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• LUCC simulations in different scenarios
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• Spatialization of stakeholder LUCC
views by building of a hybrid model
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• Policy guidance for decision-makers to
monitor land use.
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Future land use/cover change (LUCC) analysis has been increasingly applied to spatial planning instruments in
the last few years. Nevertheless, stakeholder participation in the land use modelling process and analysis is
still low. This paper describes a methodology engaging stakeholders (from the land use planning, agriculture,
and forest sectors) in the building and assessment of future LUCC scenarios.We selected as case study the Torres
VedrasMunicipality (Portugal), a peri-urban region near Lisbon. Our analysis encompasses a participatorywork-
shop to analyse LUCCmodel outcomes, based on farmer LUCC intentions, for the following scenarios: A0 - current
social and economic trend (Business as Usual); A1 - regional food security; A2 - climate change; and B0 - farming
under urban pressure. This analysis allowed local stakeholders to develop and discuss their own views on the
most plausible future LUCC for the following land use classes: artificial surfaces, non-irrigated arable land, perma-
nently irrigated land, permanent crops and heterogeneous agricultural land, pastures, forest and semi-natural
areas, and water bodies and wetlands. Subsequently, we spatialized these LUCC views into a hybrid model (Cel-
lular Automata - Geographic Information Systems), identifying themost suitable land conversion areas.We refer
to this model, implemented in NetLogo, as the stakeholder-LUCC model.
The results presented in this paper model where, when, why, and what conversions may occur in the future in
regard to stakeholders' points of view. These outcomes can better enable decision-makers to perform land use
planning more efficiently and develop measures to prevent undesirable futures, particularly in extreme events
such as scenarios of food security, climate change, and/or farming under pressure.
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1. Introduction
Future land use and land cover change (LUCC) assessment is one of
the most relevant practices in the spatial planning process. In the last
few years, modelling LUCC scenarios has become a valuable technique
to recognize uncertain futures and identify their impact (Holman
et al., 2017; Kindu et al., 2018). Land use management requires the ca-
pacity to incorporate the various purposes and needs of the different
stakeholders, who are driven by different goals – e.g. while some are
driven by economic incentives, others are interested in preserving the
long-term ecological functions of their land. Also, decision-makers are
often motivated by economic growth and environmental protection
(Bhatta, 2010; van Vliet et al., 2015).

Engaging stakeholders from different strategic sectors by using par-
ticipatoryworkshops in the LUCCmodel building and assessment stages
can be one step forward in the land use planning process (Hassan et al.,
2011; Knapp et al., 2011). This practice can be beneficial for decision-
makers on several levels: by providing an incentive to promote land
use sustainability (Bartke and Schwarze, 2015; Nassauer, 2015); by re-
ducing the complexity of the task and allowing them tomake better de-
cisions (Brits et al., 2014; Goldstein et al., 2012); by identifying LUCC
uncertainties and their impact (Francis and Hamm, 2011; Jantz et al.,
2010); by mitigating divergences (Gwaleba and Masum, 2018; Labiosa
et al., 2013); by creating information gap tasks, and encouraging active
discussion.

Stakeholder participation in the LUCC analysis has been an ongoing
topic in spatial planning (Bonsu et al., 2017; Cascetta and Pagliara,
2013; Scearce, 2004). Stakeholder participation using mixed methods
(quantitative and qualitative) (Schoonenboom and Johnson, 2017)
mostly contributes to promote the legitimacy of future LUCC and to de-
velop land use strategies (Brown et al. 2018; Llambí et al. 2005; McCall
2003). Finding better ways of collecting data and designing better tools
to integrate stakeholder intentions and views in the decision-making pro-
cess can play an essential role in public participation (Al-Kodmany, 2001).

The projection of future LUCC usingmodels have been quite efficient
andhelpful since it is able to support spatial planning, and capable of an-
swering any question about land conversion and location (Ghavami
et al., 2017). These models can provide a helpful baseline, and valuable
information about future demands to support strategic policies
(Verburg et al., 2019). They offer an easy path to understand interface
to aid planners in their analysis of spatial data and to support planning
decisions on long-term policy assessment. Besides, they aim to promote
efficient land use, identifying its optimal allocation and recognizing how
to manage it more effectively by evaluating the impact of alternative
land uses (Dunnett et al., 2018; Lambin et al., 2000).

The integration of LUCC models into the spatial planning process
needs to be efficiently applied (Guzy et al., 2008). It can help to reduce
the slowness of the analysis among the demographic, economic and
LUCC transformations and the application of land protection tools
(Wegener, 2001). In addition, it can help to analyse these LUCCs in an
efficient way, finding a better balance between population needs and
environmental protection.

To integrate stakeholder LUCC views into an intuitive spatial ap-
proach, different techniques have been used. One of the most widely
used methods of addressing optimisation-complexity, in a complex and
simultaneously simplified way, is coupling complex LUCC models and
Geographical Information System (GIS) techniques. It is suitable for sim-
ulating LUCC and evaluating spatiotemporal patterns. Together, they can
provide a better understanding of the spatial characteristics and complex
interactions, as well as human-environment interactions (Chen, 2012).

Despite these advantages, the application of these two approaches
combined is still considered somewhat challenging (Asgesen and
Dragicevic, 2014) and difficult to apply to planning policies. In
Portugal, this kind of approach is still scarce at the local level.

One of themost critical LUCC conversions in Portugal, particularly in
peri-urban regions in the last few decades, has been the transformation
from agricultural and natural land to artificial surfaces (e.g., residential,
touristic, and industrial uses). Moreover, in the last few years, this phe-
nomenon has beenmore intensified in the region of Lisbon, with 17% of
natural and agricultural land converted to artificial land from 1995 to
2010 (Abrantes et al., 2016). The city of Lisbon has seen major changes
in the housing stock. Recent political measures – such as the amend-
ment of the housing rental law (which now facilitates the eviction of
tenants), the golden visa (which allows a non-EU citizen to obtain a res-
idence permit by purchasing a real estate property of EUR 500 k or
more), the tax-free scheme for the retirement income of non-habitual
residents, or the growth of tourism in recent years (which has trans-
formed long-term rentals into short-term ones) – have led to an in-
crease in housing prices (Rio Fernandes et al., 2019; Statistics Portugal,
2019). These steeper prices, in turn, have increased the demand for
housing outside the city, whichmade prices soar. This iswhy themunic-
ipality of Torres Vedras, located roughly 50 km north, is one of the po-
tential locations chosen by those who wish to find affordable housing
near Lisbon. Accordingly, we selected this municipality as a case study
for our analysis. Torres Vedras located in a peri-urban region context
has had a population surge in the last few decades that has led to an in-
crease of artificial surfaces with negative consequences, namely the loss
of natural and agricultural land (DGT, 2010, 1995). This situation has led
to economic and environmental imbalances, and planners need to be
prepared, particularly given that agriculture is an important contributor
to the local and regional economy (Statistics Portugal, 2011). More effi-
cient policies are urgently needed to preserve natural areas and agricul-
tural land (Abrantes et al., 2016; Gomes et al., 2018).

Studies that look into spatial LUCCmodels that have had stakeholder
input are still scarce, but might be of great help in making better future
assessments. However, some scientific research has addressed the land
use assessment of specific spatial phenomena, such as watershed man-
agement (Jessel and Jacobs, 2005), sustainable environmental manage-
ment (Stave, 2010), and land use allocation in a peat-meadow polder
(Arciniegas et al., 2013). Nevertheless, very few studies have used this
approach for future LUCC assessment in a peri-urban context, where
have been proven the stage of fast and intense LUCC,with the loss of ag-
ricultural area for urbanization purposes (Foley and Scott, 2014). For in-
stance, Gomes et al. (2019b, 2019a) evaluated land use transformations
in a peri-urban context in different scenarios. However, these studies
were not supported by stakeholder participation in their analysis and
interpretation.

Our work aims, precisely, to explore this gap in the existing models
by evaluating future LUCC maps through a participatory assessment of
representative stakeholders. With this step forward we intend to an-
swer the following research questions: 1) how stakeholder LUCC
views may differ from each other and under different scenarios?
2) what are the spatiotemporal divergences in the most plausible land
use scenario according to stakeholder views? and; 3) how participatory
approach can help planners in the decision-making process since LUCC
in peri-urban regions occurs very fast? In this process we:

(1) Assess and quantify future LUCC transformations (according to
stakeholder views) for the following four scenarios: A0 - current social
and economic trend (Business as Usual); A1 - regional food security;
A2 - climate change; and B0 - farming under urban pressure;
(2) Spatialize and identify themost suitable areas in the land conversion
for the most plausible land use scenario in 2025 (chosen from stake-
holder LUCC views) using a hybrid model that couple cellular automata
(CA) and GIS principles, and; (3) propose the use of LUCC models to
support spatial planning at the local level.

The paper is organized as follows: after the introduction, Section 2
presents the data andmethods used, which include the case study, spa-
tial data, the design of four different scenarios, an analysis of the inter-
views with the farmers and the participatory workshop, and the
construction of a hybrid model (CA-GIS) named ‘stakeholder-LUCC
model’. Section 3 presents the discussion and research findings. The
conclusions are set out in Section 4.



Fig. 1.Methodological flowchart.
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2. Data and methods

Several methodological procedures were performed in our research.
Fig. 1 shows the methodological flowchart of our paper, outlining the
methodological procedures that led to the identification of the most
plausible land use scenario.

2.1. Case study

The Torres VedrasMunicipality (Portugal), located on thewest coast
of Europe, was selected as the study area (Fig. 2). Torres Vedras is 407
sq. km and it is located roughly 50 kmnorth of Lisbon. Administratively,
it is divided into 13 parishes, and the last census recorded a population
of about 80,000 inhabitants (Statistics Portugal, 2011).

Located in a peri-urban region, the Torres Vedras Municipality was
chosen due to an artificial surface increase of 41% between 1995 and
2010. Moreover, between 1991 and 2011, its population grew by 18%, in-
creasing pressure on natural and agricultural land resources. From the ag-
ricultural activity point of view, Torres Vedras is one of the most relevant
suppliers of fruits, vegetables, and wine in Portugal (Statistics Portugal,
2009), hence its great importance for the local and regional economy.

2.2. Spatial data

Two sets of spatial data were used to perform our analysis: (1) land
usemap (reference map); and (2) spatial factors and constraints. These
data were converted into a raster format of 1 ha × 1 ha pixel size. This
Fig. 2. Location of the Torres Ved
value was achieved balancing the dimension of the study area, the orig-
inal data resolution, and the capabilities of the software used.
2.2.1. Land use map
The land usemap for the year 2010was accurate and validated at the

1:25000 scale by DGT (2010). This land use map represents the most
updated available data, and it was aggregated in line with the goals of
our study into the land use classes showed in Table 1 and Fig. 3.
2.2.2. Spatial factors and constraints
Table 2 and Fig. 4 identify the list of spatial factors and constraints

(which represents the attraction to or repulsion toward LUCC conver-
sion). These data were selected in line with the most widely cited in
the literature (Chen et al., 2018; Nabiollahi et al., 2018), available data,
and the characteristics of our case study (Gomes et al., 2019a, 2018).
2.3. Scenarios

Four scenarios were designed for the year 2025 (time reference for
the master plan). They were the underlying narratives for stakeholder
LUCC views and were described as follows: A0 - business as usual; A1
- regional food security; A2 - climate change; and B0 - farming under
urban pressure. These scenarios are described in detail in Table 3, and
they are in accordance with the policies of the Food and Agriculture Or-
ganization of the United Nations (FAO) and the European Union (EU).
ras Municipality (Portugal).



Table 1
Land use classes.

Land use class 2010
(%)

1 - artificial surfaces (urban fabric, industrial, commercial, and transport
units)

11.41

2 - non-irrigated arable land 9.09
3 - permanently irrigated land 11.00
4 - permanent crops and heterogeneous agricultural land (vineyards,
orchards, olive groves, and complex cultivation patterns)

25.94

5 - pastures (grassland) 2.17
6 - forest and semi-natural areas (broad-leaved forest, coniferous forest,
mixed forest, scrub, and herbaceous vegetation associations)

40.25

7 - water bodies and wetlands 0.14

Table 2
Factors and constraints.

Spatial
indicators

Hypotheses Data source

Distance to
artificial
surfaces

Related to the costs of building, transport, and
management (Leão et al., 2004; Megahed
et al., 2015). The closer urban areas and road
networks are, the higher the probability of
land conversion to new urban areas.

(DGT, 2010)

Distance to road
network

OpenStreetMap

Distance to
agricultural
land

The closer an agricultural land use class is from
another agricultural land use class, the higher the
probability of conversion into the same
agricultural land use class (Gomes et al., 2019a).

(DGT, 2010)

Slope As a barrier for urban and agricultural expansion
(Li and Li, 2017). The higher the slope is, the
higher the barrier for land conversion.

Igeoe

Non-building
area

Land use regulations to protect urban
development (Sims, 2014). It includes
groundwater, flood areas, railway station,
quarries, spring water, cultural heritage,
coastal planning, and Natura 2000 network.

Master plan
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The selected scenarios were designed to bring up issues related to
plausible futures and as a basis for decisions, which should be used for
short-term planning.

2.4. Interviews with farmers

We chose to use interviews in our research to support scenario
building since it is an efficient format for description and interpretation.
Face-to-face interviews were the technique used to capture farmer
LUCC intentions. The questions focused on the following three main
Fig. 3. Land use
points addressing the four scenarios: (1) Do farmers intend to expand
and/or decrease their farmland; (2) If so, How much? Where? From/
to which land use class? and according to which scenario?; and (3) Do
they intend to sell their farmland for urban development? If so, Partially
or totality?
cover 2010.



Fig. 4. Spatial factors (artificial surfaces, road network, agricultural land, and slope) and constraints (non-building areas).
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2.4.1. Statistical tests
To guarantee the representativeness of the sample and estimate the

sampling errors, some probability sampling types such as randomness,
stratification, clustering, and systematic sampling were ensured. We
used a sample of each age group (15–34, 35–64, and +65 years old)
proportional to the group's size. The sample size required for the sensi-
tivity test was assessed using different statistical tests, using different
margins of error and confidence intervals (Table 4).

To choose the statistical test, two main reasons were considered:
1) the values accepted in the literature (Greenland et al., 2016); and
2) the costs per interview. Following this technique, statistical test E
was chosen with a margin of error of 10% and a confidence interval of
95%. According to these parameters, we achieved a sample size of 93
farmers to interview (Fig. 5). The farmers' contact details were obtained
from several institutional entities and directly on the field.
2.5. LUCC models based on farmer LUCC intentions: CA-Markov and ANN-
MLP

Currently, there is a large number of spatial optimisation models
able to integrate LUCC simulations. Two of the most common models
due to their ability to create feasible resolutions are Cellular Automata
- Markov chain (CA-Markov) and Artificial Neural Network - Multilayer
perceptron (ANN-MLP) (Li and Li, 2015). They allow LUCC simulation to
show the emergence of new land use patterns, and address
optimisation-complexity questions.

CA-Markov and ANN-MLPmodels, based on farmer LUCC intentions,
were used in this study. They were developed by Gomes et al. (2019a,
2019b), and they were showed and explain to stakeholders, in this re-
search, as reference maps to analyse future LUCC.

The stakeholders evaluated and identified both models, deciding
which outcome would be more plausible according to their own
views. CA-Markov chain is a statistical method that integrates
stochasticity in the changes between states (Macal and North, 2010),
while ANN-MLP can learn using a training method called
backpropagation, in which input data is displayed continually on the
network (Morgado et al., 2014; Rocha et al., 2007).

These LUCC models helped stakeholders to create their own LUCC
views and enabled them to learn the land use conversions that might
occur under different scenarios. These models assisted stakeholders in
the creation a reliable picture of future land use under different scenar-
ios, spatially and quantitatively.

In addition, based on the knowledge acquired by looking at the LUCC
models, stakeholders were able to decide and produce a consensual
LUCC for 2025 (considered the most plausible scenario). This informa-
tion was integrated into the stakeholder-LUCC model.

2.6. Participatory workshop

The participatory workshop provided a step forward in integrating
stakeholder LUCCviews in the identification of better land use andman-
agement practices. By combining multiple points of view we were able
to grasp the complexity of the decisions land planners must make in
order to improve land use strategies.

With this purpose in mind, we engaged seven participants with a
wide range of interests. We gathered representative stakeholders who
have responsibilities in four major land management fields: spatial
planning, real estate development, agriculture, and forestry. We had
positive responses from all the groups, except from the real estate de-
velopment. Each of the selected stakeholders played an important role
in the interpretation and analysis of the LUCCmodels andwas either af-
fected by land usemanagement decisions, in charge ofmaking those de-
cisions, or intended to make LUCC (Table 5).

The participatory workshop consisted on a three-hour meeting that
brought together the aforementioned stakeholders. It started with a
thirty-minute presentation that laid out its purpose, followed by two
and a half hours of analysis and discussion of the different outcomes
of the LUCC models.

A questionnaire was answered by each stakeholder that aimed to
identify (1) which LUCC model (CA-Markov or ANN-MLP) was the
most plausible for them and in accordance with the chosen model;



Table 3
Scenario description: A0, A1, A2, and B0.

Scenario Description

A0 - BAU The A0 scenario analyses current demographic, social,
and economic trends. It is based on LUCC trends observed
in more recent years.

A1 - regional food
security

The A1 scenario reflects an increase in local agricultural
production, innovative industries, greater use of
technology, and modernisation of agricultural practices
(Recanati et al., 2019). A1 scenario's key trends seek to
revitalise agriculture through an increase of European
funds. It is signalled by changing food habits (e.g., dietary
pattern), and stock building (EC, 2011). It meets the
principle of food security recognized as a priority in the
rural development 2014–2020, Common Agricultural
Policy programs, FAO (2012), Paris Agreement (United
Nations Framework Convention on Climate Change), and
Habitat III Agenda (United Nations) in which food secu-
rity of peri-urban regions was identified as essential for a
more sustainable development.

A2 - climate change The A2 scenario describes a context of declining
agricultural production and productivity. In a rapidly
declining trajectory, the existing production systems
collapse as a consequence of climate change. The
Intergovernmental Panel on Climate Change (IPCC)
stated in the latest report that at our case study latitude
long periods of drought will be recorded (with less
reliable supplies of water). This event will reduce yields
in general, with direct consequences on economic
agricultural viability (Günther et al., 2005; von Gunten
et al., 2015). Other factors can also contribute to the
production decrease, such as increased fuel costs
(Lindegaard et al., 2016; Pimentel et al., 1973), ageing
farming population (Recanati et al., 2019), increased
production costs (Olynk, 2012), arable land decay (Stoate
et al., 2001), and increased imports of agricultural
products (Anderson, 2010; Nazzaro and Marotta, 2016).

B0 - farming under
urban pressure

The B0 scenario records an increase of built-up areas and
an increase of new peri-urban residents. The B0 scenario
implies population growth; increased purchasing power;
increased demand for more living space; growing market
demand; and improved road access and public transport
facilities (Rauws and de Roo, 2011; Satterthwaite et al.,
2010).

Fig. 5. Farmers interviewed.
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(2)whether they consider the LUCC location plausible; and (3)whether
they agree with the percentage of each land use class.

2.7. Stakeholder-LUCC model

In the literature, there are several platforms to model LUCC
(Berryman, 2008), e.g., Cormas (Page et al., 2000), GAMA (Taillandier
et al., 2012), MASON (Luke, 2014), SWARM (Iba, 2013), and NetLogo
(Wilensky (2004). The later provides a powerful programming lan-
guage (Railsback et al., 2006) and is one of the most widely used tools
(Ghosh, 2015) to model natural and social phenomena, as well as com-
plex behaviour systems (Montañola-Sales et al., 2014).

Taking into consideration the advantages mentioned above, we
chose NetLogo (version 6.0) to integrate the stakeholder LUCC views
into a spatial structure. We had the concern of using open-source
Table 4
Statistical tests.

Statistical
test

Margin
of
error (%)

Confidence
level (%)

Population
size (n)

Response
distribution
(%)

Sample
size (n)

A 9.58 95 2,20 50% 100
B 6.61 95 200
C 5.26 95 300
D 10.00 90 66
E 10.00 95 93
F 10.00 99 155
software, and we designed it from a user-friendly perspective. The
costs of our model's maintenance and data used are low. We called
this model the stakeholder-LUCC model and it represents a planning
decision-making approach that incorporates a built-inmodel using spa-
tial data. The stakeholder-LUCC model allows spatializing future LUCC,
showing the outcomes both spatially and graphically. Fig. 6 depicts its
flowchart.

Stakeholder-LUCC model has principles based on spatial proximity
(100mor 200m) to some spatial elements (road network, and artificial
surfaces), % of growth defined for the artificial surfaces and forest and
semi natural areas (0%, 20%, and 40%), and incorporates the farmer
LUCC intentions which are based in the probability of change (%) – by
scenario and land use class captured from the interviews. Therefore,
spatial data included in the model comprises (1) land use map (seven
land use classes), (2) protected areas (and not protected areas),
(3) road network (and no road network), and (4) slope (0–10° or
0–20°) (Fig. 6). Each cell can be changed (except for built-up areas,
and water bodies and wetlands – these cells cannot be replaced).
Farmer LUCC intentions are allocated in each cell of non-irrigated arable
land, permanently irrigated land, permanent crops and heterogeneous
agricultural land, pastures, and forest and semi-natural areas.

The stakeholder-LUCC model allows us to import the spatial data in
ASCII format (raster data). The simulation started in 2010 (t = 0), and
the projection horizon is 2025 (t = 1). Fig. 7 shows its interface.

The stakeholder-LUCC model was parameterised by decision rules.
The outcome of each simulation and each scenario is the combination
of the spatial data and parameters mentioned above, which illustrates
potential LUCC maps.
Table 5
Stakeholders who participated in the workshop.

Stakeholder
group

Number of
participants

Function/organization

Spatial
planning

1 - Urban planning technician

Agriculture 4 - Farmers Association of Torres Vedras.
- LEADEROESTE - Rural Development Association.
- Confederation of Farmers of Portugal (CAP-OESTE).
- Farmer selected randomly from the sample of the
interviewed farmers.

Forestry 2 - AFLOESTE association.
- APAS Forestry association.



Fig. 6. Stakeholder-LUCC model flowchart.
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3. Results and discussion

Our findings are divided into four subsections: the first section pre-
sents the outcome of the interviews with the farmers; the second de-
scribes the results obtained from the participatory workshop; the
third is related to the integration of stakeholder LUCC views into the
stakeholder-LUCCmodel; and the fourth depicts a discussion regarding
land use strategies and advances in land usemanagement derived from
our paper.

3.1. Farmer LUCC intentions

According to the outcome of the interviews with the farmers, most
farmers are landowners and represent 90% of the total farmers
interviewed. The majority of respondents have between one and four
years of education (36%), followed by ten and twelve years (20%),
higher education (14%), seven and nine years (17%), and by the popula-
tion between five and six years of school (13%). Most farmers have a
small to medium-sized farm, and 47% of these farms have less than
5 ha. Farmer intentions for future land use were obtained according to
the studied scenarios (Table 3). The findings revealed their intentions
to expand, keep, and/or decrease their farmland. Table 6 shows the es-
timated probability of change for each land use class and scenario.
These values were encoded in the stakeholder-LUCC model.

According to the achieved results, we highlight the following find-
ings, comparing the size of each land use class of the farmlands of the
interviewed farmers with the expected growth of each land use class
in each scenario: an increase of 47.8% in artificial surfaces in the B0 sce-
nario; a decrease of 46% in non-irrigated land in the A2 scenario; an in-
crease of 68% in permanently irrigated land in the A1 scenario; an
increase of permanent crops and heterogeneous agricultural land in
the A1 scenario; and an increase of 560% in pastures in the A2 scenario.

3.2. Participatory workshop: stakeholder LUCC views

The participatory workshop helped to identify the best-suited LUCC
from the point of view of the stakeholders. Thus, according to the re-
sults, five out of six participants chose the CA-Markov model as the
best-fitted LUCCmodel in the A0 scenario; they considered the LUCC lo-
cation plausible (five out of six), and two out of six did not agree with
the percentage of each LUCC. In the A1 scenario, all the stakeholders
elected the CA-Markov model as the best-suited model considering
their views. Only one participant did not agree with the location of
land conversion. However, all of them agreed with the total percentage
of LUCC. In the A2 scenario, the stakeholders (four out of six) selected
the CA-Markov model as the best-suited model. They agreed with the
LUCC location (five out of six). Only two did not agreewith the percent-
age of LUCC. In the B0 scenario, three stakeholders identified the ANN-
MLP model, and the other three identified the CA-Markov model as
the best-suited model. In addition, the majority agreed with the LUCC
location (five out of six) (Table 7).

As shown, the CA-Markov model was the most elected LUCC model.
One of the reasons is related to the neighbourhood principle integrated
into this model. This principle defines that each cell is influenced by the
nearest cell (Ilachinski, 1987; Schiff, 2011). The expansion of land use
classes occurs by contiguity and reflects what the stakeholders believe
that can happen in terms of land use transformations. Nevertheless, in
the B0 scenario, the choice was not consensual. Three stakeholders
chose the CA-Markov model and the other three chose the ANN-MLP
model as the more adjusted according to their own views. The ANN-
MLP model recognizes non-linear patterns (Ebrahimi et al., 2017;
Mayoraz et al., 1996; Pijanowski et al., 2002), representing a closer
idea of what the stakeholders believe that can happen with the behav-
iour of the artificial surface growth in the B0 scenario.

By analysing Table 8 and Fig. 8 and comparing them with the land
use map 2010 we see an artificial surface increase in all the scenarios,
especially in the B0 scenario; a decrease in non-irrigated arable land;
an increase of permanently irrigated land in the A0, A1, and A2 scenar-
ios, mainly in the A2 scenario; a decrease of permanent crops and het-
erogeneous agricultural land; an increase of pastures in the A0, A2,
and B0 scenarios, and a decrease in the A1 scenario; a decrease of forest
and semi-natural areas in the A0, A2, and B0 scenarios; and an increase
of water bodies and wetlands.

3.3. The stakeholder-LUCC model

3.3.1. Model performance
Many researchers have studied the importance of testing the validity

of the models (An et al., 2005; Manson, 2005). Some of these tests rep-
resent a functional verification, which should include efforts to break
the model (Parker et al., 2003). They are used to control if the model
is corrupted or produces entirely unreasonable results (An et al.,
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Table 6
Farmer LUCC intentions – probability of change (%) – by scenario and land use class. Land
use classes: LUC 1 - artificial surfaces; LUC 2 - non-irrigated land; LUC 3 - permanently ir-
rigated land; LUC 4 - permanent crops and heterogeneous agricultural land; and LUC 5 -
pastures.

Scenario LUC 1 LUC 2 LUC 3 LUC 4 LUC 5

A0 0 0.06 20 10 −6
A1 0 3 68 71 −25
A2 0 −46 −17 −11 560
B0 47.80 0.28 −17 −1 −6

Table 7
Stakeholder LUCC views. Land use classes: LUC 1 – artificial surfaces; LUC 2 – non-irrigated arab
agricultural land; LUC 5 – pastures; LUC 6 – forest and semi-natural areas; LUC 7 – water bodie

CA-Markov ANN-MLP LUCC % disagreement LUC 1
(%)

A0 5 1 2 14.3
A1 6 0 0 14.4
A2 4 2 2 13.7
B0 3 3 1 17.9

Table 8
Selected simulations in the stakeholder-LUCCmodel by scenario. Land use classes: LUC1 – artific
permanent crops and heterogeneous agricultural land; LUC 5 – pastures; LUC 6 – forest and se

Land use classes LUC
1

LUC 2

A0
A0: selected simulation (%) 13.96 7.12

Deviation (stakeholder LUCC views - A0) 0.34 −0.97

A1
A1: selected simulation (%) 15.34 8.68

Deviation (stakeholder LUCC views - A1) −0.93 −2.24

A2
A2: selected simulation (%) 13.31 8.87

Deviation (stakeholder LUCC views - A2) 0.34 −2.63

B0
B0: selected simulation (%) 18.41 8.30

Deviation (stakeholder LUCC views - B0) −0.48 −0.66

Fig. 8. Stakeholder LUCC views - A0, A1, A2, and B0 scenarios (ha). Land use classes: 1 – artific
crops and heterogeneous agricultural land; 5 – pastures; 6 – forest and semi-natural areas; 7 –
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2005). The purpose is to identify the robustness of themodel and recog-
nize the inferences of any uncertainty assessment on simulation re-
sponse (Helton, 2008), determining if there is a statistically significant
change between simulation responses under different settings.

To identify the disturbance and influence of each parameter on each
simulation response, we used a function in NetLogo called Behaviour
Space that allowed us to perform a sweep for all potential simulations.
We ran the simulation model with different settings, selecting a specific
parameter in each of the following groups: artificial surfaces growth:
0%, 20%, or 40% (and according to the distance to existing artificial sur-
faces: 100 m or 200 m; and to the distance to road network: 100 m or
200 m); forest and semi-natural areas growth: 0%, 20%, or 40%; convert
le land; LUC 3 – permanently irrigated land; LUC 4 – permanent crops and heterogeneous
s and wetlands.

LUC 2
(%)

LUC 3
(%)

LUC 4
(%)

LUC 5
(%)

LUC 6
(%)

LUC 7
(%)

6.2 13.6 23.6 3.1 38.6 0.6
6.4 18.5 21.8 0.9 37.9 0.2
6.2 11.8 22.1 4.0 41.6 0.6
7.6 10.5 20.6 2.9 39.7 0.6

ial surfaces; LUC 2 – non-irrigated arable land; LUC 3 – permanently irrigated land; LUC4 –
mi-natural areas; LUC 7 – water bodies and wetlands.

LUC
3

LUC
4

LUC
5

LUC
6

LUC
7

14.14 23.45 1.76 39.43 0.14
−0.52 0.18 1.32 −0.83 0.49

10.39 24.37 2.10 38.98 0.14
8.08 −2.59 −1.23 −1.1 0.01

10.74 25.09 2.17 39.68 0.14
1.03 −2.99 1.83 1.95 0.49

10.01 23.22 2.05 37.87 0.14
0.53 −2.62 0.89 1.86 0.49

ial surfaces; 2 – non-irrigated arable land; 3 – permanently irrigated land; 4 – permanent
water bodies and wetlands.
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forest and semi-natural areas to agricultural land: Yes or No; and farming
in areas with the following interval slope degrees: 0–10° or 0–20°. Next,
we present a radar charter showing LUCC in all the potential simulations
(by scenario) performed in the stakeholder-LUCC model (Fig. 9).
Fig. 9. The stakeholder-LUCC mo
Fig. 9 represents the variation in hectares of the seven land use clas-
ses analysed in the A0, A1, A2, and B0 scenario, according to the settings
and parameters mentioned above. The outcomes are the result of all
possible combinations (144 simulations) for each scenario.
del simulations by scenario.



Fig. 10.Methodology flowchart representing the integration of stakeholder LUCC views into the stakeholder-LUCC model.
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3.3.2. The stakeholder-LUCC model: integrating stakeholder LUCC views
Considering the outcomes of all the simulations, we identifiedwhich

one, out of the 144 possible simulations (for each scenario), had the
lowest deviations compared to the stakeholder LUCC views. Subse-
quently, the next step involved identifying in themodel the parameters
needed to achieve similar outcomes (in percentage) (Fig. 10).

This approach allowed us to reduce one of theweaknesses identified
by the stakeholder-LUCC model: the multi-outcomes. This procedure
helped us minimize the uncertainty of the results and aided in the
choice of the simulation that best fit the views of the stakeholders. Ac-
cordingly, we searched in all the 144 simulations (for each scenario),
which one had the lowest deviation (Table 8).

Therefore, according to the outcomes of each simulation, we identi-
fied the parameters needed to achieve those results. Table 10 shows
those parameters to achieve the selected simulations.

As seen in Table 9, farmer LUCC intentions are themost determinant
parameter responsible for the LUCC in the selected simulations, as well
as the distance to artificial surfaces, distance to road network, and slope.

3.3.3. Stakeholder views: land use cover 2025
The previous analysis allowed the stakeholders to visualize and eval-

uate four different scenarios that may occur. This knowledge acquired
by the stakeholders in the participatory workshop enabled them to de-
velop their own views. So, at the end of the workshop, we asked them:
Which LUCC do you think will be more plausible in 2025? After a dy-
namic discussion, they reached a LUCC consensus which is expressed
as follows: artificial surfaces 16%; non-irrigated land 4.5%; permanently
Table 9
Stakeholder-LUCC model parameters. Group: a - artificial surfaces; b - agricultural land; c - for

Group

Farmer LUCC intentions (%) - static
a 1 - Artificial surfaces (%)

Distance to artificial surfaces (m)
Distance to road network (m)

Farmer LUCC intentions (%) - static
b 2 - Non-irrigated arable land

3 - Permanently irrigated land
4 - Permanent crops and heterogeneous agricultural land
5 - Pastures

Farming (slope in °)
Convert forest and semi-natural areas to agricultural land use classes?

Farmer LUCC intentions (%) - static
c 6 - Forest and semi-natural areas

Farmer LUCC intentions (%) - static
d 7 - Water bodies and wetlands
irrigated land 16%; permanent crops and heterogeneous agricultural
land 27.94%; pastures 2%; forest and semi-natural areas 31.56%; and
water bodies and wetlands 2%. Fig. 11 depicts the values in ha and per-
centage of each land use class of the reference land use map and the
stakeholder views for 2025.

Comparing these LUCC views with the reference land use map, we
can see an increase of 1869 ha in artificial surfaces (28.7%); a decrease
of 1866 ha in non-irrigated arable land (−101.9%); an increase of
2033 ha in permanently irrigated land (21.2%); an increase of perma-
nent crops and heterogeneous agricultural land of 838 ha (7.4%); a de-
crease of 84 ha in pastures (−10.3%); a decrease of forest and semi-
natural areas of 3546 ha (−27.6%); and an upsurge of water bodies
and wetlands of 756 ha (92.9%).

Subsequently, we identified in all the 576 possible simulations for all
the scenarios (144*4) which one had fewer deviations in the
stakeholder-LUCCmodel. Therefore, the selected simulationwas identi-
fied as the A0 scenario (Table 10).

The last step was to spatialize this simulation that expresses the
stakeholder LUCC views for the most plausible scenario in 2025
(Fig. 12).

Fig. 12 shows these transformations spatially. In the location
assigned by A, we identify the site where the probability of conversion
from permanent crops and heterogeneous agricultural land to perma-
nently irrigated land is higher. In the location assigned by B, which rep-
resents artificial surfaces growth, we recognized that artificial surface
expansion occurs along with the road network, and mainly infilling
around existing artificial surfaces. The spatial patterns of the artificial
est and semi-natural areas; d - water bodies and wetlands.

A0 A1 A2 B0

0 0 0 47.80
Plus
Parameters (%)
40 40 40 20
100 200 200 200
200 200 100 200

0.06 2.90 −45.61 0.28
20.23 67.97 −17.06 −17.00
10.03 71.32 −11.00 −1
−6.35 −25.40 560.32 −6
Plus
Parameters (%)
0–10 0–20 0–20 0–20
Yes Yes Yes Yes

0 0 0 0
Plus
Parameters (%)
0 0 0 0

0 0 0 0



Fig. 11.Values in ha andpercentage of each landuse class of the reference landusemap and the stakeholder views for 2025. Landuse classes: 1 – artificial surfaces; 2 – non-irrigated arable
land; 3 – permanently irrigated land; 4 – permanent crops and heterogeneous agricultural land; 5 – pastures; 6 – forest and semi-natural areas; 7 – water bodies and wetlands.
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surface growth are categorized by linear directions,more pronounced in
the south and in the west.

Moreover, the location C signals one of the highest transitions from
non-irrigated arable land to permanently irrigated land, and location
D from non-irrigated arable land and permanent crops and heteroge-
neous agricultural land to permanently irrigated land. The loss of forest
and semi-natural areas occurs throughout the municipality, especially
near its limits, consumed by artificial surfaces and agricultural land.

3.4. Land use strategies and advances in land use management

Asmentioned above, LUCC is controlled by land use instruments, so-
cioeconomic, and environmental indicators, topographic constraints, at-
traction by the proximity of somephysical elements and human actions.
Understanding stakeholder viewswas essential to assess LUCC in a peri-
urban context. These views were based on future narratives in accor-
dance with the FAO and EU policies.

This study allowed us to ascertain the reliability of analysing future
LUCC as a support for decision-making to promote sustainable urban
growth and agricultural land preservation. The spatial patterns of future
LUCC obtained in the stakeholder-LUCC model successfully projected
land use conversion and identified themost suitable areas for each con-
version. According to the achieved results, policymakers can bemore ef-
ficient, integrating these results into the Municipal Master Plan (PDM)
and into the Inter-municipal plans (PIOT). PIOT could be a better strat-
egy to analyse and understand land transformations at a larger scale
(they are implemented in a set of municipalities). The application of
PIOT in Portugal, although established by law, is not effectively visible
in the Portuguese spatial planning process. Protection measures should
be implemented more efficiently considering where and when land
transformations may occur.

From the urban growth perspective, according to the economic and
social trend in our case study in amedium-long-termperiod, some indi-
cators can point to a fast LUCC transformation. An increase in housing
demand has been verified in the last few years in the metropolitan re-
gion of Lisbon (Statistics Portugal, 2019). Therefore, mostly due to the
Table 10
Stakeholder LUCC views (%) for 2025. Land use classes: LUC 1 – artificial surfaces; LUC 2 – non
heterogeneous agricultural land; LUC 5 – pastures; LUC 6 – forest and semi-natural areas; LUC

LUC 1 LUC 2

Stakeholder LUCC views (%) (2025) 16.00 4.50
A0: selected simulation (%) 15.39 5.63
amenities that Torres Vedras can offer and the lower prices of housing
compared to Lisbon, this territorymay be an attractive target for poten-
tial urban development. This attraction can also be driven by the evolu-
tion of information technology. In recent years, more people have been
able to work from home. They can benefit from the proximity to Lisbon,
but they will not need to commute daily. Additionally, we believe elec-
tric cars can increase housing demand by new residents. Although the
undisputable benefits that these vehicles have in terms of greenhouse
effect (zero-emission), due to the low cost of charging, they can indi-
rectly promote the increase of extensive urbanization (Kester et al.,
2020). People will be able to commute long distances at a low cost,
and the demand for single-family dwellings can increase. Therefore, ac-
tions to promote urban containment growth should be implemented
(Dawkins and Nelson, 2002; Fertner et al., 2016). Moreover, new
built-up areas must have environmental concerns, such as high energy
efficiency using renewable energies, green roofs, and environmentally
friendly construction materials (Hamilton et al., 2013; Li and Yeung,
2014).

From the agricultural land perspective, policies to protect and mon-
itor it should also be employed (Gomes et al., 2019c). According to our
results, the highest increase will be in permanently irrigated land.
Therefore, decision-makers should contemplate some measures to im-
prove the irrigation systems and thus make farming more efficient
and competitive, e.g. Levidow et al. (2014), and Holzapfel et al.
(2009). This was one of the main solutions pointed out by the stake-
holders. This is more pressing because the agricultural sector must be
aware of climate change. The Intergovernmental Panel on Climate
Change (IPCC) projected scenarios for the latitude of our case study
that show longer periods of drought and greater scarcity of water
(IPCC, 2000), andmeasures tomitigate this effectmust be implemented
accordingly. Other transformations that can be seen in the agriculture
sector can result from the competition of other markets, demand for
new consumption patterns, or the introduction of new technology.
Concerning new technology, smart farming is already a reality, and it
can increase the quantity and quality of agricultural products, using un-
manned tractors controlled via Global Positioning System (GPS),
-irrigated arable land; LUC 3 – permanently irrigated land; LUC 4 – permanent crops and
7 – water bodies and wetlands.

LUC 3 LUC 4 LUC 5 LUC 6 LUC 7

16.00 27.94 2.00 31.56 2.00
16.93 21.72 1.35 38.84 0.14



Fig. 12. Stakeholder LUCCviews: 2025 (A0: selected simulation – stakeholder-LUCCmodel). Land use classes: 1 – artificial surfaces; 2 – non-irrigated arable land; 3 –permanently irrigated
land; 4 – permanent crops and heterogeneous agricultural land; 5 – pastures; 6 – forest and semi-natural areas; 7 – water bodies and wetlands.
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unmanned aerial vehicle (UAV - commonly known as drones) to kill
vermin, and precision agriculture (Pivoto et al., 2018; Walter et al.,
2017).

The political, environmental, demographic, social, technological and
economic issues will change the current farming paradigm in peri-
urban areas. This can transform LUCC quickly in the near future, forcing
farmers to readapt their production according to the changes that may
occur. Thus, the analysis presented in this study can be the first step to
successfully examine, anticipate, and understand future land use, reduc-
ing the uncertainties to better prepare for the future.

In the context ofmodelling land use change for spatial planning sup-
port, this study aimed at opening up newmethodological paths for fur-
ther research. LUCC simulation experiments have been dealing with
different categories of land use and have been conducted by Parker
et al. (2003), Lambin et al. (2003), and Valbuena et al. (2010). While
LUCC prediction and assessment have been developed, predictions per-
formed in this research are based on new narratives and storylines to
understand LUCC dynamics through a new approach. We presented a
prospective methodology to better understand spatial and temporal
land use dynamics, identifying what is more relevant in the decision
process. The results achieved in this research should: (1) inform
policymakers and the community, demonstrating future land use alter-
natives and showing its impacts; (2) show the suitable land use options
to avoid undesirable future impacts (adaptive land use management);
and (3) simulate LUCC to support planners, creating sustainable devel-
opment strategies, and anticipating and understanding future land use
uncertainties.

This paper has explored the potential for developing geospatial
modelling. We integrated LUCC modelling with a GIS-based methodol-
ogy to support planning decisions at the local planning level. We
aimed to understand how stakeholder views can fit in the decision-
making process, looking at how,where,why, andwhat land use conver-
sions may occur. As the main contribution, we intend to facilitate com-
munication and knowledge sharing between stakeholders to foster the
best political options for land use, leading to an effective way of inte-
grating expert knowledge in the evaluation of land use alternatives.
4. Conclusion

The role of human activities in controlling land use has had different
effects on land use. Anticipating decisions, indicating alternative futures
and their impacts, to support policy-makers is one of the biggest chal-
lenges of spatial planning. The mixed-methods (quantitative and quali-
tative) used in our research by means of the participatory workshop
enabled us to strengthen the relations between researchers and stake-
holders, and encouraged knowledge sharing and the interchange of dif-
ferent points of view. It allowed us to see how stakeholders can play
their part in the decision-making process (local-level actors) and the in-
teractions between spatial factors and constraints. As a result land use
recommendations were put forward.

We introduced advances in the land use modelling and planning
purposes, providing guidance and strategies that can be implemented
in spatial planning and land management. Stakeholders recognized
the collaborative participation as an efficient approach in the delibera-
tive decision-making process, highlighting the importance of the per-
ception of others to achieve a shared solution. They also considered
this approach as very proficient to apply to themunicipal planning pol-
icies and regulations. In brief, this research explored the integration of
spatial planning and complexity science.
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During this research, we were faced with several weaknesses in the
data gathering process, as well as LUCC analysis and validation. These
difficulties arise from accurate data acquisition and finding appropriate
methods. Due to the limited available data, we think the calibration pro-
cess was not long enough to detect satisfactory LUCC for longer predic-
tions (a wider time-span would have been more proper). In addition,
although the results presented in this studywere effectively tested, sev-
eral issues remain unexplored and can be addressed by future research.
More analyses need to be conducted. In terms of future work, we rec-
ommend, e.g., (1) gathering detailed and updated land use data (using
satellite images); (2) testing the proposedmethodology for comparison
in another study area to evaluate its replicability; and (3) regarding the
stakeholder-LUCC model, we believe it is still only a prototype, and
some progress should be made, such as to improve the usability of the
model, or to allow us to add other spatial factors and constraints.
These are somedevelopmentswhichwe think could bring an advantage
for the model.

Future LUCC interpretation has demonstrated to be useful for the
identification of the main impacts on land conversion. However, there
is still a gap between this analysis and local planning authorities when
it comes tomanaging and reorganising land allocation priorities accord-
ing to the environmental, demographic and economic needs. It can as-
sist not only by providing spatial guidelines to monitor future trend
but also to identify threats and the deterioration of agricultural land
and natural areas.

In brief, the current research is entrusted with providing methodo-
logical guidance for future scientific research andmay help researchers,
modellers and decision-makers to better visualize and identify themost
suitable areas for land conversion, and evaluate the effects of future
LUCC.
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