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ABSTRACT 

This dissertation is the results of the experience at General Electric Transportation Systems 

(GETS). The Company is a railway signaling manufacturer that develops embedded 

platforms for railway signaling systems. The safety critical nature of these applications 

makes the verification activities extremely crucial to ensure dependability and to prevent 

failures. 

At the end of 2008 GETS decided to introduce new verification and testing methods inside 

the company processes to ensure higher code safety and cost effectiveness at same time. 

Traditionally in the railway context the unit test was the main technique adopted to detect 

design errors and ensure the correctness of the components before the final integration 

and validation phase. Testing activities normally require high costs and at the same time do 

not ensure that the software is completely free from errors. In the same context the need 

to evaluate functional correctness of applications before the final integration and 

validation phase persuaded the Company to investigate the applicability of Model Checking 

technique to verify railway applications. In this domain and with these research objectives 

collaboration between GETS and the Computer Engineering Department (D.S.I) of the 

University of Florence started. 

This work reports the results obtained during this collaboration going through methods, 

process, results of experimentations in the verification and testing domain of safety critical 

applications. 
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Introduction 
 

 

The adoption of modeling and formal methods technologies into the different phases of 

development lifecycle of safety critical systems is constantly growing within industry. 

Industrial applications of formal methods and model-based development for railway 

signaling systems are discussed in many case studies. The Paris Metro [Ref.  1], the SACEM 

system [Ref.  2], and the San Juan metro [Ref.  3] are past and recent examples of 

successful stories about the usage of these technologies in the railway domain. 

General Electric Transportation Systems develops embedded platforms for railway 

signalling systems and, inside a long-term effort for introducing formal methods to enforce 

product safety, employed modelling first for the development of prototypes [Ref.  4]and 

afterwards for requirements formalization and automatic code generation [Ref.  5]. GETS 

has adopted the Model Based Development (MBD) technology in an effort to deal with 

the growing scale and complexity of its applications. Within the new development context 

also the verification and validation activities have experienced an evolution toward a more 

formal approach. 

In particular, the code-based unit testing process guided by structural coverage objectives, 

which was previously used by the company to detect errors in the software before 

integration, is the object of this dissertation together with the study of the applicability of 

model checking to the railway domain problems. 

The rest of the dissertation is structured as follow. In chapter 1 are reported the state of 
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the art, the background and the thesis statement. In chapter 2 are reported the results 

obtained during the research studies applied at actual company’s projects and the 

polyspace based process defined according to the results.  In chapter 3 is described the 

interlocking problem chosen as railway domain application for the model checking analysis, 

the results obtained in terms of applicability of the method to the interlocking problem. 

In chapter three summarize the results of the two main dissertation areas and the future 

work planned by the Company according to the results obtained and the continuous 

improvement process. 
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Chapter 1 
 

1 BACKGROUND 

1.1 Safety Critical Systems 

The Safety Critical Systems are defined as the ones that are involved in a domain in 

which a malfunctioning can bring risks for the human health and for the environment 

in which they act. 

Applications that shall be free from anomalies and that belong to the Safety Critical 

Systems class are common in avionic, railway or health context: in these business 

areas a software or hardware failure could raise serious damages in terms of human 

lives and serious problems and concerns for the environment.  

Considering an entire System composed by hardware, software and environment in 

which it acts, it is possible to define a system level risk as a state of the system that 

can provoke an unexpected behavior that can drive to deaths, damages and 

contamination of the environment. 

In these contexts a fundamental activity to be carried out before the release of a new 

product is the verification of the correctness by the point of view of design and 
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implementation: the aim is to verify and provide the evidences that the Product 

cannot bring to unexpected behaviors raising catastrophic failures. 

Safety Critical Systems are typically constituted by hardware and software 

components. Safety cannot be achieved over the single software or hardware 

components but needs to be assessed also on logical and physical interactions. 

Once during the years the doubts on robustness and capabilities to manage hardware 

failures for the software were ridded out, the use of the software components inside 

safety critical systems is gradually increased and propagated.  

Software and hardware are used for different purposes and for their specific 

characteristic are involved in different ways and aspects in terms of safety. The 

common aspect that associated software and hardware in the safety critical context 

is the opportunity to move in a failure state. By this point of view the software can be 

considered as well as all the other components that can generate unsafe conditions. 

The main difference, that is a remarkable advantage by the point of view of 

verification and testing, is that the software failures are deterministic: with a fixed 

state and a fixed inputs vector the software will fail every time and with the same 

effect (there are no degradation in software components and no impacts from 

environmental conditions).   

To verify the correctness of a software procedure and assess its behavior for all the 

possible inputs and states means to have the absolute guarantee of the software 

procedure design and implementation and allows the procedure to be considered as 

an atomic safe operation. 
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Even if examples of accident caused by software failures exist, as the case of the 

Ariane 5  [Ref.  6] and the Therac 25 [Ref.  7], the amount of accidents attributable to 

software anomalies is minimal. In the aerospace context it is estimated the hour 

failure rate equal to 10^-7. 

The verification phase of a software system is historically committed to a massive use 

of the testing activity that is the verification of the software correctness executing the 

source code with specific input stimuli (called also Dynamic Analysis). 

This activity, even if very expensive, is not exhaustive. Verification and Validation 

activities of a system can exceed the 60% of the entire development cost. 

It is easy to prefigure that these reasons incite the industries working in the safety 

critical domain to modify their processes introducing new techniques and new 

modeling design approaches in order to reduce the development costs and to 

increase the confidence about the products safety.  

1.2 Formal Methods 

The Formal Methods are a set of mathematically based techniques through which it is 

possible to specify, develop and verify hardware, software or entire complex systems. 

The more appropriate description associated with the term "formal methods" can be 

traced to that provided by the standard IEC 61508, in which the methods are defined 

as those that describe in mathematical form a system that can be subject to 

mathematical analysis for the detection of inconsistencies or errors . Generally a 

formal method is used to provide a notation and a technique to obtain a description 
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in this notation and various forms of analysis to verify different properties of 

correctness. 

The application of these techniques along the software development process is highly 

recommended in the standard CENELEC 50128 particularly during the requirements 

specification and software design phases with the highest level of safety SIL 4. The 

methods use at the beginning of the process as their applications on the system 

requirments specification allows to deploy and to manage the efforts of verification.  

These are usually entrusted to the testing phase during and throughout the 

development cycle. The ability to perform a formal verification applied to the 

requirements specification and design phases therefore allows the improvement 

about the capability to detect at an early stage any logical errors that would later be 

transformed into implementation errors. 

These techniques can be applied to all development phases of the process until the 

detailed source code verification phase. Each algorithm has some implicit properties 

that shall be checked during its execution, the formalization allows them the 

opportunity to verify its correctness. 

Although the method has a high level of applicability independent of the functional 

purpose of the final system, in industry, the process of introduction, integration and 

application of formal methods for the development and verification of safety related 

systems is dependent by the level of technological innovation system, its support 

design tools and by the system project organization. This introduction process also 

depends on the typology of validation standard requirements that the project shall 

satisfy. 
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The presence of a large amount of different formalisms that the technical features 

and its related support tools for the verification implies the need to realize - for the 

company that would use the method - a detailed preliminary study antecedent its 

direct application. 

Another factor that impacts on the introduction process about the formal methods 

use is the level of complex systems representation. The complex systems definition 

through syntax and semantics shall be very rigorous and robust.The quantification of 

the benefits in terms of costs as the assumptions listed above depends strongly by 

the structure, size and project organization. Despite this background, the present 

method has already found wide use in many companies. 

The partial simplification of the processes of formal verification is reached with the 

introduction of new tools, automatically, perform the formal analysis of the models 

or specifications that describe them: the model checker. The number of existing 

model checkers and available following the number of existing formal methods. It is 

important to note that the negative outcome of the verification of a property for a 

model using model checking depends on this from both the real absence of coverage 

of the property from the model that by an error introduced in the modeling phase of 

the system and its relative properties desired in the formalism. 

The evidence of error typology is suggested by the model checker that provides a 

counterexample in case of failure. The verification that the example leds the error 

detection belongs to the domain of the system leads to the statement that the 

property is actually not fulfilled by the system under analysis. 
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A model checker example is NuSMV, it is [Ref.  9] a tool that bases its operation on 

the properties representation to check in the logical form the formulas in CTL and 

LTL. The system modeling is carried out through the use of particular types of graphs, 

the Binary Decision Diagram (BDD), which allows representing the system state space 

in a contracted form in order to avoid a major obstacle to the adoption of the 

massive model checking: the explosion of the state space. Use of this formalization is 

primarily born in the hardware systems verification. 

A model checker widely used, especially in situations where it is important to the 

description of concurrent processes, is SPIN [Ref.  10]. The system needs to be 

modeled according to a formalism similar to the C language, PROMELA and the 

properties to check shall be expressed in temporal logic. The Institute ISTI of CNR in 

Pisa, for example, carried out the study of a project in the railway environment using 

just the SPIN model checker [Ref.  11] concluded that the use of the model checker 

leads to the detection of some potentially serious errors, but as the modeling phase 

of the system is complex because of the need to formalize Interlocking time and the 

difficulty of managing the explosion problem states.  
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1.3 Abstract Interpretation 

In the industrial domain the verification and validation phase of the Software 

components is historically performed through testing and static analysis activities. 

The dynamic analysis (testing) mainly focus on checking functional correctness 

against software requirements, boundary values analysis, control flow and data flow 

of the procedures to detect possible runtime errors and unexpected behaviors on the 

range limit of the variables. The Static Analysis aims to identify static properties of 

the code: as coding rule restrictions application, dead code, coding style, uninitialized 

variables and unused functions. Examples of techniques traditionally adopted for 

static analysis are data flow analysis [Ref.  12], program slicing [Ref.  13], constraint 

solving [Ref.  14], and, with an increasing spread in the latest years, abstract 

interpretation. To distinguish which are the differences between static analysis and 

dynamic testing we can refer to the fault-error-failure model in its most used form in 

the context of testing and verification of L. Hatton [Ref.  15].   

The error is the origin of the fault, the failure occurs in the case where the system is 

exercised in correspondence of a fault. The fault is a static characteristic of the code 

while the failure is a dynamic property that only occurs during the execution of the 

code. The direct implication from the definitions above is that the faults included in 

the software code will not always raise a failure. Many studies were developed to 

estimate the amount of faults that drive a failure as consequence; E. N. Adams [[Ref.  

16] estimated that 1/3 of the software faults bring to a failure after 5000 years of 

execution. 
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The goal of the static analysis is to detect all defects in the code not on the basis of 

the failures that have generated, but directly by analyzing the static properties of the 

code. Since many of the failures occur only with particular combinations of input, 

detecting defects in the code only through the study of failures (testing) is a 

technique that does not allow detecting them all. Some tools that perform static 

code analysis algorithm based their operation on abstract interpretation. 

 

Abstract interpretation is a particular static analysis method that allows to infer 

dynamic properties of the code and to detect runtime errors and faulty states of the 

program without executing the code. The theory beyond this technology was 

presented by P. Cousot and R. Cousot [Ref.  17] [Ref.  18] [Ref.  19] in the 70s. The 

core idea of the theory is to define some approximation of the semantics of a 

program to obtain an abstract semantics. Formal proof of the program can be done 

at this different level of abstraction in which irrelevant details are removed to reduce 

the complexity of the verification process. The method defines an over-

approximation of all the program reachable states in order to check all the possible 

program runs. If a property is satisfied for the analysed set then it is satisfied for the 

real domain of the program, a domain that represents a subset of the one verified. As 

one can infer from the theory, tools for abstract interpretation may lead to false 

positives, caused by the analysis of runs that do not belong to the real domain of the 

code, and normally these situations have to be checked manually. 
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The Abstract Interpretation provides the mathematic method to move from a real 

domain to a different one in which particular operations become feasible and 

exhaustive. 

The elements composing a C code statement are not interpreted according to the 

programming language semantic but in a different domain. 

Variables and runtime errors are constituted by a set of equations: the abstract 

interpretation can solve the equations describing runtime errors (detecting the 

presence of errors) using the mathematic data coming from the equations that 

represent the variables. The statement below as example: 

X = X/(X-Y) 

The statement above can generate a certain set of runtime errors (not initialized 

variables, overflow..) but to clarify how the static analysis through abstract 

interpretation works it will be analyzed the possibility of the occurrence of a zero 

division when the values of the two variables are the same. 

In Figure 1 it is represented an example of the possible combination of values of the 

two variables X and Y. 
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X

Y

 

Figure 1 – X and Y values representation 

 

The red line joins all the cases in which the statement raises a runtime error for zero 

division (variable X and Y assume the same value). 

Compilers and support tool providing warning about erroneous use of variables use 

the type analysis abstraction. The tools select the minimum and the maximum value 

of the variables according the type of the variable and draw the correspondent 

square (Figure 2). If a property is true inside the square, it is valid also for all of the 

real possible combinations of the values that are included in the set. This kind of 

abstraction allows avoiding false negative cases but generates an high amount of 

false positives. In the example if only the blue circles are the combinations allowed 

according the data flow of the procedure, using the type abstraction a large set of 
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false positive will be generated (all the points in the red area) even if no blue circle 

resides on the line.  

X

Y

255

255

0

 

Figure 2 - X and Y type range domain 

The abstract interpretation through the use of prisms, lattices and mathematical 

methods for data representation identifies the best shape and structure for the 

representation of the data. This abstraction allows to avoid many of the false 

positives points and allows to verify that no combinations of the data flow drive to a 

combination of X and Y that could raise the zero division runtime error. 
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Y

X
 

Figure 3 – X and Y range represented through abstract interpretation 

 

The first experimentation with the Polyspace tool abstract interpretation based [Ref.  20] was 

related to the Mars Exploration Rover flight software from NASA. The results showed an high 

number of warnings that need to be checked manually requiring time consuming activities for 

the developer. In the avionics sector, successful experiments for the reduction of warnings [Ref.  

21] have been performed using the tool Astrée [Ref.  22] currently distributed by AbsInt.  
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1.4 Interlocking Systems 

In the railway signaling domain, an interlocking is the safety-critical system that 

controls the movement of trains in a station and between adjacent stations. The 

interlocking monitors the status of the objects in the railway yard (e.g., points, 

switches, track circuits) and allows or denies the routing of trains in accordance with 

the railway safety and operational regulations that are generic for the region or 

country where the interlocking is located. The instantiation of these rules on a station 

topology is stored in the part of the system named control table that is specific for 

the station where the system resides [Ref.  23]. Control tables of modern 

computerized interlockings are implemented by means of iteratively executed 

software controls over the status of the yard objects. 

Verification of correctness of control tables has always been a central issue for formal 

methods practicioners, and the literature counts the application of several 

techniques to the problem, namely the Vienna Development Method (VDM [Ref.  24], 

property proving [Ref.  25] [Ref.  26]. Colored Petri Nets (CPN) [Ref.  27] and model 

checking [Ref.  28] [Ref.  29] [Ref.  30]. This last technique in particular has raised the 

interest of many railway signaling industries, being the most lightweight from the 

process point of view, and being rather promising in terms of effciency. Nevertheless, 

application of model cheking for the verification of safety properties has been 
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successfully performed only on small case studies, often requiring the application of 

domain related heuristics based on topology decomposition.  

The literature is however quite scarce on data concerning the size of interlocking 

systems that have been successfully proved with model checking techniques. This is 

partly due to confidentiality reasons, and partly to the fact that the reported 

experiences refer to specific case studies, with a limited possibility of scaling the 

obtained results to larger systems. 

 

1.5 CENELEC Standard 

Products traditionally developed by GETS, like any railway signaling application 

developed for Europe, shall comply with the European CENELEC standards. 

This is a set of norms and methods to be used while implementing a product having a 

determined safety-critical nature. We shortly refer in the following the ones that 

have a direct impact on the design of computer-based railway signaling equipments, 

and we focus in particualr on the one that regulates software design. 

The EN 50126 “Railway Applications - The specification and demonstration of 

Reliability, Availability, Maintainability and Safety (RAMS).” addresses system issues 

on the widest scale. 

The EN 50129 “Railway Application –Communications, signaling and processing 

system. Safety Related electronic system for signaling” addresses the approval 
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process for individual systems which can exist within the overall railway control and 

protection system. 

The EN 50159-1 and 50159-2 addresses the approval process for communication, 

signaling and processing systems related to closed and open transmission systems. 

The EN 50128 provides a set of requirements with which the development, 

deployment and maintenance of any safety-related software intended for railway 

control and protection applications shall comply. It defines requirements concerning 

organizational structure, the relationship between organizations and division of 

responsibility involved in the development, deployment and maintenance activities. 

Criteria for the qualification and expertise of personnel are also provided in this 

European Standard.  

The key concept of this European Standard is that of levels of software safety 

integrity. This European Standard addresses five software safety integrity levels 

where 0 is the lowest and 4 the highest one. The higher the risk resulting from 

software failure, the higher the software safety integrity level will be. 

This Standard identifies techniques and measures for the five levels of software 

safety integrity. The required techniques and measures for software safety integrity 

levels 0-4 are shown in the normative tables. 

The Standard does not give guidance on which level of software safety integrity is 

appropriate for a given risk. This decision will depend upon many factors including 

the nature of the application, the extent to which other systems carry out safety 

functions and social and economic factors. 



Chapter 1 

BACKGROUND 

 

Page 18 

 

The norm encourages the usage of models and formal methods in every phase of the 

software development cycle, starting from the design to the verification. The 

rationale is that models are more related to abstract concepts than the technologies 

used for their implementation into code, and are therefore closer to the domain of 

the problem. 

 

 

Figure 4 – Table A.17 from the EN 50128 Standard 

"Formal Methods" refer to mathematically rigorous techniques and tools for the 

specification, design and verification of software and hardware systems. 

"Mathematically rigorous" means that the specifications used in formal methods are 

well-formed statements in a mathematical logic and that the formal verifications are 
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rigorous deductions in that logic (i.e. each step follows from a rule of inference and 

hence can be checked by a mechanical process.) The value of formal methods is that 

they provide a means to symbolically examine the entire state space of a digital 

design (whether hardware or software) and establish a correctness or safety property 

that is true for all possible inputs (Definition from EN 50128 standard). 

 

Abstract Interpretation is not currently part of the recommended practices of the EN 

50128 norm, since this has been published before Abstract Interpretation became a 

mature tool supported technique. However, due to the evident benefits that it can 

bring in terms of runtime errors detection, companies started practicing it as a 

completion of the verification process to enforce the safety of its products. The 

abstract interpretation approach studied and defined in this dissertation shows how 

the company has employed a commercial tool (Polyspace) in its application domain. 

 

1.6 Thesis Statement 

General Electric Transportation Systems is a railway signaling manufacturer that 

develops embedded platforms for railway signaling systems. 

At the end of 2008 GETS decided to introduce new verification and testing methods 

inside the company processes to ensure higher code safety and cost effectiveness at 

same time. 
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Testing activities normally require high costs and at the same time do not ensure that 

the software is completely free from errors:  the Company decided to investigate the 

introduction in its process of a more deep and incisive method to support the testing 

phase, in particular the static analysis through abstract interpretation. In the same 

context the need to evaluate functional correctness of applications before the final 

integration and validation phase persuades the Company to investigate the 

applicability of Model Checking technique to verify railway applications and in 

particular interlocking applications. In this domain and with these research objectives 

collaboration between GETS and the Computer Engineering Department (D.S.I) of the 

University of Florence started. 

The thesis aims to address the following: 

 

Evaluating and Introducing new Verification and Testing 

Methods in the Safety Critical Domain Processes. 

 

The dissertation faced two different development phases: 

 Verification in Design Phase through the study of the applicability of Model 

Checking to the Interlocking System Verification 

 Verification in Implementation Phase through the study of the applicability of 

the Static Analysis through Abstract Interpretation to the railway domain 

software source code. 

 

 



Chapter 2 

STATIC ANALYSIS - ABSTRACT INTERPRETATION 

Page 21 

 

Chapter 2  
 

 

2 STATIC ANALYSIS - ABSTRACT 
INTERPRETATION 

 

2.1 Static Analysis – Polyspace Tool 

Concerning the abstract interpretation phase (Static Analysis) of the verification 

process, GETS has adopted Polyspace [Ref.  8], a commercial tool provided by The 

MathWorks. From an industrial perspective, having the same producers for several 

tools employed in the development process (Stateflow/Simulink suite used in the 

Model Based Development Approach) gives more confidence on their compatibility, 

and simplifies the interface with the tool providers. 

Polyspace analyses the C code and detects the statements that could produce errors 

during the execution of the code.  

The tool presents its results through chromatic marks on the analysed code: 

 green, if the statement can never lead to a runtime error; 

 orange, if the statement can produce an error under certain conditions; 

 red, if the statement leads to a runtime error in every  run; 

 grey, if the statement is not reachable. 
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The analysis of results has two different levels of difficulty. The green and red codes 

obtained can be interpreted immediately: green indicates that the code is totally free 

of runtime errors; the red code indicates that the code is suffering from a permanent 

runtime error that occurs whenever statement is executed. 

 

For the analysis of gray it is necessary to check what may have been the causes that 

led to the execution of failure: this step may require a greater commitment being in 

the context of safety-critical application the absence of unreachable code. The 

analysis of the orange is the critical part of the audit tool PolySpace and generally it 

represents the critical stage for any type of verification that is based on abstract 

interpretation: the orange indicates that at least one computation run-time error has 

been detected. 

The main runtime errors that static analysis can detect are: 

 

 access to uninitialized variables, local or otherwise (and NIVL NIV) 

 access to uninitialized pointers (NIP) 

 illegal access through pointers (IDP) 

 access to an array out of bounds (OBAI) 

 arithmetic overflow and underflow (OVFL, UVFL) 

 infinite loops and calls that do not terminate (NTL and NTC) 

 

Every possible runtime error in the code is analyzed for its all possible computations. 

In Figure 5 there is described the criteria which PolySpace assign color codes to the 

code analyzed. 
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If there is the supposition that we have a statement that can generate a given run-

time error, such as a OBAI 

 

 If all computations do not generate the excess of the array then the check will be 

colored green; 

 if all instead cause the error will be reported then a code red, otherwise; 

 if at least one of computations generated the runtime error will be issued a 

warning orange 

 

In order to perform static analysis on the code, the tools based on abstract 

interpretation techniques, such as Polyspace, build an abstract domain that 

represents an over-approximation of the real domain. The abstraction process might 

bring to the generation of false positives during the verification: this behaviour is 

caused by errors raised in those runs which are allowed only in the extended domain, 

but not in the original one. 

For this reason, it is essential, for the adoption of this technique, to define a well-

structured process that permits to reduce the cost of the analysis of false positives, a 

cost that represents the price to pay to obtain the exhaustive verification of the code 

behaviour. 
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 Case #1 Case #1

Single Check Results domain

GREEN PASSED

Check Result 

 Case #2 Case #2

Single Check Results domain

RED FAILED

Check Result 

 Case #3 Case #3

Single Check Results domain

ORANGE
To be 

analyzed

Check 
Result 

Run for which the check does not raise runtime error

Run for which the check raises runtime error
 

Figure 5 – Chromatic Semantic Legend 
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2.2 Two-Steps Process 

In order to address the problem and, at the same time, to obtain a substantial 

improvement of the confidence on the correctness of the code, the research lead to 

the definition of a two-steps process (Figure 6) promoted by the results obtained 

reported and discussed later in this chapter. The first step is performed with a very 

large over-approximation set. The second one capitalizes the information obtained by 

the analysis of the previous one, and executes the verification with the use of a finer 

approximation set [Ref.  33]. 

The purpose of the first step is mainly to detect systematic runtime errors (red), that 

is, errors which arise in all the runs considered in the verification, and unreachable 

statements (grey). Examples of systematic runtime errors are infinite loops, out of 

bound array accesses and usage of not initialized variables. 
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Figure 6 – Two Steps Process 

Although unreachable code might seem to be a low severity problem, in our 

experience grey marks are often indications of erroneous modelling of the 

specifications: a code block that is never executed might be the translation of an 

unreachable state in a Stateflow chart. Only in some limited cases, grey marks are 

related to additional defensive-programming instructions introduced by the translator 

to maintain control even in presence of completely unexpected input, which may be 

due to hardware or software faults. For example, the default statement in a 

switch/case block (which is the natural translation of a state-machine), is likely to be 
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never executed, in which case it will be marked with grey. Obviously, these grey marks 

do not harm the safety of the code because they represent collectors used to handle 

unexpected behaviours. 

 

The first step is performed using all the possible over-approximations settings 

provided by Polyspace: 

 

 Full-interleaving: the tool automatically generates the function calls for the public 

procedures of the module under test if they are not invoked by other functions defined 

in the same module. All the possible interleaving of the automatic function calls are 

analysed in the verification. 

 Static variables initialization: the static variables defined in the module in every run 

are initialized with all the values of their type range (in the following we will refer to 

this kind of approximation as the full-range initialization).  

 Global variables initialization: the global variables defined in the module are 

managed in the same way of static variables. 

 Generation of function calls: the formal parameters of the function for which the 

tool generates the call are initialized at full-range. 

Since these approximations are used in the first step in order to be sure that the 

analysed runs include all the actual runs, the results obtained are not selective 

enough. The large set of spurious runs that are analysed in the step leads to an 

outstanding number of orange checks. 
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Figure 7 – Example of unsafe statement (array out of bound exception) 

For example, in Figure 7 the statement highlighted by the arrow could raise a runtime 

error, in particular the return value of the function get_value can be out of what is the 

expected: the statement could access a memory location which is outside the bound 

of the array named buffer. 

The code reads a location of the array buffer indexed by the global variable index. In 

the first step, Polyspace automatically initializes all the global variables with full-range 

values. For this reason, when the tool analyses the statement highlighted in Figure 7, 

it finds that for some values of the variable index there is an out of bound access to 

the array. The result suggests that narrower bounds have to be introduced on the 

values that the variable index can assume in order to reduce orange marks and 

manage unexpected inputs in case of error propagating from other software 

components. 

In the example, Polyspace signals a possible erroneous behaviour on the array 

bracket, but the actual cause of the orange mark is the full range initialization of the 

variable index. It is on this variable that one has to work in order to avoid the warning. 
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This situation is similar for any orange mark coming from the first step: in order to 

narrow the approximation for the subsequent step of Polyspace, each orange mark 

has to be related to the cause that produced it. The generic classes of causes that 

generate the orange marks are well known, and can be referred to the over-

approximations settings that have been listed before. Therefore, an analyst with a 

minimum proficiency with the tool can easily evaluate the orange marks and quickly 

classifies their causes.  

In the case of the example, the analyst recognizes the orange mark on a bracket as 

referring to the global variable initialization setting, so can pinpoint the variable that 

has been initialized full range. Another case might be the one in which one module has 

two interface functions, the first to initialize static variables, and the second to 

actually perform the functionalities required to the module (this is actually the normal 

structure of the automatically generated code). In the actual usage of the program, 

the initialization function will always be called before the other one. However, the tool 

will issue orange marks on all the static variables used by the execution function: due 

to the full-interleaving over-approximation, the tool assumes that the second function 

might be called before the initialization one, leaving the static variables without an 

initial value. Also in this case, the analyst recognizes a bunch of oranges on static 

variables, and can associate them to the full-interleaving class. Then, (s)he can add 

constraints concerning the order of execution of the functions, for consideration in the 

next step of the Polyspace application.  

As exemplified, the identified classes are used to define input constraints to be given 

to the tool to restrict the analysed abstract domain of the program. Sometimes, 

editing the configuration file that defines the constraints might require advice from 

the developers, since the analyst is often not aware of the actual domains of the 
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variables, or of the program context in which a certain function is used. However, we 

experienced that the analyst is much more independent if (s)he has to deal with the 

automatically generated code, since the repetitive structure of the software simplifies 

the review task. 

The second Polyspace step, performed with the restrictive settings, allows a finer 

approximation of the real domain of the program and then a reduction of the number 

of false positives. At the end of this step, the remaining orange marks are due to the 

complex interactions between variables that cannot be constrained by simply 

introducing finer approximation bounds. 

As an example, consider the code segment depicted in Figure 8 that describes a 

typical software procedure present in the railway signalling context:  it deals with a 

train receiving messages from the car-borne equipment at every given distance, in 

proximity of a so called information point. Every time the train passes by the 

information point and receives a message, the code assigns the current value of the 

space covered by the train, maintained in the variable current_space, to the variable 

last_msg_space. Once the train gets by the information point, it uses the procedure in 

Figure 8 to compute the space covered from the last message received. 

 

 

Figure 8 – Example of unsafe statement (underflow exception) 
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Polyspace produces an orange mark that signals the risk that the described statement 

could raise an underflow. This orange mark is reported also in the second step of the 

Polyspace verification, because in this case the constraint on the possible values 

assumed by the variables does not handle the particular bound that makes impossible 

the underflow.  

 

According to our experience, the overall time employed for the configuration and set-

up activities is 20% more than the time Polyspace takes to actually execute the two 

steps. The most time consuming task is the first review of the orange marks that takes 

about the 48% of the overall time required for the whole process. Due to the low 

number of residual oranges after the second step (normally about 2.6% of the total), 

the cost of the second review is basically negligible. Nevertheless, one has to consider 

that the absolute overhead of the orange review is acceptable: about 5 minutes for 

each orange, in average. The generated code is characterized by a limited number of 

different classes of motivations for the orange marks, and this makes most of the 

review a rather systematic activity. 
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2.3 Case Study 1 – BL3 ATP Application 

The approach described has been experimented in the verification phase of a project 

concerning an Automatic Train Protection (ATP) system developed by GETS in 2008 

[Ref.  33]. ATP systems are embedded platforms aimed to control the train speed 

according to the wayside signals and brake the train in case of SPAD (Signal Passed At 

Danger), which is known to be a common cause of railway accidents. 

Results on the abstract interpretation phase are reported for a representative set of 

project modules (Figure 9). 

 

Figure 9 – First Step Results, BL3 

 



Chapter 2 

STATIC ANALYSIS - ABSTRACT INTERPRETATION 

Page 33 

 

As shown in Figure 3, no systematic error (red) has been detected during the first 

PolySpace verification. Nevertheless, there is a relevant amount of orange marks for 

which it is not possible to decide if they actually represent faulty states of the 

program. These orange warnings have been classified according to the kind of 

approximation that supposedly produced them. Manual analysis of the first results has 

detected only two classes of causes of oranges: wrong interleaving of function calls 

and automatic initialization of global variables and input function parameters (Figure 

10). 

 

 

Figure 10 – Orange classes associated to the approximations 

The analysis of these causes has determined the constraints for the second PolySpace 

verification. This step produced only a few orange warnings, as shown in Figure 11. 
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Figure 11 – Second Step Results, BL3 

The remaining orange marks are due to complex interactions of variables that cannot 

be constrained by finer approximation bounds. However, an analyst with a sufficient 

knowledge of the actual meaning of the variables can quickly check if the warnings are 

false positives or not. 

 

The Polyspace-based verification approach permitted a reduction of the overall 

verification cost of 70%, as reported in  the Figure 12 compares the verification cost of 

the BL3 project to the effort spent for traditional structural testing on code (according 

to 100% boundary-interior path coverage), which was applied in a previous project of 

comparable size in terms of modules. 
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Verification Process Modules Paths Hours 

Structural Testing 19 2274 728 

MBT + Abstract 
Interpretation 

21 >8000 227 (162 + 75) 

 
Figure 12 – Comparison of verification cost of BL3 against a comparable project  

 

The Verification Process includes the Model Based Testing performed in the design 

phase of the Stateflow Model from which the source code was generated.  

 

2.3.1 Generated Code - Handwritten Code 

GETS has adopted the Model Based Development (MBD) technology in an effort to 

deal with the growing scale of its applications. Model Based Development (MBD) is a 

software development approach where the fundamental artifacts are models. 

Before getting into hand crafted code, the developer has to produce one or more 

abstract specification of the system in the form of models. Given this specification, 

software tools can provide simulation of the model behaviour and automatic code 

generation, this allowing a notable improvement for the process productivity. 

 

This techniques drove as consequence that the software source code composing the 

railway application developed was constituted by a part of source code automatically 

generated and a remaining part that is traditionally handwritten by the developer. 

Considering the main characteristics of these two different types of source code, a 
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study was conducted also to identify the applicability and the performance of the 

static analysis through abstract interpretation for both type of software. 

The results obtained shows that the generated code produces a higher number or 

false positives in the first step of polyspace based verification process (approximately 

87% of green checks, Figure 13) then the ones produced for the handwritten code 

(approximately 92 %, Figure 14). 

 

 

Figure 13 – First Step Results, Generated Code 
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Figure 14 – First Step Results, Handwritten Code 

The main difference during the application of the two steps process for the different 

source code types is identified in the constraints identification phase and in the 

second step results analysis.  

In the case of generated code the orange marks are always caused by the same over-

approximations and can be discarded in a systematic way: the two-steps process 

applies effectively in these situations, and eases the actual error discovery. If it 

appears that an orange does not belong to the classes of causes common to the 

generated code, it is likely to be an error. 

In the case of handwritten code, the verifier has to inspect the code to understand 

which are the data used as input by a function (i.e., data that are only read) and those 

one that are output (i.e., data that are written). Furthermore, very often pointers to 

functions and void pointers are used in the hand-crafted code, and these are difficult 
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to be constrained in a way that can ensure an high reduction of false positive in the 

second step of polyspace based verification process. 

The considerations above are supported by the results obtained for the second step of 

the process. 

The results of the generated code after the addition of the constraints on the input 

parameters of the source code interfaces show that all the checks are green: all the 

false positive were identified and excluded during the second part of the process and 

the source code can be considered free from bugs (according to the assumptions 

related to the functional correctness of the model that generated them and 

correctness of the constraints added to perform the second step). 

 

 

Figure 15 – Second Step Results, Generated Code 

After the addition of the constraints added by the analyst on the basis of the first step, 

the results on the handwritten code, show that a remaining part of the false positive 
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are still produced. The nature of these checks is related to the use of absolute address 

for low level drivers, access to hardware register, use of pointers. These checks cannot 

be excluded, requiring a manual analysis. 

 

 

Figure 16 – Second Step Results, Handwritten Code 

 



Chapter 2 

STATIC ANALYSIS - ABSTRACT INTERPRETATION 

Page 40 

 

 

2.4 Case Study 2 – METRO RIO ATP Application 

A more recent project developed by GETS is the ATP for the metro of Rio de Janeiro. 

The modifications introduced in the design phase [Ref.  34] of the Metrô Rio ATP 

application did not have a negative impact on the abstract analysis phase : the results 

obtained by the execution of the first Polyspace step shows a similar behaviour with 

respect to the ones obtained in the context of BL3 project, as depicted in Figure 17. 

 

 

Figure 17 – First Step Results, Metro Rio 

Although many oranges have been detected, thanks to the characteristics of the 

generated code, it has not been time expensive to classify these warnings according to 

the kind of approximation that supposedly produced them. Indeed, due to the 
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disciplined use of modeling guidelines, the generated code has a high number of 

simple structures and has well-defined module interfaces, which has helped to confine 

the causes of orange marks to the two only classes, already mentioned, of wrong 

interleaving of function calls and automatic initialization of input function parameters. 

The second step of the Polyspace-based verification process has led to only few 

orange warnings, and most modules turned out to be entirely green. The results have 

been compared with the ones obtained on the previous project where Polyspace was 

first applied, but where modeling guidelines were less restrictive. 

As in the previous project, the oranges detected in the first step are approximately 

15% of the total number of checks for each module, but the time spent to classify the 

oranges and to determine the constraints for the second step have been considerably 

reduced thanks to the well defined structure of the generated code [Ref.  35] [Ref.  36] 

[Ref.  37]. 
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Chapter 3  
 

 

3 MODEL CHECKING - INTERLOCKING 

3.1 Interlocking System Representation 

In Relay Interlocking Systems (RIS), currently installed and operating in several 

sites, the logical rules of the control tables were implemented by means of 

physical relay connections. With Computer Interlocking Systems (CIS), in 

application since 30 years, the control table becomes a set of software 

equations that are executed by the interlocking. Since the signaling 

regulations of the various countries were already defined in graphical form for 

the RIS, and also in order to facilitate the representation of control tables by 

signaling engineers, the design of CIS has usually adopted traditional graphical 

representations such as ladder logic diagrams [Ref.  38][Ref.  39] and relay 

diagrams [Ref.  40] 

These graphical schemas, usually called principle schemata, are instantiated 

on a station topology to build the control table that is then translated into a 

program for the interlocking. 
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As pointed out in [Ref.  26], the graphical representations and the related 

control tables can be reduced to a set of boolean equations of the form xi := xj 

^ : : : ^ xj+k, where xj : : : xj+k are boolean variables in the form x or :x. The 

variables represent the possible states of the signalling elements monitored 

by the control table: system input, output or temporary variables. The 

equations are conditional checks over the current and expected status of the 

controlled elements. 

In order to give a metric to the dimension of the problem in terms of 

parameters of the control tables, we define the size of a control table as the 

couple (m; n), where m is maximum number of inter-dependent equations 

involved, that means equations that, taken in pairs, have at least one variable 

in common, and n is the number of inputs of the control table. 

We consider only inter-dependent equations because, if there are sets of 

equations that are independent, they can be verified separately, and slicing 

techniques such as the ones presented in [Ref.  23] and [Ref.  41] can be 

adopted on the model to reduce the problem size. In our experiments we 

basically consider control tables that have been already partitioned into slices 

(the size value of a control table is intuitively the one of its maximal slice). 

Correctness of control tables depends also on their model of execution by the 

interlocking software. In building CIS, the manufacturers adopt the principle 

of “as safe as the relay based equipment” [Ref.  27], and often the 

implemented model of execution is very close to the hardware behaviour. 

According to the semantics of the ladder diagrams traditionally used for 

defining the control tables, we have chosen a synchronous model with global 

memory space where variables are divided into input, output and latch (i.e., 
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local) [Ref.  26]. The model of execution is a state machine where equations 

are executed one after the other in a cyclic manner and all the variables are 

set at the beginning of each cycle and do not change their actual value until 

the next cycle. This is a reasonable generic paradigm for centralized control 

tables. 

Timer variables are not considered in our models, since they are normally 

related to functional requirements of the system (e.g., the operator shall 

press the button for at least 3 seconds to require a route). Safety 

requirements such as the ones considered in this study are normally 

independent from timers. An intuitive argument in support of the fact that 

timers are not used to implement safety functions is that, in traditional RIS, 

timers were implemented by means of capacitors: these are components that 

have a rather high failure rate, making them unsuitable for safety functions. 

We have developed a tool (see paragraph §3.2) that generates a set of 

equations coherent with this model of execution, expressed as models 

suitable for automatic verification with NuSMV or SPIN, and which represent 

typical control tables of parametric size. 

Given a control table representation we want to assess that its design is 

correct. In the proposed experiment, we need to check that safety properties 

are verified, and this represents the worst case for a model checker: explicit 

and symbolic model checkers are challenged by verification of safety 

properties, since, in order to show their correctness, they have to explore the 

entire state space, or its symbolic representation. Safety requirements typical 

of signaling principles are normally expressed in the principle schemata or in 

the regulations. 
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This kind of properties have shown to be representable in Computation Tree 

Logic (CTL) in the CTL-AGAX form: AG(p ! AXq), where p and q are predicates 

on the variables of our model [6]. CLT-AGAX formulae have an equivalent 

Linear Temporal Logic (LTL) representation. The formula AG(p ! AXq) can be 

expressed in LTL syntax as a LTL-GX formula of the form G(p ! Xq). Intuitively, 

they represent fail-safe conditions, i.e., events that should happen on the next 

state if some unsafe condition occurs. One of the typical safety properties that 

is normally required to be verified is the no-derailing property: while a train 

crossing a point the point shall not change its position. This typical system 

level requirement can be easily represented in the AGAX form [14]: 

 

AG(occupied(tci) ^ setting(pi) = val ! AX(setting(pi) = val)) 

 

whenever the track circuit tci associated to a point pi is occupied, and the 

point has the proper setting val, this setting shall remain the same on the next 

state. 

In order to force the worst-case full state space exploration, our test set has 

been designed on purpose to satisfy given properties expressed in CTL-AGAX 

(or LTL-GX) form, and model checking has been performed using these 

properties as formulae. Though not clearly evident, also for symbolic model 

checking we have experienced that satisfied invariants are the hardest 

problem. 
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3.2 Control Table Generator 

The model of execution adopted (described in §3.1) is a state machine where 

equations are executed one after the other in a cyclic manner and all the 

variables are set at the beginning of each cycle and do not change their actual 

value until the next cycle. We developed a tool for control table generation 

that is in line with the execution model described. 

The tool gets as input some configurable parameters and provides as output 

the SMV and PROMELA models of the control table set. The two model are 

built on the same control table information than are a valid criterion of 

comparison between the reaction of the two model checkers to the same 

problem. 

The three main items of the control tables are the input variables, latch 

variables and output variables. 

The input variables are only used to determine the value of the output 

variables: the values of the input variables are random and exhaustively 

initialized and modified by the Model Checker. Each input variable can only be 

associated to an input column of the tables. 

The output variables are identified in the last column of the tables and for 

each output exists only one table that define its value. 

The latch variables are the output variables that are also used as input for 

other tables: these variables are the state variables of the model represents 

information about the internal status of the modelled system. 
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In the following we will define that an input or a state variable support an 

output variable y if the table for the variable y includes as input the variable x. 

According the defined approach, the set of all the control tables define a finite 

state machine: in particular each table represents the transitions for the 

output variable related. 

 

Figure 18 – Example of Control Table 

In the Figure 18 is shown an example of control table produced by the tool. 

The table evaluates the values assumed by the output variable ot0 in 

correspondence to the values assumed by the input variables in0, in1, and in2 

and assumed by the state variables (output variables for other control table) 

ot7, ot16 and ot14.  

The symbol X specifies that in that particular case (the row of the table) the 

value of that variable does not influence the value of the output variable. 

 

The tool populates with random values the tables except for the last row of 

each table that represent the “default” case of the table: if no one of the rows 

are satisfied by the actual inputs value, the last row represents all the 

combinations that does not activate the output (all the values that drive the 
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output at 0). The last row according the modelling approach is populated with 

all X (don’t care) for the inputs and 0 for the value of the output. 

In Figure 19 is reported the equivalent SMV model for the table showed 

above. 

 

Figure 19 – Example of translation from Control Table to SMV Model 

The input variables of the model can be considered as the states of the 

objects in the railway yard or the statuses of the requests coming from the 

centralized computer center of a station that ask for specific routes 

reservations for example. The logic engine of the interlocking system 

evaluates and allows executing the commands coming from the centralized 

computer according the statuses of the other objects in the yard and if 

needed changes the status of them according the computed values of the 

output variables of the control tables. 

The control tables generated by the tool and the structure of the models 

generated can be considered generic control table of interlocking 

applications. 
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3.3 NuSMV Model Checker  

NuSMV is an open-source symbolic model checker that provides the user with 

both Binary Decision Diagrams (BDD) based implicit model-checking and SAT solver 

based bounded model checking. Properties are encoded in CTL in the first case, 

and in LTL in the second case. Since we focus on the verification of safety 

properties, we need to be sure that every single reachable state is analyzed by the 

model checker; for this reason, we have not used NuSMV bounded model 

checking1. 

In NuSMV, the state is represented by the value of state variables. The next state is 

computed by first calculating the next values of state variables and then, 

atomically, updating all the state variables. This behaviour of the model checker is 

compliant with the chosen model of execution. Every equation is hence evaluated 

in sequence but the outputs are updated at the end of the whole evaluation 

phase. This behaviour permits to be free from the order of evaluation of the 

equations. NuSMV supports open models that mean that it computes all possible 

input variable values automatically: in its internal modeling language the keyword 

IVAR must be used for such variables. Input variables do not contribute to expand 

the state space of the system, but influence the number of reachable states. The 

variables under the keyword VAR are indeed state variables: the value of each of 

them in the model is determined by the evaluation of the conditions. 

In Figure 20 is represented an extract of a NuSMV model used for our case study. 

                                                 

1 Altough there are techniques that are able to guarantee in some cases the full exploration of the state space 

with bounded model checking, these have not been used in these experiments and could be the subject of 
further experiments. 
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An example of a CTL-AGAX property that is verified on this SMV model is: 

AG(out0=0 ! AX(out1=0)) 

 

Figure 20 – SMV Model Example 
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3.4 SPIN Model Checker  

SPIN is a generic verification system based on explicit model checking. It performs 

a full search in the state-space to find whether or not a given set of system 

properties, that are expressed using Linear Temporal Logic (LTL), are satisfied. 

The systems are modeled by the verification language PROMELA (PROcess MEta 

LAnguage), a C-like language, that provides instruments especially for the 

modelling of distributed asynchronous systems. 

In this section we will distinguish between input and state variables of the system 

that is modeled using PROMELA: this distinction is just conceptual, since every 

variable in the model is in fact a state variable. SPIN updates the state variables on 

the fly, after the evaluation of the conditions of each equation; since we want to 

model a state machine compliant with the chosen execution model, we had to add 

to the PROMELA model a number of temporary variables equal to the number of 

actual state variables, that are updated only after the evaluations of all the 

equations, at the end of each processing step. A LTL-GX property, corresponding to 

the CTL-AGAX one given for NuSMV, that is verified on this PROMELA model is:  

 

□(out0=0 ! X(out1=0)) 

 

 

An example of model fragment written in PROMELA, corresponding to the one 

shown for NuSMV, is represented in Figure 21.  
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Since SPIN can only verify closed models, we had to model the environment 

behaviour in the PROMELA model: in order to model the non-determinism of the 

input variables values, we need to insert at the end of the PROMELA model an if 

statement for each input variable, as represented in the figure. 

 

 

Figure 21 – PROMELA Model Example 
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3.5 Results 

In order to investigate the actual applicability bounds for the model checking of 

interlocking systems, the experiments were performed on generated models with 

different equations-inputs ratio. For each combination of inputs and equations at 

least three different generic control table models were generated and tested, in 

order to be able to avoid erroneous positive results caused by the generation of 

trivial equations: if at least one of the three model is not verifiable the whole class 

of models with the same ratio is considered not-verifiable. 

Figure 22 shows the results of the verification runs using NuSMV. The non-

verifiable 

cases was related either to memory exhaustion or to several hours of execution 

without any answer (a threshold of 36 hours has been chosen)2. 

 

                                                 

2 The verification were run on a pc with 4.0 GB of ram and a 2.4 GHz core. 
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Figure 22 – NuSMV Results 

 

The upper bound of applicability in the case of 1/10 ratio and 1/5 ratio is almost 

the same, approximately 70 equations. Otherwise, considering a ratio of 1/2, the 

number of different inputs causes the increase of the degrees of freedom and the 

consequent explosion of the reachable states: the computational time is 

considerably increased and the upper bound of applicability decreases to 60-65 

equations. In the examined cases, using different optimization settings for NuSMV 

has not produced significant performance improvements.  

Figure 23 shows the experimental results obtained by the execution of SPIN on the 

same dataset used in the experiments with NuSMV. 
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Figure 23 – SPIN Results 

 

 

 We observe that increasing the ratio between inputs and expressions causes SPIN 

not to conclude the verification in a fair time or, for higher values, to crash due to 

the massive usage of system memory. This behaviour can be tracked to the fact 

that input variables are actually state variables: so increasing inputs causes a state-

space explosion. 

A similar analysis can be performed for the equations, since every new equation 

brings a new state variable for the system. It was found that the upper limit for the 

applicability of SPIN to an interlocking problem is about 80 equations and 20 

inputs without using any memory oriented optimization. SPIN offers several 

optimization strategies (e.g., hash-compact, bitstate hashing), and, according to 
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our experiments, the one that resulted in major benefits for our case study is the 

one called Minimized Automata, that consists in the construction of a minimal 

deterministic finite state automaton. 

This optimization allows a significant memory usage reduction, increasing, on the 

other side, the time needed for the execution. The usage of such optimization 

increases the limit of applicability to about 100 equations and 60 inputs. 

The results obtained with our approach show that the model checking applied to 

an entire interlocking system of medium size (normally some hundreds of equa- 

tions) is already unfeasible.  

We have however to note that the results are given on sets of strongly inter-

dependent equations: an interlocking system where slicing techniques can be 

applied to separate sets of inter-dependent equations can be much larger. Clearly, 

slicing can be applied only if the actual topology of the tracks layout and the 

interlocking functionality do separate concerns about different areas of the layout, 

with little interactions among them.  

Considering the real world interlocking of [Ref.  41] we can attempt to verify the 

correctness of only the smallest slice identified in the paper (4 signals, 7 track 

circuits and one switch), while the bigger slices might outrun the capability of the 

considered model checkers. Nevertheless, the entire interlocking is a large size 

one, and normally medium size interlocking present smaller slices, making the 

problem of their correctness addressable by model checking. 
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3.6 NuSMV Complexity Study 

We decided to extract the relationship between the parameters of the models to 

forecast the complexity of the problems in terms of state space width [Ref.  42]. 

The experiments were executed on a models dataset parameterized in the 

equations length, equations number, input variables number and state variables 

number. 

 

The models used have been defined in the following range: 

 Equations number Neq [15,30]; 

 Input variables Ivar [5, 2*Neq]; 

 Equations length equal for all the control tables included in the model Eq_l 

(2,5,8,10,12,15,18,20); 

 The length of the equations is related to the number of state variables that 

support the table: the generator produce control tables in which the input 

column are in relation of 4 state variables for each input variable (this is the 

approach closest to the real interlocking application). 

 

The dataset generated is constituted by approximately 700 different models built 

with different combinations of parameters. In addition, since the random nature of 

the control table generator could raise in some cases to trivial model and in other 

to too much complex tables, for each combinations three models were generated 

and put under test. The results related to each combination were evaluated as the 

average of the results of the three different models generated.  
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We assumed as not verifiable combinations for which at least one of the three 

models verification did not end for memory expiring or time limit (we assumed a 

maximum time slot of 12 hours)3. 

 

The model checker computed the state space of the finite state machine described 

in the models starting from an initialization state. 

The tool compute the total amount of reachable states before actually complete 

the execution, thanks this we have been able to perform the reachability analysis 

also for the not verifiable models. 

We conducted the study of the number of reachable states in relation to input 

variables number, control tables (equations) number and control tables length. For 

each combination of two of these parameters were considered the changes of the 

reachable states considering different values for the third parameter. According 

the results obtained we tried to characterize the reachable states number for each 

single parameters. 

The trend of the reachable states for the models with an input variables number 

that does not exceed the equations number results increasing with the parameters 

(Figure 24). 

                                                 

3
 Test executed with a CPU 2.2 GHz and 4 G of RAM Memory. 
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Figure 24 -  Reachable states for combinations of Input Var. and Equ. Number 

 

In both cases the trend is an exponential function even if with different 

coefficients: 

after a slow start the number of reachable states  in the case of number of 

equations increase faster than in the case of the input variables. 

Similar results are obtained considering also the length of the equations (Figure 

25). 

 

 

 

Figure 25 - Reachable states for combinations of Input Var. and Equ. Length 
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The reachable states decreases according an exponential trend when the 

equations length increases, yet in the case of a fixed number of input variables yet 

for a fixed number of equations (see Figure 25 and Figure 26). 

 

 

Figure 26 - Reachable states for combinations of Input Var. and Equ. Length 

 

The decrease of the reachable states in the case of increasing equations length is 

related to the modellation approach adopted and control table generator tool.  

More the number of inputs for each table increases, more the number of state 

variables used as input for the tables increase: this bound specifies an high 

dependency between the tables and as consequence determine the reduction of 

the state space. However, the assumption used that produces an high dependency 

between the equations is close to the real interlocking applications. 
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Chapter 4  
 

 

4 SUMMARY AND DISCUSSION 

The dissertation focused to address the following: 

 

Evaluating and Introducing new Verification and Testing Methods in the Safety 

Critical Domain Processes. 

 

The dissertation faced with the verification of the design phase with the study of 

the applicability of the model checking techniques to the interlocking application 

problem and with the study, analysis and definition of the integration inside the 

verification process of the abstract interpretation method for source code 

correctness. 

 

4.1 Static Analysis Conclusions 

The definition of the Polyspace-based verification process required a considerable 

effort for understanding the technologies and merging them with the previously 

established development process. According to the results obtained on a pilot 
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project, the new approach has allowed a significant reduction of the verification 

cost in spite of the growing complexity of the code, and therefore the effort 

actually paid off. 

The actual strength of our strategy is the abstract interpretation phase: since the 

code is not executed but formally analysed the approach allows to fully exploring 

the state space of the program, that is a prohibitive goal for traditional testing. At 

the same time, this technology determines the exact statement in which an error 

occurs. Instead, traditional testing entails an expensive report analysis to manually 

find the statement that has triggered the not correct output. 

Our first results on the generated code part show that the new approach reduces 

the verification cost of 70%, even with code having a higher complexity in terms of 

path number. At the same time we obtain a verification accuracy that can not be 

achieved with traditional testing. 

The productivity evaluated for the execution of the dynamic analysis through a 

commercial tool addressing: functional testing, MC/DC structural coverage, 

boundary value analysis and error guessing test cases definition is approximating is 

approximatin 15 executable code line (ELOC) for hour in case of an experienced 

resource. Considering that the use of the two-steps approach, defined during the 

three years research object of this dissertation, allows to cover boundary value 

analysis and error guessing in addition to the formal exhaustive analysis of each 

line of code the renewed verification process moved the scope of the two 

activities (dynamic analysis and static analysis). Since the productivity evaluated 

for the static analysis execution with the two-steps process defined is 

approximating 100 ELOC for hour, the renewed process allowed to increase the 

confidence on the correctness of the source code with the addition of a formal 
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method (abstract interpretation) that provide an exhaustive coverage in front of 

some of the testing goals, and also allowed to reduce the cost of the entire 

verification process. 

The process defined in this dissertation is adopted and integrated in the GETS 

Verification Process and it has been assessed by two different Independent Safety 

Assessors (ISA) an interlocking subsystem currently in revenue service has passed 

the safety assessment by presenting evidence of the verification performed by 

means of the Polyspace-based abstract interpretation verification process 

 

4.2 Model Checking Conclusions 

We have studied the application of general purpose model checkers to railway 

interlocking systems, with the aim to define the upper bounds on the size of the 

problem that can be effectively handled. For this purpose, we have defined the 

size parameters of an interlocking systems on the basis of its control tables, and 

we have conducted experiments on purposely built test models of control tables 

with the NuSMV and SPIN model checkers. The results have confirmed that, 

although small scale interlocking systems can be addressed by model checking, 

interlocking that control medium or large railway yards can not with general 

purpose verification tools. 

The benchmarking of the Nusmv model checker to evaluate complexity and 

dependency from the main interlocking parameters identified during the work 

allows forecasting changes to proceed with enhancements in the applicability of 

the model checking to the problem. According to the results obtained, more the 
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dataset model get close to the real interlocking applications (increasing relations 

between the control tables) the state space decreases as well as the computational 

time.  

In order to increase size of tractable interlocking systems several directions will be 

pursued in future work, such as automated application of slicing, safe assumptions 

on the environment, that can tailor the input space to the one actually encountered 

in practice, considering the use of specialized model checkers for PLCs and the use 

 of proper variants of SAT-based bounded model checking that are able to 

efficiently prove safety properties. 
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Conclusions 
 

 

This dissertation is the results of the experience at General Electric Transportation 

Systems (GETS). The Company is a railway signaling manufacturer that develops 

embedded platforms for railway signaling systems. The safety critical nature of 

these applications makes the verification activities extremely crucial to ensure 

dependability and to prevent failures. At the end of 2007, the company decided to 

introduce the code generation technology within its development process and since 

that statement the research and the transformation of a large part of technology 

used until 2007 started. The integration inside the company’s development process 

of the model based development design approach [Ref.  44], the associated 

automatic code generation method [Ref.  43] have been completed by the 

integration in the verification process of the polyspace based verification. The 

applicability of the static analysis with abstract interpretation to the generated 

code and to the handwritten code was verified and highlighted with this 

dissertation. The polyspace tool is used according to the guideline and the process 

defined during this thesis: it is currently starting the evaluation of the capabilities of 

the method to be applicable also for the software integration activities that became 

more restrictive and strongly requested by the new standard norm edition of EN 

50128 (Edition 2011). The future work in terms of verification process 

enhancement are related to the addition at the validated and assessed static 

analysis process, on target testing execution activity of the dynamic testing suite: 

the expectations are to be able to run the tests defined on the host, directly on the 
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final target to increase source code correctness confidence and detect compiler 

issues addressing too the compiler validation critical point. 

The model checking technique is continuously growing in industrial applications and 

also in new formalisms definition. Many of the limits for the real application of the 

technique is related to the computational limitations and to the critical point 

related to the translation of a certain problem from a domain to an other one in 

which the characteristics shall not be impacted in order to guarantee the 

correctness of the verification. In the case studied of the applicability of the model 

checking to the interlocking problem, the results showed that the actual 

computation technology limitations do not allow to get close the exhaustive 

verification of this kind of applications. 
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Appendix A 
 

Example of SMV Model 

MODULE main 

 IVAR 

  in0 : {0, 1}; 

  in1 : {0, 1}; 

  in2 : {0, 1}; 

  in3 : {0, 1}; 

  in4 : {0, 1}; 

 VAR 

  ot0 : {0, 1}; 

  ot1 : {0, 1}; 

  ot2 : {0, 1}; 

  ot3 : {0, 1}; 

  ot4 : {0, 1}; 

  ot5 : {0, 1}; 

  ot6 : {0, 1}; 

  ot7 : {0, 1}; 

  ot8 : {0, 1}; 

  ot9 : {0, 1}; 

  ot10 : {0, 1}; 

  ot11 : {0, 1}; 
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  ot12 : {0, 1}; 

  ot13 : {0, 1}; 

  ot14 : {0, 1}; 

  ot15 : {0, 1}; 

  ot16 : {0, 1}; 

  ot17 : {0, 1}; 

  ot18 : {0, 1}; 

  ot19 : {0, 1}; 

 ASSIGN 

  init(ot0) := 1; 

  init(ot1) := 1; 

  init(ot2) := 1; 

  init(ot3) := 1; 

  init(ot4) := 1; 

  init(ot5) := 1; 

  init(ot6) := 1; 

  init(ot7) := 1; 

  init(ot8) := 1; 

.......... 

……….. 

  init(ot17) := 1; 

  init(ot18) := 1; 

  init(ot19) := 1; 

  

 

 next(ot0) := 
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   case 

    ot13 = 0 & ot6 = 1 & ot5 = 1 | 

    in0 = 0 & ot13 = 0 & ot17 = 1 | 

    in0 = 0 & ot13 = 0 & ot17 = 1 : 1; 

    TRUE : 0; 

   esac; 

  next(ot1) := 

   case 

    in1 = 0 & in2 = 1 & in3 = 0 & in4 = 1 & ot14 = 1 

| 

    in1 = 0 & in2 = 0 & in4 = 1 & ot14 = 1 | 

    in1 = 1 & in4 = 0 & ot14 = 1 : 1; 

    TRUE : 0; 

   esac; 

  next(ot2) := 

   case 

    ot9 = 1 & ot3 = 1 & ot11 = 0 & ot12 = 1 | 

    ot3 = 1 & ot11 = 1 : 1; 

    TRUE : 0; 

   esac; 

  next(ot3) := 

   case 

    in0 = 0 | 

    in0 = 1 & in1 = 0 & in2 = 0 & in3 = 1 & in4 = 1 | 

    in0 = 1 & in1 = 0 & in2 = 0 & in3 = 0 : 1; 
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    TRUE : 0; 

   esac; 

  next(ot4) := 

   case 

    ot13 = 0 & ot6 = 1 & ot5 = 0 | 

    ot13 = 1 & ot6 = 1 : 1; 

    TRUE : 0; 

   esac; 

  next(ot5) := 

   case 

    in0 = 0 & ot17 = 1 | 

    ot0 = 0 : 1; 

    TRUE : 0; 

   esac; 

  next(ot6) := 

   case 

    ot14 = 1 & ot9 = 1 & ot3 = 1 & ot11 = 1 | 

    in1 = 1 & ot9 = 1 & ot3 = 0 | 

    in1 = 0 & ot14 = 0 & ot9 = 0 & ot3 = 1 : 1; 

    TRUE : 0; 

   esac; 

  next(ot7) := 

   case 

    ot12 = 1 & ot13 = 0 & ot6 = 1 | 

    ot12 = 1 & ot13 = 1 & ot6 = 1 : 1; 
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    TRUE : 0; 

   esac; 

  next(ot8) := 

   case 

    ot5 = 1 & ot0 = 0 | 

    ot5 = 1 & ot0 = 0 : 1; 

    TRUE : 0; 

   esac; 

  next(ot9) := 

   case 

    in2 = 1 & in3 = 1 & in4 = 1 | 

    ot17 = 1 : 1; 

    TRUE : 0; 

   esac; 

  next(ot10) := 

   case 

    in0 = 1 & in1 = 1 & in2 = 0 & in3 = 1 | 

    in1 = 0 & in3 = 1 & in4 = 0 | 

    in1 = 0 & in2 = 0 & in3 = 0 & in4 = 0 : 1; 

    TRUE : 0; 

   esac; 

  next(ot11) := 

   case 

    ot14 = 0 | 

    ot9 = 1 & ot3 = 0 & ot12 = 0 : 1; 
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    TRUE : 0; 

   esac; 

  next(ot12) := 

   case 

    in0 = 0 & ot13 = 0 | 

    in0 = 1 & ot13 = 1 : 1; 

    TRUE : 0; 

   esac; 

  next(ot13) := 

   case 

    in1 = 0 & in2 = 1 | 

    in1 = 0 : 1; 

    TRUE : 0; 

   esac; 

  next(ot14) := 

   case 

    in3 = 1 & ot6 = 0 & ot5 = 0 & ot0 = 0 | 

    in3 = 1 & ot6 = 0 : 1; 

    TRUE : 0; 

   esac; 

  next(ot15) := 

   case 

    in4 = 1 | 

    in0 = 0 : 1; 

    TRUE : 0; 
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   esac; 

  next(ot16) := 

   case 

    in1 = 1 & in2 = 1 & in3 = 0 & in0 = 1 | 

    in1 = 1 & in2 = 1 & in4 = 1 | 

    in2 = 0 & in4 = 1 & in0 = 0 : 1; 

    TRUE : 0; 

   esac; 

  next(ot17) := 

   case 

    in1 = 1 & in2 = 1 & in3 = 0 & in4 = 1 | 

    in1 = 0 & in2 = 0 & in3 = 1 & in4 = 1 : 1; 

    TRUE : 0; 

   esac; 

  next(ot18) := 

   case 

    in1 = 0 & in2 = 0 & in3 = 0 | 

    in0 = 1 & in1 = 0 & in2 = 1 & in3 = 0 : 1; 

    TRUE : 0; 

   esac; 

  next(ot19) := 

   case 

    in4 = 0 & ot17 = 1 & ot14 = 1 | 

    in4 = 0 & ot17 = 1 & ot14 = 1 : 1; 

    TRUE : 0; 
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   esac; 

 SPEC AG(ot14 = 0 & ot17 = 0 & ot14 = 0 & ot3 = 0 -> 

AX(ot1 = 0 & ot19 = 0 & ot2 = 0)) 

 

Example of output with counter example of NuSMV 

 

-- specification AG (!ot6 -> AX (!ot4 -> AX !ot2)) is 

false 

-- as demonstrated by the following execution 

sequence 

Trace Description: CTL Counterexample 

Trace Type: Counterexample 

-> State: 1.1 <- 

ot0 = TRUE 

ot1 = TRUE 

ot2 = TRUE 

ot3 = TRUE 

ot4 = TRUE 

ot5 = TRUE 

ot6 = TRUE 

ot7 = TRUE 

ot8 = TRUE 

ot9 = TRUE 

-> Input: 1.2 <- 
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in0 = FALSE 

in1 = FALSE 

in2 = FALSE 

in3 = TRUE 

in4 = FALSE 

-> State: 1.2 <- 

ot0 = FALSE 

ot1 = FALSE 

ot2 = FALSE 

ot3 = FALSE 

ot4 = FALSE 

ot7 = FALSE 

ot8 = FALSE 

ot9 = FALSE 

-> Input: 1.3 <- 

in0 = TRUE 

in2 = TRUE 

in3 = FALSE 

-> State: 1.3 <- 

ot1 = TRUE 

ot6 = FALSE 

-> Input: 1.4 <- 

in0 = FALSE 

in2 = FALSE 

-> State: 1.4 <- 
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ot5 = FALSE 

-> Input: 1.5 <- 

in0 = TRUE 

in4 = TRUE 

-> State: 1.5 <- 

ot2 = TRUE 

elapse: 0.00 seconds, total: 1377.06 seconds 

 

Example of Promela Model 

bit in0=0; 

bit in1=1; 

bit in2=0; 

bit in3=0; 

bit in4; 

bit in5; 

bit in6; 

bit in7; 

bit in8; 

bit in9; 

bit in10; 

bit in11; 

…… 

….. 

bit ot1; 
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bit tmp1 

bit ot2; 

bit tmp2 

bit ot3; 

bit tmp3 

bit ot4; 

bit tmp4 

bit ot5; 

bit tmp5 

active proctype A(){ 

if 

:: (( in0==0 && in2==0 && in3==0 ) ||( in1==0 && 

in2==1 && in3==1 )) -> tmp0=1; 

::else tmp0=0; 

fi; 

if 

:: (( in4==0 && in0==0 && ot0==1 ) ||( in5==0 && 

ot0==1 )) -> tmp1=1; 

::else tmp1=0; 

fi; 

if 

:: (( in7==1 && in4==0 && ot1==1 ) ||( in7==1 && 

in8==0 && ot1==1 )) -> tmp2=1; 

::else tmp2=0; 

fi; 
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if 

:: (( in11==0 && in7==1 && ot2==1 ) ||( in7==1 && 

ot2==1 )) -> tmp3=1; 

::else tmp3=0; 

fi; 

if 

:: (( in13==0 && in14==0 && ot3==0 ) ||( ot3==1 )) -> 

tmp4=1; 

::else tmp4=0; 

fi; 

if 

:: (( in16==1 && in13==0 && ot4==0 ) ||( in16==0 && 

in17==1 && ot4==1 )) -> tmp5=1; 

::else tmp5=0; 

fi; 

if 

::true->in0=1; 

::true->in0=0; 

fi; 

ot0=tmp0; 

ot1=tmp1; 

ot2=tmp2; 

ot3=tmp3; 

ot4=tmp4; 

ot5=tmp5; 
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} 

#define p ot0==0 

#define q ot1==1 

never { 

T0_init: 

if 

:: ((p)) -> goto accept_S0 

:: (1) -> goto T0_init 

fi; 

accept_S0: 

if 

:: (! ((q))) -> goto accept_all 

fi; 

accept_all: 

skip 

}
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Appendix B 
 

Example of Polyspace Results 

In the example the source code file Ethernet.c is constituted by all the functions listed in 

the figure below. For each function are reported the number of green, orange, red and 

grey checks. 
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The figure below is an example of “coloured” source code. 

 


