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Abstract

In this doctoral thesis, we will see how the bounded functional interpretation of Ferreira and
Oliva [13] can be used and contribute to the Proof Mining program, a program which aims to
extract computational information from mathematical theorems using proof-theoretic tech-
niques. We present a method for the elimination of sequential weak compactness arguments
from the quantitative analysis of certain mathematical results. This method works as a
“macro” and allowed us to obtain quantitative versions of important results of F. E. Brow-
der [6], R. Wittmann [51] and H. H. Bauschke [2] in fixed point theory in Hilbert spaces.
Although Browder’s and Wittmann’s theorems were previously analyzed by Kohlenbach us-
ing the monotone functional interpretation, it was not clear why such analyses did not require
the use of functionals defined by bar recursion. This phenomenon is now fully understood, by
a theoretical justification for the elimination of sequential weak compactness in the context
of the bounded functional interpretation. Bauschke’s theorem is an important generaliza-
tion of Wittmann’s theorem and its original proof is also analyzed here. The analyses of
these results also required a quantitative version of a projection argument which turned out
to be simpler when guided by the bounded functional interpretation than when using the
monotone functional interpretation.
In the context of the theory of monotone operators, results due to Boikanyo/Moroşanu [5]
and Xu [52] for the strong convergence of variants of the proximal point algorithm were
analyzed and bounds on the metastablility property of these iterations obtained.
These results are the first applications of the bounded functional interpretation to the proof
mining of concrete mathematical results.

Keywords: bounded functional interpretation, majorants, metastability, weak compact-
ness, fixed points
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Resumo

Nesta tese de doutoramento, iremos ver como a interpretação funcional limitada de Fer-
reira e Oliva [13] pode contribuir para o programa de Proof Mining, um programa que tem
como objetivo a extração de nova informação de teoremas matemáticos usando ferramentas
da teoria da demonstração. Apresentamos um método para a eliminação de argumentos de
compacidade fraca sequencial da análise quantitativa de certos resultados matemáticos. Este
método funciona como uma “macro” muito geral e a sua aplicação permitiu obter versões
quantitativas de importantes resultados de F. E. Browder [6], R. Wittmann [51] e H. H.
Bauschke [2] no âmbito da teoria dos pontos fixos em espaços de Hilbert. Apesar de análises
dos teoremas de Browder e Wittmann já terem sido anteriormente obtidas por Kohlenbach
usando a interpretação funcional monótona, não era claro o motivo por que em tais análises
não é necessária a utilização de funcionais definidos por bar recursion. A justificação da
eliminação de compacidade fraca sequencial no contexto da interpretação funcional limitada
vem por completo clarificar este fenómeno. O teorema de Bauschke é uma importante gener-
alização do teorema de Wittmann e a sua demonstração original foi também aqui analisada.
A análise destes resultados levou-nos também a uma versão quantitativa de um argumento
de projeção que se veio a revelar mais simples quando guiada pela interpretação funcional
limitada do que seguindo a interpretação funcional monótona.
Já no contexto da teoria dos operadores monótonos, foram analisados resultados devidos
a Boikanyo/Moroşanu [5] e a Xu [52] relativamente à convergência forte de variantes do
proximal point algorithm tendo-se obtido majorações na propriedade metaestável desses al-
goritmos. Estes resultados constituem os primeiros exemplos de aplicação da interpretação
funcional limitada no proof mining de resultados matemáticos concretos.

Palavras-chave: interpretação funcional limitada, majoração, metaestabilidade, compaci-
dade fraca, pontos fixos
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Resumo alargado

Nesta tese de doutoramento, iremos ver como a interpretação funcional limitada de Ferreira
e Oliva [13] pode contribuir para o programa de Proof Mining, um programa que tem como
objetivo a extração de nova informação de demonstrações matemáticas. Para esse efeito,
são usadas ferramentas da teoria da demonstração, nomeadamente interpretações funcionais
sendo a interpretação funcional monótona de Kohlenbach [21] a mais frequentemente uti-
lizada. Enquanto que outras interpretações procuram extrair informações computacionais
exatas, tanto a interpretação monótona como a limitada tentam extrair majorantes. Esta
distinção é essencial para permitir a análise de uma maior classe de resultados matemáticos.
Naturalmente, a extração de majorantes exige uma noção adequada de majoração e, com
esse propósito, estas interpretações consideram a relação de majoração forte de Bezem [3].
No entanto, enquanto que a interpretação monótona apenas relaxa a extração na fase final
da interpretação, a interpretação limitada combina a majoração com a própria tradução das
fórmulas. Isto levanta a questão de saber se, usando a interpretação funcional limitada,
poderão existir situações em que a informação computacional extráıda possa ser diferente
ou possa ser obtida de forma mais eficiente. O trabalho desenvolvido por Patŕıcia Engrácia
na sua tese de doutoramento preparou o caminho para o uso desta interpretação em casos
concretos de Proof Mining. Esta tese de doutoramento apresenta essas primeiras aplicações
práticas.

Os teoremas aqui analisados focam-se na convergência forte de certas iterações (xn) num
espaço de Hilbert. Na sua análise quantitativa, olhamos para a afirmação equivalente de que
(xn) é uma sucessão de Cauchy,

∀k ∈ N ∃N ∈ N ∀i, j ≥ N

(
‖xi − xj‖ ≤

1

k + 1

)
,

que, do ponto de vista lógico, tem uma complexidade mais simples de que a afirmação da
convergência. Em geral, não é posśıvel extrair informação computacional para “∃N” na
propriedade de Cauchy. Em vez disso, olhamos para a versão metaestável,

∀k ∈ N ∀f ∈ NN ∃N ∈ N ∀i, j ∈ [N, fN ]

(
‖xi − xj‖ ≤

1

k + 1

)
,
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que corresponde à interpretação da propriedade de Cauchy e que designamos de propriedade
metaestável de (xn) – no sentido de Terence Tao [46]. Aqui o intervalo [N, fN ] denota o
conjunto {N,N + 1, · · · , fN}.
Estas duas propriedades são (de forma não-efetiva) equivalentes mas, enquanto que a pro-
priedade de Cauchy é dada por uma fórmula ∀∃∀, a propriedade metaestável é (vista como)
uma afirmação ∀∃. Para fórmulas desta complexidade, o soundness da interpretação garante
que, de uma demonstração de que (xn) é uma sucessão de Cauchy, conseguimos extrair um
majorante para N que apenas depende de k e f . Isto é, a análise quantitativa de tais
demonstrações permite a extração de uma função φ : N× NN → N tal que

∀k ∈ N ∀f ∈ NN ∃N ≤ φ(k, f)∀i, j ∈ [N, fN ]

(
‖xi − xj‖ ≤

1

k + 1

)
.

As versões quantitativas dos resultados analisados nesta tese são na forma de extrações
expĺıcitas de funções φ como acima, i.e. majorações na propriedade metaestável de uma
iteração (xn) e, no final, a maquinaria lógica subjacente aparece oculta, sendo por isso os
resultados quantitativos pasśıveis de ser apreciados tanto por lógicos como por não-lógicos.

No âmbito da teoria dos pontos fixos, iremos obter versões quantitativas de importantes
teoremas devidos a F. E. Browder [6] e a R. Wittmann [51]. Análises dos teoremas de
Browder e de Wittmann já tinham sido anteriormente realizadas por Kohlenbach usando a
interpretação funcional monótona. Apresentamos também uma versão quantitativa de uma
generalização do teorema de Wittmann devida a H. H. Bauschke [2]. Apesar de uma pos-
terior generalização do teorema de Bauschke ter sido analisada na tese doutoral de Daniel
Körnlein [35], aqui vamos focar-nos pela primeira vez na demonstração original de Bauschke.
Dado que as demonstrações destes resultados se centram num argumento de compacidade
fraca sequencial, não era claro o motivo por que tais análises não exigem a utilização de
funcionais definidos por bar recursion [43], como seria expectável (de acordo com a teoria
lógica). Neste sentido, as análises anteriores dos teoremas de Browder e de Wittmann tin-
ham uma explicação teórica incompleta. A justificação da eliminação de compacidade fraca
sequencial no contexto da interpretação funcional limitada vem por completo clarificar este
fenómeno.

Apresentamos um método geral para a eliminação de argumentos de compacidade fraca se-
quencial da análise quantitativa de certos resultados matemáticos. Este método funciona
como uma macro que pode ser aplicada em situações muito gerais para eliminar compaci-
dade fraca sequencial em resultados quantitativos. Este resultado permitiu obter as versões
quantitativas dos teoremas de Browder, de Wittmann e de Bauschke.
Seja X um espaço de Hilbert, C um subconjunto limitado, u0 um ponto em C e U : X → X
uma função não-expansiva (i.e. ‖U(x) − U(y)‖ ≤ ‖x − y‖, para x, y ∈ X) com U [C] ⊆ C.
Nos casos em que nos focamos, a compacidade fraca sequencial é necessária para concluir
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que lim sup〈x̃ − u0, x̃ − xn〉 ≤ 0, onde x̃ é o ponto de projecção de u0 sobre o conjunto dos
pontos fixos de U em C. Significa portanto que para um certo ponto fixo x̃ se tem

∀k ∈ N ∃N ∈ N ∀n ≥ N

(
〈x̃− u0, x̃− xn〉 ≤

1

k + 1

)
.

Em vez deste facto, mostramos que para quaisquer k ∈ N e função f : N→ N existem N ∈ N
e x ∈ C tais que

‖U(x)− x‖ ≤ 1

f(N) + 1
e ∀n ∈ [N, fN ]

(
〈x− u0, x− xn〉 ≤

1

k + 1

)
.

Mostramos que esta afirmação é já suficiente para concluir os resultados de convergência
que analisamos. O facto notável é que este resultado pode ser demonstrado usando um
argumento de coleção caracteŕıstico da interpretação funcional limitada e evitando o uso
de compacidade fraca sequencial. Esse argumento pode ser visto como uma aplicação de
compacidade Heine-Borel, nomeadamente

∀x ∈ C ∃k ∈ N (x ∈ Ωk)→ ∃n ∈ N∀x ∈ C ∃k ≤ n (x ∈ Ωk) ,

onde (Ωn) é uma famı́lia contável de conjuntos abertos. Em suma, conclui-se que, em certas
circunstâncias, o uso de compacidade Heine-Borel, que em geral é uma propriedade falsa do
espaço, é uma maneira perfeitamente aceitável de mostrar a convergência de iterações em
espaços de Hilbert.

A interpretação destes resultados exigiu também a análise quantitativa de um argumento
de projeção. Um ponto interessante é que a interpretação funcional limitada da projeção
é significativamente mais simples que a análise mais elaborada obtida anteriormente pela
interpretação funcional monótona em [27].
O argumento de projeção pode ser escrito na forma

∃x ∈ C ∀k ∈ N
[
U(x) = x ∧ ∀y ∈ C

(
U(y) = y → ‖x− u0‖ ≤ ‖y − u0‖+

1

k + 1

)]
.

No entanto, a demonstração deste resultado requer o uso de escolha contável o que, em
termos da informação que pode ser obtida, significa que uma vez mais teŕıamos de considerar
funcionais definidos por bar recursion. Acontece que o enfraquecimento

∀k ∈ N ∃x ∈ C
[
U(x) = x ∧ ∀y ∈ C

(
U(y) = y → ‖x− u0‖ ≤ ‖y − u0‖+

1

k + 1

)]
,

que se demonstra com um simples argumento indutivo, é já suficiente para concluir que
(xn) é uma sucessão de Cauchy. Neste caso, a informação obtida é da forma de funcionais
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recursivos primitivos no sentido de Gödel (sendo por isso mais simples e desejável) e será
suficiente para obter um majorante na propriedade de metaestabilidade de (xn).

Já no contexto da teoria dos operadores monótonos, foram analisados resultados devido a
Boikanyo e Moroşanu em [5] e devido a Xu em [52] sobre a convergência forte de uma variante
do proximal point algorithm. A variante que aqui nos interessa é o designado Halpern type
proximal point algorithm,

xn+1 := αnu+ (1− αn)Jβn(xn),

onde, para β > 0, Jβ é a função resolvente de um operador monótono maximal, (αn) ⊂ [0, 1],
u é um ponto do espaço e (βn) ⊂ R+.
Em ambos os casos, foram obtidas majorações na propriedade de metaestabilidade sendo
que na versão quantitativa do teorema de Boikanyo e de Moroşano mostrámos ser posśıvel
converter uma majoração φBr para a versão metaestável do teorema de Browder numa ma-
joração φ para a metaestabilidade da iteração.

Os resultados presentes nesta tese constituem os primeiros exemplos de aplicação da inter-
pretação funcional limitada no proof mining de resultados matemáticos concretos.
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Chapter 1

Introduction

In the 1950’s, George Kreisel advocated the concept of “unwinding of proofs”, under the
idea that new useful information was hidden inside mathematical proofs. The validity of a
mathematical theorem (or the validity of its proof) was only a fraction of the information
given by mathematical reasoning. He proposed that such new mathematical content could
be obtained by the use of proof-theoretic methods which were first developed in the context
of Hilbert’s consistency program. This idea was developed by Ulrich Kohlenbach and his
collaborators over the last twenty five years and applied in a systematic way to various ar-
eas of mathematics, specially in the field of nonlinear analysis. The term “proof mining” –
suggested by Dana Scott – eventually replaced “unwinding of proofs” and nowadays refers
to the modern program focused on the analysis of mathematical proofs based on Kreisel’s
ideas. For a good overview of Kreisel’s original program of “unwinding of proofs” and how
it shaped the current proof mining enterprise, see [30].

The main technique used in proof mining are functional interpretations. In essence, a func-
tional interpretation is a mapping from a certain formal theory A into a formal theory B that
gives a recursive translation of formulas and of proofs in A to formulas and proofs in B. This
is done in such a way that theorems and corresponding proofs are associated between A and
B by the interpretation (soundness). Furthermore, these interpretations disclose information
that is hidden behind the use of quantifiers and which cannot be read directly from the orig-
inal proof. Such new information can then be effectively extracted from the translated proof.
Naturally, this technique allows for (relative) consistency results: if lower complexity formu-
las are left unchanged namely, having the formula ⊥ fixed by the interpretation, we see that
if B is consistent then so must be A. In fact, functional interpretations were first introduced
by Kurt Gödel in 1958 with his Dialectica interpretation [16] as a way to show the consistency
of PA relative to the consistency of his system T of primitive recursive functionals of finite
type. Also noteworthy was Clifford Spector extension with bar recursive functionals [43] as
a way to prove the consistency of full second-order arithmetic, i.e. the consistency of analysis.
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Introduced in 1996 by Kohlenbach, the standard such functional interpretation used in proof
mining is the so-called monotone functional interpretation [21]. The translation of formulas
and proofs is the same as in the Dialectica interpretation but, in the last step, the focus
is placed, not on exact witnessing terms, but instead on majorants for those terms. This
requires an appropriate notion of majorant that combines well with the interpretation, and
Howard’s [19] (or Bezem’s [3]) majorizability relation is used here. This weakening in the goal
of the functional interpretation may seem unproductive, yet this shift from precise witnesses
to majorants is of essential relevance in the proof mining practice. By only requiring ma-
jorizing terms, the monotone functional interpretation can deal with many non-constructive
principles, in contrast with the Dialectica in which any auxiliary lemma must be restricted
to an universal formula. Most notably, it allows one to consider proofs that make use of
Weak Kőnig’s Lemma, WKL. Thus, e.g. many mathematical proofs based on Heine-Borel
compactness can be analyzed using this inexact version of Dialectica. Another important
feature for the analysis of mathematical proofs was the introduction of typed formal sys-
tems with an additional ground type X for abstract (metric, normed, Hilbert, hyperbolic,
CAT(0), etc.) spaces. With this additional type, one is no longer restricted to working with
“computable” spaces only and it makes sense to extract computable bounds for abstract
spaces. In [15][22], general logic metatheorems were proved that guarantee that the exis-
tence of (uniform) bounds can be obtained from a large class of theorems and proofs. For
a deeper look into the proof mining program see [33], [24] and [26], more recently [29] and
[31], and Kolenbach’s book [25].

In 2005, a different interpretation, which gives a completely new translation of formulas, was
introduced by Fernando Ferreira and Paulo Oliva, the bounded functional interpretation
[13]. This interpretation relies on Bezem’s majorizability notion and this time the search
for bounds is considered at every step of translation. In fact, the bounded functional inter-
pretation uses an intensional variant of Bezem’s majorizability in the sense that it is partly
governed by a rule. In contrast with the monotone interpretation, which only considers
the majorizability notion after the interpretation of formulas, here the majorizability is in-
fused into the interpretation. This is problematic as the usual majorizability is not given by a
quantifier-free formula (hence, it is not computationally empty) and would require additional
information to ensure a soundness theorem. As it is well-known, functional interpretations
extract less information from rules than from provable implications, e.g. the Dialectica can-
not interpret the extensionality axiom but has no problem with an extensionality rule. In a
similar way, by working in an intensional setting using a majorizability partly governed by a
rule, we essentially deactivate the interpretation at the level of the majorizability predicates.
In her PhD thesis [8], Patŕıcia Engrácia considered the bounded functional interpretation
with new abstract types X (for the case of normed real spaces). This generalization laid the
groundwork for future applications of the interpretation to analyses of concrete mathematical
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proofs, applications which were until now absent. In the bounded interpretation, the focus
is placed entirely on the majorants and bounded data is considered to be computationally
empty. By considering majorants at an early stage of the interpretation, one may wonder
if there are instances where the use of this technique happens to produce final bounds in a
clear and faster way than the monotone functional interpretation.

This doctoral thesis is centered on the practical application of the bounded functional in-
terpretation to the analysis of mathematical proofs and the main goal is to show that it is
a valuable and helpful technique to the proof mining program. This will be achieved by do-
ing quantitative analyses of some mathematical results while having the bounded functional
interpretation as an underlying guiding principle. We will look at proofs based on classical
logic and, instead of considering a negative translation, we will be using a Shoenfield-like
bounded functional interpretation which operates directly in classical systems, introduced in
[11]. Another main point of this work is that these analyses can be carried out in restricted
formal theories such that the extracted information is given by primitive recursive function-
als in the sense of Gödel, avoiding the use of Spector’s bar recursive functionals.

By suggestion of Kohlenbach, the first proof analyzed by the bounded functional interpre-
tation was of the following theorem due to F. E. Browder,

Theorem 1.1 (Browder [6]). Let X be a real Hilbert space and U : X → X a nonexpansive
mapping. Assume that C is a bounded closed convex subset of X, that v0 ∈ C, and that U
maps C into itself. For each natural number n, define

Un(x) :=

(
1− 1

n+ 1

)
U(x) +

1

n+ 1
v0 (1.1)

and consider un to be the unique fixed point of this strict contraction. Then the sequence
(un) converges strongly to a fixed point of U in C (the closest one to v0).

A previous quantitative analysis of this result was already carried out by Kohlenbach using
the monotone functional interpretation [27] and the idea was to do a step-by-step comparison
between the use of the monotone and the bounded functional interpretations.
Browder’s original argument begins by seeing that the set of fixed points is non-empty. While
the proof used Zorn’s lemma (which corresponds to an application of choice) in the context
of functional interpretations one can simply add a new constant to the language and the
universal axiom saying that it denotes a fixed point. Furthermore, in the context of the
bounded functional interpretation, this is not even necessary. From the easy fact that U has
almost fixed points, i.e.

∀k ∈ N∃x ∈ C
(
‖x− U(x)‖ ≤ 1

k + 1

)
,

3



it immediately follows that the theory contains one such fixed point. In section 4.2.1, this
is explained as a simple application of a collection argument. In general, by being able to
introduce “uniformities” in the theory, this type of reasoning by collection has the potential
to avoid the need of these type of ideal elements whose justification may sometimes be
problematic.
The proof then considers a projection argument of v0 over the set of fixed points of U :

∃x ∈ C (U(x) = x ∧ ∀y ∈ C (U(y) = y → ‖x− v0‖ ≤ ‖y − v0‖)) ,

which can be equivalently written as

∃x ∈ C∀k ∈ N
[
U(x) = x ∧ ∀y ∈ C

(
U(y) = y → ‖x− v0‖ ≤ ‖y − v0‖+

1

k + 1

)]
.

As commented by Kohlenbach in [27], the following weaker statement (what Kohlenbach
called the “ε-version”) is already sufficient to carry out Browder’s theorem:

∀k ∈ N∃x ∈ C
[
U(x) = x ∧ ∀y ∈ C

(
U(y) = y → ‖x− v0‖ ≤ ‖y − v0‖+

1

k + 1

)]
.

While this weaker ∀∃ statement can be shown using induction only, the original ∃∀ projection
argument required countable choice. The complexity of the extracted information follows
directly from the strength of the logical principles required for the proof. In this case, by
considering this weaker statement, the extracted bounds are defined by recursion in Gödel’s
T and we can avoid the use of bar recursive functionals, which one would need to interpret
the original projection statement.
The final piece in Browder’s proof is a sequential weak compactness argument. As before,
the interpretation of this step needs the use of bar recursion. Nevertheless, in the quanti-
tative version, as analyzed by Kohlenbach, Browder’s theorem didn’t require bar recursive
functionals and, in fact, the weak compactness argument is absent.
There are two relevant questions in the analysis of this result. First, ‘was there any sig-
nificant difference between the use of the monotone and the bounded functional interpre-
tations?’. Second, since Browder’s proof made use of strong principles (namely sequential
weak compactness) for which the interpretation is only guaranteed by Spector’s bar recur-
sive functionals, ‘why were the extracted information given by primitive recursive functional
from Gödel’s T?’. To the first question, one can say that the main distinction was found
in the treatment of the (weaker) projection argument. While the monotone interpretation
resulted in a quantitative version equivalent to the original statement, the computational
content in the context of the bounded interpretation, although weaker, is easier to extract
and still enough to carry out the full quantitative analysis of Browder’s theorem. Essentially,
the nested bounded quantifications could be dealt swiftly by the bounded interpretation and
the analysis still results in a quantitative bound sufficient for our purposes. This is because
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the use of certain choice functions required by the monotone functional interpretation, which
forcibly raise the types in the formula, can be replaced by collection arguments. The second
question was first commented by Kohlenbach, e.g. in [28]: he attributed the simpler analysis
to the structure of the original proof and to a mild use of weak compactness. However,
a deeper look at the original argument showed that it was possible to modify Browder’s
original proof and obtain an “intermediate” proof which could be formalizable in the setting
of the bounded functional interpretation without bar recursion. Further down the line, this
idea was extended to define a “macro” which could be employed to avoid certain sequential
weak compactness arguments in proof mining [12]. This general procedure for avoiding weak
compactness not only justifies the second point in Browder’s analysis, but was employed
with the same goal in quantitative analyses of Wittmann’s theorem [51] and, with a slight
adaptation, of Bauschke’s theorem [2].
Wittmann’s theorem is an important result in nonlinear analysis that, under some conditions,
shows the strong convergence of the so-called Halpern iteration,

u0 ∈ X, un+1 := λnu0 + (1− λn+1)U(un), (1.2)

where (λn) ⊂ [0, 1] is a sequence of real numbers, u0 is some initial point in the Hilbert space
and U is a nonexpansive map. This theorem extends previous results in the sense that it
considers conditions which are satisfied by the natural choice λn = 1

n+1
and, in this sense,

can be seen as a nonlinear extension of von Neumann’s mean ergodic theorem. Bauschke’s
theorem considers instead a finite number of nonexpansive maps and is still able to prove the
strong convergence to a common fixed point for all the maps. The conditions considered by
Bauschke are the natural extension of Wittmann’s conditions and the converging sequence
can also be seen as an adaptation of Halpern iterations to a finite number of maps. In
fact, Wittmann’s strong convergence result is obtained as the particular case of Bauschke’s
theorem when we only work with one nonexpansive map. Although Bauschke’s theorem was
given a quantitative version before by Daniel Körnlein in his PhD thesis [35], Bauschke’s
original proof was for the first time analyzed here.

In a second part of this thesis, following a suggestion of Laurenţiu Leuştean, we looked at
quantitative versions of some results on the strong convergence of variants of the proximal
point algorithm. R. T. Rockafellar’s famous proximal point algorithm [42] is a useful it-
eration used to find zeros of maximal monotone operators, which in turn relates to many
problems in optimization theory and nonlinear analysis. However these iterations in general
fail to strongly converge and many variants were devised in an attempt to ensure such strong
convergence. One of those variants is the Halpern type proximal point algorithm, first con-
sidered by Shoji Kamimura and Wataru Takahashi in [20] and, independently, by Hong-Kun
Xu in [52],

xn+1 := αnu+ (1− αn)Jβn(xn), (HPPA)
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where, for β > 0, Jβ is the resolvent function of a maximal monotone operator, (αn) ⊂ ]0, 1[,
u is some “anchor” point of the space and (βn) ⊂ R+.
The motivation behind these types of iteration resides in the success of the results due to
Halpern and Wittmann in fixed point theory. In addition, the strong convergence results of
HPPA considered here are proved in a very similar manner to Wittmann’s theorem and thus,
it was not expected that their quantitative analysis should pose any additional problems.
In the end, metastability results (in the sense of Terence Tao [46]) for theorems due to
Boikanyo and Moroşano in [5] and due to Xu in [53] were obtained. Again, whereas the
original arguments rely on sequential weak compactness, we avoided the use of bar recursive
functionals and the quantitative analysis can be seen as an application of the “macro”
obtained before for results in the context of fixed point theory.

1.1 Outline of this thesis

We start in the first two chapters by presenting the theoretical background of the bounded
functional interpretation. In Chapter 2, we introduce the framework of finite type arith-
metic which will serve as the underlying system for all the formal systems considered in
this thesis. Then, we discuss the intensional majorizability notion and define the bounded
functional interpretation directly into Peano arithmetic in all finite types. In Chapter 3 we
briefly explain how the interpretation can be extended to formal systems with a new base
type that are suitable for formalizing the proofs considered here. This is done by focusing on
the context of bounded metric spaces, while describing how to proceed in the general case.
We explain how the real numbers can be represented via the signed-digit representation and
remark some of the benefits when compared to the usual Cauchy-sequence representation.
We end the chapter with some logical theorems in the same spirit as the metatheorems for
the monotone functional interpretation. This chapter serves as a theoretical background to
the extraction of computational information in the following chapters but its goal is not to
give a complete description of the appropriate formal theories neither of the corresponding
metatheorems.
Chapter 4 is centered on the proof mining program and the use of the bounded functional
interpretation to the analysis of mathematical proofs. First, we discuss some isolated top-
ics: we look at the metastability property; we show some quantitative results related to
the infinite convergence principle; we look at a way to avoid the use of lim sup – which in
general requires arithmetical comprehension – by replacing it with rational approximations;
and we make some considerations regarding the analysis of proofs that follow a discussion
by cases. Secondly, we explain the general idea behind the elimination of certain sequential
weak compactness arguments from proof mining practice. This is first motivated by showing
an “intermediate” proof for Browder’s theorem in the context of the bounded functional
interpretation. Then, we abstract these ideas and prove a general result which can be ap-
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plied to the quantitative minings of many mathematical results (as shown in the following
chapters). Finally, we end the chapter with the analysis of the projection argument guided
by the bounded functional interpretation.
Chapters 5 and 6 are reserved for the analysis of concrete cases. In Chapter 5, we look at the
direct application of the “macro” obtained in the previous chapter to produce quantitative
versions of Browder, Wittmann and Bauschke’s theorems. In Chapter 6, we look at the proof
mining of the results on the strong convergence of variants of the proximal point algorithm.
We begin with some introductory remarks related to the theory of monotone operators and
to the proximal point algorithm. Then we look at some quantitative technical results that
will be useful in the analyses that follow. The chapter ends with the proof of the metastable
versions of the strong convergence of Halpern type proximal point algorithm.

We finish the thesis with some remarks and considerations on possible future work.
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Chapter 2

Logical framework

In this chapter, we introduce the basic formal framework that serves as the base for all the
theories in this thesis. We start by describing the theory of arithmetic in all finite types and
present the standard structure and the model of strongly majorizable functionals, where a
notion of majorizability between functionals plays an essential role. After that, we extend
this theory with a notion of majorizability that is partially governed by a rule. Finally, we
introduce the (Shoenfield-like) Bounded Functional Interpretation of Peano Arithmetic as
done in [11].

2.1 Arithmetic in all finite types

Let T be the set of all finite types, which is defined inductively by:

(i) 0 ∈ T (the ground or base type);

(ii) if ρ, σ ∈ T , then ρ→ σ ∈ T .

The standard interpretation is that objects of type 0 are natural numbers and the objects
of type ρ→ σ are the (total) functions from objects of type ρ to objects of type σ. Usually,
one denotes the type 0 → 0 by 1 and in general, for any natural number n, n + 1 denotes
the type n→ 0. These are called pure types.

The language of finite type arithmetic, Lω, is a many-sorted language with variables xρ, yρ, zρ, · · ·
and quantifiers ∀xρ, ∃xρ for every finite type ρ ∈ T . We have the following constant sym-
bols: 00 (zero), S1(successor), the combinators Πρ,σ of type ρ → (σ → ρ) and Σρ,σ,τ of
type (ρ → (σ → τ)) → ((ρ → σ) → (ρ → τ)), and simultaneous recursors Rρ of type

0 → (ρ → ((ρ → (0 → ρ)) → ρ))). Furthermore, the only primitive predicate is =0 for the
equality between natural numbers (we follow the minimal treatment of equality as described
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by A. S. Troelstra in [48]).

The terms of type ρ in Lω are the constants of type ρ, the variables of type ρ or given by
the application of terms of type σ → ρ and type σ, i.e. if t is a term of type σ → ρ and
u is a term of type σ, then tu is a term of type ρ. For term application, if t, u1, · · · , uk
are terms, by tu1u2 · · ·uk we mean the term resulting from the consecutive applications
(· · · ((tu1)u2) · · · )uk, meaning that whenever we hide the parenthesis we are associating to
the left. As usual, t denotes a tuple of terms t1, · · · , tk, more precisely, tρ denotes a (possibly
empty) tuple of terms tρ11 , · · · , t

ρk
k .

The atomic formulas of Lω are of the form t =0 q, with t, q terms of type 0. Formulas are
constructed recursively:

(i) atomic formulas are formulas;

(ii) if A,B are formulas, then A ∧B, A ∨B and A→ B are also formulas;

(iii) if A is a formula, then for all ρ ∈ T , ∀xρA and ∃xρA are also formulas.

As usual, ¬A is A→ ⊥, where ⊥ ≡ 0 =0 1 and A↔ B is (A→ B) ∧ (B → A).

Pointwise equality for higher types, =ρ, can be defined recursively with

t =ρ→σ q being ∀xρ (tx =σ qx) ,

for t, q terms of type ρ→ σ and with x a variable of type ρ that does not occur in t, q.

In the theory of finite type arithmetic we have the following axioms:

(a) Equality Axioms:
n =0 n;
n =0 m ∧ A[n/w]→ A[m/w],
where A is an atomic formula with one distinguished type 0 variable w and A[t/w] is
obtained from A by replacing all free occurrences of w by the term t;

(b) Axioms for Successor:
0 6=0 S(n);
S(n) =0 S(m)→ n =0 m;

(c) Axioms for Recursors:
A[Rρ(0, y, z)/w]↔ A[y/w];
A[Rρ(Sx, y, z)/w]↔ A[z(Rρ(x, y, z), x)/w],
where A is an atomic formula with a distinguished variable w of type ρ;
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(d) Axioms for Πρ,σ:
A[Πρ,σxy/w]↔ A[x/w],
where A is an atomic formula with a distinguished variable w of type ρ;

(e) Axioms for Σρ,σ,τ :
A[Σρ,σ,τxyz/w]↔ A[(xz)(yz)/w],
where A is an atomic formula with an distinguished variable w of type ρ;

(f) Induction Scheme:
(A(0) ∧ ∀x0(A(x)→ A(S(x))))→ ∀x0A(x),
where A is an arbitrary formula of Lω.

It is easy to show that =0 is symmetric and transitive and to see that axioms for equality,
recursors, projector and combinators extend to A an arbitrary formula.

The theory HAω is called Heyting Arithmetic in all finite types and is the above described
theory where the underlying logic is intuitionistic. The Peano Arithmetic in all finite types,
PAω, is its classical counterpart and results from HAω by adding the law of excluded middle
(LEM).

The combinators Π and Σ are crucial to ensure the combinatorial completeness that allows
for definitions by λ-abstraction.

Theorem 2.1. For every term t[xρ]σ, it is possible to construct a term qρ→σ of Lω satisfying:

(i) FV (q) = FV (t) \ {x} and

(ii) HAω ` A[t[s/x]/w] ↔ A[qs/w], for every atomic formula A with a distinguished vari-
able w of type σ.

This result extends to all formulas of the language, provided there is no clash of variables.
The term q is usually denoted by λx. t and, then, the result says that the term t[s/x] can be
substituted by (λx. t)s in any formula.

Using the recursor R0, one may construct a closed term for each description of a primi-
tive recursive function satisfying the respective conditions of the description. Hence, HAω

contains all primitive recursive functions – and so we can see HA as a subsystem of HAω.
Moreover, using the recursors Rρ in all generality, we can define functions beyond the primi-

tive recursive ones, e.g. the canonical example, the Ackermann function (see [47] for details).

In HAω, it can be shown that all the quantifier-free formulas have a characteristic function –
this property plays an essential role in the proof of the soundness theorem for the Dialectica
and the monotone functional interpretations.
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Proposition 2.2. Let Aqf (x) be a quantifier-free formula of Lω whose free variables are all
among x. Then it is possible to construct a closed term t of appropriate type such that

HAω ` ∀x
(
tx =0 0↔ Aqf (x)

)
.

Since in HAω it can be shown that ∀n0 (n =0 0 ∨ n 6=0 0), we have LEM restricted to
quantifier-free formulas:

Corollary 2.3. Let Aqf be a quantifier-free formula of Lω. Then

HAω ` Aqf ∨ ¬Aqf .

In finite type arithmetic, one can define the usual less or equal relation between natural
numbers, ≤0, and the usual term max0 of type 0→ (0→ 0), that gives the maximum of any
two natural numbers. Some basic properties are easily deduced.

Lemma 2.4. We have in HAω, with x, y, z variables of type 0,

(i) x ≤0 x;

(ii) x ≤0 y ∧ y ≤0 z → x ≤0 z;

(iii) x ≤0 max0(x, y) ∧ y ≤0 max0(x, y);

(iv) x′ ≤0 x ∧ y′ ≤0 y → max0(x
′, y′) ≤0 max0(x, y).

A less or equal relation for higher types, ≤ρ, can be defined recursively in a pointwise fashion,

t ≤ρ→σ q :≡ ∀uρ(tu ≤σ qu)

Models of finite type arithmetic

Now we present the standard model for finite-type arithmetic, Sω, and the strongly majoriz-
able functionals model, Mω.

The standard model

Let S0 be the set of natural numbers N and Sρ→τ the set of all functions from Sρ to Sτ , i.e.,

S
Sρ
τ . Define Sω := 〈Sσ〉σ∈T . With the natural interpretations, it is easy to see that Sω is a

model of E -PAω, i.e., PAω together with the axiom of full extensionality

E : ∀zρ→τ∀xρ, yρ(x =ρ y → zx =τ zy).
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The model Sω is usually called the standard structure for finite type arithmetic.

The model of majorizable functionals

We now display the model of strongly majorizable functionals introduced by Bezem in [3]
which relies on a strong majorizability notion that is a variant of Howard’s majorizability
relation ([19]).
For every finite-type ρ ∈ T , we define a set Mρ and a majorizability relation ≤∗ρ, in the
following recursive way:

M0 := N is the set of natural numbers and ≤∗0 is the usual “less or equal” relation between
natural numbers.
Given ρ, σ finite types and x, y elements of M

Mρ
σ , we define

x ≤∗ρ→σ y :iff ∀u, v ∈Mρ

(
u ≤∗ρ v → x(u) ≤∗σ y(v) ∧ y(u) ≤∗σ y(v)

)
,

and say that x is (strongly) majorized by y.

Finally define Mρ→σ := {x ∈MMρ
σ | ∃y ∈MMρ

σ (x ≤∗ρ→σ y)}.

Then, Mω := 〈Mρ〉ρ∈T with the natural interpretations for constants and for application of
functionals is a model for E -PAω.
For details see [10] and [25].

We have a easy result regarding this majorizability relation,

Lemma 2.5. The following proprieties are true,

(1) x ≤∗ρ y → y ≤∗ρ y

(2) x ≤∗ρ y ∧ y ≤∗ρ z → x ≤∗ρ z

(3) x ≤ρ y ∧ y ≤∗ρ z → x ≤∗ρ z

(4) For all ρ = ρ1 → (· · · → (ρk → σ) · · · ) and x, y : Mρ1 → (· · · → (Mρk → Mσ) · · · ) we
have:

x ≤∗ρ y ↔ ∀u1, v1, · · · , uk, vk
( k∧
i=1

ui ≤∗ρi vi → xu, yu ≤∗σ yv
)

If x is majorized by y, then by (1), y is self-majorizing implying that not only x is in Mω

but the majorizing functional y is also in the model – this is relevant as this relation is
not reflexive. In (2) we have the transitivity propriety of ≤∗. From (3), we see that the
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majorizability is ≤-downward preserved. Finally, to better see the relevance of the propriety
(4), first observe that any type ρ can be written as ρ1 → (· · · → (ρk → 0) · · · ), i.e. end-
ing at the base type. Thus, (4) allows one to reduce ≤∗ at the ρ level to the base type relation.

We have S0 = M0 and, since for every f ∈ NN, f ≤∗1 fM , where fM(n) := maxk≤n f(k), we
get M1 = S1. However, the two models start diverging right at level 2 := (0 → 0) → 0,
meaning that M2 ( S2. This next example is from [10].
Consider the functional Σ ∈ S2 that gives the first natural number where a function is
nonzero, formally defined by:

Σ(f) :=

{
n if f(n) 6= 0 and ∀k < n(f(k) = 0),

0 if ∀k(f(k) = 0).

If one assumes that M2 = S2, then there must exist a type 2 functional Ψ such that Σ ≤∗2 Ψ.
In particular, for one such majorizing functional Ψ, we will have

∀f ∈ S1

(
f ≤∗1 11 → Σ(f) ≤ Ψ(11)

)
,

where 11 is the constant function 1. This gives a contradiction as Ψ(11) is giving a bound
on where the first nonzero term of a function ≤∗ 1 can appear. In fact, as Ψ(11) is a fixed
natural number, we can define the type 1 function:

f(n) :=

{
0 if n < Ψ(11) + 1,

1 if n ≥ Ψ(11) + 1.

Then f ≤∗1 11 and Σ(f) = Ψ(11) + 1 which gives the contradiction. This means that Σ
cannot be majorizable and so M2 ( S2.

2.2 An intensional majorizability notion

Kohlenbach’s monotone functional interpretation is similar to the Dialectica interpretation
but relaxed the need of precise witnesses and instead only asks for bounds on those witnesses.
This shift from precise terms to bounds allowed for the analysis of proofs using additional
lemmas, most notably Weak Kőnig’s Lemma. It is then natural that the first results from
the proof mining program were quantitative studies of proofs using Heine-Borel compactness
in the form of Weak Kőnig’s Lemma. Obviously, to be able to talk about bounding terms
it is required to have a suitable notion of majorizability. The monotone functional inter-
pretation combines the Dialectica interpretation with Howard’s majorizability notion [19], a
predecessor of Bezem’s notion. For the bounded functional interpretation we will need the
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stronger notion introduced by Bezem for his model of strongly majorizable functionals, like
in the previous section – the monotone interpretation also holds if one uses this notion.

It will be useful to formalize the Bezem’s majorizability notion inside our theory of finite
type arithmetic.
For every finite-type ρ ∈ T , the (strong) majorizability formulas “x ≤∗ρ y” are then defined
by: {

x ≤∗0 y :≡ x ≤0 y,

x ≤∗ρ→σ y :≡ ∀uρ, vρ
(
u ≤∗ρ v → xu ≤∗σ yv ∧ yu ≤∗σ yv

)
.

In that situation, we say that x is majorized by y. We say that a term t is monotone if it is
self-majorizing, i.e., t ≤∗ρ t.

Easy properties can be shown to hold in the theory of finite type arithmetic:

Lemma 2.6. For each finite-type ρ ∈ T , we have:

(i) HAω ` x ≤∗ρ y → y ≤∗ρ y,

(ii) HAω ` x ≤∗ρ y ∧ y ≤∗ρ z → x ≤∗ρ z,

(iii) HAω ` x ≤ρ y ∧ y ≤∗ρ z → x ≤∗ρ z.

The next result will be necessary for the functional interpretations that we will present.

Theorem 2.7 (Howard). For each closed term t, there is a closed term q such that

HAω ` t ≤∗ q.

Notice that, trivially the majorizability relations formalized here coincide with the previous
relations when interpreted in the model Mω, and furthermore the model Mω satisfies the
majorizability axioms MAJω:

MAJω : ∀x∃y(x ≤∗ y).

For the purpose of the bounded functional interpretation, presented in the next section, it
is crucial that we work with an intensional notion of majorizability. This new notion, the
counterpart of the extensional majorizability relation defined above, is called intensional in
the sense that it is now partially governed by a rule.

We defined a new language, LωE, as the extension of Lω with new atomic predicate symbols
between terms of type ρ, Eρ, for each finite type ρ ∈ T . We also consider bounded quanti-
fiers, ∀xEρ t and ∃xEρ t, where x does not occur in t.
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We now have new atomic formulas that are of the form t Eρ q, where t and q are terms
of type ρ, as well as formulas build up using the bounded quantifiers. A formula is called
bounded if all of its quantifiers are bounded ones.

Peano arithmetic in all finite types with intensional majorizability, PAωE is obtained from
PAω by extending the axioms for the recursors, for the Π and Σ terms to the new atomic
formulas and the induction scheme axiom to all the new formulas of LωE. Regarding the new
predicate symbols and the bounded quantifiers we add:

(a) Axioms for the bounded universal quantifiers:
∀xEρ t A(x)↔ ∀x (xEρ t→ A(x)),

(b) Axioms for the bounded existential quantifiers:
∃xEρ t A(x)↔ ∃x (xEρ t ∧ A(x)),

where x and t are of type ρ, x does not occur in t and A is an arbitrary formula of LωE.

(c) Axioms for Eρ, ρ ∈ T :
nE0 m↔ n ≤0 m,
xEρ→σ y → ∀u∀v (uEρ v → xuEσ yv ∧ yuEσ yv),

where n,m are variables of type 0, x, y are variables of type ρ→ σ and u and v are variables
of type ρ. Notice that in the second axiom of (c) we only ask for the direct implication
instead of the equivalence as in the definition of the extensional ≤∗. In its place we consider
the following rule.

(d) Majorizability rule:

Abd ∧ uEρ v → tuEσ qv ∧ quEσ qv
RLE :

Abd → tEρ→σ q

where Abd is a bounded formula, t, q are terms of type ρ → σ and u, v are of type ρ and
don’t appear free in the conclusion.

A term t is monotone if tE t. A monotone universal quantification is a quantification of the
form ∀x (xE x→ A(x)), where A is any formula, and that we abbreviate by ∀̃xA(x). Anal-
ogous for monotone existential quantifiers. Note that, in general, monotone quantifications
are not bounded.

Proposition 2.8. We have,

1. PAωE ` xEρ y → y Eρ y;

2. PAωE ` xEρ y ∧ y Eρ z → xEρ z.
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Flattening: returning to ≤∗

To have a soundness theorem for the bounded functional interpretation, for reasons similar
to those that prevent the Dialectica from interpreting full extensionality, we must consider
the majorizability notion partially governed by a rule. Essentially, this rule will deactivate
the computational content of the majorizability relation with respect to the bounded func-
tional interpretation.
The need of this intensionality implies that in the theory PAωE the deduction theorem fails,
which is sometimes viewed as an unattractive feature. However, this property actually high-
lights the subtle distinction between postulates – on the left-hand side of the provability sign
– and implicative premises – on the right-hand side –, showing that this difference can have
an impact on the actual application of functional interpretations in proof mining.

Nevertheless, it is possible to return to an extensional realm by replacing all the intensional
symbols of majorizability with their extensional counterparts. Following [11], we call this
procedure “flattening”.
Consider the language Lω≤∗ to be the extension of Lω obtained by adding the symbols ≤∗ρ
for every finite type ρ. Consider the theory PAω≤∗ which is an extension by definitions of the
theory PAω and where ≤∗ are the extensional majorizability relations.

Definition 2.9. Let A be a formula of LωE. The flattening of A, A∗, is the formula in Lω≤∗
obtained from A by replacing all instances of intensional majorizability relations Eρ with
their extensional versions ≤∗ρ.
Furthermore, if Γ is a set of sentences in LωE, then the set Γ ∗, the flattened version of Γ , is
the set of sentences in Lω≤∗ obtained from flattening the sentences of Γ .

The theory PAω≤∗ is the flattened version of PAωE and, since any formula proved using the rule
RLE can be proved using the implication, we have the following result.

Lemma 2.10 (Flattening). Let A be a formula of the language LωE and Γ a set of sentences.
If PAωE + Γ ` A, then PAω≤∗ + Γ ∗ ` A∗.

2.3 The bounded functional interpretation

We will now present the bounded functional interpretation in a classical context.
This can be done by defining the interpretation in an intuitionistic setting and using a neg-
ative translation to jump to the classical logic. We will instead procede in a Shoenfield-like
manner and introduce the bounded functional interpretation directly in PAωE. We followed
the original paper [11]. In fact, in [14] Jaime Gaspar showed that, similar to the Shoen-
field interpretation – which is Dialectica after Krivine [1], [44] –, Ferreira’s Shoenfield-like
bounded functional interpretation can be seen as Ferreira and Oliva’s bounded functional
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interpretation of HAωE [13] after Krivine’s negative translation [38], [45].
Since we are in a classical setting, we can restrict our language to ¬, ∨, ∀ and universal
bounded quantification ∀xE t. The remaining logical symbols are defined in the usual way:
A ∧B :≡ ¬(¬A ∨ ¬B), A→ B :≡ ¬A ∨B, ∃xA :≡ ¬∀x¬A and ∃xE tA :≡ ¬∀xE t¬A.

Definition 2.11. To each formula A of LωE we assign formulas (A)U and AU so that (A)U is

of the form ∀̃b∃̃cAU(b, c) with AU(b, c) a bounded formula, according to the following clauses:

1. (A)U and AU are simply A, for prime formulas A.

Suppose we already have interpretations for A and B given, respectively, by ∀̃b∃̃cAU(b, c)

and ∀̃d∃̃eBU(d, e), then we define:

2. (A ∨B)U :≡ ∀̃b, d∃̃c, e
(
AU(b, c) ∨BU(d, e)

)
3. (¬A)U :≡ ∀̃f ∃̃b∃̃b′ E b¬AU(b′, fb′)

4. (∀xE tA(x))U :≡ ∀̃b∃̃c∀xE tAU(x, b, c)

5. (∀xA(x))U :≡ ∀̃x̃∀̃b∃̃c∀xE x̃AU(x, b, c).

Note that if Abd is a bounded formula, then (Abd)U and (Abd)U are simply Abd, i.e. bounded
formulas are left invariant under the interpretation. In the definition of the formula (¬A)U

appears the apparently innocuous bounded quantification “∃̃b′ E b”. However, this quan-
tification changes the definition of the matrix (¬A)U , which in turn ensures the following
crucial monotonicity propriety: the matrix AU(b, c) is monotonous in the existentially quan-
tified variables. Thus, any bound on a witness for AU is itself a witness.

Lemma 2.12 (Monotonicity of U). For each formula A of the language LωE we have

PAωE ` ∀̃b
(
∃̃c̃ ∃̃cE c̃ AU(b, c)→ AU(b, c̃)

)
.

Proof. The proof is by induction on the complexity of the formula A. The base case is
trivially true, since in AU the tuples b and c are empty. Every case follows easily from the
induction hypothesis with the exception of the negation’s case. Consider that the Lemma
holds for a formula A and we want to see that it still holds for ¬A. We have (¬A)U ≡
∀̃f ∃̃b(¬A)U(f, b), with (¬A)U(f, b) ≡ ∃̃b′ E b¬AU(b′, fb′). Fix an arbitrary monotone f and

assume that there is a bound b̃ such that

∃̃bE b̃ (¬A)U(f, b) which is ∃̃bE b̃∃̃b′ E b¬AU(b′, fb′).

Then by the transitivity property of E – property 2 of 2.8 – we conclude

∃̃b′ E b̃¬AU(b′, fb′) which is (¬A)U(f, b̃).
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Characteristic Principles

We now show the three principles that have a crucial role in the interpretation.

1. Bounded Collection Principle, BCωbd:

BCωbd : ∀xE a∃y Abd(x, y)→ ∃̃b∀xE a∃y E bAbd(x, y),

where Abd is a bounded formula of LωE.

2. Monotone Bounded Choice, mACωbd:

mACωbd : ∀̃x∃̃y Abd(x, y)→ ∃̃f ∀̃x∃̃y E fxAbd(x, y),

where Abd is a bounded formula of LωE.

3. Majorizability Axioms, MAJω:

MAJω : ∀x∃y (xE y).

The majorizability axioms state that every element is intensionally majorizable – since by
the context there is never the risk of confusion, we use the same notation for both the inten-
sional and extensional versions of this principle. The axiom of monotone choice expresses the
existence of a monotone function that, instead of acting as a choice function, gives a bound
on a witnessing element. Notice that all the quantifications are monotone ones. Finally and
maybe more interesting, we look at the collection principle. It states that if for each x there
are elements satisfying a bounded property and x is bounded, then we can already “collect”
all those witnesses bellow a certain bound b. Furthermore, its contra-positive allows for the
conclusion of an element x (bellow a) such that ∀y¬Abd(x, y), from the weaker statement
that such x’s (bellow a) only exist “locally”. We may regard such x as an ideal element that
works uniformly for each b. The original paper where this interpretation was introduced [11]
placed emphasis on this uniformity aspect and that is the reason the letter U is used for the
interpretation.

The theory PAωE together with these three principles is not set-theoretically sound. For
example, it refutes the weakest form of extensionality. More specifically, it can be shown,
with the use of the principle BCωbd, that it proves the negation of the sentence

∀Φ2∀α1, β1
(
∀k0(αk = βk)→ Φα = Φβ

)
.

These principles characterize the interpretation in the following sense.
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Theorem 2.13 (Characterization). Let A be an arbitrary formula of LωE. Then,

PAωE + mACωbd + BCωbd + MAJω ` A↔ (A)U .

The result is shown by an easy induction on the structure of the formula A.

Soundness and Extraction

Like in the case of the monotone interpretation, the bounded functional interpretation can
consider proofs that make use of auxiliary lemmas. Let ∆ be a set of sentences of the form

∀̃a∃bE ra∀cBbd(a, b, c),

where r is a given tuple of closed terms and Bbd a bounded formula.

For each such set, define ∆w, the weakening of ∆ consisting of sentences of the form

∀̃a, a′∃bE ra∀cE a′Bbd(a, b, c),

each corresponding to a sentence of ∆.

The formulas of ∆ are those that contain all the information required by the interpretation,
just as long as we have the corresponding ∆w formula in the verifying theory.

The soundness theorem bellow guarantee the consistence of PAωE together with the charac-
terizing principles relative to Peano arithmetic. To prove the soundness theorem is crucial
the fact that the Howard’s theorem is still true for the intensional majorizability relation.

Lemma 2.14. For each closed term t, there is a closed term q such that PAωE ` tE q.

The relevant observation is that Howard’s construction only requires the use of the rule RLE
and there is no need for the absent implication (cf. [13]).

Theorem 2.15 (Soundness). Let A(a) be an arbitrary formula of LωE, with free variables a.
If

PAωE + mACωbd + BCωbd + MAJω + ∆ ` A(a),

then there exists a tuple of closed monotone terms t of LωE, which can be extracted from a
proof of A(a), such that

PAωE + ∆w,` ∀̃w∀aE w∀̃x(A(a))U(x, twx).
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We could have written

PAωE + ∆w ` ∀̃w∀aE w∀̃x∃̃y E twx(A(a))U(x, y),

however, by the monotonicity propriety, the two are equivalent.

In this short overview of the bounded functional interpretation we opt by not writing the
proof of the soundness theorem. The absent proof can be found in [11]. The proof is done
by induction on the length of the formal derivation of A(a). For the verifying theory we
considered PAωE, however, HAωE + LEMbd also works, since we will only be required to have
Law of Excluded Middle for bounded formulas – LEMbd.

A particular instance of the soundness theorem is the following extraction theorem:

Theorem 2.16 (Extraction). Suppose

PAωE + mACωbd + BCωbd + MAJω + ∆ ` ∀x∃yAbd(x, y),

where Abd is a bounded formula with free variables x, y, then it is possible to extract a closed
monotone term t from a proof of the hypothesis such that

PAωE + ∆w ` ∀̃w∀xE w∃y E twAbd(x, y).

Proof. This result is a direct application of the soundness theorem by computing the inter-
pretation of ∀x∃yAbd(x, y) ≡ ∀x¬∀y¬Abd(x, y):

(¬Abd(x, y))U ≡ ¬Abd(x, y)

(∀y¬Abd(x, y))U ≡ ∀̃a∀y E a¬Abd(x, y)

(¬∀y¬Abd(x, y))U ≡ ∃̃a∃̃a′ E a¬∀y E a′¬Abd(x, y)

(∀x¬∀y¬Abd(x, y))U ≡ ∀̃w∃̃a∀xE w∃̃a′ E a¬∀y E a′¬Abd(x, y),

which is ∀̃w∃̃a∀xEw∃̃a′Ea∃yEa′Abd(x, y). By the soundness theorem, from a proof of the
hypothesis a closed monotone term t can be extracted satisfying

PAωE + ∆w ` ∀̃w∀xE w∃̃a′ E tw∃y E a′Abd(x, y),

which, using the transitivity of E, yields the result.

At this point, we can notice that the characterization theorem ensures that we are not
missing any principles in the soundness theorem. Suppose to the contrary that we had the
soundness theorem with a new principle P. Then, in particular, we would have, PAωE +
mACωbd + BCωbd + MAJω + P ` P and then, by that new soundness theorem, we would have
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PAωE ` PU and, in particular,PAωE + mACωbd + BCωbd + MAJω ` PU . By the characterization
theorem, it now follows that the principle P is redundant in the theory.

One of the interesting points of the monotone functional interpretation compared to the
Dialectica is that it can consider a wider class of auxiliary lemmas in its soundness theorem.
Most notably, Kohlenbach showed that the Weak Kőnig’s Lemma (WKL) could be consid-
ered as one such lemma. As in the monotone interpretation’s case, the bounded functional
interpretation can interpret Weak Kőnig’s Lemma, however we don’t even need to consider
WKL as a ∆-sentence since the theory PAωE together with the characteristic principles can
actually prove it and thus, its presence in the theory is superfluous. In fact, bounded collec-
tion suffices in proving this principle.

The Weak Kőnig’s Lemma can be stated as,

WKL : ∀T E1 1
(
Tree∞(T)→ ∃αE1 1∀k0 T(αk) = 0

)
,

where Tree∞(T) says that T is an infinite binary tree and ᾱk denotes the code of the binary
sequence 〈α(0), · · · , α(k − 1)〉.
Tree∞(T) is the conjunction of

T is closed for initial segments: ∀s0, r0(T(s) = 0 ∧ r 4 s→ T(r) = 0)

T is a binary tree: ∀s0(T(s) = 0→ Seq2(s))

T is infinite: ∀n0∃s0(T(s) = 0 ∧ |s| = n),

where r 4 s says that the sequence coded by r is an initial segment of the sequence coded
by s, Seq2(s) is a predicate stating that s is the code of a binary sequence and |s| is the
length of the sequence coded by s.

Lemma 2.17. PAωE + BCωbd ` WKL

Proof. Assume Tree∞(T). For each n, by the infinity property of T, there exists s a code
of a binary sequence satisfying T(s) = 0 and |s| = n + 1. Define the functional α of type 1
that is obtained by extending the binary sequence coded by s, 〈s0, · · · , sn〉, with zeros,

α(m) :=

{
sm if m ≤ n+ 1

0 if m > n+ 1
.

Since 〈s0, · · · , sn〉 is a binary sequence, we have αE 1. Now, using the fact that T is closed
for initial segments and T(s) = 0, we conclude

∀n0∃αE1 1∀k ≤ nT(αk) = 0.
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Finally, using the contra-positive of BCωbd we conclude

∃αE1 1∀k0 T(αk) = 0.

It is even possible to argue the extensional version,

WKL∗ : ∀T ≤1 1
(
Tree∞(T)→ ∃α ≤1 1∀k0 T(αk) = 0

)
,

by the simple remark that if T ≤1 1, then min(T, 11) =1 T and we have min(T, 11)E1 1. We
can then apply the intensional version of WKL to min(T, 11) and conclude the extensional
one.

With the Flattening Lemma (2.10) employed after the Extraction Theorem we get:

Corollary 2.18. Suppose

PAωE + mACωbd + BCωbd + MAJω + ∆ ` ∀x∃yAqf(x, y),

where Aqf is a quantifier-free formula of Lω with free variables x, y, then it is possible to
extract a closed monotone term t from a proof of the hypothesis such that

PAω + (∆w)∗ ` ∀̃w∀x ≤∗ w∃y ≤∗ twAqf(x, y).

Thus, the conjunction of the flattening argument with the Extraction Theorem for the
bounded functional interpretation yields an extensional version of the theorem which no
longer uses the intensional majorizability symbols – notice that the monotone quantification
∀̃w is also extensional.
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Chapter 3

The extended bounded functional
interpretation

This chapter is devoted to the justification of applying the bounded functional interpretation
to the analysis of concrete mathematical proofs. The application of this proof-theoretical
technique require us to have a formal proof of the theorem that we which to analyze. A
formal proof, in turn, entails the need of a suitable formal setting in which the proof can be
formalized and where the functional interpretation can be applied.
We will start by talking about the signed-digit representation of the real numbers and its
benefits when compared to the usual Cauchy-sequence representation. Next, as an example
of theories to which the bounded functional interpretation can be extended, we will see a
system tailored to treat results in the context of bounded metric spaces. Finally, we present
a general result which ensures the extraction procedure of quantitative information from
proofs in that system. This example serves as a good illustration of the formal systems used
in the applications in chapters 4 and 5.

3.1 The real numbers

In order to describe ordinary mathematical proofs we must first explain how the real num-
bers are represented in our formal setting. There are several ways of representing the real
numbers like Cauchy sequences of rational numbers, Dedekind cuts and binary representa-
tions. Here we present the signed-digit representation and explain its advantages compared
to the more usual, and maybe more intuitive, Cauchy-sequence representation – used for
example by Kohlenbach [25]. All these representations are equivalent in the sense that the
resulting structures are isomorphic.

A first step in the representation for the real numbers is to define the rational numbers.
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As so, we start by doing this in the usual and natural way via a coding j(n,m) of pairs
of natural numbers. The code j(n,m) represents the rational number n′

m+1
if n = 2n′, and

− n′

m+1
if n = 2n′ − 1. Thus every rational number can be represented by one such code of

a certain (not unique) pair of natural numbers. The equality =Q, the inequalities <Q, ≤Q
and the operations +Q, ·Q between representants of rational numbers are defined in the usual
way.
Whenever we talk about rational numbers we must always use the coding j. However, just
to ease the reading, we usually write the rational number instead.

In the signed-digit representation (see [50] for details), real numbers are represented by tuples
(n, α), where n is a natural number and α is a sequence of numbers in {0, 1, 2}. The pair
(n, α) represents the real number

int(n) +
∞∑
i=1

(αi − 1)
1

2i
,

where int(n) is the rational number coded by j(n, 0). In this particular instance of the
function j, we have that

int(n) represents

{
m if n =0 2m

−m if n =0 2m− 1
.

where m and −m are seen as rational numbers.
On the other hand, the sequence (αi− 1) is a sequence of numbers in {−1, 0, 1} and each of
these sequences α represents the real number in [−1, 1] given by

∑∞
i=1(αi − 1) 1

2i
.

Thus to represent a real number we consider type one objects f , where f(0) is any natural
number and for n ≥ 1, f(n) is a number in {0, 1, 2}. We can then extend this to any function

f of type 1 via the transformation f 7→ f̃ :

f̃(0) := f(0) and for n ≥ 1, f̃(n) :=


0 if f(n) = 0

1 if f(n) odd

2 if f(n) even

.

f̃ represents an unique real number as described above.
The statement f 1 ∈ R is an universal one: ∀n ∈ N (f(n + 1) ∈ {0, 1, 2}). Clearly, for each

function f of type 1, f̃ ∈ R.
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The predicates for equality and inequality for the signed-digit representation can be written
as:

f =R g :≡ ∀i ∈ N

(∣∣∣int(f(0))− int(g(0) +
i+2∑
k=1

(f̃(k)− g̃(k)) · 2−k
∣∣∣ <Q

1

2i

)

f ≤R g :≡ ∀i ∈ N

(
int(f(0)) +

i+2∑
k=1

f̃(k) · 2−k <Q int(g(0)) +
i+2∑
k=1

g̃(k) · 2−k +
1

2i

)

f <R g :≡ ∃i ∈ N

(
int(f(0)) +

i+2∑
k=1

f̃(k) · 2−k +
1

2i
≤Q int(g(0)) +

i+2∑
k=1

g̃(k) · 2−k
)
.

Note that these relations have the correct complexity: =R and ≤R are Π0
1 statements while

the sentence <R is Σ0
1.

If n is a natural number, then we see n and −n as real numbers represented by

(n)R := 〈2n, 1, 1, · · · 〉,
(−n)R := 〈2n− 1, 1, 1 · · · 〉.

The signed-digit representation is, perhaps, less intuitive than other representations, like
the usual Cauchy-sequence representation. Nevertheless, this representation is preferred
here since it mixes well with the notion of majorizability. In order to extend the bounded
functional interpretation to new base types, done in the next section, it is important to choose
a representation that satisfies the following property: there exists a function g : N→ N such
that, for any representation f of a real number in [−n, n], we have f(i) ≤ g(n), for all i ∈ N.
This property is not satisfied if one represents the real numbers by Cauchy sequences of
rationals due to the fact that a representation of a rational may be very large. (It is possible
to circumvent this problem by bounding the representation of rationals – see definition 4.24
in [25].)

Proposition 3.1. Consider the function g : N→ N defined by g(n) = 2n+ 3 for any n ∈ N.
Then, HAω proves that, for any n ∈ N, if f is a representation of a real number in [−n, n]
then ∀i ∈ N (f(i) ≤ g(n)).

Proof. Since f is a representation of a real number, ∀i ∈ N (f(i+ 1) ≤ 2). Hence it suffices
to see that f(0) ≤ 2n+ 3. From f ≤R n and −n ≤R f , it follows

int(f(0)) +
2∑

k=1

(f(k)− 1) · 2−k <Q n+ 1

int(f(0)) +
2∑

k=1

(f(k)− 1) · 2−k >Q −n− 1,
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which implies,

int(f(0)) ≤Q int(f(0)) +
2∑

k=1

(f(k)− 1) · 2−k + 1 <Q n+ 2

int(f(0)) ≥Q int(f(0)) +
2∑

k=1

(f(k)− 1) · 2−k − 1 >Q −n− 2.

If int(f(0)) ≥Q 0, then (seeing int(f(0)) as a natural number since it is a positive integer)
f(0) = 2int(f(0)) <0 2n + 4 and if int(f(0)) <Q 0, then int(f(0)) = −k, with k ∈ N and
f(0) = 2k − 1 <0 2n+ 3, concluding the proof.

Due to this majorizability property, we choose to adopt the signed-digit representation for
the real numbers. Still, it is easier to define arithmetical operations and to compute them
using the Cauchy-sequence representation. The next result, which we do not prove (see [8,
theorem 27]) states that there is an effective way to switch back-and-forth between these
two representations. Thus, to do computations with real numbers represented by the signed-
digit representation one can translate them to the Cauchy-sequence representation, make the
computations and then translate them back to the signed-digit representation. Furthermore,
the usual properties for real numbers showed for the Cauchy-sequence representation (e.g.
[25, section 4.1]) still hold true for the signed-digit representation.

Proposition 3.2. HAω proves that there is an effective translation between the signed-digit
representation and the Cauchy-sequence representation. Furthermore, the arithmetic rela-
tions =, < and ≤ are provably preserved by the translation.

3.2 Formal theories

To apply functional interpretations to concrete case analyses is necessary to have a formal
setting in which, in principle, an ordinary mathematical proof could be formalized.
Several metatheorems exist in the context of the monotone functional interpretation that
guarantee a priori the extractability of certain computational bounds if the analyzed proof
is formalized in a certain axiomatic system ([22], [15]). The formal systems usually consid-
ered Aω[· · · ], of classical analysis augmented with certain mathematical structures are very
strong and consist of PAω together with dependent choice for all types, which in turn implies
countable choice and gives full arbitrary comprehension over the natural numbers. Thus, by
identifying the subsets of N with their characteristic functions, full second order arithmetic
is contained in those systems. For the interpretation of the axiom schema of dependent
choice, one must go beyond the primitive recursive functionals of Gödel’s T and make use
of Spector’s bar recursors [43].
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However, since higher forms of comprehension and strong principles of choice are not used
in an essential way in most proofs analyzed (so far, the analysis of Baillon’s theorem [28]
seems to be the exception), bar recursive functionals rarely appear in proof mining.
For the applications shown here, there will be no need to consider bar-recursion and, in fact,
the main point of the next chapter is to give a theoretical reason behind the elimination of
such expectation in proofs that make use of a certain weak sequential compactness argu-
ment. Thus in the theories described below we exclude the axiom of dependent choice. For
an explanation on how the bounded functional interpretation can be extended to full second
order arithmetic see the doctoral thesis of Patŕıcia Engrácia [8].

We start by extending our finite types to include a new base type X that stands for an
abstract space.

Definition 3.3. Let T X be the set of all finite types with additional base type X, which is
defined inductively by:

(i) 0, X ∈ T X (the ground or base types);

(ii) if ρ, σ ∈ T , then ρ→ σ ∈ T .

Here we will only focus on the cases where X is a bounded metric space, but one could be
more specific with X standing for normed, Hilbert, hyperbolic, CAT(0) spaces, etc..
The idea of considering new abstract types, first done in [22] for bounded metric spaces, was
of great importance to the proof mining program. This allows to state theorems no longer
restricted to “computable” or “representable” spaces only and gave sense to the extraction of
computable bounds for many arbitrary spaces. Furthermore, better quantitative statements
can be formulated if one is unburdened by the need of working with the representatives of
the mathematical objects and works with the actual objects.

The finite types in T , i.e. the ones in which X does not appear, are called arithmetic types.
For ρ ∈ T X, the finite type denoted by ρ̂ ∈ T is the arithmetic type obtained by replacing
all the occurrences of X in ρ by 0. Obviously, arithmetic types are left unchanged by this
transformation.

For ρ ∈ T X, the majorizability relations x Eρ y, are now between elements x of type ρ and
elements y of type ρ̂, in particular majorants are always of an arithmetic type. The concrete
description of these notions is given below and extends the previous one in the sense that
they coincide for finite types in T .

We will extend our formal setting by introducing axioms characterizing the abstract space
(possibly after considering suitable quantitative moduli functionals). In order to ensure

29



that a extraction theorem still holds true for the resulting extended theory there are some
requirements:

(a) the axioms used to axiomatize X (possibly with additional quantitative moduli) have
a functional interpretation;

(b) all the introduced functionals have effective majorants.

Condition (a) follows from the fact that all the axioms are given by universal statements
(with bounded matrices)

The theory PAωE[X, dX , aX , bX ]:

To axiomatize the structure of bounded metric spaces (X, d), we denote by Lω,XE the natural
extension of the language LωE to include the new types in T X together with three new con-
stants: dX of type X → (X → 1), aX of type X and bX of type 0. The main idea is that dX
stands for the metric function on X, aX is a reference point of the abstract space X and bX
is a bound on the diameter of the space.

We can extend the notion of majorizability to the new types T X with the following axioms
and rules:

(M1) ∀n0 ∀m0 (nE0 m↔ n ≤0 m),

(M2) ∀xX ∀n0 (xEX n→ dX(x, aX) ≤R (n)R),

(M3) For each ρ, σ ∈ T X, ∀xρ→σ ∀yρ̂→σ
xEρ→σ y → ∀uρ∀vρ̂ (uEρ v → xuEσ yv) ∧ ∀vρ̂, v′ρ̂ (v Eρ̂ v

′ → yv Eσ̂ yv
′)

and finally the majorizability rules,

Abd → dX(p, aX) ≤R (n)R
RL1 :

Abd → pEX n
and

Abd ∧ uEρ v → tuEσ qv Abd ∧ v Eρ̂ v
′ → qv Eσ̂ qv

′
RL2 :

Abd → tEρ→σ q

where Abd is a bounded formula, p is a term of type X, n is a term of type 0, t is a term of
type ρ→ σ, q is a term of type ρ̂→ σ, u is of type ρ and v, v′ are of type ρ̂. The variables
u, v, v′ don’t appear free in the conclusion.
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Note that, in (M3) and RL2, the type ρ̂→ σ is the same as the type ρ̂→ σ̂. The majorizabil-
ity notion at the base type X is usually defined in terms of the structure one is considering
(using the metric function when it is a metric space, the norm when it is a normed space,
etc.). However, since the definition is usually given by an universal formula on must divide
it into an axiom for the direct implication and a rule for the reverse one, similar to the arrow
types ρ→ σ, in view of the reverse implication not having a bounded functional interpreta-
tion.

By also considering the following axioms, we obtained the theory PAωE[X, dX , aX , bX ] as an
extention of PAω:

(R) ∀xX ∀yX (dX(x, y) ∈ R),

(1) ∀xX (dX(x, x) =R 0R),

(2) ∀xX ∀yX (dX(x, y) =R dX(y, x)),

(3) ∀xX ∀yX ∀zX (dX(x, y) ≤R dX(x, z) +R dX(z, y)),

(4) ∀xX (dX(x, aX) ≤R (bX)R).

Regarding the treatment of equality, we still only consider primitive equality at type 0 and
the equality =X between elements of type X is defined by

x =X y :≡ dX(x, y) =R 0R.

With equality for higher types defined in a pointwise manner, we promptly deal with exten-
sionality by considering a bounded extensionality rule, BD-ER:

Abd → s =ρ t
BD-ER :

Abd → r[s/xρ] =σ r[t/x
ρ]

where Abd is a bounded formula and sρ, tρ, rσ are terms of arbitrary types ρ, σ ∈ T X.
While the axiom of full extensionality is problematic, as we saw before, the interpretation
of this weak extensionality rule will follow trivially from the fact that both the premise and
the conclusion are (equivalent to) universal formulas with bounded matrices. Furthermore,
BD-ER suffices to proving the rule

Abd → s =ρ t

Abd → (B[s/xρ]→ B[t/xρ])

with B an arbitrary formula and sρ, tρ terms free for xρ in B.
This treatment of extensionality is similar to the one of the monotone functional interpre-
tation where a quantifier-free extensionality rule is considered – see chapters 3 and 17 of [25].
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The axioms for bounded universal and bounded existential quantifiers are extended from
the ones in PAωE to all the types in T X. The terminology of bounded formulas is still used
for formulas in which no unbounded quantification appear. Notice that, by (4) and the rule
RLX we have that PAωE[X, dX , aX , bX ] ` ∀xX (xEX dX). Thus for any formula A,

∀xX A↔ ∀xEX bX A,

and similarly for the existential quantifier.
For that reason, we can think of quantifications over elements of the bounded space X as
bounded ones. In fact, we could have replaced (M2) and RL1 simply by the equivalence
x EX n ↔ 0 =0 0 and all the theoretical results shown here for the metric bounded space
would still be true – additionally, the reference point aX would be pointless. We chose this
more elaborate notion of majorizability at the base type X, to ensure a uniformity between
bounded and unbounded spaces. In [8, section 4.1.2], Patŕıcia Engrácia defined a similar
extended notion of majorizability for normed spaces where the reference point is the zero
element of the space.

Other theories, like of the unbounded metric space – PAωE[X, dX , aX ] – and of the normed
space – PAωE[X, ‖ · ‖X ] – , can be given a similar treatment to this. For example, the formal
theory used when dealing with unbounded metric spaces is exactly the same minus axiom
(4). Although, for the applications in the following sections, we in fact rely on the existence
of those formal systems as well, we will not write them here. It is common practice in proof
mining to proceed only in a semi-formal way when formalizing the proof being analyzed.
Thus, in the end, all this formal machinery is hidden and the end quantitative results can
be read by non-logicians. Small observations will still be made regarding formal aspects of
the analyzed proofs.

3.3 Metatheorems

The notion of majorizability extended to T X still has the basic properties:

Lemma 3.4. The theory PAωE[X, dX , aX , bX ] proves, for every ρ ∈ T X:

(i) xEρ y → y Eρ̂ y,

(ii) xEρ y ∧ y Eρ̂ z → xEρ z.

Proof. The proof in both cases is by induction on the structure of the type ρ. In (i), the
base cases 0 and X follow from the reflexivity of ≤0. The induction step follows from (M3)
and RL2. In (ii), the base case ρ = 0 reduces to the transitivity of ≤0. For the case X, the
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result follows from y ≤0 z → (y)R ≤R (z)R, (M2), the transitive propriety of ≤R and finally
the application of RL1. For the induction step, by (M3),

xEρ→σ y ∧ uEρ v → xuEσ yv

and

y Eρ̂→σ z ∧ v Eρ̂ v
′ ∧ v′ Eρ̂ v

′′ → yv Eσ̂ zv
′ ∧ zv′ Eσ̂ zv

′′.

By (i), uEρ v → v Eρ̂ v and so

y Eρ̂→σ z ∧ uEρ v ∧ v Eρ̂ v
′ → yv Eσ̂ zv ∧ zv Eσ̂ zv

′.

Thus, using the induction hypothesis we conclude,

xEρ→σ y ∧ y Eρ̂→σ z ∧ uEρ v ∧ v Eρ̂ v
′ → xuEσ zv ∧ zv Eσ̂ zv

′,

and the result follows with the rule RL2.

As we saw the inequalities between real numbers ≤R and <R are given by universal and
existential formulas, respectively. It will be useful to have an intensional inequality between
real numbers that mixes well with the majorizability notion. In the signed-digit represen-
tation x ≤R y is given by a formula of the form ∀n0Aqf(n, x, y), where Aqf(n, x, y) is the
quantifier-free formula int(x(0)) +

∑n+2
k=1(xk) · 2−k <Q int(y(0)) +

∑n+2
k=1(yk) · 2−k + 2−n.

Definition 3.5. We define the inequality ER between real numbers by

xER y ≡ p(x, y) E1 0,

where

p(x, y)(n) :=

{
0 if Aqf(n, x, y)

1 otherwise
.

Notice that the flattening of the quantifier-free formula “xER y” is the universal “x ≤R y”,
which justifies saying that ER is the intensional version of ≤R. Next, we give some simple
properties relating the relations <R, ≤R, ER and EX .

Lemma 3.6. For all n0, zX and real numbers x, y, the theory PAωE[X, dX , aX , bX ] proves:

(i) ER is transitive

(ii) x <R y → xER y and xER y → x ≤R y

(iii) z EX n↔ dX(z, aX) ER (n)R
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In light of this lemma, in the analysis of mathematical proofs we can circumvent the high
complexity of the inequalities between real numbers by replacing them with this intensional
version in the appropriate way. In fact, we have for all x, y ∈ R:

x <R y ↔ ∃k0
(
xER y −

1

k + 1

)
x ≤R y ↔ ∀k0

(
xER y +

1

k + 1

)
x =R y ↔ ∀k0

(
|x− y|ER

1

k + 1

)
This way, since the inner formulas are quantifier-free, all the relevant information is placed
in the quantifiers. One can then carry out the relevant translations and extractions using
this intensional inequality. Finally, in the quantitative result, it is possible to return to the
usual inequalities either by using the Lemma 3.6(ii) or by flattening.

The constants aX and bX are trivially majorized. Furthermore, the extended constants Π,
Σ and R are still majorizable and so, to have the condition (b), it just remains to see that
the functional dX is majorized.

From the axioms (2)− (4), we conclude ∀xX , yX (dX(x, y) ≤R 2(bX)R). From axiom (R) and
Proposition 3.1, we conclude

∀i0 (dX(x, y)i ≤0 4bX + 3) .

Then, by applying the rule RL2 three times, we conclude dX E λn,m, i · (4bX + 3).

In fact, even in the case of unbounded metric spaces, i.e. without axiom (4), it is easy to see
by the same arguments that the function λn,m, i ·(2(n+m)+3) majorizes the functional dX .

Now with the majorizability notion for all finite types in T X, we extend the bounded func-
tional interpretation by considering the inductive definition 2.11 for all formulas A in Lω,XE .
With this extended interpretation it is possible to see that a monotonicity property still
holds for the formulas AU as in Lemma 2.12. Furthermore, the characteristic principles are
also extended to encompass the new types. Notice that monotone elements are always of
arithmetic type.
Let PAωE[X, dX , aX , bX ]+ denote the theory plus the characteristic principles.

Theorem 3.7. Let A(a) be an arbitrary formula of Lω,XE , with free variables a. If

PAωE[X, dX , aX , bX ]+ ` A(a),
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then there exists a tuple of closed monotone terms t of Lω,XE , which can be extracted from a
proof of A(a), such that

PAωE[X, dX , aX , bX ] ` ∀̃w∀aE w∀̃x(A(a))U(x, twx).

The proof is done by induction on the length of the derivation of the hypothesis. In fact,
it is essentially the same proof as in the original soundness theorem for bounded functional
interpretation, with the exception that one does need to verify the interpretation of the new
axioms and rules. Since the axioms governing the extended majorizability are (equivalent to)
universal formulas they have a trivial bounded functional interpretation. The interpretation
of the rules RL1, RL2 are derivable by applying those same rules. Also, one easily sees that
the axioms (1) − (4) and (R) are universal sentences, and thus are trivially interpreted in
PAωE[X, dX , aX , bX ].

As the intended structures for this theory are the bounded metric spaces, we have that the
(flattening of the) conclusion will hold true in any nonempty bounded metric space (X, d),
where dX is interpreted by the metric function d, bX by some natural number bounding the
diameter of the space and aX by some point of the space. Notice that being majorized is
independent on the choice of the reference point aX , although the actual majorants may
depend on this choice.

As a corollary, we have the following extraction theorems that operate at the level of types
usually encountered during concrete case analyses:

Corollary 3.8. Let A be a existential formula of Lω,XE . If

PAω[X, dX , aX , bX ]+ ` ∀k0∀̃f 1∃n0A(k, f, n),

then there is a closed monotone term φ of type 0→ (1→ 0) such that

PAωE[X, dX , aX , bX ] ` ∀k∀̃f∃n ≤ φ(k, f)A(k, f, n).

Sometimes we may wish to consider some premises and, in those cases, the interpretation
of such implication may reveal stronger results by weakening the implicative premise. The
next result covers this case.

Corollary 3.9. Let A be an existential formula and B an universal formula of Lω,XE . If

PAω[X, dX , aX , bX ]+ ` ∀k0∀̃f 1
(
∀m0B(k, f,m)→ ∃n0A(k, f, n)

)
,

then there are closed monotone terms φ and ψ of type 0→ (1→ 0) such that

PAωE[X, dX , aX , bX ] ` ∀k∀̃f (∀m ≤ ψ(k, f)B(k, f,m)→ ∃n ≤ φ(k, f)A(k, f, n)) .
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Chapter 4

Proof mining

Proof mining is a research program focused on using proof-theoretical techniques to analyze
ordinary mathematical proofs in order to obtain new information. This idea can be traced
back to the 1950’s, when Georg Kreisel suggested to unwind proofs [9][36][37] under the
general question

What more do we know if we have proved a theorem by restricted means than if we merely
know that it is true?’

Eventually the term “unwinding of proofs” evolved into the more pleasing “proof mining”,
by suggestion of Dana Scott. In the last twenty five years, the proof mining program has
been substantially developed, mainly by the work of Kohlenbach and his collaborators, with
a great number of results analyzing proofs from various areas of mathematics such as ap-
proximation theory, ergodic theory, fixed point theory, optimization theory and the theory
of partial differential equations. In the proof mining program, functional interpretations are
used as tools to extract constructive (i.e. computational) information from given ordinary
mathematical proofs. While the standard interpretation used in proof mining is Kohlen-
bach’s monotone functional interpretation, one of the objectives of this doctoral dissertation
is to investigate the application of the bounded functional interpretation in concrete cases
of proof mining. Thus, all the quantitative results obtained were guided by this functional
interpretation.

For the results that follow, the author was guided by an unofficial and simple procedure of
analyzing proofs:

1. Understanding the proof:
In this first step it is required that one completely understands all the inner works of the
proof. This is essential since not only it may allow to carry out simplifications but also be-
cause the original argument usually guides the proof of the final quantitative result. At this
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point, it is important to look for the logical principles used in the original proof. While the
common mathematician is most of the time oblivious to the logical strength of the principles
used in his proofs, for a logician these are of great relevance and for someone carrying out
a proof mining they provide an insight of the relevant theories in which such a proof could
be formalized. Furthermore, in this step, one can a priori know the functional complexity
of the bounds that will be eventually extracted.

2. Structure and formula interpretation:
While the first step already provides a good understanding of the structure of the proof, it
is important to clearly layout the structure of the proof in a lemma-by-lemma formulation.
Having this, one can start interpreting the relevant formulas. To this effect, it is necessary
to have in mind a suitable formal setting that includes all the premises of the theorem in a
quantitative form and in which all of the proof can be formalized – the theory in Chapter 3
is an example of one such theory.

3. Extraction and final version:
By having the correct interpretation of the relevant formulas, it is now clear which quanti-
tative information can be extracted. The original proof is then adapted to show the validity
of the extracted bounds. In fact, these two steps – extraction and verification – are usually
intertwined as one goes back-and-forth in the verification of the quantitative bounds to see
what they should be. In the end, there must be a clear formulation of the quantitative
information and of its verification.

In the end of the mining, all the proof-theoretical machinery used can be concealed to ensure
that the final quantitative result is just a piece of ordinary mathematics. This may be rele-
vant depending on the prospective audience and allows such results to reach both logicians
and non-logicians. Notice that in step 2, we only think of a formal setting instead of actually
doing the work of completely formalize the proof as we can work only with a semi-formal
proof and avoid all the trivial but tiresome formalizations.

The soundness theorem and the extraction theorem for the bounded functional interpre-
tation refers to the formula interpretation given by definition 2.11. However, sometimes a
clever use of the characteristic principles together with logical and easy mathematical simpli-
fications can result in better ∀̃∃̃ - formulas. Formulas which are better in the sense that the
relevant variables are of lower types. However one can then be left wondering what differ-
ence does exist between the extracted information and the official quantitative information
of the formal interpretation. Of course, if such equivalence is derived in the theory then
having the quantitative information for one implies the possibility of having the quantitative
information for the other; it is just a question of going through the quantitative proof of the
equivalence. However, more can be said. By looking at the proof of the soundness theorem,
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it is clear that the characteristic principles are given a trivial interpretation and logical and
easy mathematical simplifications still hold in the verifying theory. So we are free to use the
characteristic principles as a replacement to the formal interpretation of a formula. In the
end, the extracted information will only differ from the information obtained through the
formal interpretation by trivial computations. We exemplify this with the following exam-
ples.

Consider A and B two formulas in the language of arithmetic in all finite types. Assume
that we wish to give a bounded functional interpretation to the conjunction formula A ∧ B
and already know that AU is ∀̃x∃̃yAU(x, y) and BU is ∀̃w∃̃zBU(w, z) – we omit the fact that
the variables may be tuples.
If we replace the interpretation of A and of B directly in the conjunction A ∧B and simply
use logic we arrive at:

A ∧B(
∀̃x∃̃yAU(x, y)

)
∧
(
∀̃w∃̃zBU(w, z)

)
∀̃x,w∃̃y, z (AU(x, y) ∧BU(w, z))

and an extraction for such a formula would yield monotone terms t1 and t2 such that

∀̃x,w (AU(x, t1(x,w)) ∧BU(w, t2(x,w))) . (4.1)

However, if we follow the formal interpretation of the formula we have to recall that the
conjunction is a defined logical symbol and the interpretation goes like this:

A ∧B
¬ (¬A ∨ ¬B)

¬
(
¬∀̃x∃̃yAU(x, y) ∨ ¬∀̃w∃̃zBU(w, z)

)
¬
(
∀̃f ∃̃x∃̃x′ E x¬AU(x′, fx′) ∨ ∀̃g∃̃w∃̃w′ E w¬BU(w′, gw′)

)
¬
(
∀̃f, g∃̃x,w (∃̃x′ E x¬AU(x′, fx′) ∨ ∃̃w′ E w¬BU(w′, gw′))

)
∀̃H1,H2∃̃f, g∃̃f ′ E f ∃̃g′ E g

(
∀̃x′ EH1(f

′, g′)AU(x′, f ′x′) ∧ ∀̃w′ EH2(f
′, g′)BU(w′, g′w′))

)
and an extraction for such a formula would give monotone terms T1 and T2 such that

∀̃H1,H2∃̃f E T1(H1,H2)∃̃g E T2(H1,H2)(
∀̃xEH1(f, g)AU(x, fx) ∧ ∀̃w EH2(f, g)BU(w, gw))

) (4.2)
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where we used the monotonicity of the matrix in the existentially quantified variables and
replaced f ′, g′, x′ and w′ by f , g, x and w, respectively.

Having the monotone terms t1 and t2 satisfying the formula 4.1 it is not hard to see that
the terms T1 := λH1,H2, x. t1(x,Ow) and T2 := λH1,H2, w. t2(Ox, w) satisfy 4.2, where Ox
and Ow denote some monotone term of the same type of x and of type w, respectively – e.g.
the functional of the appropriate type that at the final base type yields 0. The other way is
also easy as we can take the particular instance of 4.2 when the functionals H1 and H2 are
constant to conclude:

∀̃x,w∃̃f ′ E T1(λf, g. x, λf, g. w)∃̃g′ E T2(λf, g. x, λf, g. w)(
∀̃x′ E xAU(x′, f ′x′) ∧ ∀̃w′ E wBU(w′, g′w′))

)
and in particular,

∀̃x,w∃̃f ′ E T1(λf, g. x, λf, g. w)∃̃g′ E T2(λf, g. x, λf, g. w) (AU(x, f ′x) ∧BU(w, g′w))) .

By monotonicity of the formulas AU and BU in the second variable we obtain:

∀̃x,w (AU(x, T1(λf, g. x, λf, g. w)x) ∧BU(w, T2(λf, g. x, λf, g. w)w)) ,

showing that 4.1 is satisfied with the monotone terms t1(x,w) := T1(λf, g. x, λf, g. w)x and
t2(x,w) := T2(λf, g. x, λf, g. w)w.

We will now look at another example, the interpretation of the formula (A1 ∨ A2) → B.
Assume that we already have the interpretation of the formulas A1, A2 and B, given respec-
tively by ∀̃x1∃̃y1(A1)U(x1, y1), ∀̃x2∃̃y2(A2)U(x2, y2) and ∀̃w∃̃zBU(w, z).
If we simply input the interpretations of the formulas into the implication and use the char-
acteristic principles we obtain:

(A1 ∨ A2)→ B(
∀̃x1∃̃y1(A1)U(x1, y1) ∨ ∀̃x2∃̃y2(A2)U(x2, y2)

)
→ ∀̃w∃̃zBU(w, z)

By using monotone choice twice and the monotonicity property, we get(
∃̃f1∀̃x1 (A1)U(x1, f1x1) ∨ ∃̃f2∀̃x2(A2)U(x2, f2x2)

)
→ ∀̃w∃̃zBU(w, z)

By classical logic, this is equivalent to

∀̃f1, f2, w∃̃x1, x2, z (((A1)U(x1, f1x1) ∨ (A2)U(x2, f2x2))→ BU(w, z)) .

The extraction for this formula would yield monotone terms t1, t2 and t3 such that

∀̃f1, f2, w∃̃x1 E t1(f1, f2, w)∃̃x2 E t2(f1, f2, w)

((A1)U(x1, f1x1) ∨ (A2)U(x2, f2x2))→ BU(w, t3(f1, f2, w)).
(4.3)
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On the other hand, to carry out the interpretation using the clauses in 2.11 first we must
recall that the implication is a defined notion. The interpretation is as follows:

(A1 ∨ A2)→ B

¬(A1 ∨ A2) ∨B

¬
(
∀̃x1∃̃y1(A1)U(x1, y1) ∨ ∀̃x2∃̃y2(A2)U(x2, y2)

)
∨ ∀̃w∃̃zBU(w, z)

¬
(
∀̃x1, x2∃̃y1, y2(A1)U(x1, y1) ∨ (A2)U(x2, y2)

)
∨ ∀̃w∃̃zBU(w, z)

∀̃H1,H2∃̃x1, x2(
∃̃x′1 E x1∃̃x′2 E x2¬ ((A1)U(x′1,H1(x

′
1, x
′
2)) ∨ (A2)U(x′2,H2(x

′
1, x
′
2)))
)
∨ ∀̃w∃̃zBU(w, z)

∀̃H1,H2, w∃̃x1, x2, z(
∃̃x′1 E x1∃̃x′2 E x2¬ ((A1)U(x′1,H1(x

′
1, x
′
2)) ∨ (A2)U(x′2,H2(x

′
1, x
′
2))) ∨BU(w, z)

)
Using the definition of the implication, this can be written as:

∀̃H1,H2, w∃̃x1, x2, z(
∃̃x′1 E x1∃̃x′2 E x2 ((A1)U(x′1,H1(x

′
1, x
′
2)) ∨ (A2)U(x′2,H2(x

′
1, x
′
2)))→ BU(w, z)

)
.

The extraction for this formula gives monotone terms T1, T2 and T3 satisfying

∀̃H1,H2, w∃̃x1 E T1(H1,H2, w)∃̃x2 E T2(H1,H2, w)

((A1)U(x1,H1(x1, x2)) ∨ (A2)U(x2,H2(x1, x2)))→ BU(w, T2(H1,H2, w)),
(4.4)

where we used the monotonicity of the matrix in the existentially quantified variables and
replaced the x′1 and x′2 by x1 and x2, respectively.

With the monotone terms t1, t2 and t3 satisfying the formula 4.3 it is possible to define
terms satisfying 4.4. To that effect, for given functional H1 and H2 define the func-
tional f1 := λx.H1(x,Ox2) and f2 := λx.H2(Ox1 , x). It is not hard to see that the
monotone terms T1 := λH1,H2, w. t1(f1, f2, w), T2 := λH1,H2, w. t2(f1, f2, w) and T3 :=
λH1,H2, w. t3(f1, f2, w) satisfy 4.4.

For the other direction, we argue as before by considering a particular instance of 4.4.
Consider the case where the functional H1 and H2 are constant. Then,

∀̃H1,H2, w∃̃x1 E T1(H1,H2, w)∃̃x2 E T2(H1,H2, w)

((A1)U(x1,H1(x1, x2)) ∨ (A2)U(x2,H2(x1, x2)))→ BU(w, T2(H1,H2, w)),
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Let us now make a brief comment on the choice of interpreting a piece of implicative mathe-
matics either by formalizing it as a rule of the system or as a provable implication. Assume
that in some mathematical proof of a theorem the author states “if Ã, . . . , then B̃”. Are
we to look at formalizing a proof of Ã → B̃ or to add a quantitative version of Ã as a
postulate to our theory and show that B̃ is derivable? This choice has an impact on the
quantitative information one can extract. Assume that the interpretations of the formulas
are, respectively, of the form ∀̃x∃̃yA(x, y) and ∀̃w∃̃zB(w, z), where A and B are bounded
formulas. Then, we can interpret the implication in the following way:

Ã→ B̃

∀̃x∃̃yA(x, y)→ ∀̃w∃̃zB(w, z)

∀̃f, w
(
∀̃x∃̃y E fxA(x, y)→ ∃̃zB(w, z)

)

An extraction for this formula would yield monotone functionals φ1 and φ2 such that

∀̃f, w
(
∀̃xE φ1(f, w)∃̃y E fxA(x, y)→ ∃̃z E φ2(f, w)B(w, z)

)
.

This, in turn, yields the weaker statement

∀̃f
(
∀̃x∃̃y E fxA(x, y)→ ∀̃w∃̃z E φ2(f, w)B(w, z)

)
.

On the other hand, if we only consider Ã as a postulate, instead of as an implicative premise,
we would have that, for some functional ψ

T + ∀̃x∃̃y E ψ(x)A(x, y) ` B̃,

and we could extract from the proof a monotone term Φ – in the extended language with ψ
– satisfying

∀̃w∃̃z E Φ(w)B(w, z).

Notice, that even if we could go back to an implicative formulation at this point we would
only get

∀̃x∃̃y E ψ(x)A(x, y)→ ∀̃w∃̃y E Φ(w)B(w, z),

which contains less information than the quantitative version of the implication, as we lost
the information exhibited by φ1.
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Since the proof analyzed is the same, notice that we have Φ(w) = φ2(ψ,w). Although in
most cases the property being proved can be formalized in an implication form, if in the end
we are only interested in the quantitative information for B̃, then the interpretation of the
rule is a better avenue. Nevertheless, whenever possible, interpreting the implication would
provide a more comprehensive quantitative information of the proof being analyzed. In the
interpretation of the implication, we obtain a quantitative result stating how much of (the

quantitative version of) Ã is needed to conclude a particular instance of (the quantitative

version of) B̃. There are however cases where we are left without the choice of using the
implicative option. For example, when dealing with a discontinous functional f , the impli-
cation “a = b → f(a) = f(b)” cannot be derived in the theory. If it were, its quantitative
analysis would force continuity on the functional f . This phenomenon is not specific to the
bounded functional interpretation and, in fact, this was already commented by Kohlenbach
(e.g., at the end of [30]) regarding the monotone functional interpretation. There are several
instances of proof mining where it was only possible to use the rule option (e.g., [15, 22, 25]).

4.1 Simple arguments in proof mining

In this section, we will look at four simple but interesting arguments frequently used in
mathematical proofs and present their quantitative version. The first one is the simple
conjunction of two properties that hold true after a certain point – e.g. the conjunction of
two convergence statements. After, we will look at a variation of the statement that any
bounded and decreasing sequence of real numbers is a Cauchy sequence. Then, we see a
quantitative treatment of lim sup by using rational approximations. Finally we will see how
to give a correct quantitative interpretation of a discussion by cases.

4.1.1 Metastability

In general, it is not possible to guarantee the extractability of quantitative information
bounding the existential quantifier in a provable Π0

3-formula (with bounded matrix). For
example, consider the formula ∀n∃m (T (n, n,m) ∨ ∀p¬T (n, n, p)), where T is the primi-
tive recursive Kleene T -predicate. This statement is equivalent to the provable Π0

3-formula
∀n∃m∀p (T (n, n,m) ∨ ¬T (n, n, p)) and is clear that no bounding information can be ob-
tained on m, since it would entail the decidability of the halting problem.

However, by the soundness theorem, it is possible to extract information for the translated
formula. We will now show how the bounded functional interpretation is applied to Π3

formulas.
Let Abd(x, y, z) be a bounded formula. Guided by the characterizing principles, we have:

∀x∃y∀zAbd(x, y, z),
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by the MAJω this is equivalent to

∀x∃̃y∃y′ E y∀̃z∀z′ E zAbd(x, y′, z′).

Using the contra-positive of BCωbd we obtain

∀x∃̃y∀̃z∃y′ E y∀̃z′ E z∀z′′ E z′Abd(x, y′, z′′),

which in turn is logically equivalent to

∀x∃̃y∀̃z∃y′ E y∀z′ E zAbd(x, y′, z′).

If we abbreviate Bbd(x, y, z) ≡ ∃y′ E y∀z′ E zAbd(x, y′, z′) then, by the contra-positive of
mACωbd together with MAJω, we get

∀̃x∀̃f∀x′ E x∃̃y∀̃z E fyBbd(x′, y, z),

and, lastly, by the BCωbd we obtain the final formula

∀̃x∀̃f ∃̃y∀x′ E x∃̃y′ E y∀̃z E fy′Bbd(x′, y′, z)

In essence, overlooking the quantifications “∀x′ E x∃̃y′ E y”, the interpretation makes the
inner universal quantifier “∀z” become bounded by considering a functional of higher type.
We call this final statement the metastable version of the original property.
In the interpretation above, all the generality considered brings additional troublesome steps
which in most cases do not appear. The additional quantifiers only appear if one is working
with non-monotone quantifications at the start, which is not the case in most situations.
Frequently, we consider Π0

3 formulas. There we quantify over natural numbers and so, over
monotone objects. This simplifies the interpretation as then there is no need to consider the
axiom MAJω (as well as BCωbd), which is responsible for the appearance of new quantifiers at
several steps of the translation.

To exemplify how the translation is in fact very easy in practice and how the interpretation
operates in a more common formula, we consider the Cauchy property.
Let (xn) be a Cauchy sequence of real numbers. Then,

∀k ∈ N∃n ∈ N∀i, j ≥ n

(
|xi − xj| ≤

1

k + 1

)
.

We can replace the inequality between reals by the intensional ER and work with a quantifier-
free matrix, instead of an universal one. With this consideration, we can apply the contra-
positive of the mACωbd and then go back to the extensional inequality to obtain the metastable
version of the Cauchy property:

∀k ∈ N∀̃f : N→ N∃n ∈ N∀i, j ∈ [n, fn]

(
|xi − xj| ≤

1

k + 1

)
,
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where [n, fn] denotes the set of natural numbers {n, n+ 1, · · · , fn}. Notice, that in the case
that for some natural number n, fn < n, the result is trivially true.
We call the metastable version of the Cauchy property of (xn), simply the metastablility
property of (xn). The interval of natural numbers [n, fn] is a region of metastability for
(xn). In this sense, the Cauchy property is translated into a statement about regions of
metastability for the sequence. In fact, due to the generality of the function f , the metasta-
bility of a sequence (xn) is equivalent to its Cauchy property. It is trivial that the Cauchy
property implies metastability. To recover the Cauchy property from the metastability of
the sequence one must rely on classical logic and the axiom of choice, which makes the proof
ineffective. This is consistent with the fact that we are always guaranteed to be able to
extract a bound on n in the metastability of (xn), but in general we cannot convert it into
a bound for the Cauchy property (even for recursive sequences).

The metastability property was already known to logicians as Kreisel’s no-counterexample
interpretation. The term “metastability” was introduced by Terence Tao in his blog and is
nowadays used to designate these properties.

Bounds on the existential quantifier of ∀k∃n∀m ≥ nAbd(k, n) are called rates of convergence,

and bounds on the existential quantifier of ∀k∀̃f∃n∀m ∈ [n, fn]Abd(k,m) are called bounds
on the metastability. To simplify the analyses, we always assume that these functions are
monotone, instead of considering ad hoc modifications.

• A monotone function χ : N→ N is a rate of convergence, if:

∀k∀m ≥ χ(k)Abd(k,m)

• A monotone function φ : N× NN → N is a bound on the metastability, if:

∀k∀̃f∃n ≤ φ(k, f)∀m ∈ [n, fn]Abd(k,m)

While carrying out a quantitative analysis, it is common to encounter an argument that
takes in the conjunction of two convergence statements. If at that point the quantitative
information extracted was in the form of rates of convergence, then by simply considering
its maximum we obtain a rate for the conjunction:
If χ1, χ2 : N→ N are such that

∀k∀m ≥ χ1(k)A1(k,m) and ∀k∀m ≥ χ2(k)A2(k,m),

then
∀k∀m ≥ χ(k) (A1(k,m) ∧ A2(k,m)),

where χ(k) := max{χ1(k), χ2(k)}.
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However, as we said, in most cases such extractions are not possible and we must instead
work with bounds on the metastability. We will now see how to consider a rate of convergence
together with a bound on the metastability.

Proposition 4.1. Let χ : N→ N and φ : N× NN → N be monotone functions such that

(i) ∀k∀m ≥ χ(k)A1(k,m) and

(ii) ∀k∀̃f∃n ≤ φ(k, f)∀m ∈ [n, fn]A2(k,m),

where A1 and A2 are bounded formulas. Then,

∀k∀̃f∃n ≤ Φ(k, f)∀m ∈ [n, fn] (A1(k,m) ∧ A2(k,m)) ,

where Φ(k, f) := max{χ(k) , φ(k, λm. (f(max{χ(k),m})))}.

Proof. Let k ∈ N and a monotone function f : N→ N be given.
Apply (ii) to k and the monotone function g(m) := f(max{χ(k),m}) to conclude the exis-
tence of n1 ≤ φ(k, g) such that

∀m ∈ [n1, gn1]A1(k,m).

With n := max{χ(k), n1}, we have n ≤ Φ(k, f) and m ∈ [n, fn] implies m ≥ χ(k) and
m ∈ [n1, gn1]. Hence,

∀m ∈ [n, fn] (A1(k,m) ∧ A2(k,m)) .

The next result deals with the general conjunction of two bounds of metastability.

Proposition 4.2. Let φ1, φ2 : N× NN → N be monotone functions such that

(i) ∀k∀̃f∃n ≤ φ1(k, f)∀m ∈ [n, fn]A1(k,m) and

(ii) ∀k∀̃f∃n ≤ φ2(k, f)∀m ∈ [n, fn]A2(k,m),

where A1 and A2 are bounded formulas. Then,

∀k∀̃f∃n ≤ Φ(k, f)∀m ∈ [n, fn] (A1(k,m) ∧ A2(k,m)) ,

where Φ(k, f) := max{φ1(k, f1) , φ2(k, f2[φ1(k, f1)])} with f1(m) := f(max{m,φ2(k, f2[m])})
and f2[m](n) := f(max(m,n)).
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Proof. Let k ∈ N and a monotone function f : N→ N be given. Then the functions f1 and
f2 are also monotone.
By (i) applied to k and f1, there is n1 ≤ φ1(k, f1) such that

∀m ∈ [n1, f1(n1)]A1(k,m).

Now, by (ii) applied to k and f2[n1], there is n2 ≤ φ2(k, f2[n1]) satisfying

∀m ∈ [n2, f2[n1](n2)]A2(k,m).

We will now check that, n := max(n1, n2) satisfies the desired conclusion.
First of all, we have n ≤ max{φ1(k, f1) , φ2(k, f2[φ1(k, f1)])} = Φ(k, f).
Secondly, by the definition of n and the monotonicity of the functions f and φ2, we have

[n, fn] ⊂ [n1, f(max{n1, φ2(k, f2[n1])})] = [n1, f1(n1)] and

[n, fn] ⊂ [n2, fn] = [n2, f2[n1](n2)]

Thus, for m ∈ [n, fn], we have A1(k,m) ∧ A2(k,m) as we wanted.

In fact, since we could have changed the order of (i) and (ii), a better bound is the minimum
of those two possibilities.

Corollary 4.3. Let φ1, φ2 : N× NN → N be monotone functions such that

(i) ∀k∀̃f∃n ≤ φ1(k, f)∀m ∈ [n, fn]A1(k,m) and

(ii) ∀k∀̃f∃n ≤ φ2(k, f)∀m ∈ [n, fn]A2(k,m),

where A1 and A2 are bounded formulas. Then,

∀k∀̃f∃n ≤ Φ(k, f)∀m ∈ [n, fn] (A1(k,m) ∧ A2(k,m)) ,

where Φ(k, f) := min{Φ1(k, f),Φ2(k, f)}, with:

Φ1(k, f) := max{φ1(k, f1) , φ2(k, f2[φ1(k, f1)])},
Φ2(k, f) := max{φ2(k, f3) , φ1(k, f2[φ2(k, f3)])},

f1(m) := f(max{m,φ2(k, f2[m])}), f2[m](n) := f(max(m,n))

and f3(m) := f(max{m,φ1(k, f2[m])}).

A rate of convergence is a particular bound on the metastability that does not depend
on the function f . Hence, the conjunction of a rate of convergence with a bound on the
metastability is a particular case of the conjunction of two bounds on metastability. In fact,
Proposition 4.1 can be derived from Corollary 4.3, by assuming that one of the bounds on
the metastability does not depend on f : in that case, Φ1(k, f) = Φ2(k, f) and coincide with
the bound in Proposition 4.1. Furthermore, if both bounds on the metastability are rates
of convergence, i.e. if φ1(k, f) = χ1(k) and φ2(k, f) = χ2(k), then we recover the simplest
bound, max{χ1(k), χ2(k)}.
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4.1.2 Monotone convergent sequences

The term metastability was introduced by Terence Tao when studing the infinite convergence
principle from a finitary perspective [46, Section 1.3].

Theorem 4.4 (Infinite Convergence Principle). Every decreasing sequence of non-negative
real numbers (sn) is convergent.

Instead of dealing with a convergence statement, which requires an explicit reference to the
inf{sn}, we consider the simpler statement that (sn) is a Cauchy sequence.
As we saw, in its metastable version, the Cauchy property is

∀k ∈ N∀̃f : N→ N∃N ∈ N∀i, j ∈ [N, fN ]

(
|si − sj| ≤

1

k + 1

)
.

A quantitative version of this result was previously obtained by Kohlenbach [25]. A slight
adaptation of that result to the setting of the bounded functional interpretation is shown
next:

Proposition 4.5. Let (sn) be a decreasing sequence of real numbers and D ∈ N such that
for all n ∈ N, 0 ≤ sn ≤ D. Then,

∀k ∈ N∀̃f : N→ N∃N ≤ f (D(k+1))(0)∀i, j ∈ [N, fN ]

(
|si − sj| ≤

1

k + 1

)
,

where f (r) stands for the consecutive iteration, i.e. f (0)(n) = n and f (r+1)(n) = f
(
f (r)(n)

)
.

We can even consider non-monotone functions f , in which case the bound f (D(k+1))(0) is
replaced by max{f (r)(0) | r ≤ D(k + 1)}. Notice also that, beside k and f , the dependence
of the bound on the sequence is only in the upper bound D, not on the sequence itself.

Obviously, this result extends to bounded sequences which are only decreasing after a certain
order, i.e. for (sn) a bounded sequence we have

∃M ∈ N∀m ≥M (sm+1 ≤ sm) → ∀k ∈ N∃N ∈ N∀i, j ≥ N

(
|si − sj| ≤

1

k + 1

)
.

The analysis of this statement is similar to Proposition 4.5 and we have the following quan-
titative version.

Proposition 4.6. Let (sn) be a sequence of real numbers and D ∈ N such that for all n ∈ N,
0 ≤ sn ≤ D. Then,

∀k ∈ N∀M ∈ N∀̃f : N→ N(
∀m ≥M (sm+1 ≤ sm) → ∃N ≤ φ(k,M, f)∀i, j ∈ [N, fN ]

(
|si − sj| ≤

1

k + 1

))
,

with φ(k,M, f) := max{M, f (D(k+1))(M)}.
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One can prove the result above following the same arguments used in proving Proposition 4.5.
However, this result also follows directly from the Proposition 4.5. In fact, let k,M ∈ N and
a monotone function f be given. The relevant case is when f(M) ≥M . If the premise of the
implication in Proposition 4.6 holds, then the sequence wn := sn+M satisfy the conditions of
Proposition 4.5. In particular, we can consider the (monotone) function g(n) := f(n+M)−M
and conclude

∃N ′ ≤ g(D(k+1))(0)∀i, j ∈ [N ′, g(N ′)]

(
|si+M − sj+M | ≤

1

k + 1

)
.

Finally the result follows for N := N ′ +M by showing g(D(k+1))(0) +M = f (D(k+1))(M).

Clearly, the statement that the sequence is eventually decreasing can be equivalently written
as

∃M ∈ N∀k ∈ N∀m ≥M

(
sm+1 ≤ sm +

1

k + 1

)
.

In an attempt to weaken this condition we could think of considering

∀k ∈ N∃M ∈ N∀m ≥M

(
sm+1 ≤ sm +

1

k + 1

)
. (4.5)

However, since we are considering the “decreasing property” with a possibility of error 1
k+1

,
having the property stated only for m and m + 1 we leave open the possibility that the
sequence fluctuates too much, in which case the conclusion may not hold. An example is
the following sequence. For each n ∈ N, take k ∈ N and i ≤ k + 1 such that n = (k+3)k

2
+ i

and define sn = i
k+1

. This sequence alternates indefinitely between 0 and 1 and so it is not
a Cauchy sequence, even though it satisfies (4.5).

Instead, a similar notion of decreasing may be used here,

∀k ∈ N∃M ∈ N∀n,m ≥M

(
n < m→ sm ≤ sn +

1

k + 1

)
. (4.6)

In this way, we ask that not only the successor be below the previous term, with error 1
k+1

,
but also all the terms after that. Any bounded sequence of non-negative real numbers (sn)
under this assumption is a Cauchy sequence, i.e.

∀k ∈ N∃M ∈ N∀n,m ≥M

(
n < m→ sm ≤ sn +

1

k + 1

)
→ ∀k ∈ N∃N ∈ N∀i, j ≥ N

(
|si − sj| ≤

1

k + 1

)
.

49



This statement is more general as it additionally guarantees that certain non-decreasing
sequences, e.g. the sequence defined by sn = 1 + (−1)n

n+1
, are Cauchy sequences.

It is even possible argue the instance 1
k+1

of the Cauchy property if for some k′ ∈ N the

premise holds for the instance 1
k+1
− 1

k′+1
.

Proposition 4.7. Let (sn) be a bounded sequence of non-negative real numbers. Then, for
all k ∈ N, if

∃k′ ∈ N∃M ∈ N∀n,m ≥M

(
n < m→ sm ≤ sn +

1

k + 1
− 1

k′ + 1

)
,

then

∃N ∈ N∀i, j ≥ N

(
|si − sj| ≤

1

k + 1

)
.

Proof. Let k ∈ N be given such that for some k′, M ∈ N we have

∀n,m ≥M

(
n < m→ sm ≤ sn +

1

k + 1
− 1

k′ + 1

)
. (4.7)

Assume, towards a contradiction, that for all N ∈ N,

∃i, j ≥ N

(
i < j ∧ |si − sj| >

1

k + 1

)
. (4.8)

By induction we can show

∀n∃̃f, g
(
f(n) < g(n) < f(n+ 1) ∧ sf(n) > sg(n) +

1

k + 1
≥ sf(n+1) +

1

k′ + 1

)
. (4.9)

Apply (4.8) to N = M to obtain i0, j0 ≥M such that i0 < j0 and |si0 − sj0| > 1
k+1

.
We must have si0 ≥ sj0 , otherwise

sj0 > si0 +
1

k + 1
> si0 +

1

k + 1
− 1

k′ + 1
,

contradicting (4.7). Hence si0 > sj0 + 1
k+1

.

Apply (4.8) to N = j0 + 1 to obtain i1, j1 > j0 such that i1 < j1 and |si1 − sj1| > 1
k+1

. Since
M ≤ j0 < i1, by (4.7), we have

si1 ≤ sj0 +
1

k + 1
− 1

k′ + 1
.

Thus sj0 + 1
k+1
≥ si1 + 1

k′+1
and we can take f(0) = i0, f(1) = i1, g(0) = j0 and g(1) = j1.

The inductive step is argued in an identical way and concludes the proof of (4.9).
From (4.9) it follows

∀n∃̃f : N→ N
(
sf(0) > sf(n) +

n

k′ + 1

)
,

contradicting the fact that (sn) is a bounded sequence.

50



We will give a quantitative version of Proposition 4.7. We start by explaining the interpreta-
tion. Saying that (sn) is a bounded sequence of non-negative real numbers is not an universal
statement. Instead, we work with an actual natural number D such that 0 ≤ sn ≤ D, for
all n ∈ N. On the other hand, Proposition 4.7 can be equivalently expressed by using the
intensional (quantifier-free) inequality between real numbers ER:
For all k ∈ N, if

∃k′,M ∈ N ∀n,m ≥M

(
n < m→ sm ER sn +

1

k + 1
− 1

k′ + 1

)
,

then

∃N ∈ N ∀i, j ≥ N

(
|si − sj|ER

1

k + 1

)
.

By monotone choice, the conclusion of the implication above is equivalent to

∀̃f : N→ N ∃N ∈ N ∀i, j ∈ [N, fN ]

(
|si − sj|ER

1

k + 1

)
.

Then, by classical logic, the statement is equivalent to

∀k, k′,M ∈ N∀̃f : N→ N
[
∀n,m ≥M

(
n < m→ sm ER sn +

1

k + 1
− 1

k′ + 1

)
→ ∃N ∈ N∀i, j ∈ [N, fN ]

(
|si − sj|ER

1

k + 1

)]
We are then guaranteed to be able to extract bounds on the values of n, m and N in terms
of k, k′, M and f , by analyzing the proof of Proposition 4.7. By flattening we return to the
usual extensional inequalities between real numbers and have the next quantitative result.

Proposition 4.8. Let (sn) be a sequence of real numbers and D ∈ N such that for all n ∈ N,
0 ≤ sn ≤ D. Then, for all k, k′,M ∈ N and monotone function f : N→ N, if

∀n,m ∈ [M,φ1(k, k
′,M, f)]

(
n < m→ sm ≤ sn +

1

k + 1
− 1

k′ + 1

)
(4.10)

then

∃N ≤ φ2(k, k
′,M, f)∀i, j ∈ [N, fN ]

(
|si − sj| ≤

1

k + 1

)
, (4.11)

where φ1(k, k
′,M, f) := f (φ2(k, k

′,M, f)) and φ2(k, k
′,M, f) := max{M, f (D(k′′+1))(M)}

with k′′ := max{k, k′}.
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Proof. Let k, k′, M ∈ N and a monotone function be given. Assume f(M) ≥M , otherwise
the result is trivially true with N = M . Notice that, from the monotonicity of f , we have
f (i+1)(M) ≥ f (i)(M), for each i ∈ N. Assume that (4.10) holds. Then, we also have:

∀n,m ∈ [M,φ1(k, k
′,M, f)]

(
n < m→ sm ≤ sn +

1

k + 1
− 1

k′′ + 1

)
. (4.12)

Suppose towards a contradiction that (4.11) is false. Then, for all N ≤ f (D(k′′+1))(M),

∃i, j ∈ [N, fN ]

(
i < j ∧ |si − sj| >

1

k + 1

)
. (4.13)

Write R := D(k′′ + 1). We define sequences (in)n≤R and (jn)n≤R in the following way.

i0 and j0:
By (4.13) with N = M , there are i, j ∈ [M, f(M)] such that

i < j ∧ |si − sj| >
1

k + 1
.

Consider i0, j0 to be one such pair of i, j. Notice that we must have si0 ≥ sj0 , otherwise

sj0 > si0 +
1

k + 1
> si0 +

1

k + 1
− 1

k′′ + 1
,

contradicting (4.10). We conclude si0 > sj0 + 1
k+1

.

ir+1 and jr+1, with r < R:

Assume, for the inductive definition, that we have ir,jr ∈ [f (r)(M), f (r+1)(M)] satisfying

sir > sjr +
1

k + 1
.

Applying (4.13) with N = f (r+1)(M), we have ir+1, jr+1 ∈ [f (r+1)(M), f (r+2)(M)] satisfying

ir+1 < jr+1 ∧ |sir+1 − sjr+1 | >
1

k + 1
,

and, in a similar way to before, we conclude sir+1 > sjr+1 + 1
k+1

.

Since for all r < R, by the definition, jr ≤ ir+1 and 1
k+1
− 1

k′′+1
≥ 0, we conclude

sir+1 ≤ sjr +
1

k + 1
− 1

k′′ + 1
.
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If jr = ir+1 the inequality is trivial, and if jr < ir+1 it follows from (4.10).
Hence, for all r < R, sjr + 1

k+1
≥ sir+1 + 1

k′′+1
.

By the definition, we conclude for all r < R, sir > sir+1 + 1
k′′+1

. In particular, it follows

si0 > siR +
R

k′′ + 1
≥ R

k′′ + 1
= D,

contradicting the condition on D.

We can recover the Proposition 4.5, by noticing that if (sn) is a decreasing sequence, then
the premise of Proposition 4.8 holds with k′ = k and M = 0 in which case, the bound φ2

from Proposition 4.8 is the same as in Proposition 4.5. In a similar way, we can recover
Proposition 4.6. The result is in fact slightly stronger, as it specifies till when we need to
have the “decreasing property” to guarantee the (k, f)-instance of the metastability property.

4.1.3 Working with lim sup

When analyzing mathematical proofs, it is not uncommon to encounter the need to consider
the lim sup xn for some bounded sequence of real numbers (xn). However, the existence of
lim sup for a bounded sequence (xn) in general is only guaranteed by using arithmetical com-
prehension. Thus, an analysis of a mathematical proof making use of a lim sup cannot be
formalized in our restricted formal theories and its interpretation, in general, would require
the use of bar recursive functionals. Nevertheless, in many practical cases the reference to
that ideal real number can be replaced by approximations that are still good enough in the
sense of still allowing to carry out the main arguments of the proof. Thus, in those situations
we can modify the original proof to circumvent the need of arithmetical comprehension and
obtain a proof formalizable in the restrictive setting of our formal theories. The computa-
tional information extracted from this modified proof will then be given by functionals of
Gödel’s T. In this section, we will argue how the existence of lim sup can be replaced by a
combinatorial argument using rational numbers. In the modified proof, we will be replacing
the lim sup by a “good enough” (in the sense of usefulness to the proof) approximation of
rational numbers.

Let N ∈ N and let (xn) be a non-negative sequence of real numbers contained in the interval
[0, N ]. The existence of lim supxn can be stated as

∃d ∈ R ∀k ∈ N(
∀n ∈ N∃m ≥ n

(
xm ≥ d− 1

k + 1

)
∧ ∃n′ ∈ N∀m′ ≥ n′

(
xm′ ≤ d+

1

k + 1

))
.

(4.14)
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The relevant point is that we can weaken this statement by switching the outermost quan-
tifiers,

∀k ∈ N ∃d ∈ R(
∀n ∈ N∃m ≥ n

(
xm ≥ d− 1

k + 1

)
∧ ∃n′ ∈ N∀m′ ≥ n′

(
xm′ ≤ d+

1

k + 1

))
.

(4.15)

We will see that

∀k ∈ N∃p < N(k + 1)(
∀n ∈ N∃m ≥ n

(
xm ≥

p

k + 1

)
∧ ∃n′ ∈ N∀m′ ≥ n′

(
xm′ ≤

p+ 1

k + 1

))
,

(4.16)

which implies (4.15) with d = p
k+1

. The previous statement (4.16) can be understood in the

following way: with k ∈ N given, let p < N(k + 1) be such that p
k+1
≤ lim supxn ≤ p+1

k+1
;

then, the middle point of
[

p
k+1

, p+1
k+1

]
witnesses d in (4.15) for 2k+1 (and thus, also for k). We

will avoid the mention of lim sup by an easy combinatorial argument. We have the following
result.

Lemma 4.9. Let N ∈ N and (xn) be a sequence of real numbers such that for all n ∈ N,
0 ≤ xn ≤ N . Then, for all k, n ∈ N and monotone function f : N→ N,

∃p < N(k + 1)

(
∃m ∈ [n, n+ fn]

(
xm ≥

p

k + 1

)
∧ ∀m′ ∈ [n, n+ fn]

(
xm′ ≤

p+ 1

k + 1

))
.

(4.17)

Proof. Suppose towards a contradiction that (4.17) does not hold. Then there exist natural
numbers k, n and a monotone function f such that for all p < N(k + 1) it holds that

∀m ∈ [n, n+ fn]

(
xm <

p

k + 1

)
∨ ∃m′ ∈ [n, n+ fn]

(
xm′ >

p+ 1

k + 1

)
. (4.18)

In order to additionally see that this result only requires induction for bounded formulas,
note that (4.18) implies

∀p < N(k + 1) (A(p+ 1)→ A(p)) ,

where A(p) is the bounded formula ∀m ∈ [n, n + fn]
(
xm ER

p
k+1

)
. Then, one shows by

induction that

∀M ∈ N (∀p ≤M (A(p+ 1)→ A(p))→ (A(M + 1)→ A(0))) .

Hence, with M = N(k + 1)− 1 we conclude that

∀m ∈ [n, n+ fn] (xm ER N)→ ∀m ∈ [n, n+ fn] (xm ER 0) .
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By the first disjunct of (4.18) with p = N(k+ 1)−1, we obtain ∀m ∈ [n, n+ fn] (xm ER N).
Thus, ∀m ∈ [n, n + fn] (xm ER 0). However, by the second disjunct of (4.18) when p = 0,
we have 1

k+1
ER xm′ for some m′ ∈ [n, n+fn], which gives a contradiction. We conclude that

(4.17) holds.

In particular, from the previous result, we have

∀k, n ∈ N∀̃f : N→ N∃p < N(k + 1)(
∃m ≥ n

(
xm ≥

p

k + 1

)
∧ ∃n′ ∈ N∀m′ ∈ [n′, n′ + fn′]

(
xm′ ≤

p+ 1

k + 1

))
.

(4.19)

By a collection argument, we conclude

∀k ∈ N∃p < N(k + 1)∀n ∈ N∀̃f : N→ N(
∃m ≥ n

(
xm ≥

p

k + 1

)
∧ ∃n′ ∈ N∀m′ ∈ [n′, n′ + fn′]

(
xm′ ≤

p+ 1

k + 1

))
.

(4.20)

In fact, this collection argument is justified by an inductive reasoning proving:

∀r ≤ N(k + 1) ∃n∃̃f : N→ N ∀p < r(
∀m ≥ n

(
xm <

p

k + 1

)
∨ ∀n′ ∈ N∃m′ ∈ [n′, n′ + fn′]

(
xm′ >

p+ 1

k + 1

))
,

under the assumption that (4.20) does not hold. Then, if (4.19) holds, then (4.20) must
also hold. Note that the reverse implication is obviously true. By monotone choice, (4.20)
is equivalent to the statement (4.16).

We will now see that, with these rational approximations of the lim sup, we can still argue
a version of a useful property of the lim sup. With d denoting the lim supxn, the property
one is concerned is

∀k,M, ` ∈ N ∃m ≥M∀n ≥ m

(
xm+` ≥ d− 1

k + 1
∧ xn ≤ d+

1

k + 1

)
. (4.21)

This property is easily shown by recalling the defining properties of d:

(I) ∀k ∈ N∀n ∈ N∃m ≥ n
(
xm ≥ d− 1

k+1

)
;

(II) ∀k ∈ N∃n ∈ N∀m ≥ n
(
xm ≤ d+ 1

k+1

)
.
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Let k,M, ` ∈ N be given. By (II) applied to k, there is n0 ∈ N such that

∀m ≥ n0

(
xm ≤ d+

1

k + 1

)
.

Now, consider the property (I) with k ∈ N and with n = max{M + `, n0 + `}. There is
m0 ≥ n such that xm0 ≥ d− 1

k+1
. Define m1 = m0 − `. Since m1 ≥ n0, we also have

∀n ≥ m1

(
xn ≤ d+

1

k + 1

)
.

On the other hand, we have m1 ≥M and

xm1+` = xm0 ≥ d− 1

k + 1
.

Putting these two statements together, we conclude (4.21).
In the version where d is replaced by rational approximations, it then makes sense that
a similar result can be obtained by two applications of Lemma 4.9. The first application
would correspond to the instance of (II) to find n0 and the second application to the use of
(I) applied to n = max{M + `, n0 + `}. However, between applications of Lemma 4.9, we
may get different values for the natural number p. This problem can be overcome by a more
elaborate argument. The next result is a quantitative version of (4.21).

Lemma 4.10. Let N ∈ N and (xn) be a sequence of real numbers such that for all n ∈ N,
0 ≤ xn ≤ N . Let k,M, ` ∈ N and f : N→ N be a monotone function. Denote P := N(k+1).
For i ≤ P define ni = M + i` and

ri :=

{
0, i = P

`+ ri+1 + f(ni+1 + ri+1), i < P.

Then

∃p < P∃m ∈ [M, θ]∀n ∈ [m,m+ fm]

(
xm+` ≥

p

k + 1
∧ xn ≤

p+ 1

k + 1

)
, (4.22)

where θ = θ(k,M, `, f) := M + (P− 1)`+ r0.

Proof. Let natural numbers k,M, ` and a monotone function f be given. We define, for
each i ≤ P, the constant functions gi := λm. ri. For each i ≤ P, we apply Lemma 4.9 with
k = k, f = gi and n = ni. Then, we find, for each i ≤ P, mi ∈ [ni, ni + ri] and pi < P
such that xmi ≥

pi
k+1

and ∀n ∈ [ni, ni + ri]
(
xn ≤ pi+1

k+1

)
. Now, there exists i0 ≤ P such

that pi0 ≤ pi0+1, otherwise there would be a sequence of length P + 1 of natural numbers
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such that pB < pB−1 < · · · < p1 < p0 < P, which is absurd. Define the natural numbers
m := mi0+1−` and p := pi0+1. We have that xm+` ≥ p

k+1
. To conclude the result it is enough

to show that [m,m + fm] ⊆ [ni0 , ni0 + ri0 ]. Indeed, we would get, for n ∈ [m,m + fm]

that xn ≤
pi0+1

k+1
≤ pi0+1+1

k+1
= p+1

k+1
. We have that m = mi0+1 − ` ≥ ni0+1 − ` = ni0 and,

since f is monotone, m + fm ≤ mi0+1 + f(mi0+1) ≤ ni0+1 + ri0+1 + f(ni0+1 + ri0+1) =
ni0 + ` + ri0+1 + f(ni0+1 + ri0+1) = ni0 + ri0 . Hence [m,m + fm] ⊆ [ni0 , ni0 + ri0 ], which
concludes the proof.

In this thesis, there will be no applications of the results of this subsection, as these results
are still part of ongoing work [7]. Thus we restrain from making any comments on how “good
enough” these rational approximations are in the sense of an hypothetical modified proof.
Recently, in [34], Kohlenbach and Sipoş gave a similar treatment of the lim sup and were
able to obtain a quantitative version of Reich’s theorem [41] analyzing, via the monotone
functional interpretation, a modified proof using what they called ε-lim sup’s.

4.1.4 Discussion by cases

Sometimes mathematical proofs follow a discussion by cases and it is important to know how
to analyze this type of argument. As we discussed before, when comparing the rule versus
its implicative counterpart, it is sometimes relevant to decide whether to do the analysis
either by adding the assumptions as axioms to the formal theory (in a correct form) or by
consider them as implicative assumptions. In a discussion by cases, we will show that, in
non-trival cases, it is necessary to choose the latter. This example gives a small contribution
to the understanding of the role of postulates and of implicative assumptions in proof mining.

Assume that, for some statements A and B, we have simultaneously

A→ B (4.23)

¬A→ B. (4.24)

Then, by classical logic, one can derive B. In its quantitative form, the analyses of A→ B
and of ¬A → B, should provide us with a quantitative version for B. This is what we will
show next.

Suppose that ∀̃x∃̃yAU(x, y) is the interpretation of A and ∀̃w∃̃zBU(w, z) is the interpretation
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of B. Then the quantitative version of (4.23) can easily be computed:

A→ B

∀̃x∃̃y AU(x, y)→ ∀̃w∃̃z BU(w, z)

∃̃f ∀̃x∃̃y E fxAU(x, y)→ ∀̃w∃̃z BU(w, z)

∀̃w∀̃f
(
∀̃x∃̃y E fxAU(x, y)→ ∃̃z BU(w, z)

)
(4.25)

The universal quantifier in the antecedent and the existential quantifier in the consequent
can be placed outside the implication as existential quantifiers but, we choose to leave the
formula written like this.
From a proof of the implication A → B we would extract monotone bounds φ1 and φ2

satisfying

∀̃w∀̃f
(
∀̃xE φ1(w, f)∃̃y E fxAU(x, y)→ ∃̃z E φ2(w, f)BU(w, z)

)
. (4.26)

As for the interpretation of ¬A→ B, we have:

¬A→ B

¬∀̃x∃̃y AU(x, y)→ ∀̃w∃̃z BU(w, z)

∃̃x∀̃y ¬AU(x, y)→ ∀̃w∃̃z BU(w, z)

∀̃w∀̃x
(
∀̃y ¬AU(x, y)→ ∃̃z BU(w, z)

)
, (4.27)

and from a proof of ¬A→ B we can extract monotone bounds ψ1 and ψ2 such that

∀̃w∀̃x
(
∀̃y E ψ1(w, x)¬AU(x, y)→ ∃̃z E ψ2(w, x)BU(w, z)

)
. (4.28)

Then, from (4.26) and (4.28), we can compute a bound Θ such that

∀̃w∃̃z E Θ(w)BU(w, z). (4.29)

In fact, Θ(w) := max{φ2(w, f0) , ψ2(w, φ1(w, f0))}, where f0 := λx. (ψ1(w, x)), is a monotone
bound satisfying (4.29):
Take monotone w arbitrary.
Since ψ1 is monotone, the same is true for f0. Apply (4.26) to w and f0 in order to conclude

∀̃xE φ1(w, f0)∃̃y E f0xAU(x, y)→ ∃z E φ2(w, f0)BU(w, z).

If ∀̃xEφ1(w, f0)∃̃yEf0xAU(x, y) holds, then we conclude the result since Θ(w) ≥ φ2(w, f0).
Otherwise, there is a monotone x0 E φ1(w, f0) such that

∀̃y E f0x0 ¬AU(x0, y),

i.e. ∀̃y E ψ1(w, x0)¬AU(x0, y). (4.30)
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In this case, we can apply (4.28) to w and x0 to conclude

∃̃z E ψ2(w, x0)BU(w, z).

Since ψ2 is a monotone function and x0Eφ1(w, f0), we have ψ2(w, x0)Eψ2(w, φ1(w, f0)) and
the result follows.

Notice that from (4.26), we have the weaker statement

∀̃x∀̃f
(
∀̃x∃̃y E fxAU(x, y)→ ∃̃z E φ2(w, f)BU(w, z)

)
.

Since w no longer appears in the antecedent, we have equivalently

∀̃f
(
∀̃x∃̃y E fxAU(x, y)→ ∀̃w∃̃z E φ2(w, f)BU(w, z)

)
. (4.31)

This statement just means that from an analyses of the implications A→ B, we have all the
information given by the analysis of its “rule counterpart”. In fact, by adding a monotone
bound α and the axiom ∀̃x∃̃y E αxAU(x, y) to an appropriate theory where the proof of
the implication A → B is formalizable and we can apply the functional interpretation, we
could extract a bound θ such that ∀̃w∃̃z E θ(w)BU(w, z). Of course such a bound could
depend on the introduced α and, if the extraction argument is the same, we would have
θ(w) = φ2(w, α).
In the same way, we have for the other implication

∀̃x
(
∀̃y ¬AU(x, y)→ ∀̃w∃̃z E ψ2(w, x)BU(w, z)

)
. (4.32)

and a similar argument could be made regarding the analyses via its rule counterpart: by
adding an element u satisfying ∀̃y ¬AU(u, y), we could find θ(w) as ψ2(w, u).

However, it is not clear how one could join these two analyses together as formally they
are working on two contradicting formal theories. Additionally, notice that the bound Θ
depends not only on φ2 and ψ2, but also on the bounds φ1 and ψ1 which are absent from a
“rule” analysis. This is an indication that the mining of a discussion by cases may only be
possible via its implicative form.

4.2 Weak compactness

In this section, we will devise a general method for bypassing certain sequential weak com-
pactness arguments in proof mining analyses. We will obtain a quantitative version of this
method that works as a blueprint for minings where the method is applicable.
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If one uses a functional interpretation to analyze a mathematical proof, a first step is to look
for an appropriate formal theory where the proof can be formalized. In order to use sequen-
tial weak compactness, it is however necessary to consider systems much stronger than the
one exhibit in chapter 3. Sadly the interpretation of those theories goes beyond the primitive
recursive functionals of Gödel’s T and C. Spector bar recursive functionals are needed [43].
It so happens that, in most concrete cases, it is possible to avoid these strong theories by
consider instead modified proofs which rely on weaker logical principles and thus are inter-
pretable using functionals from Gödel’s T. For the sequential weak compactness arguments
pertinent for our discussion, we will show that it is possible to bypass them by instead using
a false Heine/Borel compactness principle. This argument is explained in the formal setting
of the bounded functional interpretation where it corresponds to an application of the axiom
BCωbd. In the proof of the quantitative results, the characteristic principles of the interpreta-
tion disappear and, with them, the application of Heine/Borel compactness.

The motivation for this section came from previous studies on a strong convergence result
by F.E. Browder carried out by Kohlenbach using the monotone functional interpretation.
Even though the proof being analyzed used a sequential weak compactness, in the end of
the mining no bar recursive functionals were needed to construct the final bounds. This
raised the question of why the troublesome argument was vanishing from the quantitative
version of the proof. It turns out that the weak compactness used in the mining was very
mild and had a trivial solution. It was not necessary to use any real strength of sequential
weak compactness and so no need to use bar recursive functionals.
The work on this section gives a theoretical explanation for this elimination and abstracts a
general method for removing sequential weak compactness from proof mining. The results
shown here were obtained with Fernando Ferreira and Laurenţiu Leuştean and can be viewed
in detail in [12].

4.2.1 Modified Browder’s proof

Let X be a Banach space and U a mapping of X into X. The map U is nonexpansive if it
does not increase the distance between points

∀x, y ∈ X (‖U(x)− U(y)‖ ≤ ‖x− y‖) ,
and is a strict contraction if for some k < 1,

∀x, y ∈ X (‖U(x)− U(y)‖ ≤ k‖x− y‖) .
For strict contractions, Banach’s fixed-point theorem states that the Picard’s iteration,
xn+1 = U(xn), converges strongly to the unique fixed point of U . However, for nonex-
pansive mappings, this sequence doesn’t even have to converge. In [6], Browder proved the
following strong convergence result for a different iteration:
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Theorem 4.11 (Browder [6]). Let X be a real Hilbert space and U : X → X a nonexpansive
mapping. Assume that C is a bounded closed convex subset of X, that v0 ∈ C, and that U
maps C into itself. For each natural number n, define

Un(x) :=

(
1− 1

n+ 1

)
U(x) +

1

n+ 1
v0 (4.33)

and consider un to be the unique fixed point of this strict contraction. Then the sequence
(un) converges strongly to a fixed point of U in C (the closest one to v0).

We adapt Browder’s proof so that it can be formalized in a theory similar to the one shown
in Chapter 3. The main point is that, in this formal setting, we can replace the sequential
weak compactness argument in the original proof by an application of the axiom BCωbd, which
can be seen as an application of a false Heine/Borel compactness principle. An additional
troublesome step in the proof was a projection argument which from a logical perspective
requires the use of countable choice. However, as was already commented by Kohlenbach
in [27], we can instead consider a weaker statement and still be able to prove the Cauchy
property of the iteration. While the original projection argument could not be justified by
our formal setting, this weaker statement can be proved using only induction. We will see in
detail the treatment of the projection argument using the bounded functional interpretation
in a following section.

In order to analyze (a modified) Browder’s proof we consider a formal theory TB, which we
will now explain.
The theory TB follows a similar construction as the theory PAω[X, dX , aX , bX ] in Chapter 3.
Again we are considering a typed language with two base types 0 and X, where X stands
for an abstract Hilbert space. At this point we rely on the established literature and treat
inner product spaces as a special case of normed spaces where the parallelogram law holds,
as in section 17.3 of [25].
The language includes vector space constants 0X ,+X ,−X and ·X of types X, X → (X → X),
X → X and 1 → (X → X), respectively. They stand, respectively, for the zero vector, the
vector addition, symmetric vector and scalar multiplication. Notice that for γ : N→ N and
x ∈ X, the scalar multiplication γ ·X x is the scalar multiplication of the real number γR with
the vector x, where γR is the real number represented by the function γ via the signed-digit
representation (Section 3.1). We also add a constant standing for the norm, ‖ · ‖, of type
X → 1.
We can deal with Browder’s proof in a more straightforward way by adding some ad hoc
constants. We consider a constant v0 of type X for the given point stated in the theorem, a
constant of type X → 0 for the characteristic function of the bounded closed convex subset
C and a constant b of type 0 for an upper (positive) bound on the diameter of C. The
sequence of fixed points for the strict contractions Un are given by a constant u of type
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0→ X, with u(n) giving the unique fixed point of Un. To simplify, we write x ∈ C instead
of C(x) =0 0 and un instead of u(n).
We follow a treatment of real normed spaces, via an universal axiomatization, as in the
doctoral dissertation of Patŕıcia Engrácia [8]. We can state that the type 1 functional ‖x‖ is
always a representation of a real number by considering the axiom ∀n0 (‖x‖(n) =0 ‖x‖R(n)).
With equality between elements of X, x =X y, defined by the universal formula

‖x− y‖ =R 0,

it was shown in [8] that =X is indeed an equivalence relation and that it is congruent with
respect to the vector space notions.
The inner product functional 〈·, ·〉, of type X → (X → 1), is defined by

〈x, y〉 :=
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
.

We are using a more informal notation above and will do so whenever it is convenient. The
axiomatization of normed vector spaces with the so-called paralellogram law,

∀xX , yX
(
‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

)
,

entails the usual properties for the inner product.

The axioms of TB related to its specification to the mining of Browder’s proof are the
following:

v0 ∈ C
∀x, y ∈ C (‖x− y‖ ≤ (b)R)

∀x, y ∈ C∀γ ∈ [0, 1] ((1− γ) · x+ γ · y ∈ C)

∀x ∈ C (U(x) ∈ C)

∀x, y ∈ X (‖U(x)− U(y)‖ ≤ ‖x− y‖)
∀n ∈ N (un ∈ C)

∀n ∈ N
(

(1− 1

n+ 1
)U(un) +

1

n+ 1
v0 = un

)
We remark that the quantifications ∀x ∈ C (· · · ) stand for ∀xX (C(x) =0 0 → · · · ) and du-
ally for ∃x ∈ C (· · · ). Since we have a bound on the diameter of the C, these quantifications
are equivalent to bounded quantifications and treated as such.

The majorizability notion Eρ is defined in a similar way to Section 3.2, but using instead the
norm function of X – with the obvious choice of 0X for the reference point. All the clauses
stay the same with the exception of (M2), which now becomes

xEX n→ ‖x‖ ≤R (n)R.
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As before, we denote by T +
B the theory with the characteristic principles extended to the

new types. It is not hard to see that the conditions (a) and (b) from Chapter 3 are satisfied
by TB. The described TB is thus a theory appropriate for the mining of Browder’s proof and,
in the context of the bounded functional interpretation, the extraction theorems in Section
3.3 still hold true with PAωE[X, dX , aX , bX ] replaced by TB.

We will now recall the arguments in Browder’s original proof. Browder starts by showing
that the set of fixed points of the map U , F = Fix(U), is nonempty, convex and closed.
Formally, we can only speak of sets via their characteristic functions. The closeness condition
is not required for the mining. Browder’s argument that F is convex is easily formalizable
in the theory. The existence of a fixed point in C can be added as an axiom to the theory,
since its proof makes use of Zorn’s Lemma and is not formalizable in TB. Formally, this
would be a matter of extending the language with a constant c of type X and postulating
the universal statement U(c) = c together with c ∈ C. This works as these formulas are
in the appropriate form. However, in this case, there is an easier approach. In T +

B , it is
possible to prove the existence of a fixed point in C. This result follows from the fact that
U has “almost fixed points” and by using BCωbd. The argument is the following. First we see
that, in TB, one can prove

∀n ∈ N
(
‖U(un)− un‖ ≤

b

n+ 1

)
. (4.34)

This entails,

∀n ∈ N ∃x ∈ C∀n′ ≤ n

(
‖U(x)− x‖ < b

n′ + 1

)
,

and, by (ii) of Lemma 3.6,

∀n ∈ N∃x ∈ C∀n′ ≤ n

(
‖U(x)− x‖ER

b

n′ + 1

)
.

Finally, by an application of the (contrapositive of) BCωbd,

∃x ∈ C∀n ∈ N
(
‖U(x)− x‖ER

1

n+ 1

)
,

and, by (ii) of Lemma 3.6, we conclude

∃x ∈ C (U(x) = x) .

Instead of this back-and-forth between the extensional and intensional inequalities, we could
just observe that BCωbd is trivially true for existential formulas and use its contrapositive
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directly.

Next, Browder’s proof considers a projection argument to justify the existence of an unique
point of F closest to v0:

Let λ := infx∈F ‖x− v0‖. By the definition of the infimum:

∀k ∈ N∃x ∈ F
(
‖x− v0‖ ≤ λ+

1

k + 1

)
.

It is possible to write the previous statement without referencing the existence of this infi-
mum.

∀k∃x ∈ C
(
U(x) = x ∧ ∀y ∈ C

(
U(y) = y → ‖x− v0‖ ≤ ‖y − v0‖+

1

k + 1

))
. (4.35)

Using countable choice, one then considers a sequence (xn) of fixed points of U in C such
that for all n ∈ N,

∀y ∈ C
(
U(y) = y → ‖xn − v0‖ ≤ ‖y − v0‖+

1

k + 1

)
.

It is then shown that the sequence (xn) is a Cauchy sequence and so it converges (to the point
of F closest to v0). However, as was commented by Kohlenbach in [27], (4.35) is already
sufficient to carry out Browder’s theorem and the mentioned application of countable choice
is not needed. In TB, with a simple inductive argument, it is possible to prove (4.35).

Browder’s proof continues with two technical facts:

(I) ∀k ∈ N∃x ∈ C
(
U(x) = x ∧ ∀y ∈ C

(
U(y) = y → 〈x− v0, x− y〉 < 1

k+1

))
;

(II) ∀n ∈ N∀x ∈ C (U(x) = x→ ‖un − x‖2 ≤ 〈x− v0, x− un〉).

Both (I) and (II) can be proven in TB. Fact (I) is derived from the projection argument
and the convexity property of C. Fact (II) relies on simple computations and is the main
combinatorial core of Browder’s proof.
From (I) and (II) it is possible to derive that (un) is a Cauchy sequence.
In fact, let k ∈ N be given. From (I), consider x̃ such that U(x̃) = x̃ and

∀y ∈ C
(
U(y) = y → 〈x̃− v0, x̃− y〉 <

1

k + 1

)
. (4.36)

By (II) applied to x̃, it is enough to see that for some n ∈ N it holds

∀i ≥ n

(
〈x̃− v0, x̃− ui〉 <

1

k + 1

)
. (4.37)
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Suppose not. Then,

∀n ∈ N∃i ≥ n

(
〈x̃− v0, x̃− ui〉 ≥

1

k + 1

)
. (4.38)

Take (vn) a subsequence of (un) satisfying

∀n ∈ N
(
〈x̃− v0, x̃− vn〉 ≥

1

k + 1

)
.

The sequential weak compactness is used at this point in the proof: Take (wn) a subsequence
of (vn) weakly convergent to some y ∈ C. Since (wn) is a sequence of almost fixed points
(since (un) is) that is weakly convergent to y ∈ C, the demi-closeness principle states that
such y is a fixed point. Furthermore, since (wn) is a subsequence of (vn), one concludes,
〈x̃− v0, x̃− y〉 ≥ 1

k+1
. However, since y ∈ F , this is contradictory with (4.36).

Hence, (4.37) must hold for some n ∈ N. By (II) applied to x̃ and one such n, we conclude
‖ui − x̃‖2 ≤ 1

k+1
. The Cauchy property now follows from this argument with 4(k + 1)2 − 1

and triangle inequality.

The problem with the above argument resides in the fact that sequential weak compact-
ness is not formalizable in T +

B . We now show how it can be bypassed by replacing it with
Heine/Borel compactness, which corresponds to an application of BCωbd.

Given m, since (un) is a sequence of almost fixed points, by the assumption (4.38) we can
take y = ui for a suitable large enough i in order to conclude

∀m ∈ N∃y ∈ C
(
‖U(y)− y‖ ≤ 1

m+ 1
∧ 〈x̃− v0, x̃− y〉 ≥

1

k + 1

)
.

This is clearly equivalent to

∀m ∈ N∃y ∈ C∀i ≤ m

(
‖U(y)− y‖ ≤ 1

i+ 1
∧ 〈x̃− v0, x̃− y〉 ≥

1

k + 1

)
. (4.39)

Now, by the contrapositive of BCωbd, we conclude

∃y ∈ C
(
U(y) = y ∧ 〈x̃− v0, x̃− y〉 ≥

1

k + 1

)
. (4.40)

This contradicts (4.36).
Notice that the matrix of (4.39) is not a bounded formula. Again, with the easy observation
that BCωbd extends to existential formulas (with bounded matrix) we are justified in this
application of the (contrapositive of the) BCωbd. It is also possible to replace the inequalities
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between real numbers with its intensional quantifier-free version ER, and also make the ap-
plication of BCωbd valid. Since this argument, circumventing sequential weak compactness,
is formalizable in T +

B , we can mine it and obtain a quantitative version of this modified
proof. All the extracted quantitative information is now guaranteed to be given by primitive
recursive functionals in Gödel’s T.

Finally, we make some remarks. The application of BCωbd above is an application of Heine/Borel
compactness, where the relevant open sets Ωi are

Ωi := {x ∈ X | ‖U(y)− y‖ > 1

i+ 1
} ∪ {x ∈ X | 〈x̃− v0, x̃− y〉 <

1

k + 1
}.

Assume (4.40) does not hold. Then C ⊆
⋃
i∈N Ωi. By Heine/Borel compactness, there is

some m ∈ N such that C ⊆
⋃
i≤m Ωi. This contradicts (4.39).

We have shown that (un) is a Cauchy sequence and thus, convergent. Since (un) is a sequence
of almost fixed points, it follows that (un) must converge to a fixed point. The important
point is that the use of a false Heine/Borel compactness principle, in the context of T +

B , is
an acceptable way of proving the convergence of sequences in Hilbert spaces.
The need of sequential weak compactness was replaced with an argument that makes use
of the bounded collection axiom, which is one of characteristic principles of the bounded
functional interpretation. However, the argument could also be made in the context of the
monotone functional interpretation using the so-called generalized uniform boundness prin-
ciple ∃-UBX (see [23] or sections 17.7 and 17.8 of [25]). Still, while the bounded functional
interpretation trivializes the (countable) Heine/Borel compactness – since it corresponds to
a particular instance of BCωbd –, the monotone functional interpretation can only interpret
it by adding to the verifying theory an axiom which is true in the structure of the strongly
majorizable functionals (extended to the new base type X). In other words, in the bounded
functional interpretation we have a conservation result, whereas in the monotone functional
interpretation we only have a true quantitative statement. For proof mining purposes (at
the lower types usually considered) this makes no difference. In the context of the bounded
functional interpretation it was easier to unearth this phenomenon via its bounded collec-
tion principles, but it still remains to see if there are applications with these principles which
cannot be obtained using ∃-UBX instead.

4.2.2 A general principle

In this section we isolate the Heine/Borel argument that allows the elimination of sequential
weak compactness from mining. We will work in the theory of bounded metric spaces shown
in Section 3.2. Then, we will prove its quantitative version. This general framework allows
for the quantitative principle shown here to be applicable in many concrete situations.
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Proposition 4.12. The theory PAωE[X, dX , aX , bX ]+ proves the following. Let U be a map
from X to X and (un)n∈N a sequence of elements of X such that limn d(U(un), un) = 0.
Consider F := Fix(U). Given k ∈ N, λ ∈ R and θ : X → R, if

∀y ∈ F
(
λER θ(y) +

1

k + 1

)
(4.41)

then, for n sufficiently large,

λER θ(un) +
1

k + 1
(4.42)

Proof. By hypothesis and the definition of fixed point

∀y ∈ X
(
∀m ∈ N

(
d(U(y), y) ER

1

m+ 1

)
→ λER θ(y) +

1

k + 1

)
.

Hence,

∀y ∈ X∃m ∈ N
(
d(U(y), y) ER

1

m+ 1
→ λER θ(y) +

1

k + 1

)
.

By BCωbd,

∃l ∈ N∀y ∈ X∃m ≤ l

(
d(U(y), y) ER

1

m+ 1
→ λER θ(y) +

1

k + 1

)
.

Take one such l = l0. Clearly

∀y ∈ X
(
d(U(y), y) ER

1

l0 + 1
→ λER θ(y) +

1

k + 1

)
.

Since limn d(U(un), un) = 0, the result follows.

A more concrete result is needed for the arguments in which we intend to apply this principle.

Proposition 4.13 (General principle). The theory PAωE[X, dX , aX , bX ]+ proves the following.
Let U be a map from X to X, ϕ a map from X × X to R, and (un)n∈N be a sequence of
elements of X such that limn d(U(un), un) = 0. Consider F := Fix(U). If

∀k ∈ N ∃x ∈ F ∀y ∈ F
(
ϕ(x, x) ER ϕ(x, y) +

1

k + 1

)
then

∀k ∈ N ∃x ∈ F ∃n ∈ N ∀m ≥ n

(
ϕ(x, x) ER ϕ(x, um) +

1

k + 1

)
.

Proof. Given k ∈ N take, by hypothesis, x̃ ∈ F such that ∀y ∈ F (ϕ(x̃, x̃) ER ϕ(x̃, y) + 1
k+1

).
Let λ := ϕ(x̃, x̃) and θ(y) := ϕ(x̃, y). Now apply Proposition 4.12.
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When ER is replaced by ≤R, these results are set-theoretically false and we can give a
counterexample: Take X as the unit ball of the normed space `1 (the space of real-value se-
quences whose series is absolutely convergent). Let U be the shift operator U(x0, x1, · · · ) :=
(0, x0, x1, · · · ) and θ(x0, x1, x2, · · · ) := −

∑∞
i=0 |xi|, i.e., θ(x) is the symmetric of the norm of

x. The only fixed point of U is the zero vector. Let un be the vector ( 1
n+1

, · · · , 1
n+1

, 0, 0, · · · ),
where there are n+1 nonzero entries. Clearly, we have always θ(un) = −1 and ‖U(un)−un‖ =
2

n+1
. Then, Proposition 4.12 fails with λ = 0 (for any k ∈ N). By considering ϕ(x, y) = −‖y‖,

it is possible to see with this example that the general principle is also false.

Now we show a quantitative version of Proposition 4.13. This quantitative version can then
be applied to concrete cases of minings to achieve the correct quantitative version of the
argument replacing sequential weak compactness. This is exemplified with the analyses of
theorems due to Browder and due to Wittmann in the following Section 4.4.
The condition (a) is the metastable version of the assumption that limn d(U(un), un) = 0.
Condition (b) is the interpretation of the main hypothesis of Proposition 4.13 and, in the
applications, corresponds to the interpretation of the corresponding fact (I) of Browder’s
proof. The conclusion is again a metastable version, this time of the conclusion of Proposition
4.13.

Theorem 4.14 (Quantitative version of the general principle). Let (X, d) be a metric space.
Let U be a map from X to X, ϕ a map from X × X to R and (un)n∈N be a sequence of
elements of X. Suppose that there are monotone functionals α and β from N × NN to N
satisfying:

(a) ∀k ∈ N ∀̃f ∈ NN ∃N ≤ α(k, f)∀n ∈ [N, f(N)]

(
d(U(un), un) ≤ 1

k + 1

)
;

(b) ∀k ∈ N ∀̃f ∈ NN ∃N ≤ β(k, f)∃x ∈ X(
d(U(x), x) ≤ 1

f(N) + 1
∧ ∀y ∈ X

(
d(U(y), y) ≤ 1

N + 1
→ ϕ(x, x) ≤ ϕ(x, y) +

1

k + 1

))
.

Then, for every k ∈ N and any monotone function f ∈ NN, there are a natural number N
with N ≤ ψ(k, f) and x ∈ X such that

d(U(x), x) ≤ 1

f(N) + 1
∧ ∀n ∈ [N, f(N)]

(
ϕ(x, x) ≤ ϕ(x, un) +

1

k + 1

)
, (4.43)

where ψ(k, f) := α
(
β
(
k, f̂
)
, f
)

, with f̂(m) := f(α(m, f)).

Proof. Take k ∈ N and a monotone function f ∈ NN. By (b), applied to k and f̂ there are

N1 ≤ β
(
k, f̂
)

and x̃ ∈ X such that
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d(U(x̃), x̃) ≤ 1

f̂(N1) + 1
and

∀y ∈ X
(
d(U(y), y) ≤ 1

N1 + 1
→ ϕ(x̃, x̃) ≤ ϕ(x̃, y) +

1

k + 1

)
. (4.44)

Apply (a) to N1 and f to get N ≤ α(N1, f) satisfying

∀n ∈ [N, f(N)]

(
d(U(un), un) ≤ 1

N1 + 1

)
. (4.45)

We have N ≤ α(N1, f) ≤ α
(
β
(
k, f̂
)
, f
)

= ψ(k, f) and, by the monotonicity of f ,

d(U(x̃), x̃) ≤ 1

f̂(N1) + 1
=

1

f (α(N1, f)) + 1
≤ 1

f(N) + 1
.

Also, for n ∈ [N, f(N)], by (4.44) and (4.45), we have

ϕ(x̃, x̃) ≤ ϕ(x̃, un) +
1

k + 1
.

Provided that the space is bounded, the form of Theorem 4.14 is the quantitative version
of Proposition 4.13 obtained using the bounded functional interpretation. However, in the
end, we did not require the boundedness of the metric space (X, d). As can be seen from the
proof, this hypothesis is not necessary. Proposition 4.14 is just a simple mathematical fact.
In our applications, however, the given monotone functionals α and β depend on the bound
of the metric space (as well as the concluding bounding functional ψ). A similar situation
also happens in the forthcoming Proposition 5.9.

4.3 The projection argument

As we discussed in Subsection 4.2.1, the projection argument requires the use of countable
choice and thus its interpretation goes beyond the functionals of Gödel’s T. In contrast the
weaker projection statement (4.35) can be proved using induction only and is already suffi-
cient to carry on Browder’s argument. In this section, we interpret and mine the proof of
this weaker projection statement using the bounded functional interpretation. In section 3
of [12], a “dance” between the inequalities <R and ≤R is used to fully justify the interpre-
tation of (4.35). There the full aparathus of the bounded functional interpretation was not
introduced, which required that ad hoc treatment. Here, however, it is possible to switch to
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the intensional quantifier-free inequality ER and get a correct explanation of the interpreta-
tion. We show the analysis of the (weaker) projection statement. By the context, there is
no problem in writing E in place of ER. The statement (4.35) is equivalent to

∀k∃x ∈ C[
U(x) = x ∧ ∀y ∈ C

(
∀N

(
‖U(y)− y‖E 1

N + 1

)
→ ‖x− v0‖2 E ‖y − v0‖2 +

1

k + 1

)]
and, hence, equivalent to

∀k∃x ∈ C(
U(x) = x ∧ ∀y ∈ C ∃N

(
‖U(y)− y‖E 1

N + 1
→ ‖x− v0‖2 E ‖y − v0‖2 +

1

k + 1

))
.

The innocuous change to the squares is just to make it easier to relate with the inner product
functional. Since the formula after ‘∃N ’ is quantifier-free, by BCωbd we easily get

∀k∃x ∈ C(
U(x) = x ∧ ∃N∀y ∈ C

(
‖U(y)− y‖E 1

N + 1
→ ‖x− v0‖2 E ‖y − v0‖2 +

1

k + 1

))
or, equivalently,

∀k∃N∃x ∈ C∀m
(
‖U(x)− x‖E 1

m+ 1

∧ ∀y ∈ C
(
‖U(y)− y‖E 1

N + 1
→ ‖x− v0‖2 E ‖y − v0‖2 +

1

k + 1

))
.

In turn, by the contrapositive of BCωbd, this is equivalent to

∀k∃N∀m∃x ∈ C
(
‖U(x)− x‖E 1

m+ 1

∧ ∀y ∈ C
(
‖U(y)− y‖E 1

N + 1
→ ‖x− v0‖2 E ‖y − v0‖2 +

1

k + 1

))
.

Finally, using mACωbd, we obtain

∀k∀̃f∃N∃x ∈ C
(
‖U(x)− x‖E 1

f(N) + 1

∧ ∀y ∈ C
(
‖U(y)− y‖E 1

N + 1
→ ‖x− v0‖2 E ‖y − v0‖2 +

1

k + 1

))
.
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The formula above is the translation of (4.35) using the bounded functional interpretation
and is provable in T +

B . By the results of Section 3.3 (for TB), we are guaranteed to be able to
find a monotone functional bounding N in terms of k and f . Then, by flattening, we can go
back to the extensional inequalities. The reader should compare the end formula above with
the corresponding formula given by the monotone functional interpretation in p. 2772 of
[27]. Since (4.35) is proved by induction, it is not a surprise that the bound on N is defined
by recursion:

Proposition 4.15. For any natural number k and monotone function f : N→ N, there are
N ≤ f (r)(0) and x ∈ C such that

‖U(x)−x‖ ≤ 1

f(N) + 1
∧∀y ∈ C

(
‖U(y)− y‖ ≤ 1

N + 1
→ ‖x− v0‖2 ≤ ‖y − v0‖2 +

1

k + 1

)
,

where r := b2(k + 1) and f (r) is the r-th fold composition of f .

Proof. Assume that the result is not true. Then there are k ∈ N and a monotone function
f : N→ N, such that for all N ≤ f (r)(0) and x ∈ C

‖U(x)− x‖ ≤ 1

f(N) + 1
→ ∃yC

(
‖U(y)− y‖ ≤ 1

N + 1
∧ ‖y − v0‖2 < ‖x− v0‖2 −

1

k + 1

)
.

(4.46)
First of all, note that the r-sequence given by the expression f (r)(0) is monotone (because f
is). We define a finite sequence x0, x1, . . . , xr, xr+1 of elements of C as follows:
x0 :
By (4.34), let x0 be such that

‖U(x0)− x0‖ ≤
1

f (r+1)(0) + 1
.

xj+1, for j ≤ r :

Assume that we have xj such that ‖U(xj) − xj‖ ≤ 1
f (r−j+1)(0)+1

. By (4.46) applied to N =

f (r−j)(0) and to x = xj, we conclude that there is y ∈ C satisfying

‖U(y)− y‖ ≤ 1

f (r−j)(0) + 1
∧ ‖y − v0‖2 < ‖xj − v0‖2 −

1

k + 1
.

Let xj+1 be one such y.

By the definition, for all j ≤ r,

‖xj+1 − v0‖2 < ‖xj − v0‖2 −
1

k + 1
,
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which implies the contradiction

‖xr+1 − v0‖2 < ‖x0 − v0‖2 −
r + 1

k + 1
≤ b2 − b2(k + 1) + 1

k + 1
< 0.

The fact (I) of Subsection 4.2.1 is a refinement of the projection argument. Its bounded
functional interpretation is similar to the interpretation of (4.35):

∀k∀̃f∃N ∃x ∈ C(
‖U(x)− x‖E 1

f(N) + 1
∧ ∀y ∈ C

(
‖U(y)− y‖E 1

N + 1
→ 〈x− v0, x− y〉E

1

k + 1

))
,

and the (flattening of) the corresponding mined result gives:

Proposition 4.16. For any natural number k and monotone function f : N→ N, there are
N ≤ 12b(f̌ (R)(0) + 1)2 and x ∈ C such that

‖U(x)− x‖ ≤ 1

f(N) + 1
∧ ∀y ∈ C

(
‖U(y)− y‖ ≤ 1

N + 1
→ 〈x− v0, x− y〉 ≤

1

k + 1

)
,

with R := b4(k + 1)2 and f̌(m) := max{f(12b(m+ 1)2), 12b(m+ 1)2}.

As we will explain, this mining can be obtained from Proposition 4.15 and the following two
estimates, essentially due to Kohlenbach in [27].
In the following, we write wγ(u, v) := (1− γ)u+ γv, for γ ∈ [0, 1].

Lemma 4.17. For all k ∈ N and x1, x2 ∈ C,

2∧
j=1

(
‖U(xj)− xj‖ ≤

1

12b(k + 1)2

)
→ ∀γ ∈ [0, 1]

(
‖U(wγ(x1, x2))− wγ(x1, x2)‖ ≤

1

k + 1

)
.

The lemma above is a quantitative version of the statement that the set of fixed points in
C is a convex set.

Lemma 4.18. For all k ∈ N and x, y ∈ C,

∀γ ∈ [0, 1]

(
‖x− v0‖2 ≤ ‖wγ(x, y)− v0‖2 +

1

b2(k + 1)2

)
→ 〈x− v0, x− y〉 ≤

1

k + 1
.

Notice that the extracted information on these two lemmas does not depend on the points in
C but only on the bound on the diameter of C. Via the bounded functional interpretation this
is made clear by the use of the bounded collection principle and the fact that quantifications
over C are treated as bounded.
Using Lemma 4.17, we have the following intermediate result:
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Corollary 4.19. For any natural number k and monotone function f : N → N, there are
N ≤ 12b(f̌ (r)(0) + 1)2 and x ∈ C for which the following two properties hold:

‖U(x)− x‖ ≤ 1

f(N) + 1

and

∀y ∈ C
(
‖U(y)− y‖ ≤ 1

N + 1
→ ∀γ ∈ [0, 1]

(
‖x− v0‖2 ≤ ‖wγ(x, y)− v0‖2 +

1

k + 1

))
,

with r := b2(k + 1) and f̌(m) := max{f(12b(m+ 1)2), 12b(m+ 1)2}.

Proof. Let k and monotone f be given. By Proposition 4.15, there exist x ∈ C and N ′ ≤
f̌ (r)(0) with

‖U(x)− x‖ ≤ 1

f̌(N ′) + 1

and

∀y ∈ C
(
‖U(y)− y‖ ≤ 1

N ′ + 1
→ ‖x− v0‖2 ≤ ‖y − v0‖2 +

1

k + 1

)
, (4.47)

where r = b2(k + 1). Define N := 12b(N ′ + 1)2. Clearly, N ≤ 12b(f̌ (r)(0) + 1)2. This entails
that

‖U(x)− x‖ ≤ 1

f(N) + 1

because f(N) = f(12b(N ′ + 1)2) ≤ f̌(N ′). Now, take y ∈ C such that ‖U(y) − y‖ ≤ 1
N+1

.

Hence ‖U(y)− y‖ ≤ 1
12b(N ′+1)2

. On the other hand, we also have

‖U(x)− x‖ ≤ 1

f̌(N ′) + 1
≤ 1

12b(N ′ + 1)2
.

By Lemma 4.17, we get ‖U(wγ(x, y))− wγ(x, y)‖ ≤ 1
N ′+1

.
The result then follows from (4.47) for wγ(x, y).

Lemma 4.18 corresponds to the mining of the following result:

∀γ ∈ [0, 1]
(
‖x− v0‖2 ≤ ‖wγ(x, y)− v0‖2

)
→ 〈x− v0, x− y〉 ≤ 0.

This result is implicit in Browder’s proof [6] and is needed to show (I) of Subsection 4.2.1.
Proposition 4.16 is an immediate consequence of Lemma 4.18 and Corollary 4.19 by instan-
tiating k with b2(k + 1)2 − 1.
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Chapter 5

Removing weak compactness

In this chapter we shall obtain, using the quantitative general principle, quantitative versions
of three theorems. We discuss theorems by F.E. Browder [6] and by R. Wittmann [51] and
prove quantitative metastable versions. Later, by expanding this method, we will obtain a
metastable version of an extension of Wittmann’s theorem due to Bauschke [2]. We will be
following section 5 of [12].
By an analysis of the proofs of these results, one can see that they finish with a simple
argument that relies on an application of modus ponens (and the triangle inequality). The
next result isolates this argument in the general framework of bounded metric spaces.

Lemma 5.1. The theory PAωE[X, dX , aX , bX ] proves the following. Let U be a map from
X to X, ϕ a map from X × X to R and (un) be a sequence of elements of X. Consider
F := Fix(U). Suppose that

∀k ∈ N ∃x ∈ F ∃n ∈ N ∀m ≥ n

(
ϕ(x, x) ER ϕ(x, um) +

1

k + 1

)
and that there is a monotone function δ : N→ N such that, for all k ∈ N and x ∈ F ,

∃n ∈ N ∀m ≥ n

(
ϕ(x, x) ER ϕ(x, um) +

1

δ(k) + 1

)
→ ∃M ∈ N∀m ≥M

(
d(um, x) ER

1

k + 1

)
.

Then, (un) is a Cauchy sequence.

Proof. Let k ∈ N be given. By the first assumption, applied to δ(2k + 1), we have for some
x̃ ∈ F ,

∃n ∈ N∀m ≥ n

(
ϕ(x̃, x̃) ER ϕ(x̃, um) +

1

δ(2k + 1) + 1

)
.

By the second assumption, we conclude that

∃M ∈ N ∀m ≥M

(
d(um, x̃) ER

1

2(k + 1)

)
.
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Using triangle inequality, it follows that (un) is a Cauchy sequence.

It is not difficult to find the form that the quantitative version of the above lemma must take
under the bounded functional interpretation. The interpretation of the first assumption is
the statement in the conclusion of Theorem 4.14. The second assumption can be written as

∀k∀x ∈ X
[(
∀r
(
d(U(x), x) E

1

r + 1

)
∧ ∃n∀i ≥ n

(
ϕ(x, x) E ϕ(x, ui) +

1

δ(k) + 1

))

→ ∃M∀m ≥M

(
d(um, x) E

1

k + 1

)]
.

By the contrapositive of mACωbd, the conclusion of the implication is equivalent to its metastable
version

∀̃f∃M∀m ∈ [M, f(M)]

(
d(um, x) E

1

k + 1

)
.

Therefore, the second assumption is equivalent to

∀k, n∀̃f∀x ∈ X∃r∃i ≥ n∃M
[(
d(U(x), x) E

1

r + 1
∧ ϕ(x, x) E ϕ(x, ui) +

1

δ(k) + 1

)

→ ∀m ∈ [M, f(M)]

(
d(um, x) E

1

k + 1

)]
.

By BCωbd, we have

∀k, n∀̃f∃r, i,M∀x ∈ X∃r′ ≤ r∃j ∈ [n, i]∃M ′ ≤M

[(
d(U(x), x) E

1

r′ + 1

∧ ϕ(x, x) E ϕ(x, uj) +
1

δ(k) + 1

)
→ ∀m ∈ [M ′, f(M ′)]

(
d(um, x) E

1

k + 1

)]
Therefore

∀k, n∀̃f∃r, i,M∀x ∈ X
[(

d(U(x), x) E
1

r + 1
∧ ∀j ∈ [n, i]

(
ϕ(x, x) E ϕ(x, uj) +

1

δ(k) + 1

))
→ ∃M ′ ≤M∀m ∈ [M ′, f(M ′)]

(
d(um, x) E

1

k + 1

)]
.

We can then look at the modus ponens argument justifying Lemma 5.1 and extract a bound φ
on the metastability of (un). Since the proof is essentially an application of modus ponens, by
the proof of the soundness theorem, it is expected that the computed bound be defined with
a function composition. By flattening, we can return to the usual extensional inequalities
between real numbers. The next result is the quantitative version of Lemma 5.1.
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Proposition 5.2 (Quantitative version of 5.1). Let (X, d) be a metric space. Let U be a
map from X to X, ϕ a map from X × X to R and (un) be a sequence of elements of X.
Suppose that there are monotone functions δ, ψ, γ, η and σ satisfying:

(i) ∀k ∈ N ∀̃f ∈ NN ∃N ≤ ψ(k, f)

∃x ∈ X
(
d(U(x), x) ≤ 1

f(N) + 1
∧ ∀n ∈ [N, f(N)]

(
ϕ(x, x) ≤ ϕ(x, un) +

1

k + 1

))
and

(ii) ∀k, n ∈ N ∀̃f ∈ NN ∀x ∈ X[
d(U(x), x) ≤ 1

γ(k, n, f) + 1
∧ ∀i ∈ [n, η(k, n, f)]

(
ϕ(x, x) ≤ ϕ(x, ui) +

1

δ(k) + 1

)
→ ∃M ≤ σ(k, n, f)∀m ∈ [M, f(M)]

(
d(um, x) ≤ 1

k + 1

)]
.

Then

∀k ∈ N ∀̃f ∈ NN ∃M ≤ φ(k, f)∀m,n ∈ [M, f(M)]
(
d(um, un) ≤ 1

k + 1

)
, (5.1)

where φ(k, f) := σ
(

2k + 1, ψ
(
δ(2k + 1), f

)
, f
)

, where the auxiliary function f is defined by

f(m) := max{γ(2k + 1,m, f), η(2k + 1,m, f)}.
Proof. Let k ∈ N and monotone f ∈ NN be given. Notice that, since γ and η are monotone,
the function f is also monotone. We apply condition (i) to δ(2k + 1) and f in order to get
N1 ≤ ψ(δ(2k + 1), f) and x̃ ∈ X such that

d(U(x̃), x̃) ≤ 1

f(N1) + 1
and

∀n ∈ [N1, f(N1)]
(
ϕ(x̃, x̃) ≤ ϕ(x̃, un) +

1

δ(2k + 1) + 1

)
. (5.2)

Now apply (ii) to 2k + 1, N1, f and x̃ ∈ X and obtain(
d(U(x̃), x̃) ≤ 1

γ(2k + 1, N1, f) + 1

∧ ∀i ∈ [N1, η(2k + 1, N1, f)]
(
ϕ(x̃, x̃) ≤ ϕ(x̃, ui) +

1

δ(2k + 1) + 1

))
→ ∃M ≤ σ(2k + 1, N1, f)∀m ∈ [M, f(M)]

(
d(um, x̃) ≤ 1

2k + 2

)
.

(5.3)

Since γ(2k + 1, N1, f), η(2k + 1, N1, f) ≤ f(N1), by (5.2) we have the antecedent of (5.3).
Therefore

∃M ≤ σ(2k + 1, N1, f)∀m ∈ [M, f(M)]

(
d(um, x̃) ≤ 1

2k + 2

)
Finally, we have M ≤ σ(2k+ 1, N1, f) ≤ σ

(
2k+ 1, ψ

(
δ(2k+ 1), f

)
, f
)

= φ(k, f) and, by the
triangle inequality, the result follows.
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5.1 Browder’s theorem

In the following, we are in the hypotheses of Theorem 4.11. Thus, X is a real Hilbert space,
C is a bounded closed convex subset of X, U : X → X is a nonexpansive mapping that
maps C into itself, v0 ∈ C and the sequence (un) is defined as in Theorem 4.11.

We use the quantitative general principle (Proposition 4.14) and Proposition 5.2 for the
bounded metric space C with the metric induced by the Hilbert space norm and for the
mapping ϕ(x, y) := 〈x− v0, y〉. Let b ∈ N be a positive upper bound on the diameter of C.
Let us define first the following functions:

r : N→ N, r(k) = b4(k + 1)2. (5.4)

and, for every g : N→ N,

ωg : N→ N, ωg(m) = max{g(12b(m+ 1)2), 12b(m+ 1)2}. (5.5)

As an immediate consequence of (4.34) of Subsection 4.2.1, we get that condition (a) of
Proposition 4.14 is fulfilled with

α(k, f) := α(k) := b(k + 1).

From the analysis of the projection argument, namely Proposition 4.16, condition (b) of
Proposition 4.14 is satisfied with

β(k, f) := 12b
(
ω
(r(k))
f (0) + 1

)2
.

Therefore we can apply the quantitative version of the general principle (Proposition 4.14)
to get that for every k ∈ N and any monotone function f ∈ NN, there exists N ≤ ψ(k, f)
and x ∈ C such that

d(U(x), x) ≤ 1

f(N) + 1
∧ ∀n ∈ [N, f(N)]

(
ϕ(x, x) ≤ ϕ(x, un) +

1

k + 1

)
, (5.6)

where

ψ(k, f) = α
(
β(k, f̂), f

)
= b

(
β
(
k, f̂
)

+ 1
)

= b

(
12b
(
ω
(r(k))

f̂
(0) + 1

)2
+ 1

)
= 12b2

(
ω
(r(k))

f̂
(0) + 1

)2
+ b.

with
f̂(m) = f(α(m, f)) = f(b(m+ 1)).
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Thus, condition (i) of Proposition 5.2 is satisfied with this functional ψ.

We now need to show that hypothesis (ii) of Proposition 5.2 holds and determine the required
bounds. This follows from the mining of fact (II) of Subsection 4.2.1. It can be read from
Kohlenbach’s computations of lemma 2.11 of [27] that, for all x ∈ C and k, n ∈ N,(

‖U(x)− x‖ ≤ 1

2b(n+ 1)(k + 1)2
∧ 〈x− v0, x− un〉 ≤

1

2(k + 1)2

)
→ ‖un − x‖ ≤

1

k + 1
.

(5.7)

Therefore, condition (ii) of Proposition 5.2 holds with

γ(k, n, f) := 2b(f(n) + 1)(k + 1)2 − 1, δ(k) := 2(k + 1)2 − 1, η(k, n, f) := f(n) and
M := σ(k, n, f) := n.

Finally, the conclusion of Proposition 5.2 yields a quantitative version of Browder’s theorem
and a bound φBr on the metastability of the sequence (un) is extracted.

Theorem 5.3 (Quantitative Browder). Under the conditions of Browder’s theorem, let b ∈ N
be a positive upper bound on the diameter of C. Then, for all k ∈ N and every monotone
function f : N→ N,

∃N ≤ φBr(k, f)∀i, j ∈ [N, f(N)]

(
‖ui − uj‖ <

1

k + 1

)
,

where

φBr(k, f) := 12b2
(
h(R)(0) + 1

)2
+ b,

with R := 64b4(k + 1)4

and h(m) := max{8b(f(12b2(m+ 1)2 + b) + 1)(k + 1)2 − 1, 12b(m+ 1)2}.

Proof. Apply Proposition 5.2 and see that

f(m) = 8b(f(m) + 1)(k + 1)2 − 1,

φBr(k, f) = σ
(
2k + 1, ψ

(
δ(2k + 1), f

)
, f
)

= ψ
(
δ(2k + 1), f

)
=

= 12b2
(
ω
(r(δ(2k+1)))

f̂
(0) + 1

)2

+ b = 12b2
(
h(R)(0) + 1

)2
+ b.
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5.2 Wittmann’s theorem

In an attempt to find fixed point for nonexpansive maps, Benjamin Halpern went in a
different direction than Browder. He introduced the so-called Halpern iterations which are
defined recursively by

u0 := u ∈ X, un+1 := λnu0 + (1− λn+1)U(un), (5.8)

where (λn) ⊂ [0, 1] is a sequence of real numbers and u is some point in the Hilbert space.

Initially with u0 = 0, in [18], Halpern showed the strong convergence of (un) under certain
conditions for (λn). However, the conditions considered by Halpern, left out the natural
choice λn = 1

n+1
. In 1992, Wittmann proved in [51] the following important result,

Theorem 5.4 (Wittmann [51]). Let X be a Hilbert space, C be a nonempty closed convex
bounded subset of X and U : C → C be a nonexpansive mapping. Assume that (λn) is a
sequence in (0, 1) satisfying

(C1) limλn = 0, (C2)
∞∑
n=1

λn =∞, (C3)
∞∑
n=1

|λn − λn+1| <∞.

If (un) is a sequence defined by (5.8) with u0 = u for some point u ∈ C, then (un) converges
strongly to a fixed point of U in C (the closest one to u).

One can easily see that λn := 1
n+1

satisfies conditions (C1)-(C3). Notably, in the particu-

lar case when U is linear and λn := 1
n+1

, the Halpern iteration becomes the usual ergodic
average. Thus, Wittmann’s result is a nonlinear generalization of the von Neumann mean
ergodic theorem and, in this sense, (un) can be seen as a nonlinear ergodic average.

In this section we show how, using Propositions 4.14 and 5.2, a quantitative version of
Wittmann’s theorem can be obtained. Here, for simplicity, we will only consider the case
λn := 1

n+1
. The general case can, however, be argued as a particular instance of Baushcke’s

theorem analyzed in Section 5.4.

As in the case of Browder’s theorem, we work with the bounded metric space C with the
metric induced by the Hilbert space norm. Let b ∈ N be a positive upper bound on the
diameter of C. This time, we will be using the function

ϕ(x, y) := 〈x− u0, U(y)〉.

This different function ψ, requires us to adjust Proposition 4.16. For every k ∈ N and every
g : N→ N, let

γk,g : N→ N with γk,g(m) = max{g(m), 2b(k + 1)}. (5.9)
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Proposition 5.5. For any natural number k and monotone function f : N → N, there are
N ≤ 12b(ω

(r(2k+1))
γk,f (0) + 1)2 and x ∈ C satisfying

‖U(x)−x‖ ≤ 1

f(N) + 1
∧∀y ∈ C

(
‖U(y)− y‖ ≤ 1

N + 1
→ 〈x− u0, U(x)− U(y)〉 ≤ 1

k + 1

)
,

where ωγk,f is defined by (5.5) and r is defined by (5.4).

Proof. Let k ∈ N and f : N→ N be monotone. Applying Proposition 4.16 to 2k + 1 and to
the monotone function γk,f , we get the existence of N ≤ 12b(ω

(r(2k+1))
γk,f (0) + 1)2 and x ∈ C

such that

‖U(x)− x‖ ≤ 1

γk,f (N) + 1

and

∀y ∈ C
(
‖U(y)− y‖ ≤ 1

N + 1
→ 〈x− u0, x− y〉 ≤

1

2(k + 1)

)
. (5.10)

Since γk,f (N) ≥ f(N), we have that

‖U(x)− x‖ ≤ 1

f(N) + 1
. (5.11)

Consider now y ∈ C satisfying ‖U(y) − y‖ ≤ 1
N+1

. As U is nonexpansive, we have that

‖U(U(y))− U(y)‖ ≤ 1
N+1

. Thus, we can apply (5.10) to U(y) and conclude that

〈x− u0, x− U(y)〉 ≤ 1

2(k + 1)
.

We have

〈x− u0, U(x)− U(y)〉 ≤ 〈x− u0, U(x)− x〉+ 〈x− u0, x− U(y)〉

≤ b‖U(x)− x‖+
1

2(k + 1)
≤ b

γk,f (N) + 1
+

1

2(k + 1)

Therefore, since we also have γk,f (N) ≥ 2b(k + 1), we conclude

〈x− u0, U(x)− U(y)〉 ≤ 1

k + 1
. (5.12)

By (5.11) and (5.12), the result follows.

Hence, condition (b) of Proposition 4.14 holds with

β(k, f) := 12b
(
ω(r(2k+1))
γk,f

(0) + 1
)2
.
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The bound α for (a) of Proposition 4.14 was computed in [27, Lemma 3.1]:

α(k, f) := α(k) := 4b(k + 1)
(
4b(k + 1) + 2

)
= 16b2(k + 1)2 + 8b(k + 1).

From the quantitative version of the general principle (Proposition 4.14), we get that the
condition (i) of Proposition 5.2 holds when

ψ(k, f) = α
(
β
(
k, f̂
)
, f
)

= 16b2
(
β
(
k, f̂
)

+ 1
)2

+ 8b
(
β
(
k, f̂
)

+ 1
)

= 16b2
(

12b
(
ω(r(2k+1))
γ
k,f̂

(0) + 1
)2

+ 1

)2

+ 8b

(
12b
(
ω(r(2k+1))
γ
k,f̂

(0) + 1
)2

+ 1

)
,

where f̂(m) := f(α(m, f)) = f(16b2(m+ 1)2 + 8b(m+ 1)).

For the condition (ii) of Proposition 5.2, we rely on the following result, which is an imme-
diate consequence of the more general Proposition 5.16 (proved in section 5.4).

Proposition 5.6. For all x ∈ C and all k, n, p ∈ N,

‖U(x)− x‖ ≤ 1

9b(k + 1)2(p+ 1)
∧ ∀i ∈ [n, p]

(
〈x− u0, U(x)− U(xi)〉 ≤

1

12(k + 1)2

)
→ ∀m ∈ [σ′(k, n), p]

(
‖um − x‖ ≤

1

k + 1

)
,

where σ′(k, n) := exp (ñ+ 1 + dln(3b2(k + 1)2)e), with ñ := max{n, 6b2(k + 1)2}.

Applying Proposition 5.6 with p := f(σ′(k, n)), we get condition (ii) of Proposition 5.2 with
the following monotone functions:

γ(k, n, f) := 9b(k + 1)2(f(σ′(k, n)) + 1)− 1, δ(k) := 12(k + 1)2 − 1,

η(k, n, f) := f(σ′(k, n)) and σ(k, n, f) := σ′(k, n).

Finally, we can apply Proposition 5.2 to get the following quantitative version of Wittmann’s
theorem.

Theorem 5.7 (Quantitative Wittmann). Under the conditions of Wittmann’s theorem, let
b ∈ N be a positive upper bound on the diameter of C. Then, for all k ∈ N and every
monotone function f : N→ N,

∃N ≤ φW(k, f)∀i, j ∈ [N, f(N)]

(
‖ui − uj‖ ≤

1

k + 1

)
,

where
φW(k, f) := σ′

(
2k + 1, ψ

(
48(k + 1)2 − 1, f

))
,

with σ′ and ψ defined above and f(m) = 36b(k + 1)2(f(σ′(2k + 1,m)) + 1)− 1.
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5.3 Adapting the general principle

In this section, Bauschke’s original proof of a generalization of Wittmann’s theorem to a
finite family of nonexpansive mappings [2] is analyzed. Bauschke’s proof has the same struc-
ture of Wittmann’s proof and depends on a sequential weak compactness argument in the
same way. Because of this, first we adapt the general principle to deal with a finite number
of maps and then we will use this extended principle to bypass the sequential weak compact-
ness argument in the mining of Bauschke’s theorem. We will be following section 6 of [12].

Throughout this section, we fix a natural positive number `. Let (X, d) be a bounded metric
space and let U0, . . . , U`−1 be mappings from X to X. Consider also mappings ϕ0, . . . , ϕ`−1
from X ×X to R and (un) a sequence of elements of X such that limn d(Ui(un), un) = 0, for
all i < `. We denote by

F :=
`−1⋂
i=0

Fix(Ui)

the set of common fixed points of the mappings U0, . . . , U`−1.
The next result is an adaptation of the general principle that consider a finite number of
maps.

Proposition 5.8. The theory PAωE[X, dX , aX , bX ]+ proves the following. Assume that

∀k ∈ N ∃x ∈ F ∀y ∈ F ∀i < `

(
ϕi(x, x) E ϕi(x, y) +

1

k + 1

)
. (5.13)

Then

∀k ∈ N∃x ∈ F ∃n ∈ N ∀m ≥ n∀i < `

(
ϕi(x, x) E ϕi(x, um) +

1

k + 1

)
. (5.14)

Proof. Let k ∈ N be arbitrary.
By (5.13), there exists x̃ ∈ F such that ∀y ∈ F∀i < `

(
ϕi(x̃, x̃) E ϕi(x̃, y) + 1

k+1

)
.

By the definition of F , we get that

∀y ∈ X
(
∀i < `∀r ∈ N

(
d(Ui(y), y) E

1

r + 1

)
→ ∀i < `

(
ϕi(x̃, x̃) E ϕi(x̃, y) +

1

k + 1

))
.

Therefore

∀y ∈ X ∃r ∈ N
(
∀i < `

(
d(Ui(y), y) E

1

r + 1

)
→ ∀i < `

(
ϕi(x̃, x̃) E ϕi(x̃, y) +

1

k + 1

))
.
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We can apply BCωbd to obtain

∃r ∈ N ∀y ∈ X
(
∀i < `

(
d(Ui(y), y) E

1

r + 1

)
→ ∀i < `

(
ϕi(x̃, x̃) E ϕi(x̃, y) +

1

k + 1

))
.

Take r0 to be one such r. Since limn d(Ui(un), un) = 0 for all i < `, we have that

∀i < `∀r ∈ N ∃n ∈ N ∀m ≥ n

(
d(Ui(um), um) E

1

r + 1

)
.

Note that the bounded quantification “∀i < `” stands for a finite conjunction because ` is a
fixed natural number. We really have

∀r ∈ N
∧
i<`

∃n ∈ N ∀m ≥ n

(
d(Ui(um), um) E

1

r + 1

)
.

Therefore, we can easily obtain

∀r ∈ N∃n ∈ N
∧
i<`

∀m ≥ n

(
d(Ui(um), um) E

1

r + 1

)
.

That is,

∀r ∈ N∃n ∈ N∀m ≥ n∀i < `

(
d(Ui(um), um) E

1

r + 1

)
.

The result now follows by instantiating r by r0.

When ` = 1, the above proposition reduces to Proposition 4.13 and so it is a proper gen-
eralization of the general principle. Moreover, since the definition of the new set F only
differs from the original fixed point set by the finite conjunction ‘∀i < `’, it is easy to obtain
the interpretation of the statements in Proposition 5.8 in a similar way to before. The next
result is the quantitative version of Proposition 5.8 and can be argued essentially in the same
manner as in the proof of Proposition 4.14.

Proposition 5.9 (Quantitative version of 5.8). Suppose that there are monotone functionals
α and β from N× NN to N satisfying:

(a) ∀k ∈ N ∀̃f ∈ NN ∃N ≤ α(k, f)∀n ∈ [N, f(N)]∀i < `

(
d(Ui(un), un) ≤ 1

k + 1

)
;

(b) ∀k ∈ N ∀̃f ∈ NN ∃N ≤ β(k, f)∃x ∈ X
(
∀i < `

(
d(Ui(x), x) ≤ 1

f(N) + 1

)
∧ ∀y ∈ X

(
∀i < `

(
d(Ui(y), y) ≤ 1

N + 1

)
→ ∀i < `

(
ϕi(x, x) ≤ ϕi(x, y) +

1

k + 1

)))
.
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Then, for every k ∈ N and any monotone function f ∈ NN, there are N ≤ ψ(k, f) and
x ∈ X such that

∀i < `

(
d(Ui(x), x) ≤ 1

f(N) + 1

)
∧ ∀n ∈ [N, f(N)]∀i < `

(
ϕi(x, x) ≤ ϕi(x, un) +

1

k + 1

)
,

where ψ(k, f) is defined as in Proposition 4.14.

In analogy with Lemma 5.1, a ‘modus ponens ’ lemma is also true in this case:

Lemma 5.10. The theory PAωE[X, dX , aX , bX ] proves the following. Suppose that

∀k ∈ N ∃x ∈ F ∃n ∈ N ∀m ≥ n∀i < `

(
ϕi(x, x) E ϕi(x, um) +

1

k + 1

)
and that there is a monotone function δ : N→ N such that, for all k ∈ N and x ∈ F ,

∃n ∈ N ∀m ≥ n∀i < `

(
ϕi(x, x) E ϕi(x, um) +

1

δ(k) + 1

)
→ ∃M ∈ N ∀m ≥M

(
d(um, x) E

1

k + 1

)
.

Then, (un) is a Cauchy sequence.

By the same reasoning of the proof of Proposition 5.2, we get the following quantitative
version of Lemma 5.10:

Proposition 5.11 (Quantitative version of 5.10). Suppose that there are monotone functions
δ, ψ, γ, η and σ satisfying:

(i) ∀k ∈ N ∀̃f ∈ NN ∃N ≤ ψ(k, f)∃x ∈ X
(
∀i < `

(
d(Ui(x), x) ≤ 1

f(N) + 1

)
∧ ∀n ∈ [N, f(N)]∀i < `

(
ϕi(x, x) ≤ ϕi(x, un) +

1

k + 1

))
and

(ii) ∀k, n ∈ N ∀̃f ∈ NN ∀x ∈ X
[(
∀i < `

(
d(Ui(x), x) ≤ 1

γ(k, n, f) + 1

)
∧ ∀m ∈ [n, η(k, n, f)]∀i < `

(
ϕi(x, x) ≤ ϕi(x, um) +

1

δ(k) + 1

))
→ ∃M ≤ σ(k, n, f)∀m ∈ [M, f(M)]

(
d(um, x) ≤ 1

k + 1

)]
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Then

∀k ∈ N ∀̃f ∈ NN ∃M ≤ φ(k, f)∀m,n ∈ [M, f(M)]

(
d(um, un) ≤ 1

k + 1

)
, (5.15)

where φ(k, f) is defined as in Proposition 5.2.

Note that the above quantitative versions are also true when the metric space is unbounded.

5.4 Bauschke’s theorem

In the following, X is a Hilbert space, C is a nonempty closed convex bounded subset of
X, b ∈ N is a positive upper bound on the diameter of C and T0, . . . , T`−1 are nonexpansive
selfmappings of C. Let F be the set of common fixed points of the mappings T0, . . . , T`−1.
For each n ∈ N, define the mapping

Un := Tnmod `. (5.16)

Obviously, Ui = Ti for all i < ` and F =
⋂`−1
i=0 Fix(Ui) =

⋂
n∈N Fix(Un).

Let (λn) be a sequence in (0, 1) satisfying the conditions

(C1) limλn = 0, (C2)
∞∑
n=1

λn =∞, (C3[`])
∞∑
n=1

|λn − λn+`| <∞.

Given u ∈ C, we define the sequence (un) by

u0 := u, un+1 := λn+1u0 + (1− λn+1)Un+1(un), (5.17)

which is a generalization of the Halpern iteration to the sequence of maps (Un).

The following theorem was proved by Heinz Bauschke in [2].

Theorem 5.12 (Bauschke). With the above assumptions, suppose furthermore that

F = Fix(T`−1 · · ·T1T0) = Fix(T0T`−1 · · ·T1) = · · · = Fix(T`−2 · · ·T0T`−1). (5.18)

Then (un) converges strongly to a common fixed point of T0, . . . , T`−1 (the closest one to u).

Condition (C3[1]) is the same as (C3). Thus, when ` = 1, we get Wittmann’s theorem as a
particular case of Theorem 5.12.

We remark first that (5.18) is equivalent to

F = Fix(Um+` · · ·Um+1) for all m ∈ N. (5.19)
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The left-to-right inclusion is obvious. Therefore, (5.19) holds if, and only if,

∀m ∈ N (F ⊇ Fix(Um+` · · ·Um+1)) .

The above statement can be rewritten as

∀m ∈ N ∀x ∈ C(
∀r ∈ N

(
‖x− Um+` · · ·Um+1(x)‖E 1

r + 1

)
→ ∀i < `∀k ∈ N

(
‖x− Ui(x)‖E 1

k + 1

))
.

Since the mappings Um are defined cyclically, the quantification “∀m ∈ N” above can be
seen as bounded, i.e. it can be replaced by a bounded quantification. Therefore, we get in
our formal setting, by using BCωbd, that

∀k ∈ N ∃r ∈ N ∀m ∈ N ∀x ∈ C(
‖x− Um+` · · ·Um+1(x)‖E 1

r + 1
→ ∀i < `

(
‖x− Ui(x)‖E 1

k + 1

))
.

(5.20)

Hence, for the quantitative version of (5.20), we ask for a monotone function τ : N → N
satisfying

∀k ∈ N ∀m ∈ N ∀x ∈ C(
‖x− Um+` · · ·Um+1(x)‖ ≤ 1

τ(k) + 1
→ ∀i < `

(
‖x− Ui(x)‖ ≤ 1

k + 1

))
.

(5.21)

For the quantitative versions of the conditions (C1), (C2) and (C3[`]) on the sequence (λn)
we will assume the existence of monotone functions µ, ν, ξ : N→ N satisfying:

1. µ is a rate of convergence for (λn) towards zero, that is

(C1q) ∀k ∈ N ∀n ≥ µ(k)

(
λn ≤

1

k + 1

)
;

2. ν is a rate of divergence for
∑

n λn, that is

(C2q) ∀k ∈ N

ν(k)∑
j=0

λj ≥ k

 ;

3. ξ is a Cauchy modulus for the series
∑

n |λn − λn+`|, that is

(C3[`]q) ∀k ∈ N ∀n ∈ N

 ξ(k)+n∑
j=ξ(k)+1

|λj − λj+`| ≤
1

k + 1

 .
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Note that ν(k+ 1) ≥ k. In the sequel, we prove some useful properties of the sequence (un).
First, let us remark that, for all n ∈ N \ {0} and all m ∈ N,

‖un+m+` − un+m‖ ≤ b ·
n+m∑
j=n

|λj+` − λi|+ ‖un+`−1 − un−1‖ ·
n+m∏
j=n

(1− λj+`). (5.22)

The proof is an easy induction on m (see the proof of [2, Theorem 3.1]).

Lemma 5.13. For each k ∈ N, the following holds:

(i) ∀n ≥ µ(b(k + 1))
(
‖un+1 − Un+1(un)‖ ≤ 1

k+1

)
(ii) ∀n ≥ χ(k)

(
‖un+` − un‖ ≤ 1

k+1

)
,

where χ(k) := ν(ξ(2b(k + 1)) + 1 + `+ dln(2b(k + 1))e).

(iii) ∀n ≥ α̃(k)
(
‖un − Un+` · · ·Un+1(un)‖ ≤ 1

k+1

)
,

where α̃(k) := max{µ(2`b(k + 1)), χ(2k + 1)}.

(iv) ∀n ≥ α̂(k)∀i < `
(
‖un − Ui(un)‖ < 1

k+1

)
,

where α̂(k) := α̃(τ(k)), with τ satisfying (5.21).

Proof. (i) Since un+1 = λn+1u0 + (1− λn+1)Un+1(un), for n ≥ µ(b(k + 1)) we have

‖un+1 − Un+1(un)‖ = λn+1‖u0 − Un+1(un)‖ ≤ λn+1b ≤
1

k + 1
.

(ii) Let N := ξ(2b(k + 1)) + 1. Applying (5.22) with n := N and using (C3[`]q) and the
fact that 1− x ≤ exp(−x) for x ≥ 0, we get that for all m ∈ N,

‖uN+m+` − uN+m‖ ≤
1

2(k + 1)
+ b · exp

(
−

N+m∑
j=N

λj+`

)
(5.23)

Let M := χ(k)−N = ν(N + `+ dln(2b(k+ 1))e)−N . By (C2q), it follows that for all
m ≥M ,

N+m+`∑
i=0

λi ≥
N+M∑
i=0

λi ≥ N + `+ dln(2b(k + 1))e ≥
N+`−1∑
i=0

λi + ln(2b(k + 1)).

Therefore,
N+m∑
i=N

λi+` =
N+m+`∑
i=N+`

λi ≥ ln(2b(k + 1)), which yields

b · exp

(
−

N+m∑
i=N

λi+`

)
≤ 1

2(k + 1)
. (5.24)

Now, apply (5.23) and (5.24) to get (ii).
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(iii) Let n ≥ α̃(k) be arbitrary. For every 1 ≤ i ≤ `, let Si := Un+i · · ·Un+1. We get

‖un − Un+` · · ·Un+1(un)‖ = ‖un − S`(un)‖ ≤ ‖un − un+`‖+ ‖un+` − S`(un)‖

≤ 1

2(k + 1)
+ ‖un+` − S`(un)‖

The inequality is explained by (ii), given that n ≥ χ(2k + 1).

Remark that

‖un+` − S`(un)‖ ≤ ‖un+` − Un+`(un+`−1)‖+ ‖Un+`(un+`−1)− S`(un)‖
≤ ‖un+` − Un+`(un+`−1)‖+ ‖un+`−1 − S`−1(un)‖,

since Un+` is nonexpansive. Reasoning in the same way, it follows that

‖un+` − S`(un)‖ ≤
∑̀
i=1

‖un+i − Un+i(un+i−1)‖ ≤
`

2`(k + 1)
=

1

2(k + 1)
,

by (i), given that n ≥ µ(2`b(k + 1)).

(iv) Just apply (iii) and (5.21).

We show now that the quantitative version of Bauschke’s theorem can be obtained by apply-
ing the quantitative Propositions 5.9 and 5.11. The relevant functionals ϕi in this application
are,

ϕi(x, y) := 〈x− u0, Ui(y)〉, for i < `. (5.25)

Note that, as an immediate consequence of Lemma 5.13.(iv), the functional

α : N× NN → N, α(k, f) := α̂(k) (5.26)

satisfies condition (a) of Proposition 5.9.

In the sequel, we show how to compute a functional β satisfying condition (b) of Proposi-
tion 5.9. We consider the projection onto a different set F than the one in Section 4.3. Since
now F is {x ∈ C | ∀i < ` (Ui(x) = x)}, the only difference to the analysis of the projection
argument is in the innocuous addition of the finite conjunction “∀i < `.” We get, using
similar arguments to the ones used in the proof of Proposition 4.16, the following result:

Proposition 5.14. For any natural number k and monotone function f : N→ N, there are
N ≤ 12b(ω

(r(k))
γk,f (0) + 1)2 and x ∈ C such that

∀i < `

(
‖Ui(x)− x‖ ≤ 1

f(N) + 1

)
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and

∀y ∈ C
(
∀i < `

(
‖Ui(y)− y‖ ≤ 1

N + 1

)
→ 〈x− u0, x− y〉 ≤

1

k + 1

)
,

where r is defined by (5.4) and and ω(·) is defined by (5.5).

We must change the conclusion of the implication to be compatible with our functions ϕi.
I.e., we must replace the conclusion 〈x− u0, x− y〉 ≤ 1

k+1
by

∀i < `

(
〈x− u0, Ui(x)− Ui(y)〉 ≤ 1

k + 1

)
.

This is done, in two steps, in the proposition below.

Proposition 5.15. Let k ∈ N and f : N→ N be monotone.

(i) There exist N0 ∈ N with N0 ≤ β0(k, f) and x ∈ C such that

(a0) ‖Ui(x)− x‖ ≤ 1
f(N0)+1

for all i < `, and

(b0) for all y ∈ C, ∀i < `
(
‖Ui(y)− y‖ ≤ 1

N0+1

)
→ ∀i < `

(
〈x− u0, Ui(x)− y〉 ≤ 1

k+1

)
;

(ii) There exist N ∈ N with N ≤ β(k, f) and x ∈ C such that

(a) ‖Ui(x)− x‖ ≤ 1
f(N)+1

for all i < `, and

(b) for all z ∈ C,
∀i < `

(
‖Ui(z)− z‖ ≤ 1

N+1

)
→ ∀i < `

(
〈x− u0, Ui(x)− Ui(z)〉 ≤ 1

k+1

)
,

where

β0(k, f) := 12b(ω(r(2k+1))
γk,f

(0) + 1)2 and β(k, f) = 3β0(k, g) + 2, (5.27)

with g(m) = f(3m+ 2).

Proof. 1. Applying Proposition 5.14 to 2k+ 1 and to the monotone function γk,f , we get
N0 ≤ β0(k, f) and x ∈ C such that ‖Ui(x) − x‖ ≤ 1

γk,f (N0)+1
for all i < ` and, for all

y ∈ C,

∀i < `

(
‖Ui(y)− y‖ ≤ 1

N0 + 1

)
→ 〈x− u0, x− y〉 ≤

1

2(k + 1)
. (5.28)

By the definition of γk,f , we have that, for all i < `, ‖Ui(x)−x‖ ≤ 1
γk,f (N0)+1

≤ 1
f(N0)+1

.

Thus, (a0) holds. Let now y ∈ C be such that the premise of the implication in (b0)
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holds and let i < ` be arbitrary. It follows that

〈x− u0, Ui(x)− y〉 = 〈x− u0, Ui(x)− x〉+ 〈x− u0, x− y〉

≤ b · ‖Ui(x)− x‖+
1

2(k + 1)
by (5.28)

≤ 1

2(k + 1)
+

1

2(k + 1)
=

1

k + 1
,

since ‖Ui(x)− x‖ ≤ 1
γk,f (N)+1

≤ 1
2b(k+1)

. Hence, (b0) holds too.

2. Apply (i) for k and g to get N0 ≤ β0(k, g) and x ∈ C satisfying (a0) for g and (b0).
Let N := 3N0 + 2 ≤ 3β0(k, g) + 2 = β(k, f). Then, for all i < `, we have that
‖Ui(x)−x‖ ≤ 1

g(N0)+1
= 1

f(N)+1
, so (a) holds. In order to prove (b), assume that z ∈ C

is such that ∀i < `
(
‖Ui(z)− z‖ ≤ 1

N+1

)
.

For all i, j < `, we have that

‖Ui(Uj(z))− Uj(z)‖ ≤ ‖Ui(Uj(z))− Ui(z)‖+ ‖Ui(z)− z‖+ ‖z − Uj(z)‖

≤ ‖Uj(z)− z‖+
2

N + 1
≤ 3

N + 1
=

1

N0 + 1
.

Thus, we can apply (b0) for y := Uj(z), with j < ` arbitrary, and conclude

∀i < `∀j < `

(
〈x− u0, Ui(x)− Uj(z)〉 ≤ 1

k + 1

)
.

Take j := i above to get (b).

Thus, we can apply Proposition 5.9 to get, for every k ∈ N and any monotone function
f ∈ NN, an N ∈ N with N ≤ ψ(k, f) and x ∈ C such that

∀i < `

(
‖Ui(x)− x‖ ≤ 1

f(N) + 1

)
and

∀n ∈ [N, f(N)]∀i < `

(
〈x− u0, Ui(x)− Ui(un)〉 ≤ 1

k + 1

)
,

where

ψ(k, f) := α
(
β
(
k, f̂
)
, f
)

= α̂
(
β
(
k, f̂
))

, with f̂(m) := f(α(m, f)) = f(α̂(m)). (5.29)

Hence, condition (i) of Proposition 5.11 is satisfied with ψ as above.
Next, we present the quantitative result of the main combinatorial step in Bauschke’s proof,
slightly adapted to fit into the general principle. This will allow us to see that (ii) of
Proposition 5.11, with appropriate bounds, also holds.
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Proposition 5.16. Assume that k, n, p ∈ N and x ∈ C satisfy

∀i < `

(
‖Ui(x)− x‖ ≤ 1

9b(k + 1)2(p+ 1)

)
and

∀r ∈ [n, p]∀i < `

(
〈x− u0, Ui(x)− Ui(ur)〉 ≤

1

12(k + 1)2

)
.

Then

∀m ∈ [σ′(k, n), p]

(
‖um − x‖ ≤

1

k + 1

)
,

where σ′(k, n) := ν(ñ+ 1 + dln(3b2(k + 1)2)e) with ñ := max{n, µ(6b2(k + 1)2)}.

Proof. First, let us remark that for all r ∈ N and x ∈ C,

‖ur+1 − x‖2 = ‖λr+1u0 + (1− λr+1)Ur+1(ur)− x‖2

= ‖λr+1(u0 − x) + (1− λr+1)(Ur+1(ur)− x)‖2

= λ2r+1‖u0 − x‖2 + 2λr+1(1− λr+1) 〈u0 − x, Ur+1(ur)− x〉
+(1− λr+1)

2‖Ur+1(ur)− x‖2

= λ2r+1‖u0 − x‖2 + 2λr+1(1− λr+1)(〈x− u0, x− Ur+1(x)〉
+ 〈x− u0, Ur+1(x)− Ur+1(ur)〉
+(1− λr+1)

2‖(Ur+1(ur)− Ur+1(x)) + (Ur+1(x)− x)‖2

≤ λ2r+1b
2 + 2bλr+1(1− λr+1)‖x− Ur+1(x)‖

+2λr+1(1− λr+1) 〈x− u0, Ur+1(x)− Ur+1(ur)〉
+(1− λr+1)

2(‖ur − x‖2 + 2‖ur − x‖‖Ur+1(x)− x‖+ ‖Ur+1(x)− x‖2)
≤ λ2r+1b

2 + 2bλr+1(1− λr+1)‖x− Ur+1(x)‖
+2λr+1(1− λr+1) 〈x− u0, Ur+1(x)− Ur+1(ur)〉
+3b(1− λr+1)

2‖x− Ur+1(x)‖+ (1− λr+1)
2‖ur − x‖2

≤ λ2r+1b
2 + 2λr+1(1− λr+1) 〈x− u0, Ur+1(x)− Ur+1(ur)〉

+(2bλr+1(1−λr+1)+3b(1− λr+1)
2)‖x− Ur+1(x)‖+(1− λr+1)

2‖ur − x‖2

≤ λr+1(λr+1b
2 + 2 〈x− u0, Ur+1(x)− Ur+1(ur)〉)

+3b(1− λr+1)‖x− Ur+1(x)‖+ (1− λr+1)‖ur − x‖2

Fix k, n, p ∈ N and x ∈ C, and assume that they satisfy the hypothesis of the theorem. Take
r ∈ N with r ∈ [ñ, p] ⊆ [n, p]. Then λr+1 ≤ 1

6b2(k+1)2
, since r + 1 > ñ ≥ µ(6b2(k + 1)2) and µ

satisfies (C1)q. Moreover, 〈x− u0, Ur+1(x)− Ur+1(ur)〉 ≤ 1
12(k+1)2

by hypothesis. Hence,

λr+1b
2 + 2 〈x− u0, Ur+1(x)− Ur+1(ur)〉 ≤

1

3(k + 1)2
.
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Furthermore, as ‖x− Ur+1(x)‖ ≤ 1
9b(k+1)2(p+1)

, we get that

‖ur+1 − x‖2 ≤ λr+1
1

3(k + 1)2
+ (1− λr+1)

1

3(k + 1)2(p+ 1)
+ (1− λr+1)‖ur − x‖2.

By induction on m, we can prove that for m ∈ [ñ+ 1, p],

‖um − x‖2 ≤
1

3(k + 1)2
+ Am

1

3(k + 1)2(p+ 1)
+Bm‖uñ − x‖2 (5.30)

where Am =
∑m−1

j=ñ

∏m−1
i=j (1− λi+1) and Bm =

∏m−1
i=ñ (1− λi+1).

Let m ∈ [σ′(k, n), p] be arbitrary. Since m ≤ p, we have that Am ≤ m − ñ < p + 1. As
σ′(k, n) ≥ ñ+ 1, it follows that m ∈ [ñ+ 1, p], so we can apply (5.30) and get

‖um − x‖2 ≤
1

3(k + 1)2
+

1

3(k + 1)2
+Bm‖uñ − x‖2 (5.31)

Now, because m ≥ σ′(k, n), we get

m∑
j=0

λj ≥
σ′(k,n)∑
j=0

λj ≥ ñ+ 1 + ln(3b2(k + 1)2) ≥
ñ∑
j=0

λj + ln(3b2(k + 1)2).

Therefore,
∑m

j=ñ−1λj+1 =
m∑

j=ñ+1

λj ≥ ln(3b2(k + 1)2). This, in turn, implies

Bm‖uñ − x‖2 ≤ b2 exp

(
−

m−1∑
j=ñ

λj+1

)
≤ 1

3(k + 1)2
. (5.32)

The conclusion follows.

Note that Proposition 5.6 is the particular case of the above proposition. One can see this by
putting ` = 1 and λn = 1

n+1
, and taking into account that µ(n) = n is a rate of convergence

towards 0 for the sequence
(

1
n+1

)
and that ν(n) = exp(n) is a rate of divergence for

∑
n

1
n+1

.

We are now in position to apply Proposition 5.16 with p := f(σ′(k, n)) in order to obtain
condition (ii) of Proposition 5.11. Just let

γ(k, n, f) := 9b(k + 1)2(f(σ′(k, n)) + 1)− 1, δ(k) := 12(k + 1)2 − 1,

η(k, n, f) := f(σ′(k, n)) and M := σ(k, n, f) := σ′(k, n).

Finally, we apply Proposition 5.11 to obtain the metastable version of Bauschke’s theorem.
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Theorem 5.17. Let X be a Hilbert space, C be a nonempty closed convex bounded subset of
X, b ∈ N be a positive upper bound on the diameter of C and T0, . . . , T`−1 be nonexpansive
selfmappings of C.
For each n ∈ N, let Un be the mapping defined by (5.16) and assume that τ : N → N is
a monotone function satisfying (5.21). Consider a sequence (λn) in (0, 1) and monotone
functions µ, ν, ξ : N→ N such that (C1q), (C2q) and (C3[`]q) hold. Let u0 ∈ C be given and
(un) be the iteration defined by (5.17).
Then, for all k ∈ N and every monotone function f : N→ N,

∃N ≤ φBau(k, f)∀i, j ∈ [N, f(N)]

(
‖ui − uj‖ ≤

1

k + 1

)
, (5.33)

where
φBau(k, f) := σ′

(
2k + 1, ψ

(
48(k + 1)2 − 1, f

))
,

with σ′ defined in Proposition 5.16, ψ defined by (5.29) and the function f defined by f(m) =
36b(k + 1)2(f(σ′(2k + 1,m)) + 1)− 1.

Condition (C2),
∑

n λn =∞, is equivalent to the condition

(C4)
∏
n→∞

(1− λn) = 0.

Hence, one can obtain general quantitative results by using, instead of a rate of divergence ν
for
∑

n λn, the quantitative version of (C4), asserting the existence of a rate of convergence
θ for

∏
n→∞(1− λn):

(C4q) ∀k ∈ N

θ(k)∏
i=1

(1− λi) ≤
1

k + 1

 .

This was done in [32], where Kohlenbach and Leuştean obtained rates of metastability for
the generalization of Wittmann’s theorem to CAT(0) spaces using both (C2q) and (C4q).
As Kohlenbach remarked in [27], for λn = 1

n+1
, one has an exponential ν and a linear θ, so

one gets, by using (C4q), a quadratic rate of asymptotic regularity for the Halpern iteration
(see [27, Lemma 3.1]), significantly improving the exponential bound obtained in [39], where
(C2q) is used. As a consequence, better rates of metastability for Wittmann’s theorem are
obtained in [27, 32] compared to our Theorem 5.7.
One can replace (C2q) with (C4q) also in the quantitative analysis of Bauschke’s theorem
and prove corresponding versions of Proposition 5.16 and Theorem 5.17 having as a conse-
quence, for ` = 1, a metastable version of Wittmann’s theorem with bounds similar to the
ones computed in [27, 32].
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Next, we show how to adapt the previous results to use the condition (C4q) instead of (C2q).
The equivalence between conditions (C2) and (C4) is only guaranteed if the sequence (λn)
is strictly bounded below 11. In turn, that condition implies

∏n
i=1(1−λi) > 0, for all n ∈ N.

We then assume the existence of a monotone function ε : N→ N such that

∀n ∈ N

(
n∏
i=1

(1− λi) ≥
1

ε(n) + 1

)
. (5.34)

In order to compute a new function α, we must change Lemma 5.13. The next result replaces
item (ii) in that Lemma. The property (i) still holds true and the remaining properties (iii)
and (iv) hold with χ replaced by the function χ′ defined below.

Lemma 5.18. Let b ∈ N be a positive upper bound on the diameter of C. Let ξ, θ and ε be
monotone functions satisfying (C3[`]q), (C4q) and (5.34), respectively. Then,

∀k ∈ N∀n ≥ χ′(k)

(
‖un+` − un‖ ≤

1

k + 1

)
. (5.35)

where χ′(k) := max{θ(2b(ε(N + `− 1) + 1)(k + 1))− `,N}, with N := ξ(2b(k + 1)) + 1.

Proof. Let k ∈ N be given and define N := ξ(2b(k + 1)) + 1. By (5.22) with n := N and
using (C3[`]q), we get for all m ∈ N,

‖uN+m+` − uN+m‖ ≤ b

(
N+m∑
j=N

|λj+` − λj|+
N+m∏
j=N

λj+`

)

≤ b

(
1

2b(k + 1)
+

N+m+`∏
j=N+`

(1− λj)

)
.

For m ∈ N, we write Pm :=
∏m

j=1(1− λj). Hence,

‖uN+m+` − uN+m‖ ≤ b

(
1

2b(k + 1)
+
PN+m+`

PN+`−1

)
,

Define M := max{θ(2b(ε(N + `− 1) + 1)(k+ 1), N + `} −N − `. Then, for any m ≥M , we
have N +m+ ` ≥ θ(2b(ε(N + `− 1) + 1)(k + 1)), which by (C4q) gives

PN+m+` ≤
1

2b(ε(N + `− 1) + 1)(k + 1)
.

1The reason we wrote the product in (C4q) starting at i = 1, is just to be able to make some remarks for
λn = 1

n+1 below – note that for that sequence λ0 = 1.
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On the other hand, we have 1
PN+`−1

≤ ε(N + `− 1) + 1. Hence, for any m ≥M ,

‖uN+m+` − uN+m‖ ≤ b

(
1

2b(k + 1)
+

ε(N + `− 1) + 1

2b(ε(N + `− 1) + 1)(k + 1)

)
=

1

k + 1
.

Finally, see that N +M := χ′(k).

The properties (iii) and (iv) from Lemma 5.13 hold, respectively, with the functions α̃′ and
α̂′ defined with this new function χ′:

α̃′(k) := max{µ(2`b(k + 1)), χ′(2k + 1)},

α̂′(k) := α̃′(τ(k)),

where τ satisfies (5.21).
Hence, condition (a) of Proposition 5.9 is satisfied by the functional

α : N× NN → N, α(k, f) := α̂′(k).

Now, by Proposition 5.9, the condition (i) of Proposition 5.11 is satisfied with ψ defined by

ψ(k, f) := α̂′
(
β
(
k, f̂
))

, with f̂(m) := f(α̂′(m)). (5.36)

In order to see that (ii) of Proposition 5.11 also holds when we consider (C4q) instead of
(C2q), we adapt the argument in Proposition 5.16.

Proposition 5.19. Assume that k, n, p ∈ N and x ∈ C satisfy

∀i < `

(
‖Ui(x)− x‖ ≤ 1

9b(k + 1)2(p+ 1)

)
and

∀r ∈ [n, p]∀i < `

(
〈x− u0, Ui(x)− Ui(ur)〉 ≤

1

12(k + 1)2

)
.

Then

∀m ∈ [σ′′(k, n), p]

(
‖um − x‖ ≤

1

k + 1

)
,

where σ′′(k, n) := max{θ(3b2(ε(ñ)+1)(k+1)2−1), ñ+1} with ñ := max{n, µ(6b2(k+1)2)}.

Proof. Following the arguments used in the proof of Proposition 5.16 we conclude that, for
m ∈ [ñ+ 1, p],

‖um − x‖2 ≤
2

3(k + 1)2
+Bm‖uñ − x‖2,
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with Bm =
∏m

j=ñ+1(1− λj).
For all m ∈ N, let Pm :=

∏m
j=1(1− λj). Then, for m ∈ [ñ+ 1, p],

‖um − x‖2 ≤
2

3(k + 1)2
+ b2

Pm
Pñ

. (5.37)

Consider m ∈ [σ′′(k, n), p]. Then, m ≥ θ(3b2(ε(ñ) + 1)(k + 1)2 − 1) and, by (C4q), we have

Pm ≤ Pθ(3b2(ε(ñ)+1)(k+1)2−1) ≤
1

3b2(ε(ñ) + 1)(k + 1)2
.

By the hypothesis on the function ε, Pñ ≥ 1
ε(ñ)+1

. It follows,

b2
Pm
Pñ
≤ b2(ε(ñ) + 1)

3b2(ε(ñ) + 1)(k + 1)2
=

1

3(k + 1)2
. (5.38)

Since σ′′(k, n) ≥ ñ + 1, we can consider (5.37) and (5.38) together, which concludes the
proof.

We obtain the bounds satisfying condition (ii) of Proposition 5.11 by instantiating with
p = f(σ′′(k, n)),

γ(k, n, f) := 9b(k + 1)2(f(σ′(k, n)) + 1)− 1, δ(k) := 12(k + 1)2 − 1,

η(k, n, f) := f(σ′′(k, n)) and M := σ(k, n, f) := σ′′(k, n).

Notice that the only change from before is in the functions η and σ, which now use the
function σ′′ from Proposition 5.19 instead of the function σ′ from Proposition 5.16. By
applying Proposition 5.11, we obtain a metastable version of Bauschke’s theorem using the
condition (C4q).

Theorem 5.20. Under the assumptions of Theorem 5.12, assume that τ : N → N is a
monotone function satisfying (5.21). Consider monotone functions µ, ξ, θ : N→ N such that
(C1q), (C3[`]q) and (C4q) hold and ε : N → N a monotone function satisfying (5.34). Let
u0 ∈ C be given and (un) be the iteration defined by (5.17).
Then, for all k ∈ N and every monotone function f : N→ N,

∃N ≤ φBau′(k, f)∀i, j ∈ [N, f(N)]

(
‖ui − uj‖ ≤

1

k + 1

)
, (5.39)

where
φBau′(k, f) := σ′′

(
2k + 1, ψ

(
48(k + 1)2 − 1, f

))
,

with σ′′ defined in Proposition 5.19, ψ defined by (5.36) and the function f defined by f(m) =
36b(k + 1)2(f(σ′′(2k + 1,m)) + 1)− 1.
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When λn = 1
n+1

, we can take the functions µ, ξ, θ and ε to be the identity function and
they will satisfy the required conditions (C1q), (C3[`]q), (C4q) and (5.34). In the particular
case of Bauschke’s theorem when ` = 1 we recover Wittmann’s theorem and can take τ to
also be the identity function. Furthermore, when ` = 1, in Proposition 5.15 we may have
the function β of (ii) to instead be the same as β0 from (i) – notice that β0 is the same
bound that was consider in the analysis of Wittmann’s theorem. With these considerations,
a quantitative version of Bauschke’s theorem for the particular sequence λn = 1

n+1
and a

quantitative version of Wittmann’s theorem using condition (C4q), for general sequence (λn)
and for λn = 1

n+1
, are easily derived.
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Chapter 6

Proximal point algorithm

Let X be a real Hilbert space and consider a multi-valued function T : X → 2X .
The operator T is said to be monotone if

〈x− x′, y − y′〉 ≥ 0, (6.1)

for all x, x′ ∈ X, y ∈ T (x) and y′ ∈ T (x′). A monotone operator T is said to be maximal
monotone if additionally the graph of T ,

graph(T ) = {(x, y) ∈ X ×X |x ∈ X, y ∈ T (x)},

is not strictly contained in the graph of any monotone operator. Assume that T is maximal
monotone and let S := {x ∈ X | 0 ∈ T (x)} be the set of zeros of T . It is well-known that
the set S is closed and convex, and we will henceforth assume it to be non-empty. One
of the major problems in the theory of maximal operators is how to find a point x ∈ S.
The relevance of this search for zeros derives from the fact that many problems in nonlinear
analysis and optimization theory can be formulated as a question of finding a zero for specific
maximal monotone operators.
For any positive real number β > 0, the function Jβ defined by

Jβ(x) := {y ∈ X |x ∈ y + βT (y)}

is called the resolvent function of βT . The resolvent functions associated with a maximal
monotone operator are single-valued [40], in which case we just write Jβ(x) = y, and nonex-
pansive mappings in X. Furthermore, an easy observation is that, for every β > 0, the set
of fixed points of Jβ coincide with the set of zeros of T ,

∀β > 0 (Fix(Jβ) = S) .

An important tool in finding zeros of maximal monotone operators is the proximal point al-
gorithm (PPA): given an initial guess x0, a (regularization) sequence of positive real numbers
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(βn) and an error sequence (en) ⊂ X, the proximal point algorithm is inductively defined by

xn+1 := Jβn(xn) + en. (PPA)

This definition, with an error term en, is sometimes called the inexact proximal point algo-
rithm in contrast with the exact version when en ≡ 0.

In [42], Rockafellar showed that, if (‖en‖) is a summable sequence and (βn) is bounded away
from 0, then the sequence (xn) is weakly convergent to a zero of T . However, a strong
convergence result is not obtained. In fact, Güler [17] presented a counterexample proving
that in general (PPA) may fail to have strong convergence.
Several modifications to the (PPA) were considered in an attempt to guarantee a strong
convergence result. Here, we will look at one such alternative iteration, the Halpern type
proximal point algorithm. Motivated by the success of Halpern iterations for nonexpansive
mappings, this algorithm was introduced independently by Kamimura and Takahashi in [20]
and by Xu in [52].
Let (αn) ⊂ ]0, 1[ be a sequence of real numbers, x0 ∈ X be an initial guess, u ∈ X an
“anchor” point and (βn) a sequence of positive real numbers. Then (xn) is an exact Halpern
type proximal point algorithm (with anchor point u and initial guess x0) if it is defined
inductively by

xn+1 := αnu+ (1− αn)Jβn(xn). (HPPA)

More generally, with (en) ⊂ X an error sequence, we can also consider the inexact Halpern
type proximal point algorithm:

xn+1 := αnu+ (1− αn)Jβn(xn) + en (HPPA1)

xn+1 := αnu+ (1− αn) (Jβn(xn) + en) (HPPA2)

Although (HPPA1) is equivalent to (HPPA2), by considering these two definitions, we can
state the results with their original conditions. We will look at two strong convergence re-
sults of these iterations under certain conditions.

The relevant conditions on the parameters of the iterations are the following:

(C1) limαn = 0;

(C2)
∑
αn =∞;

(C3) lim |αn+1−αn|
α2
n

= 0;

(C4) lim βn = β, for some β > 0;

(C5) lim βn =∞;
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(C6)
∑
‖en‖ <∞;

(C7) lim ‖en‖
αn

= 0.

The first result, which we will give a quantitative version in section 6.3, is due to Boikanyo
and Moroşanu.

Theorem 6.1 ([5, Theorem 2]). Consider a sequence (xn) given by (HPPA1) and satisfying
conditions (C1)–(C4) and (C6) or (C7). Then (xn) is strongly convergent to a zero of T , the
closest one to u.

A strong convergence of the Halpern type proximal point algorithm under different conditions
was proved by Xu.

Theorem 6.2 ([52, Theorem 5.1]). Consider a sequence (xn) given by (HPPA2) with x0 = u
and satisfying conditions (C1), (C2), (C5) and (C6). Then (xn) is strongly convergent to a
zero of T , the closest one to x0.

Both of these results use a projection argument and a sequential weak compactness argu-
ment. In the first result, sequential weak compactness is needed simply to establish the
convergence of the Browder iteration which, as we saw, can be bypassed. In the analysis of
the second result, it will also be possible to eliminate the need of the sequential weak com-
pactness argument. This elimination can be seen as an application of the general principle in
Chapter 4. Regarding the projection argument, we can again consider the weaker ∀∃-version,
avoiding the countable choice principle, and still prove the metastability of the iterations. In
section 4.3, we explained how the bounded functional interpretation can deal with the weaker
projection statement. However, there, a boundedness condition was essential in simplifying
the translation of the statement. There is no obvious boundedness condition here. In sec-
tion 6.2, under the assumption that S 6= ∅, we can prove that the iterations considered are
bounded and carry out a similar quantitative analysis. The quantitative metastable version
of the theorems above are obtained in sections 6.3 and 6.4, respectively.

We start with some useful technical lemmas regarding some properties on sequences of real
numbers which correspond to the main combinatorial arguments of the theorems 6.1 and
6.2.

6.1 Technical Lemmas

In [53], it was shown that if
∑
‖en‖ converges, then the sequence (xn) given by (HPPA1)

is bounded. The same was shown to be true if instead we have a bound for the sequence(
‖en‖
αn

)
, [4]. Next we show a quantitative version of those arguments, where a bound on (xn)

is computed from a bound on (
∑
‖en‖) or on

(
‖en‖
αn

)
.
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Lemma 6.3. Let p0 be a zero of T . Given (αn) ⊂ ]0, 1[, (βn) ⊂]0,+∞[, (en) ⊂ X and
u, x0 ∈ X, consider a sequence (xn) defined by (HPPA1). Then, for any D ∈ N we have,

(a) ∀n ∈ N
(

n∑
i=0

‖ei‖ ≤ D

)
→ ∀n ∈ N (‖xn − p0‖ ≤ d1(D));

(b) ∀n ∈ N
(
‖en‖
αn
≤ D

)
→ ∀n ∈ N (‖xn − p0‖ ≤ d2(D)),

with

d1(D) := dmax{‖u− p0‖, ‖x0 − p0‖}e+D

and d2(D) := dmax{2(‖u− p0‖+D), ‖x0 − p0‖}e.

Proof. Since p0 ∈ S, p0 is a fixed-point of Jβn for all n ∈ N.
For (a), see that

‖xn+1 − p0‖ = ‖αnu+ (1− αn)Jβn(xn) + en − p0‖ =

= ‖αn(u− p0) + (1− αn)(Jβn(xn)− Jβn(p0)) + en‖
≤ αn‖u− p0‖+ (1− αn)‖xn − p0‖+ ‖en‖ (6.2)

By induction on n, we see that

∀n ∈ N

(
‖xn − p0‖ ≤ max{‖u− p0‖, ‖x0 − p0‖}+

n−1∑
i=0

‖ei‖

)
.

The base case n = 0 is trivial. The induction step n+ 1 follows from (6.2) and the induction
hypothesis:

‖xn+1−p0‖ ≤ αn‖u− p0‖+ (1− αn)‖xn − p0‖+ ‖en‖ ≤

≤ αn‖u− p0‖+ (1− αn)

(
max{‖u− p0‖, ‖x0 − p0‖}+

n−1∑
i=0

‖ei‖

)
+ ‖en‖ ≤

≤ αn max{‖u− p0‖, ‖x0 − p0‖}+ (1− αn) (max{‖u− p0‖, ‖x0 − p0‖}) +
n∑
i=0

‖ei‖ =

= max{‖u− p0‖, ‖x0 − p0‖}+
n∑
i=0

‖ei‖.

The implication (a) then follows from the assumption on D and the definition of d1.

For (b), with M := max{‖u− p0‖+D, ‖x0−p0‖
2
}, we have d2(D) = 2M .
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The result is shown by induction on n. Again the base case is trivial. For the induction
step, notice that, from ‖x+ y‖2 ≤ ‖x+ y‖2 + ‖x‖2, one easily derives

∀x, y ∈ X
(
‖x+ y‖2 ≤ ‖y‖2 + 2〈x, x+ y〉

)
.

Hence,

‖xn+1 − p0‖ = ‖αnu+ (1− αn)Jβn(xn) + en − p0‖2 =

=

∥∥∥∥αn(u− p0 +
en
αn

)
+ (1− αn) (Jβn(xn)− Jβn(p0))

∥∥∥∥2 ≤
≤ (1− αn)2‖Jβn(xn)− Jβn(p0)‖2 + 2αn〈u− p0 +

en
αn
, xn+1 − p0〉 ≤

≤ (1− αn)2‖xn − p0‖2 + 2αn

(
‖u− p0‖+

‖en‖
αn

)
‖xn+1 − p0‖ ≤

≤ (1− αn)2d2(D)2 + 2Mαn‖xn+1 − p0‖.

From this we conclude,

(‖xn+1 − p0‖ −Mαn)2 ≤ (1− αn)2d2(D)2 +M2α2
n. (6.3)

Thus ‖xn+1 − p0‖ ≤Mαn +
√

(1− αn)2d2(D)2 +M2α2
n.

Since, for non-negative a, b it holds
√
a+ b ≤

√
a+
√
b,

‖xn+1 − p0‖ ≤Mαn +
√

(1− αn)2d2(D)2 +Mα2
n ≤Mαn + (1− αn)d2(D) +Mαn = d2(D).

Usually we consider stronger information on the sequences (
∑
‖ei‖) and (‖en‖

αn
), like rates of

convergence or on the Cauchy property. Of course a trivial bound on the sequence can then
be computed from the given information. Notice that, from the lemma above, we also derive
a bound on the sequence (xn):

∀n ∈ N

(
n∑
i=0

‖ei‖ ≤ D

)
→ ∀n ∈ N (‖xn‖ ≤ D1)

∀n ∈ N
(
‖en‖
αn
≤ D

)
→ ∀n ∈ N (‖xn‖ ≤ D2) ,

with D1 := d1(D) + P and D2 := d2(D) + P, where P∈ N is a bound on the norm of some
zero of T .

For a quantitative analysis of the theorems 6.1 and 6.2, it is important to work with the
conditions on the parameters in their quantitative form. The next conditions (Q1)–(Q7) are
the quantitative versions of (C1)–(C7), respectively.
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(Q1) a : N→ N is a rate of convergence towards zero for (αn), i.e.

∀k ∈ N∀n ≥ a(k)

(
αn ≤

1

k + 1

)
;

(Q2) A : N→ N is a rate of divergence for
∑
αn, i.e.

∀k ∈ N

A(k)∑
i=0

αi ≥ k

 ;

(Q3) c : N→ N is a a rate of convergence towards zero for
(
|αn+1−αn|

α2
n

)
, i.e.

∀k ∈ N∀n ≥ c(k)

(
|αn+1 − αn|

α2
n

≤ 1

k + 1

)
;

(Q4) B : N→ N that is a rate of convergence towards β > 0 for (βn), i.e.

∀k ∈ N∀n ≥ B(k)

(
|βn − β| ≤

1

k + 1

)
,

and ` ∈ N is such that β ≥ 1
`+1

;

(Q5) B : N→ N is a rate of divergence for (βn), i.e.

∀k ∈ N∀n ≥ B(k) (βn ≥ k) ;

(Q6) E : N→ N is a Cauchy rate for
∑
‖en‖, i.e.,

∀k ∈ N∀n ∈ N

 E(k)+n∑
i=E(k)+1

‖ei‖ ≤
1

k + 1

 ;

(Q7) E : N→ N is a rate of convergence towards zero for
(
‖en‖
αn

)
, i.e.

∀k ∈ N∀n ≥ E(k)

(
‖en‖
αn
≤ 1

k + 1

)
.

A useful result regarding sequences of real numbers was proved by Xu in [52, Lemma 2.5].
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Lemma 6.4. Let (sn) be a bounded sequence of non-negative real numbers and assume that
for any n ∈ N

sn+1 ≤ (1− αn)sn + αnrn + γn, (6.4)

where (αn) ⊂]0, 1[, (rn) and (γn) ⊂ R+
0 are sequences of real numbers such that (C2) holds,

lim sup rn ≤ 0 and
∑
γn <∞. Then lim sn = 0.

The assumption of (sn) being a bounded sequence can be dropped as it follows from (6.4)
and the assumptions on the sequences (αn), (rn) and (γn). In fact, one can easily see by
induction that, with R an upper bound on (rn), for all n ∈ N

sn ≤ max{s0,R}+
n−1∑
i=0

γi,

and a bound on (sn) can be effectively computed from quantitative information on the
assumptions. Nevertheless, for simplicity we consider this universal assumption instead of
working with a computed value.
The condition “lim sup rn ≤ 0” can be expressed by

∀k ∈ N∃N ∈ N∀n ≥ N

(
rn ≤

1

k + 1

)
,

and by asking for a monotone function R : N→ N such that, for each k ∈ N, R(k) witnesses
N above, we have a quantitative version of “lim sup rn ≤ 0”. In these quantitative versions,
we are asking for the existential information on ∀∃∀-formulas. However, more general results
could be considered if instead we worked with bounds on metastable versions. From a
practical point a view, in most cases we can consider this stronger quantitative information
since, in the particular sequences that one is usually interested in, it is in fact possible to
ascertain such witnessing rates.
Lemma 6.4 above contains the main combinatorial part of the proofs that we want to analyze
and thus, we will need to give it a quantitative version. The particular case of this lemma
when γn ≡ 0, was already given a quantitative version by Kohlenbach and Leuştean in [32].
The next results are quantitative versions of Lemma 6.4 for general sequences (γn).

Lemma 6.5 (Quant.version I of Lemma 6.4). Let (sn) be a bounded sequence of non-negative
real numbers and D ∈ N a positive upper bound on (sn). Consider sequences of real numbers
(αn) ⊂]0, 1[, (rn) and (γn) ⊂ R+

0 and assume the existence of monotone functions A, R,
G : N→ N such that A satisfies (Q2), R is such that

∀k ∈ N ∀n ≥ R(k)

(
rn ≤

1

k + 1

)
,
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and G is a Cauchy rate for
∑
γn, i.e. ∀k ∈ N ∀n ∈ N

(
G(k)+n∑
i=G(k)+1

γi ≤
1

k + 1

)
.

If for any n ∈ N
sn+1 ≤ (1− αn)sn + αnrn + γn,

then

∀k ∈ N∀n ≥ θ1[A,R,G, D](k)

(
sn ≤

1

k + 1

)
,

with θ1[A,R,G, D](k) := A (N + dln(3D(k + 1))e) + 1,
where N := max{R(3k + 2),G(3k + 2) + 1}.

With the observation above regarding the boundedness of (sn), we can have D replaced by

max{s0,R}+ E , where R := maxn≤R(0){1, rn} is a bound on (rn) and E := 1 + d
∑G(0)

i=0 γie is
a bound on (

∑n γi).
The chosen notation “θ1[A,R,G, D]” may not be very pleasing, however it will allow us
to apply this result for particular choices of parameters A, R, G and D without risk of
confusion.

Proof. Let k ∈ N be given and consider N as defined in the lemma. By induction, we show
that, for all m ∈ N

sN+m+1 ≤

(
N+m∏
i=N

(1− αi)

)
sN +

(
1−

N+m∏
i=N

(1− αi)

)
1

3(k + 1)
+

N+m∑
i=N

γi. (6.5)

From the assumption and the fact that N ≥ R(3k + 2), we can argue the base case m = 0,

sN+1 ≤ (1− αN)sN + αNrN + γN ≤

≤ (1− αN)sN + (1− (1− αN))
1

3(k + 1)
+ γN .

For the induction step m+ 1, by using the assumption and the induction hypothesis, we get
the following

sN+m+1+1 ≤ (1− αN+m+1)sN+m+1 + αN+m+1rN+m+1 + γN+m+1 ≤

≤ (1− αN+m+1)

[(
N+m∏
i=N

(1− αi)

)
sN +

(
1−

N+m∏
i=N

(1− αi)

)
1

3(k + 1)
+

N+m∑
i=N

γi

]
+ αN+m+1

1

3(k + 1)
+ γN+m+1 ≤

≤

(
N+m+1∏
i=N

(1− αi)

)
sN +

(
1−

N+m+1∏
i=N

(1− αi)

)
1

3(k + 1)
+

N+m+1∑
i=N

γi,
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where at the second inequality we used the induction hypothesis and the condition on R.
This concludes the induction.

Since N ≥ G(3k + 2) + 1,

N+m∑
i=N

γi ≤
N+m∑

i=G(3k+2)+1

γi ≤
1

3(k + 1)
.

Hence from (6.5), we get for all m ∈ N

sN+m+1 ≤

(
N+m∏
i=N

(1− αi)

)
D +

2

3(k + 1)
. (6.6)

Since for all n ∈ N, αn ≤ 1, we have for all j ∈ N, A(j + 1) ≥ j. Also, as D ≥ 1, we
have dln(3D(k + 1))e ≥ 1. From these two facts, we can see that the expression M :=
A (N + dln(3D(k + 1))e)−N gives a natural number. We have, for any m ≥M ,

N+m∑
i=0

αi ≥
N+M∑
i=0

αi =

A(N+dln(3D(k+1))e)∑
i=0

αi ≥

≥ N + ln(3D(k + 1)) ≥
N−1∑
i=0

αi + ln(3D(k + 1)),

from which we conclude
∑N+m

i=N αi ≥ ln(3D(k + 1)).

Recall that for non-negative x, 1− x ≤ exp(−x). Thus, we obtain for all m ≥M ,(
N+m∏
i=N

(1− αi)

)
D ≤ exp

(
−

N+m∑
i=N

αi

)
D ≤ D

3D(k + 1)
=

1

3(k + 1)
. (6.7)

From (6.6) and (6.7) we get, for all n ≥ N +M + 1 = θ1[A,R,G, D](k),

sn ≤
1

k + 1
.

Consider the condition

(C2′)
∏

(1− αn) = 0.
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It is well-known that, for (αn) ⊂]0, 1[, the condition (C2) is equivalent to this new condition
(C2’). Hence, it makes sense to consider a quantitative version of (C2’):

(Q2′) A : N→ N is a rate of convergence towards zero for
∏

(1− αn), i.e.

∀k ∈ N∀n ∈ N

A(k)+n∏
i=0

(1− αi) ≤
1

k + 1

 .

We can also prove the previous Lemma 6.5 with condition (Q2) replaced by condition (Q2’).
The usefulness of this result is in the fact that, for particular sequences (αn), a function
satisfying (Q2) may have different complexity than a function satisfying (Q2’) and so we
can choose to work with the simpler one in order to obtain better bounds. We already saw
an example of this at the end of Chapter 5, where rate of convergence towards zero for∏

(1− 1
n+2

) is linear, while we only have an exponential rate of divergence for
∑

1
n+2

.

Lemma 6.6 (Quant.version II of Lemma 6.4). Let (sn) be a bounded sequence of non-negative
real numbers and D ∈ N a positive upper bound on (sn). Consider sequences of real numbers
(αn) ⊂ ]0, 1[, (rn) and (γn) ⊂ R+

0 and assume the existence of monotone functions A, R,
G : N→ N such that A satisfies (Q2′), R is such that

∀k ∈ N ∀n ≥ R(k)

(
rn ≤

1

k + 1

)
,

and G is a Cauchy rate for
∑
γn.

If for any n ∈ N
sn+1 ≤ (1− αn)sn + αnrn + γn,

then

∀k ∈ N∀n ≥ θ2[A,R,G, D, `](k)

(
sn ≤

1

k + 1

)
,

with θ2[A,R,G, D, `](k) := max{A(3D(k + 1)(`+ 1)− 1), N}+ 1,
where N := max{R(3k + 2),G(3k + 2) + 1} and ` ∈ N is such that

∏N−1
i=0 (1− αi) ≥ 1

`+1
.

Proof. Consider k ∈ N given and N as defined in the lemma. Notice that N ≥ 1. Denote
Pn :=

∏n
i=0(1− αi). As in the proof of the previous lemma we conclude, for any m ∈ N

sN+m+1 ≤

(
N+m∏
i=N

(1− αi)

)
sN +

2

3(k + 1)
≤ D

PN+m

PN−1
+

2

3(k + 1)
. (6.8)
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Define the natural number M := max{A (3D(k + 1)(`+ 1)− 1) , N}−N . By the condition
on A, and since (1− αi) ≤ 1, for any m ≥M ,

PN+m =
N+m∏
i=0

(1− αi) ≤
N+M∏
i=0

(1− αi) ≤
1

3D(k + 1)(`+ 1)
.

On the other hand, by the definition of `, PN−1 ≥ 1
`+1

.
Thus,

D
PN+m

PN−1
≤ (`+ 1)D

3D(k + 1)(`+ 1)
=

1

3(k + 1)
. (6.9)

From (6.8) and (6.9), we conclude, for any n ≥ N +M + 1 = θ2[A,R,G, D, `](k),

sn ≤
1

k + 1
.

Sometimes the sequence (sn) is defined using an ideal element whose existence cannot be
guaranteed in our restrictive formal setting, e.g. using some projection point. Instead we
work with approximations of that ideal object. However, in that case, the inequality (6.4)
may fail and we have a weaker version that at the right-hand side in place of sn only has
sn + vn, for (vn) some possible sequence of errors. With arguments similar to those of
Proposition 5.16, we prove the next result.

Lemma 6.7. Let (sn) be a bounded sequence of non-negative real numbers and D ∈ N a
positive upper bound on (sn). Consider sequences of real numbers (αn) ⊂ ]0, 1[, (rn), (vn)
and (γn) ⊂ R+

0 and assume the existence of a monotone function A satisfying (Q2). For
natural numbers k,N and p assume

∀n ∈ [N, p]

(
vn ≤

1

4(k + 1)(p+ 1)
∧ rn ≤

1

4(k + 1)

)
,

∀n ∈ N

(
N+n∑
i=N

γi ≤
1

4(k + 1)

)
and for all n ∈ N,

sn+1 ≤ (1− αn)(sn + vn) + αnrn + γn.

Then,

∀n ∈ [σ1(k,N), p]

(
sn ≤

1

k + 1

)
,

with σ1(k,N) := A (N + dln(4D(k + 1))e) + 1.
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Proof. Consider k,N and p such that the premises of the lemma hold. We may assume
p ≥ A (N + dln(4D(k + 1))e) + 1, otherwise the result is trivially true. Then p ≥ N . By
induction, we see that for all m ≤ p−N ,

sN+m+1 ≤

(
N+m∏
i=N

(1− αi)

)
sN+

1

4(k + 1)(p+ 1)

N+m∑
j=N

N+m∏
i=j

(1−αi)+
1

4(k + 1)
+
N+m∑
i=N

γi. (6.10)

The base case m = 0 follows from the assumptions of the lemma. For the induction step
m+ 1 ≤ p−N , we have

sN+m+2 ≤ (1− αN+m+1)(sN+m+1 + vN+m+1) + αN+m+1rN+m+1 + γN+m+1 ≤

≤ (1− αN+m+1)

[(
N+m∏
i=N

(1− αi)

)
sN +

1

4(k + 1)(p+ 1)

N+m∑
j=N

N+m∏
i=j

(1− αi) +
1

4(k + 1)

+
N+m∑
i=N

γi

]
+ (1− αN+m+1)vN+m+1 + αN+m+1

1

4(k + 1)
+ γN+m+1 ≤

≤

(
N+m+1∏
i=N

(1− αi)

)
sN +

1

4(k + 1)(p+ 1)

N+m+1∑
j=N

N+m+1∏
i=j

(1− αi) +
1

4(k + 1)
+

N+m+1∑
i=N

γi,

using the induction hypothesis and the fact that, since N +m+ 1 ∈ [N, p], rN+m+1 ≤ 1
4(k+1)

.
This concludes the induction.

For m ≤ p−N , we have

N+m∑
j=N

N+m∏
i=j

(1− αi) ≤ m+ 1 ≤ p+ 1,

hence,

1

4(k + 1)(p+ 1)

N+m∑
j=N

N+m∏
i=j

(1− αi) ≤
1

4(k + 1)
.

Since
∑N+m

i=N γi ≤ 1
4(k+1)

, by (6.10), we conclude for all m ≤ p−N

sN+m+1 ≤

(
N+m∏
i=N

(1− αi)

)
D +

3

4(k + 1)
. (6.11)

Define the natural number M := A (N + dln(4D(k + 1))e)−N and conclude with the same
arguments as in the proof of Lemma 6.5 that for m ≥M ,

D

N+m∏
i=N

(1− αi) ≤
1

4(k + 1)
. (6.12)
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Finally, with (6.11) and (6.12), we obtain for m ∈ [M, p−N ]

sN+m+1 ≤
1

k + 1

and thus, for n ∈ [N +M + 1, p] = [σ1(k,N), p], we have sn ≤ 1
k+1

.

We can again change the final steps in the previous proof to conclude a similar result but
when the function A satisfies instead (Q2′).

Lemma 6.8. Let (sn) be a bounded sequence of non-negative real numbers and D ∈ N a
positive upper bound on (sn). Consider sequences of real numbers (αn) ⊂ ]0, 1[, (rn), (vn)
and (γn) ⊂ R+

0 and assume the existence of a monotone function A satisfying (Q2′). Let
h : N → N∗ be a monotone function satisfying

∏n
i=0(1 − αi) ≥ 1

h(n)
, for all n ∈ N. For

natural numbers k,N and p assume

∀n ∈ [N, p]

(
vn ≤

1

4(k + 1)(p+ 1)
∧ rn ≤

1

4(k + 1)

)
,

∀n ∈ N

(
N+n∑
i=N

γi ≤
1

4(k + 1)

)
and for all n ∈ N,

sn+1 ≤ (1− αn)(sn + vn) + αnrn + γn.

Then,

∀n ∈ [σ2(k,N), p]

(
sn ≤

1

k + 1

)
,

with σ2(k,N) := max{A (4D(k + 1)~(N − 1)− 1) + 1, N} + 1, with ~(−1) := 1 and for
n ∈ N, ~(n) := h(n).

Proof. Denote Pn :=
∏n

i=0(1− αi). Following the proof of the previous lemma we conclude
that for all m ≤ p−N ,

sN+m+1 ≤

(
N+m∏
i=N

(1− αi)

)
D +

3

4(k + 1)
= D

PN+m

PN−1
+

3

4(k + 1)

Define the natural number M := max{A (4D(k + 1)~(N − 1)− 1) + 1, N} −N .
On one hand, by (Q2′) and since 1− αi ≤ 1, we have for all m ≥M ,

PN+m =
N+m∏
i=0

(1− αi) ≤
N+M∏
i=0

(1− αi) ≤
1

4D(k + 1)~(N − 1)
.
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On the other hand, by the definition of h, ~ and with the usual convention P−1 = 1, we have

PN−1 ≥
1

~(N − 1)
. Hence,

D
PN+m

PN−1
≤ D~(N − 1)

4D(k + 1)~(N − 1)
=

1

4(k + 1)
.

This shows that for n ∈ [N +M + 1, p] = [σ2(k,N), p], we have sn ≤ 1
k+1

.

The next two lemmas are specially tailored to the quantitative analysis of theorem 6.2 in
section 6.4.

Lemma 6.9. Let Ω be a bounded subset of X. Let (αn) ⊂ ]0, 1[ be a given sequence. For
each x ∈ Ω, consider the sequences of real numbers (sn,x), (vn,x), (rn,x) and (γn,x) with (sn,x),
(γn,x) ⊂ R+

0 and such that, for all x ∈ Ω,

∀n ∈ N (sn+1,x ≤ (1− αi)(sn,x + vn,x) + αnrn,x + γn,x) .

For a natural number D ∈ N∗ and monotone functions A, G : N→ N and ψ : N×NN → N,
suppose:

(1) A satisfies condition (Q2);

(2) For all x ∈ Ω, D is a positive upper bound on (sn,x);

(3) For all x ∈ Ω, G is a Cauchy rate on
∑
γn,x;

(4) ∀k ∈ N∀̃f : N→ N∃x ∈ Ω∃N ≤ ψ(k, f)∀n ∈ [N, fN ]
(
vn,x ≤ 1

f(N)+1
∧ rn,x ≤ 1

k+1

)
.

Then, for any natural number k and monotone function f : N → N there are x ∈ Ω and
N ≤ Θ1[A,ψ,G,D](k, f) such that

∀n ∈ [N, fN ]

(
sn,x ≤

1

k + 1

)
,

where Θ1[A,ψ,G,D](k, f) := A (N0(ψ(4k + 3, g))) + 1 with
N0(m) = max{m,G(4k+3)+1}+dln(4D(k+1))e and g(m) := 4(k+1) (f(A(N0(m)) + 1) + 1).

Proof. Let k ∈ N and a monotone function f be given.
By (4), consider x̃ ∈ Ω and N1 ≤ ψ(4k + 3, g) such that for n ∈ [N1, g(N1)]

vn,x̃ ≤
1

g(N1) + 1
and rn,x̃ ≤

1

4(k + 1)
.
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Define N2 := max{N1,G(4k + 3) + 1}. By (3), for all n ∈ N,
∑N2+n

i=N2
γn,x̃ ≤ 1

4(k+1)
.

We have N1 ≤ N2 and

g(N1) ≥ f(A(N0(N1)) + 1) = f(σ1(k,N2)),

where σ1 is as in Lemma 6.7. Hence, for n ∈ [N2, f(σ1(k,N2))],

vn,x̃ ≤
1

4(k + 1)(f(σ1(k,N2)) + 1)
∧ rn,x̃ ≤

1

4(k + 1)
.

We are in the conditions of the Lemma 6.7 with N = N2 and p = f(σ1(k,N2)), and so

∀n ∈ [σ1(k,N2), f(σ1(k,N2))]

(
sn,x̃ ≤

1

k + 1

)
.

Noticing that, by the monotonicity of A, we have σ1(k,N2) ≤ Θ1[A,ψ,G,D](k, f), we con-
clude the proof.

Once again, we have a similar result with the condition (Q2′) instead.

Lemma 6.10. Let Ω be a bounded subset of X. Let (αn) ⊂ ]0, 1[ be a given sequence and
h : N→ N∗ be a monotone function satisfying

∏n
i=0(1− αi) ≥

1
h(n)

, for all n ∈ N. For each

x ∈ Ω, consider the sequences of real numbers (sn,x), (vn,x), (rn,x) and (γn,x) with (sn,x),
(γn,x) ⊂ R+

0 and such that, for all x ∈ Ω,

∀n ∈ N (sn+1,x ≤ (1− αi)(sn,x + vn,x) + αnrn,x + γn,x) .

For a natural number D ∈ N∗ and monotone functions A, h, G : N→ N and ψ : N×NN → N,
suppose:

(1) A satisfies condition (Q2′);

(2) For all x ∈ Ω, D is a positive upper bound on (sn,x);

(3) For all x ∈ Ω, G is a Cauchy rate on
∑
γn,x;

(4) ∀k ∈ N∀̃f : N→ N∃x ∈ Ω∃N ≤ ψ(k, f)∀n ∈ [N, fN ]
(
vn,x ≤ 1

f(N)+1
∧ rn,x ≤ 1

k+1

)
.

Then, for any natural number k and monotone function f : N → N there are x ∈ Ω and
N ≤ Θ2[A,ψ,G,D, h](k, f) such that

∀n ∈ [N, fN ]

(
sn,x ≤

1

k + 1

)
,

where Θ2[A,ψ,G,D, h](k, f) := max{A (4D(k + 1)~(M − 1)− 1)) + 1,M}
with g(m) := 4(k + 1) (f(max{A (4D(k + 1)~(M − 1)− 1)) + 1, N0(m)}) + 1),
N0(m) := max{m,G(4k + 3) + 1}, M := N0(ψ(4k + 3, g)) and ~ as in Lemma 6.8.
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Proof. The proof is similar to before but uses instead Lemma 6.8 and the function σ2. One
has to additionally note that

N2−1∏
i=0

(1− αi) ≥
M−1∏
i=0

(1− αi) ≥
1

~(M − 1)
.

We finish this section with the well-known identity for resolvent functions.

Lemma 6.11 (Resolvent Identity). For any x ∈ X and γ, β > 0,

Jβ(x) = Jγ

(
γ

β
x+ (1− γ

β
)Jβ(x)

)
. (6.13)

6.2 A review of the projection argument

In Section 4.3, we looked at the quantitative analysis of the projection argument onto the set
F = {x ∈ C |U(x) = x}, where C is a given nonempty bounded subset of a normed space
and U is a nonexpansive mapping of C into itself. Using Kohlenbach’s observation that the
weaker statement (4.35) is enough to carry out the proof of a metastability property, we pro-
ceed in using the characteristic principles of the bounded functional interpretation to obtain
its quantitative form. In the interpretation it was essential that the set C was bounded as it
ensured that quantifications over C could be treated as bounded quantifications. However,
sometimes the condition that C is a nonempty bounded set is replaced by the hypothesis
that the set F is nonempty, without any condition of boundedness.
In this section, we will see how the projection argument onto F can be analyzed under the
assumption that F is nonempty and without asking for the set C to be bounded. The cru-
cial observation is that, when looking for a fixed point closer to some point, say, v0 ∈ C,
it suffices to work inside a ball that already encompass at least one fixed point. That fixed
point may not be the closest fixed point to v0, but any fixed point even further away clearly
isn’t and so, fixed points outside a certain radius can be dropped from the argument. We
now formalize this statement.

Let X be a normed space and C a (possible unbounded) subset of X. Consider v0 ∈ C
and p0 some point in F , the set of fixed points of U in C. Consider a natural number
b̃ ≥ ‖p0 − v0‖+ ‖v0‖+ 1 and denote BE to be the ball with (intensional) radius b̃,

BE := BE(̃b) :=
{
x ∈ X | ‖x‖ER b̃

}
.
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Consider

∀k ∈ N ∃x ∈ C ∩ BE(
U(x) = x ∧ ∀y ∈ C ∩ BE

(
U(y) = y → ‖x− v0‖ER ‖y − v0‖+

1

k + 1

))
,

(6.14)

which is the (weaker) projection of v0 over F ∩ BE and, since the set F ∩ BE is nonempty

(we have ‖p0‖ER b̃), (6.14) is clearly true.
We can replace the weaker projection statement over F with this one over F ∩ BE. To see
this, given k ∈ N, assume there is p ∈ C such that

U(p) = p ∧ ∀y ∈ C
(
U(y) = y → ‖p− v0‖ER ‖y − v0‖+

1

k + 2

)
.

Since 1
k+2

ER
1

k+1
, we just have to see that p ∈ BE. Since U(p0) = p0, we have

‖p‖ ≤ ‖p− v0‖+ ‖u‖ER ‖p0 − v0‖+
1

k + 2
+ ‖v0‖ < b̃,

and it follows ‖p‖ER b̃.

In the other direction, for an arbitrary k ∈ N, assume we have p ∈ C ∩ BE such that

U(p) = p ∧ ∀y ∈ C ∩ BE
(
U(y) = y → ‖p− v0‖ER ‖y − v0‖+

1

k + 1

)
We just have to see that the second conjunct still holds outside BE. Take y ∈ F \ BE. Then

‖y‖ ≥ b̃. Since p0 ∈ F ∩ BE we have

‖p− v0‖ ≤ ‖p0 − v0‖+
1

k + 1
= ‖p0 − v0‖+ ‖v0‖ − ‖v0‖+

1

k + 1
<

< b̃− ‖v0‖+
1

k + 1
≤ ‖y‖ − ‖v0‖+

1

k + 1
≤ ‖y − v0‖+

1

k + 1
.

Hence ‖p− v0‖ < ‖y − v0‖+ 1
k+1

, which implies ‖p− v0‖ER ‖y − v0‖+ 1
k+1

.
Thus, the weak projection statement over F (4.35) is equivalent to the weaker projection
statement over F ∩ B (6.14). In the case where we don’t have a boundedness condition on
the set C, but instead the hypothesis that F is nonempty, we can consider the projection
argument restricted to the ball BE and its interpretation will be the same as in Section 4.3.
We can go back to the extensional inequalities by flattening. For any n ∈ N, write

B≤(n) := {x ∈ X | ‖x‖ ≤R n}.

We have the following quantitative result of the projection argument.
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Proposition 6.12. Let X be a normed space, U a nonexpansive mapping and C a subset of
X which maps C into itself. Let v0 ∈ C and b̃ ∈ N such that b̃ ≥ ‖p0− v0‖+ ‖v0‖+ 1 for p0
some fixed point of U in C. We abbreviate B≤ := B≤(̃b) and b := 2b̃.
For any natural number k and monotone function f : N → N, there are N ≤ f (r)(0) and
x ∈ C ∩ B≤ such that

‖U(x)− x‖ ≤ 1

f(N) + 1

and

∀y ∈ C ∩ B≤
(
‖U(y)− y‖ ≤ 1

N + 1
→ ‖x− v0‖2 ≤ ‖y − v0‖2 +

1

k + 1

)
,

where r := b2(k + 1) and f (r) is the r-th fold composition of f .

Proof. The proof is essentially the same as in Proposition 4.15 with the observations that
b = 2b̃ is a bound on the diameter of C ∩ B≤ and that for the definition of x0 we can take a

fixed point p0 guaranteed to exist by the definition of b̃.

After carrying out the interpretation and the extraction, we can extend the result to the
original set C:

Proposition 6.13. Let X be a normed space, U a nonexpansive mapping and C a subset of
X which maps C into itself. Let v0 ∈ C and b̃ ∈ N such that b̃ ≥ ‖p0− v0‖+ ‖v0‖+ 1 for p0
some fixed point of U in C. Write b := 2b̃.
For any natural number k and monotone function f : N → N, there are N ≤ f (r)(0) and
x ∈ C such that

‖U(x)−x‖ ≤ 1

f(N) + 1
∧∀y ∈ C

(
‖U(y)− y‖ ≤ 1

N + 1
→ ‖x− v0‖2 ≤ ‖y − v0‖2 +

1

k + 1

)
,

where r := b2(k + 1) and f (r) is the r-th fold composition of f .

Proof. Given k ∈ N and a monotone function f , apply Proposition 6.12. We just have to
see that the second conjunct holds outside B≤.
Let y ∈ C \ B≤ be such that ‖U(y)− y‖ ≤ 1

N+1
.

Since p0 ∈ F ∩ B≤ and 0 < b̃− ‖v0‖ ≤ ‖y‖ − ‖v0‖ ≤ ‖y − v0‖, we have

‖x− v0‖2 ≤ ‖p0 − v0‖2 +
1

k + 1
≤ (‖p0 − v0‖+ ‖v0‖ − ‖v0‖)2 +

1

k + 1
≤

≤ (̃b− ‖v0‖)2 +
1

k + 1
≤ ‖y − v0‖2 +

1

k + 1
.
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Let X now be a Hilbert space and assume that the set C is convex. Lemma 4.17 can be
adapted in order to deal with an unbounded set C. Formally, the idea is to consider the
argument restricted to C ∩ BE(n) for an arbitrary n ∈ N, which justifies the interpreta-
tion. By flattening, we return to the extensional inequalities – and to B≤(n) – and, since
diam(C ∩B≤(n)) ≤ 2n, we have the following result.

Lemma 6.14. For all k, n ∈ N and x1, x2 ∈ C ∩B≤(n),

2∧
j=1

(
‖U(xj)− xj‖≤

1

12(2n)(k + 1)2

)
→ ∀γ∈ [0, 1]

(
‖U(wγ(x1, x2))− wγ(x1, x2)‖≤

1

k + 1

)
.

We make a small comment before procceding. It is essential in the proof of Lemmas 4.17
and 6.14 that the space have a modulus of uniform convexity, η:

∀x, y ∈ B≤(1)∀ε > 0

(∥∥∥∥x+ y

2

∥∥∥∥ > 1− η(ε)→ ‖x− y‖ < ε

)
.

When X is a Hilbert space, Kohlenbach showed that we can consider η(ε) = ε2

8
. One could

work with an arbitrary uniformly convex space and derived a corresponding Lemmas 4.17
and 6.14, just as long as a modulus of uniform convexity η is given. In that case, the ex-
tracted bound would additionally depend on the function η. For a detailed proof of these
lemmas, and the relation to uniform convexity, see [27, Section 2]. We also remark that, in
the case of uniformity convexity, it does not looks to be possible to work only with a version
where 1

k+1
replaces ε. Namely, in [27, Lemma 2.2], the proof would fail since the role of K

cannot be appropriately captured by a natural number.

Similarly, we have a version of Lemma 4.18 adapted in order to deal with unbounded C.

Lemma 6.15. For all k, n ∈ N and x, y ∈ C ∩B≤(n),

∀γ ∈ [0, 1]

(
‖x− v0‖2 ≤ ‖wγ(x, y)− v0‖2 +

1

(2n)2(k + 1)2

)
→ 〈x− v0, x− y〉 ≤

1

k + 1
.

Using these adapted lemmas and Proposition 6.12 we obtain:

Proposition 6.16. Let X be a Hilbert space, U a nonexpansive mapping and C a subset of
X which maps C into itself. Let v0 ∈ C and b̃ ∈ N such that b̃ ≥ ‖p0− v0‖+ ‖v0‖+ 1 for p0
some fixed point of U in C. Write B≤ := B≤(̃b) and b := 2b̃.
For any k ∈ N and monotone function f : N → N, there are N ≤ 12b(f̌ (R)(0) + 1)2 and
x ∈ C ∩ B≤ such that

‖U(x)−x‖ ≤ 1

f(N) + 1
∧ ∀y ∈ C ∩ B≤

(
‖U(y)− y‖ ≤ 1

N + 1
→ 〈x− v0, x− y〉 ≤

1

k + 1

)
,

with R := b4(k + 1)2 and f̌(m) := max{f(12b(m+ 1)2), 12b(m+ 1)2}.
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Since, one cannot extend the Lemmas 6.14 and 6.15 to points with unbounded norm, it
does not seem to be possible to extend Proposition 6.16 to the original set C. Nevertheless,
this result still suffices in proving a metastability property. In the end, we only work with
provable bounded iterations and so all the arguments will still hold true inside C ∩ B≤ for b̃
big enough.

6.3 Metastability of HPPA1

In this section, we obtain the quantitative version of Theorem 6.1. The main point is to
compare the relevant sequence (xn) to a certain sequence defined in the way of Browder:

Given a point u ∈ X, a sequence (αn) ⊂ ]0, 1] and a nonexpansive map U : X → X. For
each n ∈ N, consider the function Un : X → X defined by

Un(x) := αnu+ (1− αn)U(x).

Then, for all n ∈ N, Un is a strict contraction with contraction constant 1 − αn < 1 and
so, by Banach’s contraction principle, Un has an unique fixed point zn. Thus, zn is defined
implicitly by

zn = αnu+ (1− αn)U(zn).

We call such iteration (zn) the Browder type sequence associated with u, (αn) and the non-
expansive map U .

In the proof of Theorem 6.1, the authors first show, under some conditions, the strong
convergence of the Browder type sequence for a particular map U and latter prove that ‖xn−
zn‖ converges to zero. In our quantitative analysis, we extract a bound on the metastability
of (zn), and then show how a bound on the metastability of (zn) effectively implies a bound
on the metastability of (xn).
Essentially by the same arguments as in Chapter 4, we start by showing that there exists a
monotone function φBr′ that is a bound for the metastability of the Browder type sequences
for an arbitrary sequence (αn) converging to zero:

∀k ∈ N∀̃f : N→ N∃N ≤ φBr′(k, f)∀i, j ∈ [N, fN ]

(
‖zi − zj‖ ≤

1

k + 1

)
.

We compute the value of φBr′ in several steps.

We make a theoretical comment first. In subsection 4.4.1, the boundedness condition on C
implied the existence of a fixed point in C from the fact that almost fixed points existed.
Here without that assumption we must consider a quantitative version of such existential
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statement. It is possible to work only with a radius N such that the ball BN(0) contains
almost fixed points for any level of accuracy. This comment follows from the interpretation
of the existence of a fixed point in C:

∃x ∈ C (U(x) = x)

∃x ∈ C∀k ∈ N
(
‖U(x)− x‖ER

1

k + 1

)
∃N ∈ N∃x ∈ C ∩BE(N)∀k ∈ N

(
‖U(x)− x‖ER

1

k + 1

)
∃N ∈ N∀k ∈ N∃x ∈ C ∩Bunlhd(N)

(
‖U(x)− x‖ER

1

k + 1

)
,

where we used BCωbd at the last step. An even more general stance would be to consider a
bound on the metastable version

∀̃f : N→ N∃N ∈ N∃x ∈ C ∩BE(N)

(
‖U(x)− x‖ER

1

f(N) + 1

)
.

However, to simplify the computations, one may work with a bound on the norm of some
fixed point in C.

As commented in Chapter 4, Browder’s proof makes use of sequential weak compactness,
which can be bypassed in quantitative analysis. This can be done by applying the general
principle with the function ϕ(x, y) := 〈x − v0, y〉. Condition (b) of Proposition 4.14 will
correspond to an instance of Proposition 6.16. To see condition (a) of Proposition 4.14, we
will see that (zn) is a bounded sequence and compute a rate of asymptotic regularity, i.e., a
monotone function χ : N→ N such that

∀k ∈ N∀n ≥ χ(k)

(
‖U(zn)− zn‖ ≤

1

k + 1

)
.

These properties of (zn) are shown in the next two lemmas.

Lemma 6.17. For X a real Hilbert space and C a subset (not necessarily bounded), consider
a sequence (αn) ⊂ ]0, 1[, U : C → C a nonexpansive mapping, v0 a point in C and let (zn)
be the associated Browder type sequence. If p0 is some fixed point of U , then for all n ∈ N,

‖zn − p0‖ ≤ 2‖v0 − p0‖. (6.15)

Proof. We have the following, for any n ∈ N

‖zn − p0‖2 ≤ ‖αnv0 + (1− αn)U(zn)− p0‖2 = ‖αn(v0 − p0) + (1− αn)(U(zn)− p0)‖2 ≤
≤ (1− αn)2‖U(zn)− p0‖2 + 2〈α(v0 − p0), zn − p0〉 =

= (1− αn)2‖U(zn)− U(p0)‖2 + 2〈α(v0 − p0), zn − p0〉 ≤
≤ (1− αn)2‖zn − p0‖2 + 2αn‖v0 − p0‖‖zn − p0‖,
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where at the second inequality we used ‖x+ y‖2 ≤ ‖y‖2 + 2〈x, x+ y〉.
This implies (

1− (1− αn)2
)
‖zn − p0‖2 ≤ 2αn‖v0 − p0‖zn − p0‖,

from which follows (6.15)

‖zn − p‖ ≤
2

2− αn
‖v0 − p0‖ ≤ 2‖v0 − p0‖.

In particular, (zn) and (U(zn)) are bounded and, with p0 some fixed point of U , we have,
for all n ∈ N

‖zn‖ ≤ 2‖v0 − p0‖+ ‖p0‖,
‖U(zn)− v0‖ ≤ 3‖v0 − p0‖,
‖U(zn)‖ ≤ 2‖v0 + p0‖+ ‖p0‖.

Next we give a rate of asymptotic regularity for the Browder type sequence.

Lemma 6.18. Let a : N → N be a rate of convergence towards zero for (αn), and b ∈ N a
positive bound on ‖U(zn)− v0‖. Then

∀k ∈ N∀n ≥ a(b(k + 1))

(
‖zn − U(zn)‖ ≤ 1

k + 1

)
. (6.16)

Proof. For a given k ∈ N, take an arbitrary n ≥ a(b(k + 1)). Then,

‖zn − U(zn)‖ = αn‖v0 − U(zn)‖ ≤ b

b(k + 1)
=

1

k + 1
.

Next we turn to the projection argument. In order to apply Proposition 6.16 from the
previous section we need to consider some natural number b̃ ≥ ‖v0 − p0‖ + ‖v0‖ + 1. It

will be important that for all n ∈ N, ‖zn‖ ≤ b̃ and ‖U(zn) − v0‖ ≤ 2b̃ and so we consider

a natural number b̃ ≥ max{‖v0 − p0‖ + ‖v0‖ + 1, 2‖v0 − p0‖ + ‖p0‖}. Define B≤ := B≤(̃b)

and b := 2b̃. Notice that b satisfies the assumption on Lemma 6.18. Recall the functions of
section 5.1:

r : N→ N, r(k) = b4(k + 1)2. (6.17)

and, for every g : N→ N,

ωg : N→ N, ωg(m) = max{g(12b(m+ 1)2), 12b(m+ 1)2}. (6.18)

Then from Proposition 6.16, we have
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Proposition 6.19. For any natural number k and monotone function f : N→ N, there are
N ≤ 12b(ω

(r(k))
f (0) + 1)2 and x ∈ C ∩ B≤ such that

‖U(x)−x‖ ≤ 1

f(N) + 1
∧ ∀y ∈ C ∩B≤

(
‖U(y)− y‖ ≤ 1

N + 1
→ 〈x− v0, x− y〉 ≤

1

k + 1

)
.

Hence, in Proposition 4.14, the condition (a) is satisfied by the function

ᾱ(k) = a(b(k + 1))

and condition (b) by the function

β̄(k, f) = 12b(ω
(r(k))
f (0) + 1)2,

with b a natural number as stated. We write the functions under a bar to avoid confusion
with the parameters of the Halpern type proximal point algorithm.
Therefore we can apply the quantitative Proposition 4.14 to obtain that for every k ∈ N and
any monotone function f ∈ NN, there exists N ≤ ψ(k, f) and x ∈ C ∩ B≤ such that

‖U(x)− x‖ ≤ 1

f(N) + 1
∧ ∀n ∈ [N, f(N)]

(
〈x− v0, x− zn〉 ≤ +

1

k + 1

)
, (6.19)

where

ψ(k, f) = ᾱ
(
β̄(k, f̂)

)
= a

(
b
(
β
(
k, f̂
)

+ 1
))

= a

(
b

(
12b
(
ω
(r(k))

f̂
(0) + 1

)2
+ 1

))
= a

(
12b2

(
ω
(r(k))

f̂
(0) + 1

)2
+ b

)
.

with
f̂(m) = f(ᾱ(m, f)) = f(a(bm+ b))).

This functional ψ satisfies condition (i) of Proposition 5.2 and we are only missing the second
condition corresponding to the combinatorial part of the argument. Similarlly to section 5.1,
but with the general sequence (αn) in place of the sequence ( 1

n+1
), we have for all x ∈ C∩B≤

and k, n, ` ∈ N, if

‖U(x)− x‖ ≤ 1

2b(`+ 1)(k + 1)2
∧ 〈x− v0, x− zn〉 ≤

1

2(k + 1)2
∧ αn ≥

1

`+ 1

then, ‖un − x‖ <
1

k + 1
.

Following Kohlenbach’s arguments in [27, Lemma 2.11] (with sj = 1− αj) we arrive at

αn‖zn − x‖2 ≤ αn〈x− v0, x− zn〉+
1

2(`+ 1)(k + 1)2
,
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and the result is obtained by noticing that 1
(`+1)αn

≤ 1.

Therefore, condition (ii) of Proposition 5.2 holds with

γ(k, n, f) := 2b(`+ 1)(k + 1)2 − 1, δ(k) := 2(k + 1)2 − 1, η(k, n, f) := f(n) and
σ(k, n, f) := n, where ` := d 1

αf(n)
e − 1 ensures that αf(n) ≥ 1

`+1
.

Finally, the conclusion of Proposition 5.2 yields the desired quantitative result.

Theorem 6.20 (Quant.Browder II). Let X be a real Hilbert space and C a non-empty convex
subset of X (not necessarily bounded). Let U : C → C be a nonexpansive mapping, v0 a

point in C and b̃ ∈ N such that b̃ ≥ max{‖v0 − p0‖ + ‖v0‖ + 1, 2‖v0 − p0‖ + ‖p0‖}, for p0
some fixed point of U in C, and write b = 2b̃. Consider a sequence (αn) ⊂]0, 1[ converging
to zero with rate of convergence a : N → N. Let h : N → N be a monotone function such

that for all n ∈ N, αn ≥
1

h(n) + 1
. Then, for (zn) the corresponding Browder type sequence,

we have

∀k ∈ N∀̃f : N→ N∃N ≤ φBr′(k, f)∀i, j ∈ [N, fN ]

(
‖zi − zj‖ ≤

1

k + 1

)
,

where
φBr′(k, f) := a

(
12b2

(
g(R)(0) + 1

)2
+ b
)
,

with R := 64b4(k + 1)4, g(m) := max{f(a(12b2(m+ 1)2 + b)), 12b(m+ 1)2}
and f(m) := max{8b (h(f(m)) + 1) (k + 1)2 − 1, f(m)}.

Lets now look at how a bound on the metastability of (xn) can be computed from a bound
on the metastability of a certain Browder type sequence.

Theorem 6.21. Let T be a maximal monotone operator, S the set of zeros of T and p0
a point in S. Consider sequences (αn) ⊂ ]0, 1[, (βn) ⊂ R+ and (en) ⊂ X.With x0, u ∈ X,
let (xn) be the corresponding Halpern type proximal point iteration inductively defined by
(HPPA1).
Assume the existence of monotone functions A, B, c, E : N → N, β ∈ R+ and ` ∈ N
such that the conditions (Q2) to (Q4) and (Q6) hold. Let (zn) be the Browder type iteration
associated to the sequence (αn), the nonexpansive map Jβ and to the point u. If a monotone
function φ : N× NN → N is a bound on the metastability of (zn), i.e.

∀k ∈ N ∀̃f : N→ N ∃N ≤ φ(k, f)∀i, j ∈ [N, f(N)]

(
‖zi − zj‖ ≤

1

k + 1

)
,

and D ∈ N is a positive upper bound on ‖Jβ(zn)− u‖, then

∀k ∈ N ∀̃f : N→ N ∃N ≤ Φ1(k, f)∀i, j ∈ [N, f(N)]

(
‖xi − xj‖ ≤

1

k + 1

)
,
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where Φ1(k, f) := max{θ1[A,R,E, D0]
(
k
)
, φ
(
k, h[k, f ]

)
}, with

θ1 is as in Lemma 6.5,

R(k) := max{B(2D(`+ 1)(k + 1)− 1), c(2D(k + 1)− 1)},

D0 := d1

(
1 + d

∑E(0)
i=0 ‖ei‖e

)
+ d‖p0 − u‖e+D,

d1 as in Lemma 6.3,

k := 3k + 2 and h[k, f ](m) := f (max{θ1[A,R,E, D0](k),m}) .

Proof. From condition (Q6) it follows,

∀n ∈ N

(
n∑
i=0

‖ei‖ ≤ E

)
,

with E = 1 + d
∑E(0)

i=0 ‖ei‖e.

From Lemma 6.3 we get that (xn) is bounded and

∀n ∈ N (‖xn − p0‖ ≤ d1(E) ,

where d1(k) := dmax{‖u− p0‖, ‖x0 − p0‖}e+ k.

We have, for all n ∈ N, since u− zn = (1− αn)(u− Jβ(zn),

‖xn − zn‖ ≤ ‖xn − p0‖+ ‖p0 − u‖+ ‖u− zn‖ =

= ‖xn − p0‖+ ‖p0 − u‖+ (1− αn)‖u− Jβ(zn)‖ ≤
≤ d1(E) + ‖p0 − u‖+D,

and define D0 := d1(E) + d‖p0 − u‖e+D.
Following [5], we have,

‖xn+1 − zn‖ ≤ (1− αn)‖Jβn(xn)− Jβ(zn)‖+ ‖en‖ ≤
≤ (1− αn)‖Jβn(xn)− Jβn(zn)‖+ ‖Jβn(zn)− Jβ(zn)‖+ ‖en‖ ≤

≤ (1− αn)‖xn − zn‖+
|β − βn|

β
‖zn − Jβ(zn)‖+ ‖en‖ =

= (1− αn)‖xn − zn‖+ αn
|β − βn|

β
‖u− Jβ(zn)‖+ ‖en‖ ≤

≤ (1− αn)‖xn − zn‖+ αn
|β − βn|

β
D + ‖en‖, (6.20)
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using the fact that the functions Jβn are nonexpansive and, by Lemma 6.11 (resolvent iden-

tity), Jβ(zn) = Jβn

(
βn
β
zn + (1− βn

β
)Jβ(zn)

)
.

On the other hand, from

‖zn − zn+1‖ ≤ ‖(αn − αn+1)(u− Jβ(zn+1)) + (1− αn)(Jβ(zn)− Jβ(zn+1))‖ ≤
≤ |αn+1 − αn|‖u− Jβ(zn+1)‖+ (1− αn)‖zn − zn+1‖ ≤
≤ |αn+1 − αn|D + (1− αn)‖zn − zn+1‖,

we conclude,

‖zn − zn+1‖ ≤
|αn+1 − αn|

αn
D. (6.21)

Hence we conclude, from (6.20) and (6.21), that for all n ∈ N

‖xn+1 − zn+1‖ ≤ (1− αn)‖xn − zn‖+ αn
|β − βn|

β
D + ‖en‖+

|αn+1 − αn|
αn

D. (6.22)

Then, with rn := D
(
|β−βn|
β

+ |αn+1−αn|
α2
n

)
, for all n ∈ N

‖xn+1 − zn+1‖ ≤ (1− αn)‖xn − zn‖+ αnrn + ‖en‖,

and we can apply Lemma 6.5 with sn = ‖xn − zn‖ ≤ D0, γn := ‖en‖, G = E and

R(k) := max{B(2D(`+ 1)(k + 1)− 1), c(2D(k + 1)− 1)}. (6.23)

This R satisfies the condition of Lemma 6.4. In fact, for any k ∈ N and n ≥ R(k),

rn ≤ D

(
|β − βn|

β
+
|αn+1 − αn|

α2
n

)
≤ D

(
1

β2D(k + 1)(`+ 1)
+

1

2D(k + 1)

)
≤

≤ D

(
`+ 1

2D(k + 1)(`+ 1)
+

1

2D(k + 1)

)
=

1

k + 1
.

Hence, we conclude

∀n ≥ θ1[A,R,E, D0](k)

(
‖xn − zn‖ ≤

1

k + 1

)
.

Now, by the assumption on φ and by Proposition 4.1,

∀k ∈ N∀̃f : N→ N ∃N ≤ Φ̃1(k, f)∀i, j ∈ [N, fN ]

(
‖xi − zi‖ ≤

1

k + 1
∧ ‖zi − zj‖ ≤

1

k + 1

)
,
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where Φ̃1(k, f) := max{θ1[A,R,E, D0](k), φ(k, h[k, f ])}, with R as in (6.23) and the mono-
tone function h[k, f ] : N→ N defined by

h[k, f ](m) := f (max{θ1[A,R,E, D0](k),m}) .

For given k ∈ N and monotone f : N → N, there is N ≤ Φ̃1(3k + 2, f) such that for any
i, j ∈ [N, fN ]

‖xi − zi‖ ≤
1

3(k + 1)
and ‖zi − zj‖ ≤

1

3(k + 1)
.

It follows for i, j ∈ [N, fN ],

‖xi − xj‖ ≤ ‖xi − zi‖+ ‖zi − zj‖+ ‖zj − xj‖ ≤
1

k + 1
.

The proof concludes with the observation that Φ̃1(3k + 2, f) = Φ1(k, f).

We now show the quantitative version when one instead have the condition (Q7).

Theorem 6.22. Under the same assumptions as in Theorem 6.21, but with (Q6) replaced
by (Q7), we have

∀k ∈ N ∀̃f : N→ N ∃N ≤ Φ2(k, f)∀i, j ∈ [N, f(N)]

(
‖xi − xj‖ ≤

1

k + 1

)
,

where Φ2(k, f) := max{θ1[A,R,0, D0](k), φ(k, h[k, f ])}, with

θ1 is as in Lemma 6.5,

0 := λm. 0 is the zero constant function,

R(k) := max{B(3D(`+ 1)(k + 1)− 1), c(3D(k + 1)− 1),E(3k + 2)},

D0 := d2

(
dmaxi<E(0){‖ei‖α2

i
, 1}e

)
+ d‖p0 − u‖e+D,

d2 as in Lemma 6.3,

k := 3k + 2 and h[k, f ](m) := f (max{θ1[A,R,0, D0](k),m}) .

Proof. From condition (Q7),

∀n ∈ N
(
‖en‖
α2
n

≤ E ′
)
,

with E ′ =
⌈

maxi<E(0)

{
‖ei‖
α2
i

, 1

}⌉
.

From Lemma 6.3 we conclude

∀n ∈ N (‖xn − p0‖ ≤ d2(E ′) ,
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where d2(k) := dmax{2 (‖u− p0‖+ k) , ‖x0 − p0‖}e.

Similar to before we conclude, for all n ∈ N,

‖xn − zn‖ ≤ d2(E ′) + ‖p0 − u‖+D,

and define D0 := d2(E ′) + d‖p0 − u‖e+D.
Like in the previous proof, we conclude that for all n ∈ N,

‖xn+1 − zn+1‖ ≤ (1− αn)‖xn − zn‖+ αn
|β − βn|

β
D + ‖en‖+

|αn+1 − αn|
αn

D. (6.24)

Now, with rn := D
(
|β−βn|
β

+ |αn+1−αn|
α2
n

)
+ ‖en‖

αn
, for all n ∈ N

‖xn+1 − zn+1‖ ≤ (1− αn)‖xn − zn‖+ αnrn,

and we can apply Lemma 6.5 with sn = ‖xn − zn‖ ≤ D0, γn := ‖en‖, G = 0 (zero function)
and

R(k) := max{B(3D(`+ 1)(k + 1)− 1), c(3D(k + 1)− 1),E(3k + 2)}. (6.25)

This R now satisfies the condition of Lemma 6.4, since for any k ∈ N and n ≥ R(k),

rn = D

(
|β − βn|

β
+
|αn+1 − αn|

α2
n

)
+
‖en‖
α2
n

≤

≤ D

(
1

β3D(k + 1)(`+ 1)
+

1

3D(k + 1)

)
+

1

3(k + 1)
≤

≤ D

(
`+ 1

3D(k + 1)(`+ 1)
+

1

3D(k + 1)

)
+

1

3(k + 1)
=

1

k + 1
.

Hence, we conclude

∀n ≥ θ1[A,R,0, D0](k)

(
‖xn − zn‖ ≤

1

k + 1

)
.

Now, by the assumption on φ and by Proposition 4.1,

∀k ∈ N∀̃f : N→ N∃N ≤ Φ̃2(k, f)∀i, j ∈ [N, fN ]

(
‖xi − zi‖ ≤

1

k + 1
∧ ‖zi − zj‖ ≤

1

k + 1

)
,

where Φ̃2(k, f) := max{θ1[A,R,0, D0](k), φ(k, h[k, f ])}, with R as in (6.23) and the mono-
tone function h[k, f ] : N→ N defined by

h[k, f ](m) := f (max{θ1[A,R,0, D0](k),m}) .

The result now follows by triangle inequality as previously and Φ2(k, f) = Φ̃2(3k+ 2, f).
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We can also consider the quantitative condition (Q2′). The proofs are identical to those of
the previous two results but, instead of Lemma 6.5 and the function θ1, one makes use of
Lemma 6.6 and the function θ2.

Theorem 6.23. Under the same assumptions as in Theorem 6.21, but with (Q2) replaced
by (Q2′). For each k ∈ N, let `k ∈ N be a natural number satisfying

∏nk−1
i=0 (1 − αi) ≥ 1

`k+1
,

where nk := max{R(3k + 2),E(3k + 2) + 1} with R as below. We have

∀k ∈ N ∀̃f : N→ N ∃N ≤ Φ3(k, f)∀i, j ∈ [N, f(N)]

(
‖xi − xj‖ ≤

1

k + 1

)
,

where Φ3(k, f) := max{θ2[A,R,E, D0, `k](k), φ(k, h[k, f ])}, with

θ2 is as in Lemma 6.6,

R(k) := max{B(2D(`+ 1)(k + 1)− 1), c(2D(k + 1)− 1)},

D0 := d1

(
1 + d

∑E(0)
i=0 ‖ei‖e

)
+ d‖p0 − u‖e+D,

d1 as in Lemma 6.3,

k := 3k + 2 and h[k, f ](m) := f (max{θ2[A,R,E, D0, `k](k),m}) .

Theorem 6.24. Under the same assumptions as in Theorem 6.21, but with (Q2) replaced by
(Q2′) and (Q6) replaced by (Q7). For each k ∈ N, let `k ∈ N be a natural number satisfying∏nk−1

i=0 (1− αi) ≥ 1
`k+1

, where nk := R(3k + 2) with R as below. We have

∀k ∈ N ∀̃f : N→ N ∃N ≤ Φ4(k, f)∀i, j ∈ [N, f(N)]

(
‖xi − xj‖ ≤

1

k + 1

)
,

where Φ4(k, f) := max{θ2[A,R,0, D0, `k](k), φ(k, h[k, f ])}, with

θ2 is as in Lemma 6.6,

R(k) := max{B(3D(`+ 1)(k + 1)− 1), c(3D(k + 1)− 1),E(3k + 2)},

D0 := d2

(
dmaxi<E(0){‖ei‖α2

i
, 1}e

)
+ d‖p0 − u‖e+D,

d2 as in Lemma 6.3,

k := 3k + 2 and h[k, f ](m) := f (max{θ2[A,R,0, D0, `k](k),m}) .

Hence, under these conditions, a bound for the metastability of (xn) is obtained by instan-
tiating the function φ in these last four theorems with the function φBr′ from Theorem 6.20.

An elementary proof of Browder’s theorem for the case C = B1(0) and v0 = 0, due to
Halpern [18], already does not use weak compactness. In [27], Kohlenbach generalized this
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proof to a general closed convex set C and point v0, and strong convergence of (zn) is
obtained when (αn) is any decreasing sequence in ]0, 1[ even if it does not converges to zero.
Analyzing this proof with the monotone functional interpretation, Kohlenbach showed a
different quantitative version of Browder’s theorem. The next result is theorem 4.2 from
[27], slightly adapted to our context.

Theorem 6.25 (Quant.Browder III). Let X be a real Hilbert space, d ∈ N∗ and C ⊂ X be
a bounded closed and convex subset with b ≥ diam(C). Let U : C → C be a nonexpansive
mapping and v0 ∈ C. Let (αn) be a sequence in ]0, 1[ that converges to zero and h : N→ N
be a monotone function such that for all n ∈ N, αn ≥ 1

h(n)+1
. Let a : N→ N be a monotone

function satisfying (Q1). Then, for (zn) the corresponding Browder type sequence, we have

∀k ∈ N∀̃f : N→ N∃N ≤ φBr′′(k, f)∀i, j ∈ [N, fN ]

(
‖zi − zj‖ ≤

1

k + 1

)
,

where
φBr′′(k, f) := a

(
f
(r(k))
h,a (0)

)
,

with fh,a(n) := h(a(n) + f(a(n)) and r(k) := 4b2(k + 1)2.
Instead of C being bounded it suffices to have (zn) bounded and the bound above also holds
if b ≥ ‖zn − v0‖, for all n ∈ N.
If (αn) is an decreasing sequence in ]0, 1[ (not necessarily converging to 0), then the bound
can be simplified to φBr′′(k, f) := f̌ (b2(k+1)2)(0), where f̌(n) := n+ f(n).

Proof. The bounds above follow directly from [27, theorem 4.2] with some observations.
There αn = 1− sn, zn = ǔn and 1

k+1
= ε. We are considering the function a : N→ N to be

a rate of convergence towards 0 for (αn) instead of a “quasi-rate of convergence” – which is
a stronger condition than the existence of Kohlenbach’s function χg. By monotonicity of a,
the function (a)M is just a. The definition of fh,a also simplifies using the monotonicity of
the function h. Finally, instead of adapting the bounds to conclude the result directly to the
interval [N, fN ], we apply Kohlenbach’s theorem and, since trivially [N, fN ] ⊂ [N,N+fN ],
the result follows.

We can also apply theorems 6.21-6.24 with φ instantiated by φBr′′ to obtain a bound on the
metastability of (xn).

6.4 Metastability of HPPA2

In this section, we are considering the sequence (xn) defined by (HPPA2) with u = x0.
Xu’s original proof of of Theorem 6.2 begins by seeing that the sequence (xn) is bounded.
Then, using sequential weak compactness together with the projection argument, he con-
cludes that lim sup〈x̃ − x0, x̃ − xn〉 ≤ 0, with x̃ the projection point of x0 onto S. Finally,
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the strong convergence is obtained by applying Lemma 6.4. We will obtain a metastable
version of Theorem 6.2 by following the quantitative form of those same arguments. The
projection argument’s treatment is as in section 6.2, and the sequential weak compactness
can be bypassed by using the general principle from Chapter 4.

Let p0 be a point in S. By an inductive argument similar to that of Lemma 6.3, one sees
that for all n ∈ N,

‖xn − p0‖ ≤ ‖x0 − p0‖+
n−1∑
i=0

‖ei‖.

Hence, (xn) is bounded and, if E is a Cauchy rate for
∑
‖en‖, we have for all n ∈ N,

‖xn − p0‖ ≤ ‖x0 − p0‖+ E ,
‖xn‖ ≤ ‖x0 − p0‖+ ‖p0‖+ E ,
‖xn − x0‖ ≤ 2‖x0 − p0‖+ E ,

with E := 1 + d
∑E(0)

i=0 ‖ei‖e.

Now, we will compute a rate of asymptotic regularity for the sequence (xn) that will cor-
respond to the function α in Proposition 4.14 when ϕ(x, y) := 〈x − x0, y〉. We do this in
two steps. First, the following rate of convergence is easily derived from the original proof
of Theorem 6.2.

Lemma 6.26. Consider monotone functions a,E : N→ N satisfying (Q1) and (Q6) and let
b ∈ N be a positive bound on ‖xn − p0‖, for some p0 ∈ S. Define ξ(k) :=max{a(4b(k + 1)−
1),E(2k + 1) + 1}. Then,

∀k ∈ N∀n ≥ ξ(k)

(
‖xn+1 − Jβn(xn)‖ ≤ 1

k + 1

)
.

Proof. Let k ∈ N be given. Consider n ≥ ξ(k). Then, from condition (Q6), we have in
particular

‖en‖ ≤
1

2(k + 1)
.

Using the fact that Jβn is nonexpansive and p0 is a fixed point of Jβn , we get

‖xn+1 − Jβn(xn)‖ = ‖αnx0 + (1− αn)(Jβn(xn) + en)− Jβn(xn)‖ ≤
≤ αn‖x0 − Jβn(xn)‖+ ‖en‖ ≤
≤ αn(‖x0 − p0‖+ ‖p0 − Jβn(xn)‖) + ‖en‖ ≤
≤ αn(‖x0 − p0‖+ ‖p0 − xn‖) + ‖en‖ ≤ αn(2b) + ‖en‖ ≤

≤ 2b

4b(k + 1)
+

1

2(k + 1)
=

1

k + 1
.
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Next we compute a rate of asymptotic regularity for the sequence (xn) in relation to a
resolvent function Jγ.

Proposition 6.27. Consider a real number γ > 0 and monotone functions a,B,E : N→ N
satisfying (Q1), (Q5) and (Q6) and let b ∈ N be a positive bound on ‖xn − p0‖, for some
p0 ∈ S.
Define χγ(k) := max{ξ(4k + 3),B(8b(k + 1)dγe − 1)} + 1, where ξ is as in Lemma 6.26.
Then,

∀k ∈ N∀n ≥ χγ(k)

(
‖xn − Jγ(xn)‖ ≤ 1

k + 1

)
.

Proof. First notice that, by the monotonicity of a and E, we have

χγ(k) ≥ a(8b(k + 1)− 1) + 1 and ξ(k) ≥ E(4k + 3) + 2.

For n+ 1 ≥ χγ(k), using the resolvent identity,

‖xn+1 − Jγ(xn+1)‖ ≤ αn‖x0 − Jγ(xn+1)‖+ ‖Jβn(xn)− Jγ(xn+1)‖+ ‖en‖ ≤

≤ 2bαn +

∥∥∥∥Jγ ( γ

βn
xn + (1− γ

βn
)Jβn(xn)

)
− Jγ(xn+1)

∥∥∥∥+ ‖en‖ ≤

≤ 2bαn +

∥∥∥∥ γβnxn + (1− γ

βn
)Jβn(xn)− xn+1

∥∥∥∥+ ‖en‖ ≤

≤ 2bαn +
γ

βn
‖xn − xn+1‖+

∣∣∣∣1− γ

βn

∣∣∣∣ ‖Jβn(xn)− xn+1‖+ ‖en‖ ≤

≤ 2bαn +
γ

βn
2b+

∣∣∣∣1− γ

βn

∣∣∣∣ ‖Jβn(xn)− xn+1‖+ ‖en‖ ≤

≤ 2b

8b(k + 1)
+

2bγ

8b(k + 1)γ
+

1

4(k + 1)
+

1

4(k + 1)
=

1

k + 1
,

which concludes the result.

We now turn to the projection argument. It will be useful to consider a natural number b̃
that is big enough to guarantee the arguments of section 6.2, to be a bound on the sequence
‖xn‖ and such that 2b̃ satisfies the assumption on b in the previous result. It is not hard to
see, that a natural number

b̃ ≥ ‖x0 − p0‖+ max{‖x0‖, ‖p0‖}+ E , (6.26)

with E := 1 + d
∑E(0)

i=0 ‖ei‖e and p0 some zero of T , satisfies all those requirements.

In the sequel, we consider b̃ with this condition and define B := Bb̃(0) and b := 2b̃. By

Proposition 6.16, with b̃ in the condition above and with J = J1 the resolvent function
(Id+ T )−1, we have
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Proposition 6.28. For any natural number k and monotone function f : N→ N, there are
N ≤ 12b(ω

(r(k))
f (0) + 1)2 and x ∈ C ∩ B such that

‖J(x)− x‖ ≤ 1

f(N) + 1
∧ ∀y ∈ C ∩ B

(
‖J(y)− y‖ ≤ 1

N + 1
→ 〈x− x0, x− y〉 ≤

1

k + 1

)
,

with r(k) and ωg as in (6.17) and (6.18).

The condition (a) in Proposition 4.14 (with ϕ(x, y) := 〈x−x0, y〉 and the map J) is satisfied
by the function χ1 and condition (b) by the function

β̄(k, f) = 12b(ω
(r(k))
f (0) + 1)2,

with b a natural number as explained above.
Therefore, by the general principle of Chapter 4, we obtain

Proposition 6.29. For every k ∈ N and any monotone function f ∈ NN, there exists
N ≤ ψ(k, f) and x ∈ C ∩ B such that

‖J(x)− x‖ ≤ 1

f(N) + 1
∧ ∀n ∈ [N, fN ]

(
〈x− x0, x− xn〉 ≤

1

k + 1

)
,

where ψ(k, f) = χ1(β̄(k, f̂)), with f̂(m) = f(χ1(m)).

Since χ1 is a rate of convergence, we even have the Proposition 6.29 with ∀n ≥ N in place
of ∀n ∈ [N, fN ].

At this point in our analysis, we have gave a quantitative version of the relevant (weak)
projection argument and removed the original sequential weak compactness argument. In
order to obtain the metastable version of Theorem 6.2, we will argue that the conditions of
Lemmas 6.9 and 6.10 are satisfied.

Notice that in Proposition 6.28, we only analyzed the projection onto the set of fixed points of
the map J . However, there is no problem in focusing on that particular set since all the sets
of fixed points of resolvent functions coincide. This last statement, requires a quantitative
version, that we show below.

Lemma 6.30. For all k, n ∈ N and x ∈ X,

‖J(x)− x‖ ≤ 1

δ(k, n) + 1
→ ‖Jβn(x)‖ ≤ 1

k + 1
,

where δ(k, n) := (k + 1)(1 + maxj≤n{d|1− βj|})− 1.
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Proof. Assume that, for given k, n ∈ N and x ∈ X, we have ‖J(x)− x‖ ≤ 1
δ(k,n)+1

. Then,

‖J(x)− x‖ ≤ 1

(k + 1)(1 + |1− βn|)
.

By the definition of the resolvent function, we have with ‖e‖ ≤ 1
(k+1)(|βn−1|+1)

,

J(x) = x+ e⇔ x ∈ x+ e+ T (x+ e) ⇔
⇔ − e ∈ T (u+ e) ⇔ x+ (1− βn)e ∈ x+ e+ βnT (x+ e)⇔
⇔ Jβn (x+ (1− βn)e) = x+ e

From this we conclude,

‖Jβn(x)− x‖ ≤ ‖Jβn(x)− Jβn(x+ (1− βn)e)‖+ ‖Jβn(x+ (1− βn)e)− x‖ ≤

≤ ‖x− (x+ (1− βn)e)‖+ ‖e‖ ≤ ‖e‖(1 + |1− βn|) ≤
1

k + 1
.

The previous proof show that to ensure that x is an almost fixed point of Jβn with error 1
k+1

,

it is enough to have x be an almost fixed point of J with error 1
(k+1)(1+|1−βn|) . The maxj≤n

in the definition of δ is only to ensure monotonicity of the bound. From this monotonicity
property of δ, follows

‖J(x)− x‖ ≤ 1

δ(k, n) + 1
→ ∀j ≤ n

(
‖Jβj(x)− x‖ ≤ 1

k + 1

)
. (6.27)

This lemma is enough for our quantitative analysis, however one can replaced the functions
J and Jβn by any two resolvent functions. In fact, by the same argument, for any α, β > 0
and k ∈ N,

‖Jα(x)− x‖ ≤ 1

(k + 1)(1 + |1− β
α
|)
→ ‖Jβ(x)− x‖ ≤ 1

k + 1
.

From Proposition 6.29 and Lemma 6.30, we derive the following result.

Proposition 6.31. For every k ∈ N and any monotone function f : N → N, there exists
N ≤ ψ(k, σf ) and x ∈ C ∩ B such that

∀n ∈ [n, fN ]

(
‖Jβn(x)− x‖ ≤ 1

f(n) + 1
∧ 〈x− x0, x− xn〉 ≤

1

k + 1

)
,

where ψ(k, f) is as in Proposition 6.29 and σf (m) = δ (f(m), f(m)).
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Proof. Let k ∈ N and a monotone function f : N → N be given. Consider the monotone
function σf defined as in the statement of the proposition. Notice that by the definition of
the function δ, for all m ∈ N, σf (m) ≥ f(m).
By Proposition 6.29, we see that there are N ≤ ψ(k, σf ) and x ∈ C ∩ B such that

‖J(x)− x‖ ≤ 1

σf (N) + 1

and

∀n ∈ [N, σf (N)]

(
〈x− x0, x− xn〉 ≤

1

k + 1

)
.

By (6.27), we conclude, for n ≤ f(N)

‖Jβn(x)− x‖ ≤ 1

f(N) + 1
,

which gives the first conjunct.
On the other hand, since [N, fN ] ⊂ [N, σf (N)], the second conjunct is also true.

Now define, for any n ∈ N and x ∈ X, the sequences

vn,x := ‖Jβn(x)− x‖2 + 2‖Jβn(x)− x‖‖xn − x‖,

and
rn,x := 2〈x− x0, x− xn+1〉.

The next result is a direct application of Proposition 6.31 and will correspond to condition
(4) of Lemmas 6.9 and 6.10.

Proposition 6.32. For every k ∈ N and any monotone function f : N → N, there exists
N ≤ Ψ(k, f) and x ∈ C ∩ B such that

∀n ∈ [n, fN ]

(
vn,x ≤

1

f(n) + 1
∧ rn,x ≤

1

k + 1

)
,

where Ψ(k, f) := ψ(2k + 1, σg), with g(m) = (1 + 2b)(f(m) + 1)− 1.

Proof. By Proposition 6.31, there are N ≤ ψ(2k + 1, σg) and x ∈ C ∩ B such that for all
n ∈ [N, gN ]

‖Jβn(x)− x‖ ≤ 1

g(N) + 1
(6.28)

and

〈x− x0, x− xn〉 ≤
1

2(k + 1)
. (6.29)
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If n ∈ [N, fN ], then n+ 1 ∈ [N, f(N) + 1] ⊂ [N, gN ]. Hence, by (6.29), for n ∈ [N, fN ],

〈x− x0, x− xn+1〉 ≤
1

2(k + 1)
,

which implies rn,x ≤ 1
k+1

.

For n ∈ [N, fN ], and noticing that b ≥ ‖xn − x‖ and ‖Jβn(x)− x‖ ≤ 1, we have

vn,x = ‖Jβn(x)− x‖ (‖Jβn(x)− x‖+ 2‖xn − x‖) ≤ ‖Jβn(x)− x‖ (1 + 2b) ≤

≤ 1 + 2b

g(N) + 1
=

1 + 2b

(1 + 2b)(f(N) + 1)
=

1

f(N) + 1
,

which concludes the proof.

Next we will argue that, for any n ∈ N and x ∈ X,

‖xn+1 − x‖2 ≤ (1− αn)
(
‖xn − x‖2 + vn,x

)
+ αnrn,u + γn,u

with vn,u and rn,x as before and with γn,u := ‖en‖(‖en‖+ 2‖Jβn(xn)− x‖).

This inequality is obtained by using the subdifferential inequality,

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉,

in the following way,

‖xn+1 − x‖2 = ‖(1− αn)(Jβn(xn) + en − x) + αn(x0 − x)‖2 ≤
≤ (1− αn)2‖Jβn(xn) + en − x‖2 + αn(2〈x0 − x, xn+1 − x〉) ≤
≤ (1− αn) (‖Jβn(xn)− x‖+ ‖en‖)2 + αnrn,x ≤
≤ (1− αn)‖Jβn(xn)− x‖2 + αnrn,x + ‖en‖(‖en‖+ 2‖Jβn(xn)− x‖) ≤
≤ (1− αn) (‖Jβn(xn)− Jβn(x)‖+ ‖Jβn(x)− x‖)2 + αnrn,x + γn,x ≤
≤ (1− αn)‖xn − x‖2 + (1− αn)vn,x + αnrn,u + γn,x.

In order to apply the Lemmas 6.9 and 6.10, we only need to compute a Cauchy rate G for
the sequence of partial sums (

∑n
i=0 γi,x), which is easily derived from the function E.

Lemma 6.33. Consider a monotone function E satisfying (Q6). Define the monotone func-
tion G : N→ N by

G(k) := E((k + 1)(1 + 2b)− 1).

Then,

∀k ∈ N∀n ∈ N∀x ∈ B

 G(k)+n∑
i=G(k)+1

γi,x ≤
1

k + 1

 .
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Proof. Let k, n ∈ N and x ∈ B be given.
For all j ∈ N, since ‖x‖, ‖p0‖ ≤ b

2
and ‖xj − p0‖ ≤ b, we get

‖Jβj(xj)− x‖ ≤ ‖xj − p0‖+ ‖p0 − x‖ ≤ 2b.

Also see that, from condition (Q6), for any j ≥ E(k) + 1 one has ‖ej‖ ≤ 1
k+1

. Hence, by the
definition of G,

∀j ≥ G(k) + 1 (‖ej‖ ≤ 1) .

Therefore,

G(k)+n∑
j=G(k)+1

γj,x =

G(k)+n∑
j=G(k)+1

‖ej‖(‖ej‖+ ‖Jβj(xj)− x‖) ≤

≤ (1 + 2b)

G(k)+n∑
j=G(k)+1

‖ej‖ ≤
1 + 2b

(k + 1)(1 + 2b)
=

1

k + 1
.

We are now ready to give the quantitative version of Theorem 6.2.

Theorem 6.34. Let T be a maximal monotone operator. Consider sequences (αn) ⊂]0, 1[,
(βn) ⊂ R+ and (en) ⊂ X. With x0 ∈ X, let (xn) be the corresponding Halpern type proximal
point iteration inductively defined by (HPPA2) with u = x0.
Assume the existence of monotone functions a,A,B,E : N→ N such that the conditions (Q1),

(Q2), (Q5) and (Q6) hold. Consider b̃ ∈ N such that (6.26) holds and define b := 2b̃. Then

∀k ∈ N ∀̃f : N→ N∃N ≤ Φ1(k, f)∀i, j ∈ [N, f(N)]

(
‖xi − xj‖ ≤

1

k + 1

)
,

where Φ1(k, f) := Θ1[A,Ψ,G, b
2](4(k + 1)2 − 1, f), with Θ1 as in Lemma 6.9, Ψ as in

Proposition 6.32 and G as in Lemma 6.33.

Proof. Let k ∈ N and a monotone function f be given.
Apply Lemma 6.9, with sn,x := ‖xn − x‖ and Ω = B, to 4(k + 1)2 − 1 and f . Then, there
are x ∈ B and N ≤ Θ1[A,Ψ,G, b

2](4(k + 1)2 − 1, f) such that for n ∈ [N, fN ],

‖xn − x‖2 ≤
1

4(k + 1)2
.

Hence, for n ∈ [N, fN ],

‖xn − x‖ ≤
1

2(k + 1)
,
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and for i, j ∈ [N, fN ],

‖xi − xj‖ ≤ ‖xi − x‖+ ‖xj − x‖ ≤
1

k + 1
.

We can also consider the condition (Q2) replaced by (Q2′).

Theorem 6.35. Assume the hypothesis of Theorem 6.34 with (Q2) replaced by the condition
(Q2′) and the existence of a monotone function h : N → N∗ such that for all n ∈ N,∏n

i=0(1− αi) ≥
1

h(n)
. We have

∀k ∈ N ∀̃f : N→ N ∃N ≤ Φ2(k, f)∀i, j ∈ [N, f(N)]

(
‖xi − xj‖ ≤

1

k + 1

)
,

where Φ2(k, f) := Θ2[A,Ψ,G, b
2, h](4(k + 1)2 − 1, f), with Θ2 as in Lemma 6.10, Ψ as in

Proposition 6.32 and G as in Lemma 6.33.

Proof. Similar to before, considering sn,x := ‖xn − x‖2, we apply instead Lemma 6.10 to
4(k + 1)2 − 1 and f and then use triangle inequality to conclude the result.
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Epilogue

We have shown quantitative versions of known mathematical theorems in the context of fixed
point theory and the theory of monotone operators, while being guided by the bounded func-
tional interpretation. A general method for bypassing sequential weak compactness argu-
ments in proof mining was obtained and clarifies previous quantitative analysis of Browder’s
and Wittmann’s theorems. We also saw that the bounded functional interpretation of the
projection argument is easier than the previous analysis obtained using the monotone func-
tional interpretation. These results are the first look at proof mining guided by the bounded
functional interpretation and show it to be a useful proof theoretic technique to the proof
mining program. This functional interpretation was shown to be a valid option that can be
used to carry out quantitative analysis.

Future work concerning the use of the bounded functional interpretation should be additional
analyses of mathematical proofs. Additionally, one can be attentive to possible instances
where its use may prove simpler than using other techniques (as it happened in the projection
argument). Currently, together with Bruno Dinis, a quantitative analysis of a theorem due
to Yao and Noor in [54] is being done. This result is concerned with the strong convergence of
a multi-parameters proximal point algorithm and its proof requiers the existence of a certain
lim sup to be assumed. The change of the lim sup to rational approximations, as explained in
section 4.1.3, is of paramount importance in restricting the extracted information to Gödel’s
T. Another quantitative analysis that is being considered is that of a theorem due to Wang
and Cui in [49]. Its original proof follows a discussion by (non-trivial) cases and it is expected
that section 4.1.4 can help shed some light on the proper way to carry out the mining. Other
results that are natural good candidates for a quantitative analysis are further theorems in
fixed point theory and further results related to the proximal point algorithm. Another topic
that was not discussed in this thesis but may have merit is to see how do the complexity
of bounds extracted using the bounded functional interpretation compares to information
extracted by other means, e.g. when using the monotone functional interpretation. This
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could lead to a deeper understanding of the differences between the bounded functional
interpretation and other methods.
Regarding the weak compactness, at the moment, it is not expected that weak compactness
arguments can be removed from discussions that end up proving weak convergence results,
e.g. as in the analysis of Baillon’s theorem [28]. It will be interesting to see if this is in fact
true or if some adaptation of the method shown here for removing weak compactness could
be used in those cases.
These ideas for future work show that the use of the bounded functional interpretation has a
lot to offer to the thriving proof mining program and that there is still much to understand.
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