antinociception induced by
sumatriptan at the dose of 30 mg - kg ‘ i.p. (fig. 2D). As
shown in table 4, sumatriptan antinociception was confirmed

in the rat and guinea pig paw-pressure test, where the time

course reflected that observed with the hot-plate test (fig. 1).

In the paw-pressure test, as in the hot-plate test, pretreat-
ment of rats with atropine or with HC-3 prevented

sumatriptan antinociception.
Finally, it should be noted that sumatriptan elicited its

antinociceptive effect without changing either gross behavior
or motor coordination as revealed by the rota-rod test, where
sumatriptan, administered within the antinociception dose

range, did not increase the number of falls from the rotating
rod in comparison with saline treated mice (table 5). The
number of falls in the rota-rod test progressively decreased

as a function ofthe number ofexperimental sessions. In other

TABLE 4

words, mice progressively learned to remain in equilibrium

on the rotating rod.
Effect on ACh extracellular levels. The basal hip-

pocampal ACh recovered by freely moving rats was 3.04 ±

0.07 pmolJ2O mm (mean ± S.E.M.; 26 rats); in control ani-

mals, this amount remained stable throughout the experi-

ment. As shown in figure 3, sumatriptan dose-dependently
brought about a statistically significant increase in dialyzed

ACh, which peaked 40 to 60 min after administration and

returned to basal values within 120 mm. The maximum

percentage increases in recovered ACh were 149.3 ± 3.0%

and 208.0 ± 2.1%, respectively, for the doses of 15 and 30

mg - kg’ i.p.

Discussion

Sumatriptan, like 8-OH-DPAT (see introduction), is able to
induce antinociception in mice, rats and guinea pigs. Antino-

ciception is elicited regardless of which noxious stimulus is

used: thermal (hot-plate test), chemical (abdominal constric-
tion test) or mechanical (paw-pressure test). Although an-

tinociception is obtained by administering sumatriptan doses
(ranging from 5 mg - kg ‘ i.v. to 30 mg - kg ‘ i.p.) higher
than those (05 mg - kg’ i.v.) that elicit cerebral vessel con-

striction (Kobari et at., 1993), the increase in the pain thresh-

old is obtained without any visible modification of animal
behavior (the researchers, who were unaware of the treat-

ment received by the animals, were unable to distinguish

between controls and sumatriptan-treated groups). More-

Antinociception exerted by sumatriptan in the paw-pressure test: in the rat (A) and the guinea pig (B) and antagonism by atropine
and HC-3 on sumatriptan antinociception in rats

Pretreatment
Treatment

(i.p.)
Dose

mg . kg1

Paw Pressure (g)

Before
Pretreatment

After Treatment

15 mm 30 mm 45 mm

A) Saline Saline 64.9 ± 3.2 63.0 ± 3.0 60.4 ± 3.6 62.0 ± 3.0

10 ml . kg1 i.p. (12) (12) (12) (12)

Saline 63.2 ± 3.8 66.5 ± 3.2 64.6 ± 3.0 61 .5 ± 3.2
10 �J i.c.v. (9) (9) (9) (9)
Saline Sumatriptan 1 0 65.6 ± 4.0 68.0 ± 4.2 62.0 ± 4.0 55.8 ± 5.4

i.p. or i.c.v.
Sumatriptan

Sumatriptan

20

30

(5)
65.0 ± 3.6

(10)
64.0 ± 4.0

(8)

(5)
114.8 ± 5.0k

(10)
120.6 ± 6.2*

(8)

(5)
90.0 ± 4.2*

(10)
95.0 ± 4.2*

(8)

(5)
64.5 ± 4.0

(10)
70.5 ± 5.0

(8)

Atropine Saline 58.8 ± 3.0 62.2 ± 4.0 60.6 ± 3.2 60.2 ± 4.0

5 mg . kg1 i.p.
Sumatriptan 20

(10)
62.8 ± 2.8

(5)

(10)
66.2 ± 54*

(5)

(10)
63.2 ± 4.0

(5)

(10)
62.1 ± 4.8

(5)

HC-3 Saline 63.8 ± 4.0 63.7 ± 4.7 60.2 ± 3.0 58.4 ± 4.4

1 �.tg per rat i.c.v.

Sumatnptan 20
(10)

64.0 ± 4.2
(5)

(10)
56.0 ± 6.4

(5)

(10)
56.0 ± 4ff

(5)

(10)
62.0 ± 6.4

(5)
B) Saline

Sumatnptan

Sumatnptan

Sumatnptan

1

10

20

62.3 ± 3.0
(4)

64.8 ± 4.0

(5)

60.2 ± 4.8
(6)

58.0 ± 3.2
(5)

56.8 ± 5.2
(4)

59.6 ± 4.0

(5)

68.8 ± 5.6

(6)

102.0 ± 4#{149}3*
(5)

54.9 ± 5.8
(4)

57.8 ± 4.2

(5)
66.8 ± 4.4

(6)

82.0 ± 4.0*

(5)

52.4 ± 5.5
(4)

53.8 ± 4.8
(5)

52.8 ± 5.0

(6)

66.8 ± 3.2
(5)
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Treatment Dose

Number of Falls (30s)

Before

Treatment

After Treatment

15 mm 30 mm 45 mm

Saline 2.2 ± 0.3 1 .8 ± 0.2 1 .4 ± 07 0.6 ± 0.2�

Sumatriptan
Sumatnptan

10 mg . kg1
20 mg - kg1

i.p.
i.p.

2.4 ± 0.2
2.3 ± 0.4

2.1 ± 0.4
1.7 ± 0.3

1.3 ± 0.3
1.1 ± 0.3�

0.9 ± 0.2�

0.8 ± 0.3�
Sumatriptan
Sumatriptan

30 mg - kg1
50 mg . kg1

i.p.
i.p.

2.4 ± 0.4

2.1 ± 0.3
1 .9 ± 0.2
2.4 ± 0.3*

1 .3 ± 0.3
2.2 ± 0.3*

0.7 ± 0.2�
1.9 ± 0.2*

Saline 5 �.tl i.c.y. 2.1 ± 0.4 1 .6 ± 0.3 1 .5 ± 0.2 1 .1 ± 0.1�

Sumatnptan 100 �g i.c.y. 2.3 ± 0.5 1.9 ± 0.3 1.6 ± 0.3 1.3 ± 0.3�
Sumatriptan 150 �g i.c.y. 2.5 ± 0.4 2.6 ± 0.2* 2.0 ± 0.3* 1.9 ± 0.4*

Each value represents the mean of 10 mice.
0 p < .oi compared with saline controls.

- P < .05, P < .01 compared with the respective pretest value.

*

200

U

.4:

,�l60

�120

80 � . . . . .

t 20 40 60 80 100 120. . Time (mm)
Injection

Fig. 3. Dose-response curves of sumatriptan on extracellular ACh level
from rat hippocampus. The doses are expressed as mg - kg1 i.p..
Vertical lines give S.E.M. Each point represents the mean ofat least 8 to 10

independent expenments. � � < .01 compared with saline controls.
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TABLE 5
. Effect of sumatriptan in the mouse rota-rod test

over, the sumatriptan-treated mice exhibit a normal perfor-
mance on the rota-rod test.

For the following reasons, we know that sumatriptan ex-
erts its antinociceptive effect by acting centrally. 1) It is

possible to reach the same intensity of analgesia by injecting,
directly into the cerebral ventricles, doses (50-100 �g per

mouse) of sumatriptan that are considerably lower than
those needed parenterally. Dependence of the antinocicep-
tion on a retrodiffusion of the drug from the cerebral ventri-

des to the periphery can thus be ruled out. 2) The i.c.v.
administration of HC-3 is able to antagonize the increase in
the sumatriptan pain threshold.

Sumatriptan antinociception is dependent on central cholin-

ergic activation and 5-HT� receptor stimulation. Sumatriptan

antinociception is prevented not only by the 5-HT� antagonist

NAN-190 but also by the muscarinic antagonist atropine and

the ACh depletor HC-3. Therefore, the effectiveness of the cen-

tral cholinergic system is fundamental for sumatriptan antino-

ciception. It is well known that direct or indirect cholinomimet-

ics are able to increase the pain threshold in both humans

(Hood et at., 1995) and animals (George et at., 1962; Herz, 1962;

Ireson, 1970; BartOlini et at., 1987 and 1992).

Other neurotransmitter systems are not involved in

sumatriptan antinociception; the opioid antagonist naloxone,

the GABAB antagonist CGP-35348, the 5-HT2 antagonist

ketanserine and the 5HT4 antagonist SDZ-205557 are all

unable to prevent the sumatriptan effect. The doses and
administration schedules of the above-mentioned drugs are

suitable for preventing antinociception induced by morphine

(Ghelardini et at., 1990), GABAB agonists (Malcangio et at.,

1991) and 5HT4 agonists (Ghelardini et at., 1993). As far as

ketanserine is concerned, we used the highest dose that is

devoid of effect on locomotor activity. This was necessary

because no selective 5-HT2 agonists were available to enable

us to determine the exact antagonistic dose of ketanserine.

Moreover, the lack of availability of selective antagonists for

5-HT1B and 5-HT1D receptors prevented us from ruling out

the possible involvement ofthese two receptors. The fact that

other 5-HT1A agonists, such as 8-OH-DPAT (Ghelardini et

at., 1994), buspirone and gepirone (Ghelardini et at., 1995), are

able to induce antinociception of a cholinergic type, just as

sumatriptan does, seems to confirm the conclusion that 5-HT�

receptors play a role, but it does not rule out the possibility that

other 5-HT receptor subtypes may also be involved.
Our results indicate a good relationship between the an-

tinociceptive effect of sumatriptan and the increase of hip-

pocampal ACh levels. Because the brain structures involved

in sumatriptan antinociception are as yet unknown, we had
no criteria for selecting a specific area for measuring ACh

release through microdialysis experiments. We chose the hip-
pocampus not only because it contains a high density of

5-HT1A receptors (Desmukh et at., 1983; Verge et at., 1986),

but also because the activation of 5-HT1A receptors in this
structure caused an increase ofACh release that was blocked

by NAN-190 (Izumi et al., 1994). Moreover, the hippocampus
is very rich in muscarinic M1 receptors (Mash and Potter,
1986), which are responsible for cholinergic-type antinocicep-

tion (Bartolini et al., 1992).
The greater latency required to reach the maximum in-

crease in ACh concentration (40 mm) compared with that
required for the antinociceptive peak (15 mm) could be as-
cribed to the time taken by ACh to diffuse from the synaptic

cleft to the microdialysis tube. Moreover, we must remember
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that microdialysis experiments were performed in the pres-

ence of physostigmine, which, by inhibiting the degradation
ofACh, potentiates and prolongs the increase of extracellular

ACh due to sumatriptan. This could explain the discrepancy

between the time courses of sumatriptan antinociception,

obtained in the absence of physostigmine, and of ACh levels

measured in microdialysis experiments. As a matter of fact,

sumatriptan antinociception is greatly potentiated and pro-

longed by a dose of physostigmine that by itself is devoid of

effect (table 1).
Skingle et at. (1990) have reported that sumatriptan has

little or no antinociceptive activity against a range of noxious

stimuli in rodents. Because the doses of sumatriptan injected

by these authors were in the same range as ours, the striking

discrepancy between our and their results is probably due to

the excessive delay with which these authors detected the

pain threshold. Unfortunately, Skingle et at. (1990) do not

report the time elapsed from sumatriptan injection to reve-

lation of the pain threshold. Our data show that the

sumatriptan antinociceptive effect almost disappears after

30 mm. At this time, morphine reaches its maximum anal-
gesic activity. Because Skingle et al. compared the effect of

sumatriptan with morphine’s antinociceptive effect, we sup-

pose that they used the same experimental parameters for

both drugs, which may have impeded the disclosure of
sumatriptan antinociception.

In summary, our results show that sumatriptan is able to
potentiate endogenous cholinergic activity, which may ac-

count for at least some reported side effects elicited by the

drug during migraine therapy. It remains to be determined
whether the sumatriptan antinociception observed in rodents

and guinea pigs contributes to the antimigraine activity elic-

ited by the drug in humans.
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