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Abstract
We study the inverse problem of determining the position of the moving
C-terminal domain in a metalloprotein from measurements of its mean
paramagnetic tensor χ̄ . The latter can be represented as a finite sum involving
the corresponding magnetic susceptibility tensor χ and a finite number of
rotations. We obtain an optimal estimate for the maximum probability that
the C-terminal domain can assume a given orientation, and we show that only
three rotations are required in the representation of χ̄ , and that in general two
are not enough. We also investigate the situation in which a compatible pair
of mean paramagnetic tensors is obtained. Under a mild assumption on the
corresponding magnetic susceptibility tensors, justified on physical grounds,
we again obtain an optimal estimate for the maximum probability that the
C-terminal domain can assume a given orientation. Moreover, we prove that
only ten rotations are required in the representation of the compatible pair of
mean paramagnetic tensors, and that in general three are not enough. The
theoretical investigation is concluded by a study of the coaxial case, when all
rotations are assumed to have a common axis. Results are obtained via an
interesting connection with another inverse problem, the quadratic complex
moment problem. Finally, we describe an application to experimental NMR
data.

1. Introduction

The availability of genomic data has created a need for rapid and efficient determination of
three-dimensional structures of the corresponding proteins. It is commonly accepted that each
protein has a unique fold, but no a priori theoretical method is presently available to obtain
it from knowledge of the sequence of amino acids which constitute the protein. The primary
purpose of this paper is to contribute by addressing a related inverse problem.
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There are proteins which exhibit, under particular conditions, a certain degree of freedom.
A widely-studied case is that of calmodulin, which consists of two rigid domains, called the
N-terminal and C-terminal domains, connected by a short flexible linker. The relative positions
of the two domains have been recently studied using numerical methods in [2]. Calmodulin
is a metalloprotein, one of the one-third or so of all proteins that contain at least one metal
ion. For such proteins, new NMR structural constraints, the paramagnetism-based constraints,
can be obtained to study the positions of the domains; see [5]. We focus in this paper on
residual dipolar couplings (RDC) δrdc

ab , which are due to the induced partial orientation in high
magnetic field caused by anisotropy of the magnetic susceptibility tensor, a 3 × 3 symmetric
matrix χ . These are given by the equation (see [14])

δrdc
ab = Crdc

r5
ab

P ∗
abχPab, (1)

where Crdc is a constant, Pab = (xab, yab, zab)
∗ is the transposed position vector in the

same reference system as the matrix χ , where (xab, yab, zab) are the differences between the

coordinates of selected pairs of atoms a and b, and rab =
√

x2
ab + y2

ab + z2
ab.

Since the isotropic part of the magnetic susceptibility tensor χ does not influence the RDC,
the trace of χ is usually assumed to be zero, and we will make this assumption throughout the
paper.

For many metalloproteins, it is possible to substitute one metal ion with a different one.
In these cases more than one set of RDC can be obtained, as different metal ions determine
different magnetic susceptibility tensors (see [1, 3]). The removal of the metal ion present in
the binding site may cause conformational modifications; however, these can be limited by
substituting the metal ion with one having the same charge; see [1].

The binding site of the metal ion in calmodulin belongs to the N-terminal domain. The
measured values of RDC for pairs of atoms belonging to the N-terminal domain can be used
to determine a good estimate of χ . The measured values of RDC for pairs of atoms belonging
to the C-terminal domain can be used to study the relative orientation of the two domains.
The rigid structures of both domains are assumed to be known in a reference frame, the lab
frame. The orientation of the C-terminal domain with respect to χ may be represented by a
rotation matrix R, transforming the lab frame into the orientation of the C-terminal domain.
There is an unknown probability measure p in the set of rotations such that the mean RDC δ̄rdc

ab

are given by

δ̄rdc
ab = Crdc

r5
ab

∫
SO3

(RPab)
∗χ(RPab) dp(R).

(See section 2 for definitions and notation.) Using the 3 × 3 matrix χ̄ called the mean
paramagnetic tensor, defined by

χ̄ij =
∫

SO3

(R∗χR)ij dp(R), (2)

this formula may be recast in the form

δ̄rdc
ab = Crdc

r5
ab

P ∗
abχ̄Pab. (3)

Clearly, the mean RDC of any pair can be calculated from χ̄ . On the other hand, χ̄ can
be estimated from a number of mean RDC of the C-terminal domain (specifically, five are
enough, if the mean RDC are exact, to determine the quadratic form associated with χ̄ , while
if errors are present a larger number are needed to get a good fit by numerical methods).
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In this paper we study the inverse problem of determining the position of the moving
C-terminal domain from measurements of χ̄ . The fact that χ̄ contains information about the
motion of the C-terminal domain is already clear from the following extremal cases.

(i) Suppose the C-terminal domain does not move. Then p = δR0 for some rotation R0

and χ̄ = R∗
0χR0 has the same eigenvalues as χ .

(ii) Suppose that all orientations of the C-terminal domain are equally likely, that is, p is
the Haar measure (see section 2) in SO3. Then χ̄ = 0, by lemma 3.1.

Note, however, that knowledge of the five distinct entries of the symmetric matrix χ̄ does
not allow exact reconstruction of the probability measure p.

We begin our analysis in section 3 by observing that a mean paramagnetic tensor χ̄ can
be assumed to be of the special form

χ̄ =
∑

j

pjR
∗
j χRj , (4)

where the sum is finite, Rj ∈ SO3 for each j , and
∑

j pj = 1 with each pj � 0. What is of
interest to chemists is the maximum probability such that the C-terminal domain can assume a
given orientation. They do this by a numerical fit based on an assumption that representation
(4) involves a particular number of rotations. This number therefore is also of interest.

In this paper we prove that one can always find a representation (4) of χ̄ involving only
three rotations (see theorem 3.5) and that this number is in general the minimum. Moreover,
theorem 3.8 provides an optimal estimate of the maximum probability that a given orientation
may be assumed by the C-terminal domain.

In practice (see [2, 4]), more than one metal ion can be substituted. We limit the analysis
to the two-metal-ion case for simplicity, considering a compatible pair (χ̄1, χ̄2) of mean
paramagnetic tensors, each of form (4), for the same rotations Rj and coefficients pj . The
corresponding magnetic susceptibility tensors χ1 and χ2 can clearly be assumed to be not
proportional; moreover, a slightly stronger assumption (assumption A), that χ1 and χ2 do not
have a common eigenvector, can be justified on physical grounds. As was noted in [10], the
data can now be combined to remove a certain non-uniqueness issue (compare lemma 3.7 and
proposition 4.5). In section 4, we use a version of Carathéodory’s theorem to prove that a
compatible pair of representations can always be found involving at most 10 rotations (see
theorem 4.2). It is quite likely that this number may be reduced, but we give an example
in section 6 (see also theorem 4.4) to show that under assumption A, at least four rotations
are needed in general. Also under assumption A, theorem 4.6, a two-metal-ion counterpart
of theorem 3.8, again provides an optimal estimate of the maximum probability that a given
orientation may be assumed by the C-terminal domain.

The difficulty of finding the minimum number of rotations involved in representations of
mean paramagnetic tensors is highlighted in our discussion in section 5 of an apparently much
simpler special case in which all the rotations have a common axis. The minimum number of
rotations is then three, but to prove this we resort to a fascinating connection with the famous
moment problem, specifically the quadratic complex moment problem. Our result is obtained
as an easy corollary of the recent solution of the latter by Curto and Fialkow [6], but this
solution is itself by no means simple.

Finally, section 7 describes an application to experimental NMR data.

2. Definitions and notation

As usual, the standard orthonormal basis for n-dimensional Euclidean space R
n will be

{e1, . . . , en}, and Sn−1 is the unit sphere in R
n. The norm in R

n is denoted by ‖·‖.
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The dimension of a set A is the dimension of its affine hull, and written dim A.
The determinant and transpose of a matrix M are denoted by det M and M∗, respectively.
We write SO3 for the special orthogonal group of rotations in R

3. There is a unique
rotation-invariant (uniform) probability measure in SO3, the Haar measure; see [13, Satz
1.2.4] for a clever direct construction of this measure. By δx we mean the Dirac measure of
unit mass concentrated at the point x.

The coordinate axis reflections in R
3 will be denoted by Si, i = 1, 2, 3, where Si is

the diagonal matrix with 1 in place ii, and −1 in the remaining diagonal places. It will be
convenient to write S0 for the identity matrix. The matrix with all entries zero will be denoted
by 0.

3. The one-metal-ion case

In this section we study the information that can be gathered from measurements arising from
one metal ion.

Let µmin, µ2, and µmax be the eigenvalues of the magnetic susceptibility tensor χ , in
increasing order, and let

χd =

µmin 0 0

0 µ2 0
0 0 µmax


 (5)

be the standard diagonalized form of χ . The calculated values (see [3]) show that in physical
situations no eigenvalue can be zero, and all eigenvalues are distinct. We shall therefore make
this assumption in this paper. Then, using the fact that trace χ = 0, we have

µmin < 0 < µmax and − 2µmax < µmin < −µmax/2. (6)

Lemma 3.1. Let the mean paramagnetic tensor χ̄ be given by (2). If p is the Haar measure
in SO3, then χ̄ = 0.

Proof. We may assume that χ = χd is given by (5). The matrix for the rotation R around an
axis parallel to the unit vector (x, y, z) by angle 0 � α < 2π is given by

R =

 cos α + (1 − cos α)x2 (1 − cos α)xy − z sin α (1 − cos α)xz + y sin α

(1 − cos α)xy + z sin α cos α + (1 − cos α)y2 (1 − cos α)yz − x sin α

(1 − cos α)xz − y sin α (1 − cos α)yz + x sin α cos α + (1 − cos α)z2


 . (7)

(Compare [15, p 582].) In terms of spherical polar coordinates (ρ, θ, φ), where ρ � 0,

0 � θ < 2π and 0 � φ � π , we have x = ρ cos θ sin φ, y = ρ sin θ sin φ, and z = ρ cos φ.
Substituting these values into (7), and using the formula (see [9, (4.77)])

dp(R) = 1

4π2
sin2(α/2) sin φ dα dθ dφ,

the right-hand side of (2) can be shown to be equal to zero for all i and j by routine calculation.
We omit the details. �

We assume henceforth that the mean paramagnetic tensor is given by

χ̄ =
∑

j

pjR
∗
j χRj , (8)

where the sum is finite, Rj ∈ SO3 for each j , and
∑

j pj = 1 with each pj � 0. (It is
convenient to allow pj = 0, though of course in this case the corresponding term in (8) can
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Figure 1. Hexagon (shaded) representing the set H of diagonal matrices.

be dropped.) This assumption, that the general representation (2) of χ̄ can be replaced by (8),
is equivalent to assuming that the measure p in (2) is concentrated on a finite set of rotations.
Theorem 3.5 below justifies the assumption.

Let V = V (χ) be the set of all mean paramagnetic tensors of form (8). Each matrix in
V is symmetric and so can be represented as a point in R

5, for example by taking, in some
particular order, the entries of the upper triangular part of the matrix excepting the lower right
diagonal entry. In this way V can be regarded as a subset of R

5. The following lemma collects
some basic properties of V .

Lemma 3.2. Let χ̄ ∈ V . Then

(i) χ̄ is symmetric,
(ii) traceχ̄ = 0,

(iii) V is a compact convex subset of R
5, and

(iv) R∗χ̄R ∈ V , for each R ∈ SO3.

Proof. Property (i) is trivial and (ii) follows from the linearity of the trace and its invariance
for similar matrices. As for (iii), representation (8) shows that V is precisely the convex hull
in R

5 of the compact set {R∗χR : R ∈ SO3}. Property (iv) follows from the fact that the
product of rotations is a rotation. �

Let H be the set of all diagonal matrices D = (dij ) with zero trace and with eigenvalues
in the interval [µmin, µmax]. Since µmin � d33 = −d11 − d22 � µmax, each element of H
is represented by the point (d11, d22) in the shaded hexagon shown in figure 1. Each vertex
of the hexagon corresponds to a diagonal matrix whose diagonal entries are the eigenvalues
µmin, µ2 and µmax of χ , ordered in one of the six possible ways. Therefore each such vertex
corresponds to a matrix Q∗

i χdQi , where Qi is one of the six rotation matrices that permute
the axes of the reference system (possibly reversing the direction of an axis). The vertices are
all distinct because the strict inequalities (6) hold.

Theorem 3.3. The set V is the set of symmetric 3 × 3 matrices with zero trace and with
eigenvalues in the interval [µmin, µmax].
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Proof. Let χ̄ ∈ V . Then χ̄ is symmetric and has zero trace, by lemma 3.2(i) and (ii).
Moreover, for each unit vector x, using (8), we obtain

x∗χ̄x =
∑

j

pj (Rjx)∗χ(Rjx) �
∑

j

pjµmax = µmax.

Similarly, x∗χ̄x � µmin. It follows that the eigenvalues of χ̄ lie in the interval [µmin, µmax].
Now suppose that M is symmetric with zero trace and with eigenvalues in the interval

[µmin, µmax]. Then M is similar to a diagonal matrix R∗MR in H, which is represented by
a point in the shaded hexagon in figure 1. This point is a convex combination of three (not
necessarily distinct) vertices of the hexagon; let the corresponding rotations be Qij , j = 1, 2, 3.

Then R∗MR = ∑3
j=1 pjQ

∗
ij
χdQij , yielding

M =
3∑

j=1

pj

(
Qij R

∗)∗
χd

(
Qij R

∗).
Comparing (8), we see that M ∈ V and the theorem is proved. �

The previous theorem and its proof give the following corollary.

Corollary 3.4. The set V has the following properties.

(i) The zero matrix 0 ∈ V ,
(ii) dim V = 5, and

(iii) each χ̄ ∈ V has a representation (8) involving at most three rotations Rj .

Proof. Only (ii) requires comment. For this, note that if χ̄ ∈ V has eigenvalues in
(µmin, µmax), then by continuity of the eigenvalues with respect to the elements of the matrix,
a neighbourhood of χ̄ in R

5 also belongs to V . �

Theorem 3.5. Suppose that χ̄ is a mean paramagnetic tensor of the general form (2). Then
χ̄ also has a representation of form (8) involving at most three rotations.

Proof. Note that representation (2) implies that χ̄ is symmetric and trace χ̄ = 0. For each
unit vector x, we have

x∗χ̄x =
∫

SO3

(Rx)∗χ(Rx) dp(R) �
∫

SO3

µmax dp(R) = µmax,

and similarly µmin � x∗χ̄x. It follows that the eigenvalues of χ̄ lie in the interval [µmin, µmax].
By theorem 3.3, χ̄ ∈ V , and the proof is completed by corollary 3.4 (iii). �

Lemma 3.6. The zero matrix 0 ∈ V has no representation of form (8) involving only two
rotations. However, 0 can be represented in the form

0 = 1
3χd + 1

3P ∗
1 χdP1 + 1

3P ∗
2 χdP2, (9)

where P1 and P2 are the two rotations that cyclicly permute the axes.

Proof. Suppose that 0 = p1R
∗
1χR1 + p2R

∗
2χR2, for some R1, R2 ∈ SO3, where p1 + p2 = 1.

Then p3
1 det(R∗

1χR1) = −p3
2 det(R∗

2χR2), so
(
p3

1 + p3
2

)
det χ = 0. This implies det χ = 0,

contradicting the fact that the eigenvalues of χ are nonzero.
A direct computation with

P1 =

0 1 0

0 0 1
1 0 0


 and P2 =


0 0 1

1 0 0
0 1 0




establishes representation (9). �
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Note that (9) is not the only way to represent the zero matrix. For instance, if
−µmin > µmax, then direct calculation yields

0 = µmax

µmax − µmin
χd +

µmin + µmax

2µmin + µmax
P ∗

1 χdP1 +
−(

µ2
min + µminµmax + µ2

max

)
(µmax − µmin)(2µmin + µmax)

Q∗
2χdQ2, (10)

where

Q2 =

0 0 −1

0 1 0
1 0 0


 .

Similarly, if −µmin < µmax, we have

0 = µmin

µmin − µmax
χd +

µmin + µmax

2µmax + µmin
P ∗

2 χdP2 +
−(

µ2
min + µminµmax + µ2

max

)
(µmin − µmax)(2µmax + µmin)

Q∗
2χdQ2. (11)

Note that the denominators of the coefficients in (10) and (11) are nonzero, by (6); however,
these coefficients now depend on the eigenvalues.

The only rotations R such that R∗χdR = χd are the identity S0 and the coordinate
axis reflections Si, i = 1, 2, 3 (see section 2). There is a consequent non-uniqueness in the
representation (8) of certain χ̄ , as the following lemma demonstrates.

Lemma 3.7. Let χ̄ = R∗
0χdR0 for some R0 ∈ SO3. Then every representation of χ̄ as in (8)

can also be written as

χ̄ =
3∑

i=0

pi(SiR0)
∗χd(SiR0), (12)

where pi, i = 0, . . . , 3 are arbitrary nonnegative coefficients with
∑

i pi = 1.

Proof. Note that for each i we have (SiR0)
∗χd(SiR0) = R∗

0χdR0. Therefore if pi, i = 0, . . . , 3
are arbitrary nonnegative coefficients with

∑
i pi = 1, then (12) holds.

On the other hand, the eigenvalues of χd and χ̄ are the same. If χ̄ = ∑
j pjR

∗
j χdRj , then

χd = R0χ̄R∗
0 = ∑

j pj (RjR
∗
0)

∗χdRjR
∗
0 . Therefore

µmax = e∗
3χde3 =

∑
j

pj (RjR
∗
0e3)

∗χdRjR
∗
0e3 �

∑
j

pjµmax = µmax.

It follows that for each j, (RjR
∗
0e3)

∗χdRjR
∗
0e3 = µmax, and hence, since the eigenvalues of

χd are simple, that RjR
∗
0e3 = ±e3. Analogously, using µmin, we obtain RjR

∗
0e1 = ±e1 for

each j . This shows that for each j , there is an i such that RjR
∗
0 = Si , i.e., Rj = SiR0. Thus

(12) holds. �

Let χ̄ be a mean paramagnetic tensor, and let R0 be a given rotation. From the physical
point of view, it is important to obtain an estimate of the maximum probability pmax for
which the C-terminal domain can assume the relative orientation R0. In practice (see [2]) it is
reasonable to suppose that the orientations for which small values of pmax are obtained cannot
be assumed by the domain. The following result is an optimal estimate.

Theorem 3.8. Let χ̄ be of form (8), let R0 ∈ SO3, and let pmax be the maximum probability
such that the C-terminal domain can assume the relative orientation R0. Then

pmax = sup

{
0 � t < 1 :

χ̄ − tR∗
0χdR0

1 − t
∈ V

}
. (13)
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Proof. Let

tmax = sup

{
0 � t < 1 :

χ̄ − tR∗
0χdR0

1 − t
∈ V

}
. (14)

We consider various cases.
Suppose first that χ̄ = R∗χdR for some R ∈ SO3. If R = SiR0 for some 0 � i � 3,

then pmax = 1 because χ̄ = R∗
0S

∗
i χdSiR0 = R∗

0χdR0, and tmax = 1 because (χ̄ − tR∗
0χdR0)/

(1 − t) = χ̄ ∈ V for each t < 1. On the other hand, if R �= SiR0 for i = 0, . . . , 3, then
pmax = 0 by lemma 3.7. Moreover, if (R∗χdR − tR∗

0χdR0)/(1 − t) ∈ V for some 0 < t < 1,
then by (8) we have

R∗χdR = tR∗
0χdR0 + (1 − t)

∑
j>0

pjR
∗
j χdRj ,

and this is impossible by lemma 3.7 because R �= SiR0. Hence tmax = 0.
Now suppose that χ̄ /∈ {R∗χdR : R ∈ SO3}, and suppose the C-terminal domain has

relative orientation R0 with probability p0. Then χ̄ = p0R
∗
0χdR0 +

∑
j>0 pjR

∗
j χdRj , and so

χ̄ − p0R
∗
0χdR0

1 − p0
=

∑
j>0

pj

1 − p0
R∗

j χdRj ∈ V,

since
∑

j>0 pj/(1 − p0) = 1. This shows that pmax � tmax. To prove the reverse inequality,
note first that since χ̄ /∈ {R∗χdR : R ∈ SO3}, the numerator of (χ̄ − tR∗

0χdR0)/(1 − t)

is different from 0 for t close to 1 and the denominator tends to 0 as t → 1. Since
V is compact, this implies that tmax < 1. Now by the definition of tmax, we have
(χ̄ − tmaxR

∗
0χdR0)/(1 − tmax) ∈ V , so

χ̄ − tmaxR
∗
0χdR0

1 − tmax
= p0R

∗
0χdR0 +

∑
j>0

pjR
∗
j χdRj , (15)

where
∑

j pj = 1 and pj � 0 for j � 0. Setting t0 = tmax + (1 − tmax)p0, (15) implies that

χ̄ − t0R
∗
0χdR0

1 − t0
=

∑
j>0

pj

1 − p0
R∗

j χdRj ∈ V.

Since tmax < 1, if p0 > 0 we have t0 > tmax, contradicting the definition of tmax. Therefore
p0 = 0, and substituting this in (15), we see that

χ̄ = tmaxR
∗
0χdR0 + (1 − tmax)

∑
j>0

pjR
∗
j χdRj

and hence that tmax � pmax, completing the proof. �

4. The two-metal-ion case

Let χk, k = 1, 2 be magnetic susceptibility tensors relative to two different metal ions, and
for k = 1, 2, let

V k =

χ̄ k : χ̄ k =

∑
j

pjR
∗
j χ

kRj ,
∑

j

pj = 1, pj � 0


 ,

be the corresponding sets of mean paramagnetic tensors. Let

V 1,2 =

χ̄1,2 = (χ̄1, χ̄2) : χ̄ k =

∑
j

pjR
∗
j χ

kRj , k = 1, 2


 (16)
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be the set of compatible pairs of mean paramagnetic tensors. Each χ̄1,2 ∈ V 1,2 has a
representation

χ̄1,2 =

∑

j

pjR
∗
j χ

1Rj ,
∑

j

pjR
∗
j χ

2Rj


 , (17)

where
∑

j pj = 1 and each pj � 0. Note that both these coefficients pj and the rotations Rj

are the same for each component of χ̄1,2 in (17). Just as we were able to regard V as a subset
of R

5 in section 3, so we can regard V 1,2 as a subset of R
5 × R

5 = R
10.

We summarize some properties of V 1,2 in the following lemma.

Lemma 4.1. The set V 1,2 has the following properties.

(i) V 1,2 is a compact convex subset of V 1 × V 2.

Moreover, if χ1 and χ2 are not proportional, then

(ii) the origin in R
10 belongs to the interior of V 1,2, and hence

(iii) dim V 1,2 = 10.

Proof. By definition, V 1,2 ⊂ V 1 × V 2, and (16) shows that V 1,2 is precisely the convex hull
of the compact set {(R∗χ1R,R∗χ2R) : R ∈ SO3} in R

10.
Though (iii) follows from (ii), our proof will actually supply both statements at once.

Suppose for simplicity that χ1 = χ1
d is diagonal. Consider the section �2 = {χ̄2 : (0, χ̄2) ∈

V 1,2}. Using lemma 3.6, we can represent the zero matrix 0 ∈ V 1 in form (9). Then

χ̄2 = 1
3χ2 + 1

3P ∗
1 χ2P1 + 1

3P ∗
2 χ2P2 ∈ �2.

A straightforward computation shows that χ̄2 has zero diagonal entries and all other entries
equal to x = (1/3)χ2

12 + (1/3)χ2
13 + (1/3)χ2

23, and hence has eigenvalues 2x,−x and −x. By
lemma 3.2(iv), every matrix of the form R∗χ̄2R belongs to �2, because R∗0R = 0. Then
�2 includes the three diagonal matrices having eigenvalues 2x,−x and −x, and hence, by
convexity, a triangle T 2 containing the origin in R

5. If x �= 0, the origin in R
5 belongs to the

relative interior of T 2.
If x = 0, then we have

χ2
23 = −χ2

13 − χ2
12. (18)

Suppose first that the eigenvalues µ1
min and µ1

max of χ1 satisfy −µ1
min > µ1

max. Then we can
repeat the above argument, using instead of (9) the alternative representation (10) of the zero
matrix. Let M̄2 be the corresponding matrix in �2, given by (10) with χd replaced by χ2,
noting that the coefficients in this representation of M̄2 depend on µ1

min and µ1
max.

We claim that M̄2 �= 0. Indeed, if the non-diagonal entries of M̄2 are all zero, then
in particular M̄2

12 = 0 and M̄2
13 = 0. Using (18), these two equations form a system of

two homogeneous linear equations in the variables χ2
12 and χ2

13, whose determinant may be
calculated to be

2

(
2µ1

max + µ1
min

)(
µ1

max + µ1
min

)((
µ1

min

)2
+ µ1

maxµ
1
min +

(
µ1

min

)2)(
µ1

max − µ1
min

)2(
2µ1

min + µ1
max

)2 .

Since this determinant is nonzero, we have χ2
12 = χ2

13 = 0 and hence that χ2 is diagonal. In
this case a straightforward calculation shows that M̄2

11 = M̄2
22 = 0, and hence M̄2 = 0, if and

only χ1
d and χ2 are proportional. Our hypothesis therefore implies that M̄2 �= 0 and proves

the claim.



888 R J Gardner et al

Since M̄2 �= 0, it has at least one nonzero eigenvalue and hence at least two nonzero
eigenvalues, because trace M̄2 = 0. Then, as above, there is again a triangle T 2 containing
the origin in R

5 in its relative interior.
If −µ1

min < µ1
max, we repeat the above argument, using instead of (10) the representation

(11) of the zero matrix. In this case the same conclusion can be reached similarly.
Every matrix similar to a diagonal matrix with its eigenvalues in T 2 belongs to �2, so

dim �2 = 5.
The previous argument can be applied also to the section �1 = {M1 : (M1, 0) ∈ V 1,2}

(using the lab frame for the second metal ion as the reference frame), yielding a triangle
T 1 in �1 containing the origin in R

5 in its relative interior and allowing us to conclude
that dim �1 = 5. Then, by convexity, dim V 1,2 = 10, and the origin is an interior point
of V 1,2. �

A few remarks are appropriate in connection with the previous lemma. Firstly, an
alternative to our proof of part (iii) would be to find an explicit set of 11 points in V 1,2 whose
convex hull has positive volume in R

10, and the fact that the origin in R
10 belongs to V 1,2 can

easily be proved using lemma 3.1. However, our proof of these facts via part (ii) provides
more information.

Secondly, the proof shows that if x = 0, we have found a representation of the origin in
V 1,2 involving only three rotations.

Thirdly, we see from lemma 4.1 that dim V 1,2 = 5 if χ1 and χ2 are proportional, and
dim V 1,2 = 10 otherwise. Thus dimensionally speaking, we can gather more information in
the two-metal-ion case if and only if χ1 and χ2 are not proportional.

Theorem 4.2. Each χ̄1,2 ∈ V 1,2 has a representation of form (17) involving at most 10
rotations.

Proof. As in the proof of lemma 4.1(i), V 1,2 is the convex hull of the connected set

C = {(R∗χ1R,R∗χ2R) : R ∈ SO3}
in R

10. Suppose that χ̄1,2 ∈ V 1,2. By a version of Carathéodory’s theorem (see, e.g., [12,
theorem 1.1.4]) due to Fenchel [7] (see also [11, theorem 1.4]), there is a subset D of C
consisting of at most 10 points such that χ̄1,2 belongs to the convex hull of D. This proves the
theorem. �

For our next results, we require a slightly stronger assumption than that χ1 and χ2 are not
proportional, which however is justified on physical grounds (see [3]):

Assumption A. The matrices χ1 and χ2 do not have a common eigenvector.

As a consequence, χ1 and χ2 cannot both be diagonal. It is always possible to suppose
that χ1 is diagonal, by appropriately choosing the reference frame.

Lemma 4.3. Suppose that assumption A holds. If χ1 = χ1
d is diagonal, then there are at most

three zero entries in χ2.

Proof. Suppose there are at least four zero entries in χ2. In view of the symmetry of χ2, it
is not possible that all the diagonal entries and at least one non-diagonal entry are zero, since
this would imply that det χ2 = 0. Then, since χ2 has zero trace, it can have at most one zero
diagonal entry, and since it is symmetric, there must be at least four non-diagonal zero entries.
It follows that there is an index i such that the only nonzero entry in row i or in column i of
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χ2 is the diagonal entry χ2
ii . But then ei is an eigenvector of both χ1

d and χ2, contradicting
assumption A. �

Theorem 4.4. Suppose that assumption A holds and suppose that in the reference frame where
χ1 is diagonal, each non-diagonal entry of χ2 is nonzero. Then there exists a χ̄1,2 ∈ V 1,2 that
has no representation of form (17) involving less than four rotations.

Proof. We may assume that χ1 = χ1
d is diagonal. Let pj > 0, j = 0, . . . , 3 satisfy∑

j pj = 1, and define

χ̄1,2 = (
χ1

d , χ̄2
) =


 3∑

j=0

pjSjχ
1
d Sj ,

3∑
j=0

pjSjχ
2Sj


 , (19)

where the rotations Sj are as defined in section 2. By lemma 3.7, every representation of χ1
d ,

and hence every representation of χ̄1,2, involves only the rotations Sj . Suppose that

χ̄1,2 = (
χ1

d , χ̄2
) =


 3∑

j=0

qjSjχ
1
d Sj ,

3∑
j=0

qjSjχ
2Sj


 , (20)

where qj � 0 for j = 0, . . . , 3 and
∑

j qj = 1, is another such representation. Let cj =
pj − qj , j = 0, . . . , 3, so that

c0 + c1 + c2 + c3 = 0. (21)

By (19) and (20), we have

3∑
j=0

cjSjχ
2Sj = 0,

and this implies that

χ2
12(c0 − c1 − c2 + c3) = 0

χ2
13(c0 − c1 + c2 − c3) = 0

χ2
23(c0 + c1 − c2 − c3) = 0


 .

Each entry of χ2 appearing in this system may be cancelled, by our hypothesis. The resulting
system of three equations, together with (21), forms a linear system whose determinant is
nonzero. Therefore cj = 0 and so qj = pj > 0 for all j , completing the proof. �

Note that the hypothesis in theorem 4.4 that each non-diagonal entry of χ2 is nonzero
holds quite generally, in fact for all but a set of χ2’s of zero measure.

The next result, proved in [10, theorem 1], shows that the non-uniqueness in lemma 3.7
can be avoided in the two-metal-ion case.

Proposition 4.5. Suppose that assumption A holds. Let χ̄1,2 = (R∗
0χ

1R0, R
∗
0χ

2R0) for some
R0 ∈ SO3. Then there is no other representation of χ̄1,2 of form (17) in which the coefficients
pj are all positive.

The following theorem is an optimal estimate for the maximum probability for which the
C-terminal domain can assume a given relative orientation.
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Theorem 4.6. Suppose that assumption A holds. Let χ̄1,2 ∈ V 1,2, let R0 ∈ SO3, and let
pmax be the maximum probability for which the C-terminal domain can assume the relative
orientation R0. Then

pmax = sup

{
0 � t < 1 :

χ̄1,2 − t (R∗
0χ

1R0, R
∗
0χ

2R0)

1 − t
∈ V 1,2

}
. (22)

Proof. The proof is very similar to that of theorem 3.8 for the one-metal-ion case. Indeed,
the latter can be followed step by step with only very minor changes, using proposition 4.5
instead of lemma 3.7, and we therefore omit the details. �

Corollary 4.7. Suppose that assumption A holds. We have

pmax � t1,2 = min
k=1,2

sup

{
0 � t < 1 :

χ̄ k − tR∗
0χ

kR0

1 − t
∈ V k

}
.

Proof. Note that

t1,2 = sup

{
0 � t < 1 :

χ̄1,2 − t (R∗
0χ

1R0, R
∗
0χ

2R0)

1 − t
∈ V 1 × V 2

}
,

so the result follows from lemma 4.1(i). �

The value pmax is very hard to compute, because is not easy to check whether a given
pair (M1,M2) of symmetric matrices with zero trace belongs to V 1,2. On the other hand,
theorem 3.3 provides a straightforward method of checking whether Mk ∈ V k . In this way,
t1,2 can easily be computed.

A numerical way to estimate the probability for which the C-terminal domain can assume
a given relative orientation R0 is to scan the possible representations involving R0. This has
been done in practice in [2].

5. The coaxial case

In this section we consider the particular case when the linker between the two domains is
confined to a single dihedral angle. This may happen in the determination of the fold of
tertiary or residual protein structures.

We begin with the one-metal case. Note that while it is always possible to apply the general
theory of section 4, obtaining from corollary 3.4 a representation of the mean paramagnetic
tensor χ̄ involving only three rotations, these are not coaxial rotations, so a separate analysis
is required.

In the coaxial case, we are restricting the rotations to a subset

Ou = {R ∈ SO3 : R(u) = u}
of SO3 consisting of rotations preserving a common oriented axis in a fixed direction u ∈ S2.
By choosing a suitable reference frame, we may assume that u = e3. (In this frame, however,
the matrix χ is not necessarily diagonal.) Let Ve3 be the set of all mean paramagnetic tensors
of the form

χ̄ =
∑

j

pjR
∗
θj

χRθj
, (23)
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where for each j ,

Rθj
=


 cos θj sin θj 0

−sin θj cos θj 0
0 0 1


 , (24)

and as usual,
∑

j pj = 1 and pj � 0 for each j .
A straightforward computation shows that (23) and (24) imply that the entries of χ̄ are

given by

χ̄11 = χ11 + χ22

2
+

(
χ11 − χ22

2

)
B1 − χ12B2,

χ̄12 =
(

χ11 − χ22

2

)
B2 + χ12B1,

χ̄13 = χ13A1 − χ23A2,

χ̄22 = χ11 + χ22

2
−

(
χ11 − χ22

2

)
B1 + χ12B2,

χ̄23 = χ13A2 + χ23A1,

χ̄33 = χ33,

(25)

where

A1 =
∑

j

pj cos θj , A2 =
∑

j

pj sin θj .

B1 =
∑

j

pj cos 2θj , B2 =
∑

j

pj sin 2θj .
(26)

Lemma 5.1. Let χ̄ ∈ V be of form (8), where (i) e3 is not an eigenvector of χ , (ii) χ11 − χ22

and χ12 are not both zero and (iii) χ̄33 = χ33. Then it is possible to determine unique constants
A1, A2, B1 and B2 such that χ̄ is given by (25).

Proof. Using (25), the constants A1 and A2 can be found by solving the system

χ13A1 − χ23A2 = χ̄13

χ23A1 + χ13A2 = χ̄23

}
;

the determinant vanishes if and only if χ13 = 0 and χ23 = 0, and this happens if and only if
e3 is an eigenvector of χ , excluded by (i).

In the linear system (25), the condition trace χ̄ = 0 may be used to eliminate one equation
involving B1 and B2. The constants B1 and B2 can then be found by solving the system

χ11−χ22

2 B1 − χ12B2 = −χ11+χ22

2 + χ̄11

χ12B1 + χ11−χ22

2 B2 = χ̄12

}
;

the determinant vanishes if and only if χ11 = χ22 and χ12 = 0, impossible by (ii). Of course,
(iii) must hold for χ̄ to be given by (25). �

If hypothesis (i) of lemma 5.1 does not hold, there are two cases: if χ̄13 = 0 and χ̄23 = 0,
then any A1 and A2 is a solution, while if χ̄13 or χ̄23 are not zero, there is no solution. (Note
that χ̄ ∈ Ve3 would guarantee that χ̄13 = χ̄23 = 0.) If (ii) does not hold, there are also two
cases: if χ̄11 − (χ11 + χ22)/2 = 0 and χ̄12 = 0, then any B1 and B2 is a solution, while
otherwise there is no solution.
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Lemma 5.1 shows that, under certain conditions, starting with any χ̄ ∈ V it is possible to
find constants A1, A2, B1 and B2 such that (25) holds. However, to find a coaxial representation
(23), coefficients pj and angles θj satisfying (26) also need to be determined. This is not
possible in general. An obvious necessary condition is that A2

1 + A2
2 � 1 and B2

1 + B2
2 � 1.

This condition is not sufficient, however. To determine such a condition, we let

A = A1 + A2i and B = B1 + B2i (27)

be complex constants, and define

M(1) =

1 A Ā

Ā 1 B̄

A B 1


 , (28)

where Ā and B̄ are the complex conjugates of A and B, respectively.

Theorem 5.2. Let χ̄ ∈ V be of form (8), where the hypotheses of lemma 5.1 are satisfied. Let
A1, A2, B1 and B2 be determined from (25), where A2

1 +A2
2 � 1 and B2

1 +B2
2 � 1 and suppose

that det M(1) � 0, where M(1) is as in (28). Then χ̄ ∈ Ve3 , with the coaxial representation
(23). Moreover, the minimum number of rotations in this representation is equal to the rank
of M(1).

Proof. Consider the problem of finding, given complex numbers γ00, γ01, γ10, γ02, γ11 and
γ20, a non-negative Borel measure µ in the complex plane such that

γkl =
∫

z̄kzl dµ,

for 0 � k + l � 2. This is the quadratic complex moment problem; see, for example, [6].
This problem contains our existence problem. To see this, note first that (26) and (27) are
equivalent to

A =
∑

j

pj eiθj =
∫

eiθ dµ and B =
∑

j

pj (e
iθj )2 =

∫
(eiθ )2 dµ, (29)

the first and second moments of the complex variable z = exp(iθ) with respect to the discrete
measure µ = ∑

j pj δθj
. Then it is easy to check that solving (29) is equivalent to solving the

quadratic complex moment problem with γ00 = γ11 = γ22 = 1, γ01 = A, γ10 = Ā, γ02 = B

and γ20 = B̄.
Curto and Fialkow [6, theorem 1.3] solve the quadratic complex moment problem, proving

that a measure µ exists if and only if the matrix


 =

γ00 γ01 γ10

γ10 γ11 γ20

γ01 γ02 γ11




has non-negative eigenvalues, and proving also that µ may be taken to be supported on a set
of points whose cardinality equals the rank of 
. Using the above values for γkl and (28),
we see that 
 = M(1). The condition that M(1) has non-negative eigenvalues is equivalent
to the condition that the principal minors of M(1) are non-negative. Since M(1) is given by
(28) and since |A| � 1 and |B| � 1 by hypothesis, the latter condition holds and the theorem
follows. �

Theorem 5.2 can be used to check if there exists a coaxial representation of a general pair
χ̄1,2 of mean paramagnetic tensors, given by (17). A candidate oriented rotation axis in the
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direction u ∈ S2 may be determined from the system

u∗χ̄1u = u∗χ1u

u∗χ̄2u = u∗χ2u

‖u‖ = 1


 .

It is then possible to use the reference frame where u = e3. In this frame, if the constants
A1, A2, B1 and B2 of lemma 5.1 are the same for both χ̄1 and χ̄2, and if they satisfy the
conditions of theorem 5.2, there is a coaxial representation of χ̄1,2.

6. A representation requiring four rotations

Theorem 4.4 provides a relatively easy example in which at least four rotations are needed
to represent a pair of mean paramagnetic tensors, but only under extra assumptions. In this
section we present a more complicated example showing that three rotations are in general
not enough, without the assumptions of theorem 4.4. More precisely, starting with any pair
(χ1, χ2) satisfying assumption A, we shall construct a pair (χ̄1, χ̄2) of mean paramagnetic
tensors obtained from (χ1, χ2) with a combination of four rotations. We then show that
(χ̄1, χ̄2) has a unique representation and hence cannot be represented with fewer than four
rotations.

We use a slight generalization of the coaxial representation. Let

Ou− = {R ∈ SO3 : R(u) = −u}
be the set of rotations reversing the orientation of a common fixed axis parallel to u ∈ S2.
Then R ∈ Oe−

3
if and only if R = S1Rθj

, where Rθj
is given by (24). Let Oe±

3
= Oe3 ∪ Oe−

3

and let

Ve±
3

=

χ̄ =

∑
j

R∗
j χRj , Rj ∈ Oe±

3


 .

Then χ̄ ∈ Ve±
3

if and only if

χ̄ =
∑

j :Rθj
∈Oe3

pjR
∗
θj

χRθj
+

∑
j :Rθj

∈O
e
−
3

pjR
∗
θj

S1χS1Rθj
. (30)

A computation similar to that in section 5 shows that (24) and (30) imply that the entries of χ̄

are given by

χ̄11 = χ11 + χ22

2
+

(
χ11 − χ22

2

) (
B+

1 + B−
1

) − χ12
(
B+

2 − B−
2

)
,

χ̄12 =
(

χ11 − χ22

2

) (
B+

2 + B−
2

)
+ χ12

(
B+

1 − B−
1

)
,

χ̄13 = χ13
(
A+

1 − A−
1

) − χ23
(
A+

2 + A−
2

)
,

χ̄22 = χ11 + χ22

2
−

(
χ11 − χ22

2

) (
B+

1 + B−
1

)
+ χ12

(
B+

2 − B−
2

)
,

χ̄23 = χ13
(
A+

2 − A−
2

)
+ χ23

(
A+

1 + A−
1

)
,

χ̄33 = χ33,

(31)
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where

A+
1 =

∑
j :Rj ∈Oe3

pj cos θj , A+
2 =

∑
j :Rj ∈Oe3

pj sin θj ,

A−
1 =

∑
j :Rj ∈O

e
−
3

pj cos θj , A−
2 =

∑
j :Rj ∈O

e
−
3

pj sin θj ,

B+
1 =

∑
j :Rj ∈Oe3

pj cos 2θj , B+
2 =

∑
j :Rj ∈Oe3

pj sin 2θj ,

B−
1 =

∑
j :Rj ∈O

e
−
3

pj cos 2θj , B−
2 =

∑
j :Rj ∈O

e
−
3

pj sin 2θj .

(32)

Define

A+ = A+
1 + iA+

2, A− = A−
1 + iA−

2 ,

B+ = B+
1 + iB+

2 , B− = B−
1 + iB−

2 .
(33)

Lemma 6.1. Let χ1 = χ1
d and let χ2 satisfy χ2

12 �= 0. Then

(i) χ̄2
13 = χ2

13

(
A+

1 − A−
1

) − χ2
23

(
A+

2 + A−
2

)
, χ̄2

23 = χ2
13

(
A+

2 − A−
2

)
+ χ2

23

(
A+

1 + A−
1

)
, and

(ii) B+ and B− can uniquely be determined from χ1 and χ2.

Proof. Using (31) with χ and χ̄ replaced by χ2 and χ̄2, respectively, we obtain (i).
Since χ1

d is diagonal, (31) with χ and χ̄ replaced by χ1
d and χ̄1

d , respectively, yields(
χ1

11−χ1
22

2

) (
B+

1 + B−
1

) = χ̄1
11 − χ1

11+χ1
22

2(
χ1

11−χ1
22

2

) (
B+

2 + B−
2

) = χ̄1
12.


 (34)

Similarly, (31) with χ and χ̄ replaced by χ2 and χ̄2, respectively, gives(
χ2

11−χ2
22

2

) (
B+

1 + B−
1

) − χ2
12

(
B+

2 − B−
2

) = χ̄2
11 − χ2

11+χ2
22

2(
χ2

11−χ2
22

2

) (
B+

2 + B−
2

)
+ χ2

12

(
B+

1 − B−
1

) = χ̄2
12.


 (35)

Since the eigenvalues of χ1
d are simple, χ1

11 �= χ1
22, so

(
B+

1 + B−
1

)
and

(
B+

2 + B−
2

)
can be

uniquely determined from (34) and substituted into (35). Then, since χ2
12 �= 0,

(
B+

1 − B−
1

)
and

(
B+

2 − B−
2

)
can be uniquely determined from (35). Finally, (ii) follows since these values

can be added and subtracted to obtain B+
k and B−

k , k = 1, 2 and hence B+ and B−. �

Lemma 6.2. Let χ̄ ∈ Ve±
3

be as in (30). If |B+| + |B−| = 1, then there are θ+ and θ− such
that θj = θ+(mod π) for all j such that Rθj

∈ Oe3 and θj = θ−(mod π) for all j such that
Rθj

∈ Oe−
3

. Also,

B+ = γ exp(2θ+i) and B− = (1 − γ ) exp(2θ−i), (36)

where γ = ∑
j :Rj ∈Oe3

pj .

Proof. Equations (32) and (33) imply that

|B+| =
∣∣∣∣∣∣

∑
j :Rj ∈Oe3

pj exp(2θj i)

∣∣∣∣∣∣ �
∑

j :Rj ∈Oe3

pj = γ. (37)
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Similarly,

|B−| �
∑

j :Rj ∈O
e
−
3

pj = 1 − γ. (38)

Then

1 = |B+| + |B−| � γ + (1 − γ ) = 1,

so equality holds in both (37) and (38). Equality holds in (37) if and only if the vectors
exp(2θj i) have the same direction, and this occurs if and only if there exists θ+ such that 2θj =
2θ+(mod 2π). Then B+ = γ exp(2θ+i), and similarly we obtain B− = (1 − γ ) exp(2θ−i).

�

Theorem 6.3. Suppose that χ1 and χ2 satisfy assumption A. Then there exists χ̄1,2 =
(χ̄1, χ̄2) ∈ V 1,2 with a unique representation (17) involving exactly four rotations with
positive coefficients pj .

Proof. We may assume that χ1 = χ1
d is diagonal. Suppose first that χ2

12 �= 0. By lemma 4.3,
χ2

13 and χ2
23 cannot both be zero, so χ2

13 + iχ2
23 = r exp(θ i) for some 0 � θ < 2π and r > 0.

Choose θ1 and θ2 so that

θ1 + θ �= θ2 − θ, (39)

and define

χ̄ k = 1
4R∗

θ1
χkRθ1 + 1

4R∗
θ1+πχkRθ1+π + 1

4R∗
θ2
S1χ

kS1Rθ2 + 1
4R∗

θ2+πS1χ
kS1Rθ2+π , (40)

for k = 1, 2. From this definition and (32), we obtain

A+ = 1
4 (exp(θ1i) + exp((θ1 + π)i)) = 0,

A− = 1
4 (exp(θ2i) + exp((θ2 + π)i)) = 0,

(41)

B+ = 1
2 exp(2θ1i) and B− = 1

2 exp(2θ2i). (42)

By lemma 6.1(i) and (41), we also obtain

χ̄2
13 + iχ̄2

23 = (
χ2

13 + iχ2
23

)
A+ − (

χ2
13 − iχ2

23

)
A− = 0. (43)

To show that representation (40) is unique, consider an arbitrary representation of χ̄1,2 of
form (17). Since χ1

d is given by (5), (40) implies that χ̄1
13 = χ̄1

23 = 0 and χ̄1
33 = µ1

max, so e3 is
an eigenvector of χ̄1 corresponding to µ1

max. Moreover

µ1
max = e∗

3χ̄
1e3 =

∑
j

pj (Rje3)
∗χ1

d Rje3 �
∑

j

pjµ
1
max = µ1

max,

so that Rje3 = ±e3 for any j . It follows that Rj ∈ Oe±
3

for any j . This shows that in our
arbitrary representation χ̄1 and χ̄2 are actually both of form (30). Then (32) holds, so by
lemma 6.1(ii), B+ and B− are uniquely determined. Therefore their values are given by (42),
so |B+| = |B−| = 1/2 and we can apply lemma 6.2 and determine angles θ+ and θ− such
that θj = θ+(mod π) for all j such that Rθj

∈ Oe3 and θj = θ−(mod π) for all j such that
Rθj

∈ Oe−
3

. Comparing (42) with (36), we see that without loss of generality, θ+ = θ1 and
θ− = θ2. It follows that the arbitrary representation must be of the form

χ̄ k = p1R
∗
θ1
χkRθ1 + p2R

∗
θ1+πχkRθ1+π + p3R

∗
θ2
S1χ

kS1Rθ2 + p4R
∗
θ2+πS1χ

kS1Rθ2+π , (44)

where pj � 0, j = 1, . . . , 4 and
∑

j pj = 1, for k = 1, 2.
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Comparing (36) and (42), we find that γ = p1 + p2 = p3 + p4 = 1/2, so we may write

p1 = s

2
, p2 = 1 − s

2
, p3 = t

2
and p4 = 1 − t

2
,

where 0 � s, t � 1. Using (32), we find that for representation (44),

A+ = (s − 1/2) exp(θ1i) and A− = (t − 1/2) exp(θ2i). (45)

By lemma 6.1(i) and (43),

0 = χ̄2
13 + iχ̄2

23 = (
χ2

13 + iχ2
23

)
A+ − (

χ2
13 − iχ2

23

)
A−

= (s − 1/2) exp((θ1 + θ)i) − (t − 1/2) exp((θ2 − θ)i).

Our choice of θ implies that s = t = 1/2 and hence pj = 1/4 for j = 1, . . . , 4, proving the
theorem under the assumption χ2

12 �= 0.
Finally, if χ2

12 = 0, then χ2
23 �= 0 by lemma 4.3. Then we can repeat the whole

construction, replacing e3 with e1 and µ1
min with µ1

max, to obtain the required example. Of
course, all the results of this section must be reformulated accordingly. �

7. Application to experimental NMR data

In the previous sections we studied, from the mathematical point of view, the problem of
reconstructing the position of a moving protein terminal domain using RDC spectroscopy
data. Any sufficient number of measurements involving two different metal ions is equivalent
to knowledge of the ten coefficients defining the mean paramagnetic tensors. It is evident that
there is no hope of reconstructing the position of the terminal with ten numbers, apart from
special situations such as the extreme case, mentioned in the introduction, when the terminal
domain does not move. In the case of calmodulin the C-terminal domain is effectively moving,
because the absolute value of the eigenvalues of the mean paramagnetic tensors is about 10%
of those of the corresponding magnetic susceptibility tensors (see [2]).

The information we can gather from the mean paramagnetic tensors is of a probabilistic
nature. For any particular relative orientation of the moving C-terminal domain, there is
a maximum probability 0 � pmax � 1 that the domain assumes that orientation. The
conformational space can then be sampled to look for the most favoured orientations, that is,
those having a large maximum probability.

If data from a single metal ion are available, the maximum probability is given by (13),
and can easily be calculated using the bound on the eigenvalues given in theorem 3.3. A
simple way to combine data from two different metal ions would be to use the minimum of
the two values found, that is, the quantity t1,2 of corollary 4.7. While this is perfectly feasible,
one would only end up with a rough estimate (from above) of pmax.

The standard way to calculate pmax using real data is via the following fitting procedure.
For each of two metal ions indexed by j = 1 or 2, we are given a set

{
δ

j

aibi

}
of RDC

experimental measurements for couples of atoms ai and bi . The collections of atoms ai

and bi need not be the same for the two metal ions. Given a suitable finite set of rotations
Rj and probabilities pj summing to one, the mean paramagnetic tensors can be obtained
from (17). For j = 1, 2, we can replace χ̄ by χ̄ j in (3) to calculate the corresponding mean
RDC values

{
δ̄

j

aibi

}
. A target function TF can then be defined to measure the difference between

the observed measurements and the corresponding calculated values. Roughly speaking, this
is given by

TF =
∑

i

∥∥δ̄1
aibi

− δ1
aibi

∥∥ +
∑

i

∥∥δ̄2
aibi

− δ2
aibi

∥∥,
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Figure 2. Comparison of pmax and t1,2.

for a suitable norm ‖·‖. In practice, TF is more complicated, involving error filtering and
multi-stage normalization.

With the target function in hand, the first step is to determine an optimal noise level, that
is, the smallest value of TF using ten relative orientations, each represented by a rotation, with
variable probabilities, as suggested by theorem 4.2. Next, the conformational space of relative
orientations, again represented by rotations, must be sampled. For each rotation R0 of the
sample, we look for the corresponding maximum probability pmax. A tentative probability p0

is such that p0 � pmax if and only if there exist other rotations with probabilities summing
to 1 − p0 which, when combined with the fixed rotation R0 with probability p0, give a value
of TF not significantly larger than the optimal noise level. The largest p0 for which this can
be done is a reasonable estimate (from below) of pmax for R0. The search for pmax involves a
bisection method with respect to the variable p0.

The use of ten rotations in the fitting procedure can bring numerical problems. We
seek the absolute minimum of a very bumpy function of 39 real variables, three for each
rotation and nine for the probabilities. This is not an easy task, even when methods such
as simulated annealing are used. It is advisable to use as much precision as possible in the
single minimization required for the determination of the optimal noise level, because it is a
reference value employed throughout the procedure. This is not feasible when sampling the
conformational space, due to the very large number of minimizations required. A practical
way of reducing the number of rotations is to start the minimizations using four variable
rotations, according to the results of section 6. It can then be checked whether, repeating the
procedure with five rotations, the value of pmax remains the same. It can be shown that if this
is the case, the estimate found is a good one.

We made some numerical experiments to measure the improvement obtained by using pmax

instead of t1,2. We used the RDC of NH couples of the C-terminal domain of calmodulin. Data
arising from Tb3+ and Tm3+ metal ions were obtained by the Center for Magnetic Resonance
of the University of Florence.

Figure 2 shows the values of r = pmax/t1,2 for a sample of 8000 rotations. The graph
should be read in the following way. A point (x, y) of the graph means that a value of r smaller
(i.e., better) than y is obtained for a fraction x of the rotations considered in the sample. For
example, half of the rotations in the sample showed a maximum probability reduced by a factor
0.65 or better. This reduction should aid the localization of the zones where the C-terminal
domain has the largest probability of being found.
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