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INTRODUCTION 

Atropine-like preparations were used by ancient Romans to relieve pain; Pliny the 
elder, in his Historia Naturalis, reported that the juice of Mandragora oflcinarum or 
Hyosciamus niger was administered to patients before surgery to produce analgesia. 
Much more recently Ghelardini et al. (31) confirmed the paradoxical effect of atro- 
pine by reporting that, at very low doses, this compound induces central antinocicep- 
tion in rodents through an enhancement of cholinergic transmission. It is interesting 
to note that this antinociceptive activity, unlike that produced by direct mus- 
carinic agonists and cholinesterase inhibitors, was not accompanied by typical cholin- 
ergic symptomatology symptoms (tremors, sialorrhea, diarrhea, rhinorrhea, lacrima- 
tion, etc.). Soon after, it was discovered that the R-(+)-enantiomer of atropine, 
R-(+)-hyoscyamine, was responsible for the antinociceptive activity of the racemate, 
while the S-(-)-enantiomer, S-(-)-hyoscyamine, was devoid of any antinociceptive ac- 
tion (33). R-(+)-hyoscyamine, in the same range of analgesic doses, was also able to 
prevent amnesia induced by antimuscarinic drugs (41). An investigation of the antino- 
ciceptive and antiamnesic effect of atropine, using microdialysis techniques has dem- 
onstrate that R-(+)- hyoscyamine, at cholinomimetic doses, produced an increase in 
the acetylcholine (ACh) release from the rat cerebral cortex in vivo, indicating that 
this compound has a presynaptic mechanism of action (41). 

Based on these observations, a program to modify the chemical structure of atro- 
pine was started, aimed at developing cholinergic amplifiers endowed with more in- 
~~ ~~~ ~~~ 
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SM-21 
Fig. 1. Chemical structure and synthesis of SM 21. 

tensive antinociceptive and antiamnesic activity than atropine, but with the same lack 
of cholinergic side effects as atropine. These compounds would be potentially useful 
as analgesics and/or in the treatment of pathological conditions, such as Alzheimer’s 
disease, characterized by cholinergic deficit. Of the many compounds synthesized and 
studied, SM 2 1 (3-a-tropanyl 2-[4-CI-phenoxy]butyrate) (48) (Fig. I )  showed the best 
pharmacological profile. 

CHEMISTRY 

Modification of the atropine structure by substituting the phenyl ring or the ami- 
noalcohol moiety provided some potent compounds whose efficacy, compared with 
morphine, remained as low as that of atropine (48). Better results were obtained in the 
series of 2-phenylpropionic acid esters, which were synthesized to deal with the 
chemical instability of tropic acid. In this class the potency was much lower than that 
of atropine, but efficacy was definitely improved (48). 

To restore high affinity, it was thought that the possibility of a hydrogen bond, pre- 
sent in atropine, should be reintroduced into the molecule. We synthesized several es- 
ters of substituted 2-(phenoxy)propionic acids. Further modifications of the mole- 
cule showed that 2-(phenoxy)butyric acid gave better results than the corresponding 
2-(phenoxy)propionic acid and that the 3-a-tropanol was the best choice for the ami- 
noalcohol moiety. In this class, SM 2 1 was selected as the most interesting compound 
(47). Its chemical structure and synthesis are illustrated in Fig. I .  Isosteric substitution 
of the oxygen atom with S, NH, NCH3, or CH2 was also performed (47). 

Chemical modifications have led to compounds similar to SM 21, such as PG 9 (6 ) ,  
ET 142 (38), and SM 32 (40), with a pharmacological profile quite similar to that of 

CNS Drug Review. Vol. 3. No. 4. 1997 



348 C. GHELARDINI ET AL. 

SM 21. Other chemical modifications, though informative regarding structure-activity 
relationships in the series, produced less interesting compounds (64). 

SM 21 possesses a stereogenic center and, as a consequence, is normally obtained 
as a racemic mixture of two enantiomers. To develop the compound further, it was 
necessary to study the properties of the single enantiomers; therefore, we addressed 
the problem of obtaining the two enantiomers with acceptable optical purity (76). 

SM 2 1 enantiomers show a certain enantioselectivity in pharmacological activity 
even if both stereoisomers are active (39) unlike what happens for atropine enantiom- 
ers, where only R-(+)-hyoscyamine shows analgesic and antiamnesic activity (4 1). In 
any case, the most potent and efficacious enantiomer is R-(+)-SM 21, which shares 
the same absolute configuration of R-(+)-hyoscyamine. 

CENTRAL PHARMACOLOGICAL PROFILE 

In Vivo Studies 

Antinociceptive Properties 

SM 2 1 induced antinociception in mice, rats, and guinea pigs. Antinociception was 
elicited regardless of which noxious stimulus was used: thermal (hot-plate and tail 
flick tests), chemical (abdominal constriction test), or mechanical (paw pressure test)? 
performed according to O’Callaghan and Holtzman (69), D’Amour and Smith (1 7). 
Koster et al. (56), and Leighton et al. (59), respectively. 

SM 21 produced a dose-dependent increase in the pain threshold in mice after sys- 
temic (subcutaneous [s.c.], intraperitoneal [i.p.], oral [P.o.], intravenous [i.v.]) injec- 
tion, as illustrated by the hot-plate (Fig. 2) and abdominal constriction tests (Fig. 3a). 
SM 2 1 reached its maximum antinociceptive effect 15 min after administration and 
then slowly diminished (Fig. 2b,d). SM 21 produced an increase in the pain threshold 
not only in mice but also in rats, in the paw pressure (Fig. 3b), and tail flick (39) tests 
and in guinea pigs, in the paw pressure test (39), with a pharmacological profile simi- 
lar to that exerted in mice. 
SM 21 is endowed with central antinociceptive activity. It was, in fact, possible to 

reach the same intensity of analgesia by injecting directly into the cerebral ventricles 
(49) doses ( 5  to 20 pg/mouse) of SM 21 that were fifty times lower than those needed 
parenterally (Fig. 2c). That the antinociception depends on a retrodiffusion of the drug 
from the cerebral ventricles to the periphery can thus be ruled out. 

Both enantiomers of SM 21, R-(+)-SM 21, and S-(-)-SM 21 induced antinocicep- 
tion in the mouse hot-plate and abdominal constriction tests in a dose-dependent man- 
ner; R-(+)-SM 2 1 was slightly more effective than S-(-)-SM 2 1 (39). 

SM 21 showed good antinociceptive efficacy in comparison with that produced by 
R-(+)-hyoscyamine and some well known analgesic drugs such as morphine, diphen- 
hydramine, and clomipramine. As a matter of fact, by comparing the areas under the 
curve of the above-mentioned compounds, tested at the highest doses that do not im- 
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Fig. 2. Dose-response curves of SM 21 i.p. (a)  and i.c.v. (c)  injected in the mouse hot-plate test. The 
SM 21 time course of 40 mg/kg i.p. is reported in (b) and 30 pg per mouse I .C.V.  in (d )  from the same 
test. Vertical lines give S.E.M. Each point is the mean of at least 10 mice. "P < 005: ' P <  0.01 in com- 
parison with saline controls. In (a) and (c)  S M  21 was administered 15 min before the test. 

pair mouse normal behavior, SM 21 was as effective as morphine, and more effective 
than R-( +)-hyoscyamine, diphenhydramine and clomipramine (39). 

SM 21, at doses lower than 1 mg/kg, was able to reduce the number of abdominal 
constrictions induced by intraperitoneal injection of a 0.3% acetic acid solution and to 
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Fig. 3. (a) Antinociceptive effect of SM 21 and antagonism of hemicholinium-3 (HC-3) ( I  pg per mouse 
i,c.v.), atropine ( 5  mg/kg i.p.) and pirenzepine (0.1 pg per mouse i.c.v.) on the enhancement of pain 
threshold induced by SM 21 (20 mg/kg s.c.) in the mouse abdominal constriction test induced by 0.6% 
acetic acid (a) and in the rat paw-pressure tests (b) HC-3. atropine and pirenzepine were injected respec- 
tively 5 h, 15 min, and 10 min before testing. In the abdominal constriction test the nociceptive responses 
were recorded 15 min after SM 21 administration. Vertical lines show S.E.M. AP < 0.05; 'P < 0.01 in com- 
parison with saline controls. "P < 0.01 in comparison with SM 21 (20 mg/kg s.c.). Numbers inside the 
columns indicate the number of mice or rats. 
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reverse the hyperalgesia induced by morphine withdrawal (data not shown). SM 21 
antinociception is not due to an anti-inflammatory action. SM 2 1, at concentrations up 
to lo4 M, did not inhibit inducible COX activity in comparison with indomethacin 
(ICs0: 23 x 10” M) and, at analgesic doses, failed to suppress paw edema in response 
to carrageenan administration (Table I) .  

A n tiam nes ic Activity 

SM 21 ameliorated cognitive processes in mice and rats. This compound was able 
to prevent amnesia induced by treatment with drugs such as scopolamine (Fig. 4), di- 
cyclomine (Fig. 4), diazepam (27), and AF64A (26), or exposure to hypoxic environ- 
ment (67) in the passive avoidance test. The antiamnesic effect of SM 21 was dose-de- 
pendent and the first active dose was lower than that able to enhance the pain 
threshold. A complete prevention of amnesia was, in fact, obtained at a dose (1 0 
mg/kg) that was weakly analgesic only in the hot-plate test. The time-course of the 
antiamnesic activity of SM 21 was equal to that observed for the antinociceptive ac- 
tion, reaching its maximum effect between 15 and 30 rnin after injection. Therefore, in 
the passive avoidance experiments SM 2 1 was administered 20 min before the training 
session. 

In the passive avoidance test an improvement in cognition of animals that have no 
memory impairment is difficult to demonstrate. SM 21, as well as well-known noo- 
tropic drugs, such as piracetam and aniracetam, or cholinomimetics, such as 
physostigmine and oxotremorine, do not show any memory facilitation in unamnesic 
animals (45,16). 

A procognitive activity of SM 21 was unmasked by using a social learning test, 
performed according to Mondadori et al. (68), but in which adults rats with unim- 
paired memory were used. SM 21, as well as piracetam, exerted beneficial effects on 
the cognitive performance by prolonging the time spent by rats to delete mnemonic 
information (25). 

Subacute Trea tm en I 

SM 2 1 induced tolerance after repeated administration. SM 2 1, injected twice daily 
for two weeks at doses at which i t  demonstrates a full antiamnesic and antinociceptive 

TABLE 1 .  Effect of SM 21 on carrageenan-induced paw edema in rats 

Pretreatment Treatment Dose, mg/kg i.p. Paw volume ml ?r S.E.M. 
Saline Saline 1.37 f 0.08 
Carrageenan Saline 2.21 f 0.09 
Carrageenan SM 21 20 2.27 f 0.06 
Carrageenan SM 21 30 2.  I9 f 0.05 
Carrageenan lndomethacin 1 1.45 f 0.07’ 

~~ 

Indomethacin was used as positive control; n = 5 rats per group. ‘P < 0.05 in comparison with 
carrageenan-saline controls. SM 2 1 was injected 15 min before the test. 
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Fig. 4. Effect of i.p. SM 21, piracetam. and physostigmine on dicyclomine-induced amnesia in mouse pas- 
sive avoidance test and, under the same experimental conditions, effect of SM 21 on scopolamine amnesia. 
Punishment consists of a fall into cold water (10°C). SM 21, piracetam, and physostigmine were injected 
20 min before the training session. Scopolamine and dicyclomine were injected immediately after the train- 
ing session. "P < 0.05; *P < 0.01 in comparison with saline controls. Each column represents the mean of 
at least 25 mice. 

activity (10 and 30 mg/kg i.p., respectively), produced a complete loss of both behav- 
ioral effects. Following the same administration schedule, however, other analgesic 
drugs, such as morphine, oxotremorine, and baclofen, develop tolerance toward their 
analgesic effect (61,62). Subacute treatment with SM 21 (30 mg/kg i.p.) did not pro- 
duce loss of body weight or the symptomatology typical of the withdrawal syndrome. 

Eflect of SM21 on Animal Behavior 

The maximum antinociceptive effect of SM 21 was obtained at 40 mg/kg S.C. with- 
out producing any visible modification in mouse or rat gross behavior. At the same 
dose, SM 21-treated mice showed a complete integrity of motor coordination on the 
rotarod test, tested according to Kuribara et a]. (57) (Table 2). Under these experimen- 
tal conditions, SM 2 1 was compared with equiactive doses of oxotremorine and 
physostigmine (Table 2). The muscarinic agonist and the inhibitor of cholinesterase 
both produced a statistically significant reduction in endurance time on the rotating 
rod. Normal spontaneous motility, evaluated by the Animex apparatus (data not 
shown), as well as exploratory behavior, revealed by the hole-board test (39), were 
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TABLE 2. Eflect of SM 21.  oxotremorine, and physostigmine in the rotarod test 

Endurance time on rotarod (s) 

Afier treatment Before 
Treatment S.C. treatment 15 min 30 min 45 min 

Saline 

SM 2 I ,  40mg/kg 

Oxotremorine, 40 pg/kg 

Physostigmine. 200 pg/kg 

98.5 f 5.1 92.7 f 6.2 103.7 f 5.0 97.4 ? 7.2 
(16) (16) (16) (16) 

103.2 k 5.6 97.5 f 6.2 99.6 f 5.4 100.2 f 4.3 
(10) (10) (10) (10) 

106.2 f 8.2 76.5 f 7.3' 63.6 f 9.6' 64.4 f 8.7' 
( 1  1) ( 1  1 )  ( 1  1 )  ( 1  1 )  

93.4i5.7 61.4f6.8'  54.5f8.1' 52.3f8.8'  
(9) (9) (9) (9) 

' P  < 0.05 in comparison with saline controls. The number of mice is shown in parentheses. 

also observed after subcutaneous administration of SM 21 at 40 mg/kg S.C. and intra- 
cerebroventricular (i.c.v.) administration of 30 pg/mouse. Impaired motor coordina- 
tion and spontaneous motility were revealed in mice starting at 100 mg/kg S.C. The 
LDso was at 400 mg/kg s.c., corresponding to 883 pmol/kg. 

PERIPHERAL PHARMACOLOGICAL PROFILE 

Effect on Smooth Muscle 

Efect on Intestinal Motility 

SM 2 1, administered at analgesic and antiamnesic doses, did not modify transit 
in the intestinal tract of the mouse, performed according to Reynell and Spray (74) 
(data not shown). In contrast, other analgesic drugs, such as morphine, signifi- 
cantly retarded gastrointestinal propulsion, the cholinesterase inhibitor neostigmine ac- 
celerated net propulsion (80). The lack of effect of SM 21 on intestinal motility indi- 
cates that this compound, with the same analgesic activity, has advantage over opioid 
analgesics, which produce constipation, or classical cholinomimetics, which produce 
diarrhea. 

Efect on Isolated Guinea Pig Ileum 

SM 21 added to the organ bath at concentrations ranging from 1 pM to 1 nM poten- 
tiated the contractions evoked by both nicotine (4 pM) and electrical stimulation at 
0.1 Hz, 0.5 ms, voltage double threshold, performed according to Paton and Vizi (71) 
(Fig. 5). The effect was larger (area under the curve ratio) on the contractions induced 
by nicotine than those induced by electrical stimulation. The potentiation was no 
longer observed when the concentration of SM 21 in the medium was raised to 10 nM. 

CNS Drug Ruvren..~. I'ol 3. N o .  4. I997 
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Fig. 5. Dose-response curves of SM 21 on nicotine-(4 pM; closed symbols) and electrically (0. I Hz; 
0.5 ms; double threshold voltage; open symbol evoked contractions) of guinea pig ileum myenteric plexus 
longitudinal muscle strip expressed as percentage variation of contractions. Each point represents the mean 
of at least 6 experiments and vertical lines give S.E.M. ' P <  0.05 calculated in the range between 0.1 pM 
and 0.1 nM. 

SM 21 began to inhibit both types of evoked contractions at 1 pM. Nicotine-evoked 
ileum contractions were about four times greater than those electrically evoked 
(Fig. 5 ) .  This is probably due to the simultaneous activation, during electrically- 
evoked contractions, of both intramural cholinergic and sympathetic fibers, whereas 
during nicotine-evoked contractions only cholinergic neurons are likely to be acti- 
vated. Noradrenaline released during electrical stimulation could be responsible for 
limiting the effect of the ACh released by low doses of SM 21. The higher amplifica- 
tion by SM 21 of the nicotine-evoked contractions of guinea pig ileum as compared 
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with those elicited by electrical stimulation depended on the inhibitory control exerted 
by norepinephrine. which is released only during electrical stimulation (3 I ) .  

Effect on Striated Muscle 

Rat Phrenic Nerve-Hemidiaphragm Preparation 

SM 21 ( I  pM to I mM)  potentiated the hemidiaphragm contractions evoked by 
electrical stimulation of the left phrenic nerve, performed according to the method de- 
scribed by Biilbring (10) and modified by Wessler and Kilbinger (83). and did not 
modify the contractions evoked through direct stimulation of the diaphragm muscle 
(data not shown). At concentrations lower than 1 pM, SM 21 was always inactive. A 
potentiation of hemidiaphragm contractions is exerted by numerous muscarinic an- 
tagonists, such as atropine, pirenzepine, dicyclomine, and glycopyrrolate (73,84) 
by blocking the muscarinic autoreceptors. SM 21 may, therefore, exert its effect on 
the phrenic nerve by antagonizing muscarinic receptor subtypes. One must con- 
sider, however, that inhibitors of cholinesterase can also amplify hemidiaphragm 
contractions ( 1 ). Since SM 2 I is endowed with very low anticholinesterase activity 
( ICso = 1 10 pM), it may be possible that its action underlies antimuscarinic and/or an- 
ticholinesterase activity. The lack of inhibition of electrical stimulation of hemidia- 
phragm contractions rules out the possibility that SM 21 acts as a local anesthetic. In 
fact, local anesthetics such as lidocaine and procaine inhibit the electrically stimulated 
contractions of the same preparation up to complete abolishment in a dose-dependent 
manner ( I ) .  

MECHANISM OF ACTION 

SM 2 1 antinociception was found to be dependent on cholinergic activation. since 
this analgesia is antagonized by the muscarinic antagonist atropine (Fig. 3a,b), the 
MI-antagonist pirenzepine (Fig. 3a,b), the ACh depletor HC-3 (Fig. 3a.b). and by le- 
sion of the nucleus basalis magnocellularis (NBM) (6) .  which is the primary source of 
ACh for the cerebral cortex (75). Moreover, the antagonism exerted by intracere- 
broventricular injection of HC-3 and pirenzepine in mice and NBM lesions in rats on 
SM 2 1 -induced antinociception confirms that the site of action of SM 2 1 is centrally 
located. 

A presynaptic mechanism facilitating cholinergic transmission is involved in 
SM 21 activity as revealed by microdialysis studies performed according to Giovan- 
nini et al. (43). SM 21 increased ACh release from rat cerebral cortex, which peaked 
from 45 to 60 min after administration and returned to basal values within 120 min 
(Fig. 6). This effect was sensitive to tetrodotoxin (Fig. 6). The SM 2 1 -induced in- 
crease in ACh release occurred at the same range of doses (10 to 20 mg/kg i.p.1 at 
which SM 21 exerted its antinociceptive and antiamnesic activities. The greater la- 
tency required to reach the maximum amplification of ACh release compared to that 
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Fig. 6. Dose-response curves of SM 21 on ACh release from parietal cortex and antagonism of SM 21 
(20 mg/kg i.p.) by TTX (0.5 pM). All values are expressed as changes over basal output. SM 21 was 
administered at 60 min as shown by the arrow. Vertical lines give S.E.M. Each point represents the mean 
of at least 5 independent experiments. Doses of SM 21 are expressed as mg/kg i.p. Significant differences 
were evaluated by comparing the percentage variation vs. the mean f. S.E.M. of all pre-drug determina- 
tions. ' P  < 0.05 in comparison with controls. 

required to be active could be ascribed to the time taken by ACh to diffuse from the 
synaptic cleft to the microdialysis tube. 

The hypothesis of a presynaptic cholinergic mechanism for SM 21 is confirmed by: 
1 )  the SM 2 1-induced amplification of electrically and chemically evoked contractions 
of guinea pig ileum myenteric plexus longitudinal muscle strips (Fig. 5 )  without modi- 
fying its basal tone; 2) the antagonism of SM 21-induced antinociception by the ACh 
depletor HC-3. A postsynaptic mechanism of action for SM 21 can be ruled out since, 
as reported by Bartolini et al. ( 3 3 ,  HC-3 was not able to antagonize antinociception 
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TABLE 3. Affinity profiles of SM 21. R-(+)-hyoscyamine, and AFDX-I 16 at MI - M4 
muscarinic receptors and binding affinities of SM 21 and AFDX-I 16 for ml - m4 

muscarinic receptor subtypes expressed in Chinese hamster ovary cells (CHO-KI) 
DA, values 

MI M2 M3 M,-putative 
rabbit vas deferens rat left atrium rat ileum guinea pig U ~ N S  

SM 21 5.97 f 0.1 1' 6.63 f 0.10. 6.35 f 0.04. 6.26 f 0.05' 
R-(+)-hyoscyamine 7.05 f 0.0Y 7.25 f O M a  6.88 f 0.0Y 9.56 f O.0la 
AFDX 116 6.84M.14b 7.12 f 0.1 l b  6.34 f 0.1Y 6.70 f 0.06 

pK, values 

SM 21 6.90 f 0.16 6.28 f 0.12 6.62 f 0.10 6.53 f 0.05 
AFDX 1 I6 6.84 f 0.14b 7.12M.11b 6.34M.13b 6.70 f 0.06 

Each value represents the mean f S.E.M.; *pK, values were obtained with SM 21 1 pM. From ref. 
"34, b23, '24. 

induced by agonists of postsynaptic muscarinic receptors such as oxotremorine, McN- 
A-343, and AF-102B; and 3) SM 21 did not elicit the typical cholinergic symptoms 
(tremors, sialorrhea, diarrhea, rhinorrhea, lacrimation, etc.) produced by injection of 
direct postsynaptic muscarinic agonists (9). It is also to be noted that there is a wide 
gap between the low concentrations at which SM 21 is thought to inhibit the presy- 
naptic muscarinic receptors (Fig. 5 )  and the high concentrations that are needed to 
block the postsynaptic muscarinic receptors (Table 3). 

It is well known that activation of the nicotinic system induces antinociception. 
SM-21, even if it increases extracellular levels of ACh, produces an enhancement of 
the pain threshold that is not prevented by mecamylamine, excluding a mechanism of 
action involving the interaction with nicotinic receptors (data not shown). This hy- 
pothesis is also supported by the fact the antimuscarinic drugs, at doses able to an- 
tagonize muscarinic antinociception, do not prevent nicotinic antinociception (33). 

It has long been known that activation of the cholinergic system induces antino- 
ciception (72,30,52,5 1,13,50,60), as well as a facilitation of cognitive processes (16). 
It is plausible, therefore, that enhancement of extracellular levels of ACh can be con- 
sidered responsible for the antinociceptive effect of SM 2 1. Moreover, the SM 2 1 -in- 
duced amplification of endogenous ACh release may counteract the amnesic effect 
produced by the antimuscarinic drugs scopolamine and dicyclomine. 

ACh release can be increased by blocking M2/M4 muscarinic autoreceptors 
(58,81,65,79). The affinity profile of SM 21 vs. MI (rabbit vas deferens, according to 
Eltze [23] and modified by Dei et al. [18]), M2 (guinea pig atrium, according to Eltze 
et al. [22] and modified by Dei et al. [18]), M3 (guinea pig ileum, according Eltze and 
Figala [24]), and putative M4 receptors (prepuberal guinea pig uterus, according to 
Doje et al. [20]) shows low M4/MI (1.9 times) and M2/MI (4.6 times) selectivity ra- 
tios as reported in Table 3. In this study, SM 21 selectivity was compared with that of 
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the selective M4 antagonist R-(+)-hyoscyamine (34) and the selective M2 antagonist 
AFDX-116' (42). It is possible that a selectivity ratio of 4.6, even if small, may be 
high enough to enhance the pain threshold and to reverse amnesia as a consequence of 
ACh release. The M2 muscarinic antagonists, AFDX- 1 16 (42), methoctramine (66), 
and AQRA-741 (19), which are endowed, like SM 21, with cholinergic presynaptic 
antinociceptive (4,32,46) and antiamnesic (2) properties, and which are able to in- 
crease ACh release (58,81), have an M2/MI selectivity ratio comparable to that of SM 
2 1. However, binding studies performed on the ml to Q human muscarinic receptor 
subtypes expressed in CHO cells (21,12) did not confirm the results obtained by func- 
tional studies, as shown in Table 3. Other mechanisms able to potentiate the endo- 
genous cholinergic system may be involved in the antinociceptive and antiamnesic ef- 
fect induced by SM 2 1. 

It has been demonstrated that D2 dopaminergic (44,82,78,54), Al adenosinergic 
(55,l I ) ,  H3 histaminergic (14), 5-HT4 serotoninergic heteroreceptors ( 1  5 ) ,  and 5-HTIA 
receptors (8), increase ACh release. However, the above-mentioned receptors are not 
involved in an SM 21 mechanism of action. In fact, SM 21 is able to interact with Dz, 
H3, 5-HT4, and ~ - H T I A  only at concentrations higher than I V M ,  as revealed by 
binding studies (data not shown). These results are supported by the fact that quinpi- 
role (D2 agonist), N6-cyclopentyladenosine (Al agonist), R-(a)-methylhistamine (H3 
agonist), GR-48125 (5-HT4 antagonist), and NAN 190 ( ~ - H T I A  antagonist), at doses 
able to prevent the antinociception induced respectively by haloperidol (33), caffeine 
(37), thioperamide (63), BIMU 1 and BIMU 8 (36), and 5-HTIA agonists (35,29), 
failed to prevent SM 2 1 antinociception (39). 

Neurotransmitter systems other than the cholinergic are not involved in SM 21 an- 
tinociception. This compound interacts with the following receptor subtypes: a l - ,  al-, 
PI-, P2-adrenoceptors, DI,  GABAA, GABAB, HI,  NK,, 6-, K-, p-opioid, ~ - H T I D ,  
5-HT2, 5-HT3, and K+ channels: ATP-sensitive K+ channel, voltage-dependent K+ 
channel, Ca2+-activated K+ channel only at concentrations higher than 1 V  M (data 
not shown). The lack of prevention of SM 21 antinociception by the opioid antagonist 
naloxone, the GABAB antagonist CGP-35348 and the biogenic amine depletor reser- 
pine (39) is in agreement with the binding data. Pertussis toxin (PTX) pretreatment 
was able to prevent opioid (70), catecholaminergic, GABAergic (53), histaminergic 
(28), and purinergic (77) analgesia, but not muscarinic antinociception (28). Since SM 
21 antinociception was not prevented by pretreatment with pertussis toxin (7), the hy- 
pothesis of a cholinergic mechanism underlying the SM 21 mechanism of action is 
further supported. 

SUMMARY 

SM 21 is a 2-phenylpropionic acid ester, structurally related to atropine, that pro- 
duces a central antinociceptive and antiamnesic effect in mice and rats. These activi- 
ties are exerted without impairing motor coordination and without producing typical 
cholinergic symptomatology. SM 2 1 is also able to amplify the evoked contractions 

* Chernival name of AFDX-I 16 is: I 1,2-(diethylarnino)rnethyl-I -piperidinil acetyl-5.1 I-dihydro-6H-pyndo 
2,3b 1,4-benzodiazepine-6-one. 
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of smooth and striated muscle. A potentiation of endogenous cholinergic activity, by 
enhancing ACh extracellular levels, can be considered responsible for the action of 
SM 21 on both the central and peripheral nervous system. However, at this point the 
exact mechanism by which ACh levels are increased is not entirely elucidated. 
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