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Natural Kinds and Ceteris Paratis 
Generalizations: In Praise of Hunches

W. Christopher Boyd and Richard N. Boyd

Abstract: According to stereotypical logical empiricist conceptions, scientific 
findings are approximately true (or perhaps true ceteris paribus) law-like gen- 
eralizations used to predict natural phenomena. They are deployed using top- 
ic-neutral, generally reliable inferential principles like deductive or statistical 
inferences. Natural kinds are the kinds in such generalizations. Chemical ex- 
amples show that such conceptions are seriously incomplete. Some important 
chemical generalizations are true often enough, even though not usually true, 
and they are applied using esoteric topic- and discipline-specific inference 
rules. Their important methodological role is to underwrite often-enough reli- 
able, often socially implemented, scientifically informed guessing about chem- 
ical phenomena. Some chemical natural kinds earn their naturalness mainly 
from participating in such generalizations. These results generalize: many sci
entific generalizations, inference rules, and natural kinds function to inform 
guessing, that is, to underwrite the generation of hunches.

Keywords: Natural kinds, chemical synthesis, nominal essences, real essences, sci
entific hunches.

1.  Introduction: Issues About Representations and In- 
ferences in Chemistry, and in Science More Generally
The legacy of logical empiricism, and of related approaches to the philosophy 
of science, includes stereotypical conceptions of scientific findings, concepts, 
and methods that are widely influential when philosophers and scientists ex- 
amine philosophical questions about scientific practices. We argue that an 
examination of actual practices of chemists, especially synthetic chemists, 
makes it clear that these stereotypical conceptions are very seriously mistak- 
en, and we propose some alternative conceptions.

We begin by following M. Christie (1994) and Christie & Christie (2000, 
2003) in holding pace Vihalemm 2003, 2005) that important generalizations 
in chemistry fail to conform to received empiricist stereotypes of laws in science,
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especially those in physics. We follow Bhushan & Rosenfeld (2000), Harré 
(2005) and Bhushan (2006) in holding (pace van Brakel 2000, 2005, 2014) 
that there are natural kinds in chemistry, and we explore questions about 
their roles in synthetic chemistry. We describe several different ways in which 
important chemical generalizations differ from stereotypical ‘laws’, and ex- 
plore their implications for how we should understand natural kinds. We 
hope to contribute to the sort of pluralism about scientific knowledge repre- 
sented by the work of Chang (2012) and Hoffmann (2007).

We focus our criticism on stereotypical approaches on four important 
issues.

1. 1 The nature of important scientific generalizations
According to stereotypical empiricist conceptions, important generalizations, 
at least in mature physical sciences, are universally true ‘laws of nature’, or 
laws that are approximately true in some specified domain, or mathematically 
precise statistical generalizations, or even generalizations true ‘ceteris paribus’. 
The models here are the ‘laws of physics’, as empiricist philosophers under- 
stood them. We argue, about several types of important chemical generaliza- 
tions, that they depart sharply from this conception. In particular, the scope 
of these non-stereotypical generalizations differs sharply from what the empir- 
icist stereotype of laws would suggest.

1. 2 Scientific ‘rules of inference’
It is part of the empiricist legacy to think that, when scientists infer conclu
sions from scientific generalizations, they can be thought of as doing so by 
something like formal rules of inference: deductive logic, justifiable statistical 
inferences, or the like. In particular, the fundamental inference rules that un
derwrite scientific inferential practices are thought to be topic-neutral and, 
thus, discipline-nonspecific. We argue instead that many reliable inferential 
practices in chemistry are underwritten by informal topic-and-discipline- 
specιfιc ‘rules’, many of which are not explicitly formulated (or even explicit- 
ly formulable) at the time when they are employed. Instead, they are reflec- 
tions of what we may call the inferential architecture of the discipline of 
chemistry at the time when they are implemented.

1. 3 Natural kinds in chemistry
There are many conceptions of natural kinds, properties, relations, magni
tudes, etc. (henceforth: natural kinds) and of natural kind terms (for over
views see Beebee and Sabbarton-Leary 2010, Kendig 2016, and Slater 2015), 
but there is a deeply influential, stereotypical conception that many philoso-



Natural Kinds and Ceteris Paratis Generalizations 23

phers characterize as the ‘traditional’ conception of natural kinds and of nat- 
ural kind terms: natural kinds are mind-independent categories that are de- 
fined by something like necessary and sufficient membership conditions and 
that figure in something like fundamental laws. A natural kind term that is 
scientifically useful can ordinarily be expected to have a very narrowly deter- 
minate reference: to exhibit very little referential ambiguity.

On the stereotypical conception, many of the kinds, properties, relations, 
and magnitudes that appear in non-stereotypical chemical generalizations will 
not be candidates for being natural kinds, etc. We advance an alternative con
ception and argue that, whatever the merits of the stereotypical conception, 
the alternative is required to underwrite a scientific explanation of the 
achievements of synthetic chemists. According to that alternative concep- 
tion, many of the chemical kinds that figure in non-stereotypical chemical 
generalizations earn their status as natural kinds, not so much by participat- 
ing in laws (in the empiricists’ sense of ‘laws’), by having precise boundaries, 
or by being mind-independent, but by figuring in those important non- 
stereotypical and discipline-specific generalizations that are implemented by 
discipline-specific patterns of inference. Their status as natural kinds is disci- 
pline-dependent and thus, in an important sense, mind-dependent.

1. 4 ‘Context of invention’: Scientifically informed guessing
An historically important aspect of logical empiricist philosophy of science 
involved distinguishing between the ‘context of invention’ - the factors that 
underwrite scientists’ invention of theories or possible synthetic procedures, 
or hypotheses about reaction mechanisms - and the ‘context of confirmation’ 
- the methods appropriate for testing ideas generated in the context of inven- 
tion. Philosophy of science was supposed to study only the latter, leaving the 
context of invention to psychologists and historians. Scientific methods, log- 
ical empiricists maintained, involved no ‘logic of discovery’ or ‘logic of inven- 
tion’, but only methods for evaluating scientific proposals once they were put 
forward.

We argue that the generalizations, inferential practices, concepts, and nat
ural kinds that depart from the empiricist conceptions have, as one of their 
central methodological roles, the underwriting of a ‘logic’ (of a sort) of in- 
vention. They underwrite scientifically informed guessing about which theo- 
ries, synthetic procedures, etc. are reasonable to pursue, that is, about which 
hunches to follow. We emphasize as well that this guessing is not only often 
underwritten by socially constituted inferential architectures, but that it is 
also often achieved by socially implemented reasoning - by collaborative 
judgments about what guesses to pursue.
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2.  Inferential Architecture and the Scope of Chemical 
Generalizations
For a variety of important chemical generalizations, their appropriate ranges 
of application differ sharply from those suggested by empiricist conceptions 
of laws. Often, the syntactic form of a chemical finding will not be a good 
indicator of its scope of application. Instead, the appropriate scope of appli- 
cation of such a generalization is often determined, not by abstract, formal, 
topic-neutral rules, but by quite specific features of chemical practice at the 
time when the generalization is applied.

Some terminology may help here. Cognitive scientists use the term ‘cog
nitive architecture’ to describe aspects of the systematic ways in which in- 
formation is processed in human minds or brains. Similarly, computer scien- 
tists use the term ‘computational architecture’ to describe basic features of 
information processing in computers and implemented programs. By the ‘in- 
ferential architecture’ of a discipline at a given time, we mean the inferential 
practices that are central to the practices of the discipline at that time. These 
will ordinarily include the inferential practices and norms, like formal rules of 
inference in deductive logic, Bayesian principles of statistical inferences, etc. 
that are featured in logical empiricist approaches. They will also include dis- 
cipline-specific inferential practices, rules of thumb, experimental and obser- 
vational practices, evidential standards, etc. Importantly, many of these items 
will not be explicitly formulated in any discipline at the time in question. 
They will instead correspond to what Polanyi (1969) called ‘tacit knowledge’ 
and to the tacit aspects of what Kuhn (1970) called ‘paradigms’. They will 
correspond to reasoning skills that are taught and refined in actual research 
groups and shared in disciplinary conferences.

For example, a contemporary biologist studying the behavioral ecology of 
some family of mammals will have acquired in graduate school and later sci- 
entific work all sorts of ideas, concepts, reasoning strategies, experimental 
skills that are peculiar to behavioral ecology and evolutionary biology and to 
the study of her particular mammal family. She will deploy evolutionary no- 
tions like ‘species’, ‘adaptation’, ‘learning’, ‘fitness’, etc. that are not fully ex- 
plicated in her discipline’s literature (or anywhere else), relying on intuitions, 
trained judgments, perceptual skills, particularly salient examples from the 
literature, etc. In her experimental designs, she will (of course) rely on the 
best available published finding about her species and on the best available 
statistical methods, but she will also rely on the unpublished experiences she 
and other researchers have had in working with the species in question and 
with related species. These discipline-specific informal principles, rules of 
thumb, experimental techniques, and tacit understandings are parts of her 
discipline’s inferential architecture. They are the sorts of things that she went
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to graduate school to acquire, that she reads in the literature and goes to con- 
ferences to improve, and that she tries to instill in her students.

2. 1 Reports of chemical syntheses: Generalizations true ceteris 
paratis
Many reports of successful syntheses are reported in papers with titles of 
roughly the form ‘The synthesis of X via Y', or ‘A method for X-ing', or ‘The 
X-ing of Y by Z'. The characteristic published content of such papers is a 
small number of illustrations of chemical transformations of the type in ques- 
tion: some syntheses of some Xs via some Y-mgs, or some X-ings achieved 
the method in question, or the X-ing of some molecules or ions of type Y, 
carried out by procedures of type Z. Often, some discussion of possible reac- 
tion mechanisms for the relevant transformation is included.

The scope of such papers
Almost never is the intended scope of such a paper limited to the reactions 
reported therein. Instead, the paper will be understood, by its authors and 
readers, to have more general implications about how chemists can accom- 
plish multi-step syntheses. Here are some examples of papers with a small 
number of examples but very wide scope implications ceteris paratis (we will 
explain this term in a moment):
• Suzuki-Mιyaura cross-coupling (Miyaura & Suzuki 1979): 14 examples.

(Akira Suzuki shared the 2010 Nobel Prize in Chemistry for this work. )
• Sharpless asymmetric epoxidation (Katsuki & Sharpless 1980): 8 exam- 

ples. (K. Barry Sharpless shared the 2001 Nobel Prize in Chemistry for 
this and related work).

• Evans aldol reaction (Evans etal 1981): 6 examples.

Implications ceteris paratis
Although they provide some few examples, papers like these have much 
broader implications for multistep syntheses. The reader of such a paper is 
invited to try variations on the reported syntheses in her own work. Consider 
the reader of a paper with a title like ‘The X-ing of Y by Z'. The reader is in- 
vited, supposing that she is trying to carry out a multistep synthesis where at 
one stage a product would be a Y (or have a Y as part of its structure) and she 
would like to X that Y, to try to use some variations on the X-ιng proce- 
dures, Z, reported in the paper.

Which variations? Should we understand these broader implications on 
the model of the implications of laws as logical empiricists understood laws? 
Do the authors of such a paper intend, or are they understood to intend, to
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say that this will always work? Surely not. How about most of the time? 
Surely this need not always be the case: the mechanisms operating in the pub- 
lished reactions might have depended on properties of the particular Ys in 
question and of the X-ing processes, Z. They might, for example, have cru- 
cially depended on the reactions being carried out in an acidic environment 
that would destroy the intended product in some analogous synthetic at- 
tempts, or they might operate only at temperatures at which other prospec- 
tive products would be too unstable. The contribution of the paper to syn- 
thetic chemistry could be profound if the sort of synthetic procedure it pro- 
posed works often enough to underwrite important synthetic achievements, 
even if not under most conditions. The reader of the paper is invited to rely 
on her own background chemical knowledge (which will often be manifested 
in other non-stereotypical generalization) to identify variations on the X-ing 
of Y by Z that are plausible for her own synthetic project.

In general, a synthetic paper will have been a significant contribution to 
the literature as long as the following is true often enough to be useful, even 
if not most of the time: by fiddling around in a chemically informed way with 
the procedures indicated in the paper one can carry out analogous syntheses of 
other products. Let us elevate this conception to academic respectability by 
Latinizing it. Such generalizations are true ceteris paratis (with other things 
prepared, i. e., fiddled). They represent one important case of non- 
stereotypical generalizations in the sciences. Their role is to help underwrite 
chemically informed guessing.

Non-traditional inferences: The role of local inferential architecture 
Chemists rely on ceteris paratis generalization to inform their guesses about 
likely synthetic techniques. Do they derive their guesses by deducing them 
from the contents of the relevant papers? Or by formal principles of statisti
cal inference, or any other topic-neutral inferential procedures? That the an
swer is ‘no’ can be seen by considering what a scientifically informed person 
without expertise in synthetic chemistry (a geologist, say, or a particle physi- 
cist, or a philosopher of science) could infer from a paper of the form ‘The 
X-ing of Y by Z’ sort we are considering. If she had taken some chemistry 
courses that explored synthetic techniques, she might be able to understand 
the particular instances of the X-ing of some Ys by Z that the paper presents, 
and the particular mechanisms for them that the paper proposes.

What she would not be able to do, but what a practicing synthetic chemist 
could do, is to figure out what recommendations regarding new syntheses - 
what guesses about how to proceed - are understood by the authors, and by 
synthetic chemist readers, to be conveyed by such a paper. The application of 
topic-neutral formal principles of inference would not suffice here; she would 
need to be relevantly immersed in the inferential architecture of synthetic
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chemistry. It turns out, we will argue, that topic-specific inferential practices 
play an important role in the application of other sorts of non-stereotypical 
generalizations (and of many stereotypical ones as well).

Making cetera parata; How to fiddle things right
In fiddling to adapt the procedures in a published synthesis to her own multi- 
step synthesis, a chemist will consider, in the light of her chemical knowledge 
(more on that later), many issues. Such issues include the choice of solvent, 
temperatures, and additives; order of steps; which protecting groups to em- 
ploy; how to avoid or create steric hindrance; how to avoid or create conju- 
gated π-systems that reduce reactivity or induce new reactivity, etc. Many 
chemists and philosophers of chemistry will be familiar with some of these 
issues. We hope, however to make the considerations we offer hear accessible 
as well to philosophers of science without a sophisticated background in 
chemistry, so we offer, for those readers, an illustrative example of one di- 
mension of fiddling.

Deploying protecting groups
Protecting groups are chemical groups temporarily added to molecules, in the 
course of a multistep synthesis, to achieve regioselectivity in synthetic reac- 
tions, that is, to make sure that steps in the synthesis occur only at desired 
locations in the relevant molecules. Suppose that, at some step in a synthesis, 
a chemist would like to effect a change at a particular site (call it the desired 
site) in a target molecule - the addition of some functional group for example 
- via a reaction with some particular reagent. It sometimes happens that the 
reagent in question would produce an unwanted change at another undesired 
site in the target molecule.

Often a chemist is able to respond to this sort of situation by deploying a 
‘protecting group’ at the undesired site. A temporary change is effected at the 
undesired site - adding a protecting group - via some reaction that leaves the 
desired site largely unchanged. Then the desired reaction is carried out at the 
desired site. Finally, the protecting group is removed, thereby effecting the 
overall change that the chemist seeks.

A chemist’s decision to employ protecting groups in a complex synthesis 
will ordinarily lead her to rely on many non-stereotypical chemical generali- 
zations. Suppose, for example, that she relies on a paper about the X-ing of Y 
by Z to make a chemically informed guess about how to X some Y by Z in a 
step in a complex synthesis. Of course, she will be relying on the ceteris para- 
tis generalization implicated in that paper. It will be likely that she will rely on 
still further ceteris paratis generalizations in deciding how to deploy the rele- 
vant protecting groups.
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Steric hindrance
Steric hindrance occurs when a reaction between a particular site in a mole- 
cule and some other molecule is rendered impossible, or unpractically slow, 
because some bulky substituent on the first molecule blocks the second mol- 
ecule’s access to the site. A chemist carrying out a multi-step synthesis may 
need to avoid or take advantage of steric hindrance at particular steps in her 
synthesis. If she needs to take account of steric hindrance, she will likely rely 
on other sorts of non-stereotypical generalizations. Although quantitative 
predictions of steric hindrance effects are possible, at various levels of theory, 
synthetic chemists often rely on their chemical training and intuitions, rules 
of thumb, and pictorial representations of molecular structures to (qualita- 
tively) gauge the probable steric effects of particular molecular substituents. 
They thus often rely on non-stereotypical general knowledge in assessing the 
probable effects of steric hindrance.

2. 2 Tendency generalizations
Other non-stereotypical chemical generalizations are important in synthetic 
chemistry. A wide class of such generalizations consists of generalizations 
that describe useful tendencies in chemical reactivity (Xs tend to Y). Such 
generalizations often depart from the stereotypical conception of generaliza- 
tions that are something like laws and involve well defined natural kinds. 
Consider the following two examples:
• The keto tautomers of ketones and aldehydes tend to be favored over enol 

forms at equilibrium.
• Transition metal complexes tend to be stable with 18 valence electrons in 

the metal’s coordination sphere.
Each of these generalizations is chemically informative and is widely taught 
in chemistry courses. The second has a rationale in molecular orbital theory 
for transition metal complexes with regular octahedral symmetry (point 
group Oh) and six π-acceptor ligands, but it is assumed to be often true for 
complexes with a variety of symmetries, number of ligands, and types of lig- 
ands.

On what does the informativeness of these generalizations depend? Are 
they always true? No, many counterexamples are known. Are they almost 
always true, or true in the majority of cases? Perhaps, but their informative- 
ness does not depend on whether or not this is so. What makes these and 
related generalizations informative is that they are true often enough to be 
useful in the sorts of cases with which synthetic chemists routinely deal. 
They are very different from the laws that inform the empiricist stereotype of 
scientific generalizations.
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Another sort of tendency generalization illustrates a related point about 
the kinds that figure in the thinking of synthetic chemists. Electronegativity 
is an excellent example of an incredibly important concept in chemistry, but 
one that nevertheless lacks the sort of precise definition anticipated by stere- 
otypical conceptions. The concept of electronegativity reflects the chemically 
intuitive notion that some elements are more likely than others to bear a par- 
tial negative charge in polar covalent bonds. Covalent bonds between two 
atoms tend to be stronger (i. e. more energy is required to break such bonds) 
when these atoms are of elements that differ in electronegativity. The con- 
cept can be extended to apply to functional groups, as well as to elements, 
and generalizations involving the electronegativity of functional groups play 
an important role in the ways synthetic chemists think. For example, electro- 
philic aromatic substitution reactions proceed more or less quickly if there 
are electron-donating or electron-withdrawing substituents, respectively, on 
the aromatic ring undergoing substitution. The group electronegativity con- 
cept is also useful to inorganic chemists: one can often adjust the electron 
density at a transition metal atom or ion by adding electron-donating or elec- 
tron-withdrawing (i. e. less or more group-electronegative) organic substitu- 
ents to the ligands bound to it.

What is important for our purposes is not whether generalizations involv- 
ing electronegativity do or do not fit the empiricist stereotype of laws of na- 
ture. What is important is that the concept of electronegativity altogether 
lacks a precise definition of the sort that the stereotypical conception antici- 
pates. A number of definitions have been proposed for the electronegativity 
of elements (see e. g., Pauling 1932, Mulliken 1934, Allred & Rochow 1958). 
Pauling’s definition is the most frequently employed, but there is no chemical 
consensus about a precise definition of electronegativity of elements. Alt
hough attempts have been made to define ‘group electronegativity’ values for 
common clusters of atoms, there is likewise no settled definition for those 
cases either. Chemists rely on trained judgments and intuitions instead. So, 
generalizations regarding electronegativity, like ceteris paratis generalizations 
and generalizations true often enough, are important in synthetic chemistry 
despite departing from the stereotypical conception.

The same is true of the next tendency generalization that we will discuss.

2. 3 ‘Hard’ vs. ‘soft’ acids and bases
Another ‘tendency’ generalization that is important in synthetic chemistry 
holds that reactions between hard acids and hard bases, and those between 
soft acids and soft bases, tend to form adducts more readily than do reactions 
between hard acids and soft bases or between soft acids and hard bases. Pear- 
son (1963) proposed the hard/soft acid∕base (HSAB) theory, according to
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which the formation of hard acid∕hard base adducts and soft acid∕soft base 
adducts are highly thermodynamically favorable, while the formation of hard 
acid∕soft base and soft acid-hard base adducts are less favorable.

Theoretical explanations for this phenomenon have been proposed. Ac
cording to the most commonly cited explanation, the important factor is a 
Lewis acid or base’s polarizability, i. e. the capacity of the electron ‘cloud’ of a 
molecule to become distorted in response to electric fields associated with 
other molecules. Soft acids and bases tend to be significantly more polariza- 
ble than hard ones, and this greater polarizability allows soft acids and bases 
to distort their electron densities in ways that favor the formation of adducts 
with strongly covalent bonds.

In the case of interactions between hard acids and hard bases, there is less 
potential to form mainly covalent bonds, but there is enhanced potential to 
form adducts where the bonding is less covalent, instead being predominantly 
due to Coulombic attractions. That is because these less polarizable ‘hard’ 
acids and bases have greater charge densities at their positive or negative sites, 
tending to allow for stronger Coulombic interactions between the positively 
charged portion of an acid and the negatively charged portion of a base. In 
cases of strong acid∕weak base or weak acid/strong base interactions, neither 
of these factors is present, so there is a diminished tendency towards adduct 
formation.

The theoretical principles underlying HSAB theory can be handled quan
titatively. Drago and Wayland (1965) proposed a parametric equation relating 
the enthalpy of Lewis acid-base adduct formation to the abilities of the acid 
and base to participate in covalent (‘soft’) bonding and noncovalent, predom
inantly Coulombic (‘hard’) bonding, and rationalized the form of their equa- 
tion based on approximate molecular orbital theory. More recently, Ayers 
(2007) proposed a firmer mathematical justification for the results of HSAB 
theory. And, of course, the polarizability of a molecule or ion can be calculat- 
ed using quantum chemistry techniques. So, perhaps, in principle chemists 
could apply the HSAB conception by deploying theories that fit the empiri- 
cist conception of laws. Does this possibility mean that the HSAB concep- 
tion lies outside the scope of the anti-empiricist approach offered here?

Two things suggest that it does not. In the first place, chemists very often 
use HSAB theory qualitatively, making educated guesses as to a species’ ap
proximate hardness or softness in order to predict whether a reaction will or 
will not be favorable, without using numerical data or making quantitative 
predictions. The basic generalization about adduct formation is what we have 
called a tendency generalization, and chemists’ successful applications of it 
often rely on intuitive or informal estimates of hardness and softness. Their 
successful applications thus do not depend on the categories in question hav- 
ing precise boundaries or numerical specifications or on the application of
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strict laws. HSAB theory is an instance of what we suspect is a widespread 
phenomenon: insightful chemical generalizations whose contributions in 
practice (z. e., in the discipline’s inferential architecture) proceeds mainly by 
non-stereotypical inference from non-stereotypical rules of thumb, even 
when more theoretically sophisticated (and stereotypical) approaches may be 
possible In this way, HSAB theory is a fertile source of applications of what 
we have termed non-stereotypιcal generalizations framed in terms of non- 
stereotypical chemical kinds.

What makes this case especially interesting is that recently there have 
been challenges to the received theoretical underpinnings of the HSAB per- 
spective, and to the extent of its reliability as a guide to reactivity. In particu- 
lar, Mayr et al. (2011) argue that HSAB principles are not a reliable guide to 
the reactivity of organic electrophiles (i. e. electrophiles whose electrophilic 
site is a carbon atom), though they do not argue for a similar unreliability 
when HSAB theory is applied to reactions of metal electrophiles. If these 
challenges are correct (we express no opinion), then the contribution that 
HSAB rules of thumb do still make to the synthetic chemistry of metal com- 
pounds is an instance of a non-stereotypical scientific generalization having 
narrower applicability than once was thought, but remaining quite useful in a 
more limited domain.

3.  Non-stereotypical Natural Kinds
There is a wonderfully rich literature about the existence and nature of natu- 
ral kinds in chemistry (in addition to works cited earlier see, e. g., Harré 2005; 
Hendry 2006, 2010; LaPorte 1996, 1997, 2004; Needham 2000, 2002; Van 
Brakel 2000; Weisberg 2006). A central issue has been the interesting ques- 
tion of the extent to which chemical kinds like elements and particular chem- 
ical species are defined along the lines suggested by Putnam’s (1975) claim 
that water is H, O: whether, that is, they conform to something like the ste- 
reotypical conception of natural kinds.

What we have seen is that, whether or not chemical elements and chemical 
species like water fit the stereotype of natural kinds, the kinds that figure in 
non-stereotypical chemical generalizations often do not. We propose that a 
broader conception of natural kinds and of the terms and concepts referring 
to them is required.
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3. 1 A broader conception: Natural kinds as contributors to 
inductive and explanatory success (es)
A number of authors (see, e. g., Slater 2015, Ereshefsky & Reydon 2015, Grif- 
fiths 1999, Kornblith 1993, Magnus 2014, Wilson 1999, Wilson et al. 2007, 
Boyd 2010, and Psillos 1999) have articulated conceptions along these lines. 
There is no consensus about exactly how to formulate the broader concep- 
tion of natural kinds, but the basic idea is as follows.

The natural kinds (properties, etc. ) in a discipline, and the natural kind 
terms and concepts that refer to them, figure in the causal explanation of the 
epistemic successes of the practices in the discipline: in the explanation of the 
(typically approximate) reliability of its inferential architecture in practice. 
The definition of a given natural kind term or concept in a discipline will be a 
set or family of properties such that (1) given the inferential architecture of the 
discipline in practice, the uses of the term or concept tend to reliably track the 
presence or absence of those properties and (2) that fact, together with the rest 
of the discipline’s inferential architecture, contributes to explaining the epis- 
temιc successes of practices in the discipline. Any particular version of this 
basic conception will, of course, fill in more details and will deploy resources 
for dealing with, e. g., ambiguous or non-referring terms. Four things follow 
from any version of the broader conception.

First, natural kinds need not figure in laws: their uses can contribute to 
the reliability of practices when they figure in, for example, generalization 
true ceteris paratis or in generalizations that are approximately true often 
enough.

Second, their definitions need not establish precise boundaries for the 
kinds in question. Many versions of this broader conception were designed 
especially to handle cases of kinds in biology where precise boundaries are 
not to be expected.

Third, the definitions of a natural kind (property, etc. ) and its status as a 
natural kind are relative to the overall inferential architecture of the relevant 
discipline, including the inferential roles of other terms and concepts in the 
discipline.

Finally, for just that reason, we should not, even as an idealization, think 
of the terms and concepts in a discipline as being defined independently of 
each other. The ways in which the uses of a term or concept contribute to the 
epistemιc successes of a discipline in practice (and thus the nature of its defi- 
nition) will depend on the overall inferential architecture and, thus, on the 
uses and definitions of the other terms in the discipline. This is especially 
clear in the case of chemistry, even for kinds that do, perhaps, have stereo- 
typical definitions. The practice of chemists since the 1920s of defining ele- 
ments by atomic number, rather than by atomic mass (and its ratification by



Natural Kinds and Ceteris Paratis Generalizations 33

IUPAC in 1923) represented a tacit decision to define elements in terms of 
the contributions their atoms make to the reactivity of compounds that con- 
tain them, with the consequence that the definitions of chemical elements 
and the structural definitions of compounds are all interrelated via their con- 
nection to inferences about reactivity (see, e. g., Paneth 1962, Kragh 2000, 
Needham 2008, Hendry 2006, 2010). The broader conceptions of kinds and 
definitions outlined here incorporates such a tacit commitment into a general 
theory of scientific natural kinds.

We do not deny the importance of natural kinds in the stereotypical 
sense. If there are kinds in the sciences that fit some version of the stereotyp- 
ical conception, then they will be important objects of philosophical and sci- 
entific study. Perhaps they will be the fundamental kinds in nature.

Nevertheless, we argue, the examples, in synthetic chemistry, of non- 
stereotypical generalizations framed in terms of non-stereotypical kinds 
show that an adequate scientific explanation of the epistemic successes of 
chemists requires that one acknowledge, along the lines just indicated, the 
role of non-stereotypical natural kind terms and concepts, and of the non- 
stereotypical natural kinds to which they refer.

Before we explore that theme further, we need to look at a class of chemi- 
cally important generalizations and chemical kinds that raise issues about 
natural kind definitions not addressed in the non-stereotypical literature cited 
above.

3. 2 Oxidation states and the problem of conventionality
If the kinds and properties that figure in important non-stereotypical chemi- 
cal generalizations should be counted as natural kinds in chemistry, then cer- 
tainly oxidation states will have to be so counted. But the conventionality 
exhibited by the definition of ‘oxidation state’ represents a challenge to this 
idea.

Here is why. Almost all accounts of natural kinds contrast natural kinds 
with conventionally defined kinds; this is certainly true for accounts that fo- 
cus on the role of natural kinds in induction and explanation. At least since 
Locke (1689), philosophers have thought that if chemists relied on purely 
conventionally defined kinds and categories then their prospects for success- 
ful induction would be poor, because there would be no reason for their cate- 
gorization of substances to align with chemically important properties (see 
Kornblith 1993, Harre 2005).

What does this have to do with oxidation states? On the one hand, refer- 
ence to the oxidation states of the atoms in molecules involved in chemical 
reactions is absolutely central to the ways in which chemists frame their un- 
derstanding of, and important generalizations about, particular reactions and
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classes of reactions. It would thus seem that having some particular oxidation 
state (say, +2) might be expected to be a natural property in the broader 
sense under discussion.

On the other hand, the definition of oxidation states is, in a certain sense, 
about as conventional as any scientific definition can be. The oxidation state 
of a particular atom in a molecule (or polyatomic ion) is supposed to reflect 
something about the electron density in its vicinity. The oxidation state of an 
atom in a molecule is said to correspond to the hypothetical charge of that 
atom, assuming that all the bonds in the molecule are purely ionic. That for- 
mulation gets at the idea behind the definition of oxidation state, but it must 
be carefully understood. It is almost never the case that bonds are, strictly 
speaking, purely ionic, and, more importantly, there are many cases of cova- 
lent bonding where the bonding has very little ionic character. Only in cases 
where the bonding is mainly ionic does oxidation state closely correspond to 
electron density. The hypothetical assumption involved in defining the oxida- 
tion state of an atom is thus often deeply hypothetical: it does not even quali- 
fy as ‘hypothetical’ in the usual scientific sense. Instead chemists use conven- 
tional definitions of ‘oxidation state’ that correspond to the hypothetical for- 
mulation where the relevant bonds are mainly ionic, but that deliver determi- 
nate values of oxidation state even when the relevant bonds have little or no 
ionic character.

Let us contrast this ‘hypothetical’ assumption with the assumption in
volved in methods for calculating approximate molecular energies and wave 
functions assuming the Born-Oppenheimer approximation. When this ap
proximation is used, the positions of the nuclei in a molecule are treated as 
fixed parameters, and an approximate solution is sought for the electronic 
Schrödinger equation of the molecule. One can then systematically vary the 
fixed parameters of nuclear position (corresponding to the bond lengths and 
bond angles in the molecule) and calculate approximate electronic energies 
and wave functions for each, eventually choosing the values of the parameters 
that minimize the molecule’s total energy. The Born-Oppenheimer approxi
mation is never exactly true, but the quantities calculated using it are often 
very accurate. This is so because, in very many cases, the nuclei move far less 
quickly than the electrons due to their much greater mass, and thus a highly 
delocalized electronic wave function, admitting electron motion, is a very 
good approximation for a given set of nuclear positions. In this sense, the 
Born-Oppenheimer approximation, while certainly not correct to infinite 
precision, is vastly less hypothetical, and corresponds much more closely to a 
physical reality, than the assumptions involved in defining oxidation states.

What is important for our purposes is that the difference in degrees of 
‘hypotheticalness’ between the two cases corresponds to a profound differ- 
ence in the ways in which the hypothetical assumptions are implemented in
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practice. In the case of the Born-Oppenheimer approximation, the hypothet
ical assumption about nuclear motions facilitates answering the theoretical 
question ‘How are the electron density and energy in a molecule deter- 
mined? ’ by addressing the simpler counterfactual theoretical question ‘How 
would electron density and energy in a molecule be determined if the posi- 
tion of the nuclei were fixed? ’ and by (approximately) solving the Schröding- 
er equation for an imaginary physical system in which that counterfactual 
assumption is true. In that regard, it is comparable to any other problem that 
is made more tractable mathematically by invoking an approximation that 
ignores a variable that is thought to usually have only a small effect.

The role of the hypothetical assumption in the case of oxidation states is 
utterly different. For many molecules, it makes theoretical sense to ask what 
their energy and electron density distribution would be if their nuclei were 
fixed, and to answer this question by (approximately) solving the electronic 
Schrödinger equation for such an imaginary system. In contrast, for an over- 
whelming number of molecules in which bonds are mainly covalent, it makes 
no theoretical sense whatsoever to ask what the charge density near their 
constituent nuclei would be if the bonds between them were purely ionic, 
and to address that question by solving the Schrödinger equation for an im- 
aginary system in which that were so. Instead, chemists assign oxidation 
states to atoms by applying conventional, formal rules, rather than either 
physical laws or theoretically justified approximations to those laws. In cases 
where bonds are mainly covalent, the resulting assignment of oxidation state 
values to nuclei in atoms is thus only loosely related to the electron density in 
their vicinity. If, in a reaction, the conventionally defined oxidation state of a 
particular atom changes from, say, +2 to +1, then this oxidation state change 
will often, though not always, be concomitant with an increase in the elec- 
tron density near that atom. (A good example of when this would not be the 
case is when a carbon-carbon double bond in an alkene is hydrogenated: each 
of the alkene carbon atoms has its oxidation state decrease by one unit, but 
does not experience a significant increase in electron density, because the 
electronegativities of hydrogen and carbon are so similar). If, on the other 
hand, two atoms in different molecules (or even in different regions of the 
same molecule) share a conventionally defined oxidation state, that fact does 
not reliably indicate that the electron densities near them are significantly 
similar, especially if the bonds in which they are involved are highly covalent. 
Indeed, chemists often insist that the definition of oxidation state is ‘conven
tional’, ‘a formalism’, not actually ‘real’, or something similar.

So, why does the high level of ‘conventionality’ of the way chemists de
fine oxidation states not preclude the methodological and explanatory utility 
of the oxidation state concept? Why does it not rule out oxidation state as a 
natural property of an atom in a molecule? A plausible guess, for a non
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chemist, would be that, in practice, chemists use the concept of oxidation 
state almost exclusively in cases where the relevant bonds are mainly ionic. If 
this were true, then the Lockean conception that associates conventionality 
with explanatory and inductive barrenness would be vindicated: in cases 
where the conventionality in the definition of ‘oxidation state’ becomes sig- 
nificant, chemists would not use the concept.

The truth is, of course, quite different. Even in many cases where bonding 
is quite covalent, considerations of oxidation states are still inductively or 
explanatorily useful. This is so because:
1.  With respect to various particular sorts of reactions, atoms that are in the 

same oxidation state, or that can undergo the same change in oxidation 
state, are often similar in causally and methodologically relevant ways, 
even though the relevant bonding is mainly covalent.

2.  Of course, such methodologically relevant similarities vary from case to 
case.

3.  Chemists, however, know a lot about such cases, even though their 
knowledge is often (perhaps even typically) partly tacit (and thus non- 
stereotypical). They have learned, and they teach their students, how to 
recognize cases in which similarities and differences in oxidation states do 
matter methodologically, and in what ways they often matter.

4.  Thus, even though they may say that oxidation states in such cases are
purely formal or conventional, chemists’ inductive or explanatory uses of 
the concept of ‘oxidation state’ are governed by substantive chemical 
considerations. Chemists do not, for example, assume that there are near 
universal laws about, say, atoms with an oxidation state of +2. Instead, 
they rely on partly tacit knowledge of particular sorts of cases in which 
similarity in oxidation states or in changes in oxidation states do indicate 
particular sorts of inductively or explanatorily relevant similarities.

These cases include ones where simple approximate rules of thumb involving 
oxidation states can be useful. For instance, transition metal chemists know 
that iron often occurs in compounds in the +2 and +3 oxidation states, but 
rarely + 1 or +4. This does not mean that compounds with iron in the + 1 or 
+ 4 oxidation state cannot be prepared, and it certainly does not mean that 
their existence would violate a strict physical law. It does, however, suggest 
that the preparation and isolation of an Fe(I) or Fe(IV) compound would 
involve significant experimental difficulties to overcome. Sometimes these 
rules of thumb are more sophisticated than tendency generalizations about 
which types of compounds are common and which are not. For example, it is 
a useful tendency generalization that, in most compounds of the lanthanide 
(lanthanoid) metals (La through Lu), the lanthanide is in the +3 oxidation 
state. In addition to this tendency generalization, however, it has been noted 
that compounds with a lanthanide in the +2 oxidation state, such as saman-
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um(II) iodide, Sml2, are often good single-electron reducing agents, while 
compounds with a lanthanide in the +4 oxidation state, such as diammomum 
cerium(IV) nitrate, (NH4)2Ce(NO, )6, are often good single-electron oxidiz- 
ing agents. This type of generalization is useful when deciding on a reagent 
necessary for a reduction or oxidation in a synthetic procedure.

Only in very special cases do the useful generalizations involving oxida- 
tion states approximate stereotypical generalizations. An example of the lat- 
ter sort involves compounds with a transition metal in the oxidation state 
with no valence electrons available for bonding (a so-called d0 oxidation 
state). Such compounds strictly cannot participate in reactions in which the 
metal’s oxidation state is increased, such as oxidative addition, because such a 
reaction would involve the energetically prohibitive participation of non- 
valence (‘core’) electrons on the metal. Except in cases like this, however, 
methodologically useful generalizations involving oxidation state perfectly 
illustrate the points of the present paper.

For cases in which bonding is mainly covalent, and oxidation states are 
thus largely conventional, oxidation states would not function as natural 
properties if chemists treated them in ways that the stereotypical conception 
of natural kinds and properties might suggest - if, for example, they looked 
for ‘laws’ or high-level generalizations about all, or almost all, atoms in oxida- 
tion state +2. Instead, chemists do not, in practice, assume that chemically 
important categories, properties, or relations (such as oxidation states) must 
fit the stereotypical conception of natural kinds and properties. The actual 
inferential architecture of chemistry instead involves deploying chemical cat- 
egories in highly nuanced ways, informed by local and highly approximate 
(and partly tacit) non-stereotypical generalizations, as well as by more ‘law- 
like’ ones. Instead of anticipating that chemically important categories, prop- 
erties, or relations will usually be the subjects of something like universal 
laws, chemists tacitly recognize the role of local and highly approximate (and 
partly tacit) generalizations as well as the role of more ‘law-like’ ones.

So, despite the conventionality of their definitions, oxidation states do 
behave like natural kinds in the broader sense. When the terms and concepts 
for them are integrated into the rest of the inferential architecture of synthet
ic chemistry, including explicit and tacit knowledge about particular sorts of 
reactions, chemists’ references to oxidation states do reflect insights about 
electron density that contribute to their ability to make scientifically in
formed guesses about reactivity.

3. 3 Inferential holism and natural kinds
It might seem, nevertheless, that the way in which chemical insights are re- 
flected in references to oxidation states is strikingly atypical. Atoms in two
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different molecules that are each known to have oxidation state +2, say, will 
not, simply on the basis of that similarity, be expected to exhibit important 
similarities in reactivity. It is only when all sorts of other chemical considera- 
tions are brought into play that reference to oxidation states becomes in- 
formative.

Is that not very different from the way in which reference to other sorts 
of natural kinds contributes to the reliability of scientific inferences? Is it not 
ordinarily to be expected that the similarities that things exhibit just because 
they belong to a particular natural kind will be by themselves methodologically 
important in the relevant discipline?

Probably not. The role of natural kind terms and concepts in chemistry 
illustrates the important phenomenon of inferential holism in science. The 
definition of a natural kind, on the broader conception, is a matter of the 
similarities between its various members such that, given the rest of the infer- 
ential architecture of the discipline, applications of that concept or term allow 
practitioners to knowledgably classify relevant phenomena in terms of meth- 
odologically relevant similarities and differences. Almost never is it a matter 
of treating all instances of a kind as relevantly similar in every situation. The 
kind compound of chromium is a natural kind on almost any account of natu- 
ral kinds, and it almost certainly has a definition meeting the standards set by 
the stereotypical extrapolation from Putnam’s examples. Nevertheless, 
knowing just that a chemical species is a compound of chromium provides a 
chemist with little useful information about its reactivity. She will need to 
know (or find out) more about its structure: more about, for example, its 
oxidation state. It is in the context of the overall inferential architecture of 
chemistry that knowing that a species is a compound of chromium contrib- 
utes to making informed guesses about its reactivity.

This is utterly typical of the contribution of natural kinds to scientific 
understanding. A behavioral ecologist seeking plausible hypotheses about the 
migration patterns of a particular population of organisms will, of course, 
need to know what species they belong to, but in most cases she will also 
need to know much more about its situation: the climate, topography, and 
biota of the relevant regions. Facts about these factors will, of course, be 
formulated using a great many other natural kind terms and concepts from 
behavioral ecology.

Thus, although the extent to which the definition of oxidation states is 
conventional is initially striking, examination of their role in the inferential 
architecture of chemistry in fact illustrates an important point about the role 
of natural kinds in science. Although it makes perfect sense to see the differ- 
ent natural kinds in chemistry (or in any other discipline) as having distinct 
definitions and inferential roles, the natural kinds in a discipline exhibit their 
naturalness and manifest their definitions holistically: as components of a
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package that includes the concepts, terms, generalizations, inferential practic
es, instrumentation, research strategies, etc. of the discipline.

3. 4 Extending the picture: Nonverbal representations
There is an extensive literature on the role of pictorial representations in sci- 
ence, and particularly in chemistry (see, e. g., Hoffmann 2007, Kovac & Weis- 
berg 2011, the papers in Spector & Schummer 2003a∕b and the citations 
therein). We will not attempt to make a contribution to this literature be- 
yond making one proposal.

A final advantage of taking the notion of inferential architecture to be 
fundamental in understanding scientific representations is that it affords us a 
way of treating pictures, charts, diagrams, and the like on a par with verbally 
coded representations. As a simple example, consider the role of ‘arrow- 
pushing’ diagrams in the formulation of hypotheses about reaction mecha- 
nisms, in which the ‘motion’ of a pair of electrons involved in bond breaking 
or bond formation is represented by a curved arrow, and the motion of a sin- 
gle electron, in reactions involving radical species, is represented by a ‘fish- 
hook’ curved half-arrow. Such a pictorial notation is used by almost all or- 
ganic chemists and many inorganic and organometallic chemists. If we think 
of fully legitimate scientific representations as necessarily verbal entities to 
which algorithmic rules can apply, we will then have to insist that arrow- 
pushing diagrams function as legitimate representations of hypotheses about 
changes in electron density within and between molecules only if we assume 
that, when chemists use those diagrams, they always have in mind a fairly 
definite ‘translation’ between the diagrams in question and some verbal 
presentation. Perhaps that is true, but there is no reason to think that the 
topological and spatial aspects of the hypotheses thus represented, namely, 
which bond electrons or electron pairs move into or out of, are easily trans- 
lated. If we move from such simple cases to the representations of protein 
structures, there is no reason to believe that biochemists even tacitly perform 
such translations. They might be able to translate the pictorial arrow-pushing 
representation of the mechanism proposed to operate at an enzyme’s active 
site. But there is no reason to suppose that they could usefully translate the 
overall pictorial representation of a macromolecule’s geometry.

More importantly, chemists often do not need to perform even those 
translations that they could actually accomplish. They do not always need to 
rely on the sorts of verbally explicit representations highlighted by the stere
otypical conceptions. Just as chemists learn their (often discipline-specific) 
non-stereotypιcal ways of reading and applying the verbal parts of published 
papers, they likewise learn (often discipline-specific) ways of looking at and 
learning from diagrams, charts, pictorial representations, and the like. That
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much of what they do (both with verbal and with non-verbal representa- 
tions) is tacit and non-stereotypical does not diminish the scientific im- 
portance of their representations or their inferences. Verbal and non-verbal 
representations (and their associated inferential practices) are thus scientifi- 
cally fully on a par with each other.

3. 5 One more non-stereotypical factor: Highly social cognitive 
processes
Scientific work is, of course, a social activity, but the stereotypical concep- 
tions associated with logical empiricism focus on formal aspects of scientific 
practices, findings, and categories rather than on the social practices involved 
in scientific research. The non-stereotypical factors explored here obviously 
involve social practices: they are reflections of the actual inferential architec- 
tures of disciplines at a time and are thus of actual social practices in chemis- 
try. Recognizing the social character of inferential architectures permits us to 
identify an additional feature of scientific reasoning not emphasized by logi- 
cal empiricism. Although individual scientists do often figure things out by 
themselves, the good guessing involved in applying ceteris paratis (and other) 
generalizations is often achieved not individualistically, but rather by the 
sharing of insights in research collaborations - as anyone who has ever partic- 
ipated in meetings of a laboratory research group knows. Similarly, profes- 
sional conversations at conferences and other sorts of exchanges are, almost 
certainly, central to the ways in which chemists make cetera parata and make 
conjectures about possible synthetic procedures. When we think of the tacit 
features of chemists’ representations and inferences (and, for that matter, the 
explicit ones) as part of their discipline’s inferential architecture, it is im- 
portant to remember that not only is the discipline itself a social phenome
non but also, quite often, so is the implementation of its inferential architec
ture.

4.  Making It Explicit?
So deeply entrenched is the stereotypical conception of scientific representa- 
tions and inferences that one might be inclined to think that the imprecise 
and partly tacit representations and inferential practices discussed here must 
somehow be inferior to fully explicit representations and inferential practices. 
The practice of logical empiricists, and other philosophers influenced by 
them, of using formal mathematical resources to ‘rationally reconstruct’ sci-
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entifιc theories and inferential practices using formal mathematical resources 
lends credibility to that idea.

We will not address here the question of whether, in the fully completed 
and completely accurate ideal limit of scientific investigations, the sorts of 
representations we have been discussing would always be inferior to fully 
explicit ones. We doubt that the question is meaningful, and we are not sure 
the answer would be ‘yes’ if it were: perhaps understanding would be en
hanced by some less precise, and more tacit, representations and practices.

We will, however, address the question of whether it is, in some way, a 
failing that chemists have to rely on tacit representations and tacitly under- 
stood inferential practices. In a word, no, but there is more to be said. In our 
view, it is probably almost always a good thing when chemists are able to ex- 
plicate some of the previously implicit representational or inferential features 
of their practices, but it is important to recognize just how difficult an 
achievement that can be. In the first place, even to articulate the dimensions 
of current tacit practices would be a challenging task. People are not very 
good at identifying the premises and inferences that underlie their practices: 
that is why we need philosophers, psychologists, sociologists, and historians 
of science. But there is a much deeper problem: even such an articulation 
would not be enough.

Here is why: suppose that someone were to make fully explicit the repre- 
sentational and inferential practices characteristic of Lewis structure-type 
representations of molecular structures, complete with all the patches about 
‘resonance structures’ and the like that prevailed in chemistry before the wide 
use of different quantum-mechanical approximations such as molecular or- 
bital theory. That would be a major scientific achievement in cognitive science. 
It would probably require the introduction of new concepts and theoretical 
resources for characterizing inexplicit representation and inferential struc- 
tures.

It would not, however, be a major scientific achievement in chemistry, 
although it might well contribute to the teaching of beginning chemistry. 
The sorts of explications that chemists would really value, are ones that make 
it clearer why, in what respects, and to what extent the Lewis-structure repre- 
sentations represent molecular structures and why, and to what extent, the 
associated inferences are reliable. That is what the introduction of quantum 
mechanical approximations into descriptions of molecular structures accom- 
plished, but that was a major theoretical accomplishment. It was not any kind 
of failing on the part of earlier chemists that they had not yet worked out 
molecular orbital conceptions or other quantum mechanical approaches. 
They had discovered, and usefully (if only approximately) described, the 
phenomena for which later chemists and physicists offered more detailed 
theoretical explanations. Likewise, it was not a failing of theoretical chemists



42 W. Christopher Boyd and Richard N. Boyd

of Pauling’s generation, who pioneered many of the applications of quantum 
mechanics to chemistry, that they did not invent the software and hardware 
necessary for even more sophisticated contemporary quantum mechanical 
calculations. Chemists, like all scholars, build on the prior approximate 
achievements of others.

But might it still be true that, when discoveries or theoretical innovations 
are made, the advances that clarify features of earlier achievements by scien- 
tifically appropriate explication should have pride of place in comparison 
with other innovations, especially ones that rely on unimproved non- 
stereotypical representations? We see no reason to think so.

5.  Conclusion
Let us sum up, and extract some philosophical lessons.

5. 1 How to answer questions about chemical syntheses: How 
can we synthesize a given compound?
Strategy: Rely on background theories, non-stereotypical generalizations, and 
tacit conceptions; make, relying on the (partly tacit) inferential architecture of 
the discipline, informed guesses about which alternative synthetic techniques 
are worth considering. Choose between those alternatives using experimental 
techniques similarly informed by background generalizations, stereotypical 
and non-stereotypical, deployed via the prevailing inferential architecture. 
Repeat as needed.

5. 2 When does this work?
When does it tend to result in approximately correct answers? This strategy 
works to the extent that:
1.  Background representations including tacit and non-linguistic generaliza- 

tions and non-stereotypical generalizations are true often enough, ceteris 
paratis, and

2.  The prevailing inferential architecture, including the resources made avail- 
able by reference to non-stereotypical natural kinds and properties, is reli- 
able enough so that
a.  Together they underwrite good enough guessing with the results that 

often enough an approximately correct answer is among the resulting 
guesses and

b.  The experimental techniques they underwrite are, often enough, reli
able enough to identify the approximately correct answer.
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5. 3 Good guessing: In praise of hunches
Here is a less philosophical summary of what we have learned. Good work in 
synthetic chemistry relies on the ability of chemists to (often enough) make 
good guesses about how to synthesize particular compounds, about what the 
relevant molecular structures are, and about which reaction mechanisms are 
operative. They need to be able to reliably generate hunches about chemical 
matters. The hunches they generate, the background chemical knowledge 
they rely on, the inferential practice that mediate between background 
knowledge and their hunches, and the kinds, concepts, and other representa- 
tional machinery they use, often do not fit the stereotypical conceptions, and 
this is fine for the foreseeable future.

5. 4 Is synthetic chemistry atypical?
The special methodological role of guesses and hunches is a scientific univer- 
sal. In the first place, one cannot test theories or hypotheses that no one has 
formulated, so guessing (even if one calls it ‘hypothesis formation’) is essen- 
tial to science. Much more importantly, when there is progress on scientific 
questions it is always because, often enough, among the guesses of research- 
ers are some that are relevantly close to the truth (but not necessarily close to 
the exact fundamental truth, whatever that is). That assumption is tacitly 
built into ordinary standards of evidence: we do not count an hypothesis as 
well-supported unless it has been tested against other scientifically reasonable 
guesses (or ‘hypotheses, ’ if one wishes to sound more formal). Standards like 
this are reliable only when the representational and inferential structures of 
the relevant disciplines are such that, pretty often some guesses are pretty 
good (for more and for a discussion of cases where guesses are not pretty 
good, see Boyd 2010).

Still, synthetic chemistry is especially illustrative. Nevertheless, examining 
synthetic chemistry makes it especially easy to see these points. In the first 
place, the social character of representations and inferences is especially easy 
to see. Of course, all science (indeed all intellectual inquiry) is social, but the 
intimacy of the collaboration in synthetic chemistry research groups make it 
easy to see the extent to which an individual chemist’s thinking routinely 
depends on that of others. This is also true in particle physics, where research 
groups can have over a hundred members, and sometimes in mathematics, 
where jointly authored papers are fairly rare, but it is easiest to see in labora- 
tory (bench) sciences like chemistry, where all or most of the participants in 
a research effort interact, and in those areas of biology involving cooperative 
field work. In particular, it is easy to see that the implementation of various 
non-stereotypical representations and inference patterns (and stereotypical
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ones too, for that matter) is often mediated by conversations rather than just 
by individual thinking.

It is likewise important to reflect that one of the pedagogical aims of 
graduate work in a synthetic chemistry research group is the acquisition of 
some of the tacit understanding that underwrites non-stereotypical represen- 
tations and inferences. Of course, something like this is true in every disci- 
pline, but the role of research group meetings in graduate education in syn- 
thetic chemistry is greater than that in many other disciplines.

It also helps that many of the non-stereotypical representations and infer- 
ence patterns are widely presented in upper-level undergraduate and graduate 
level chemistry courses and in textbooks (but typically not in the parts that 
purport to explain the philosophy of science). Of course, they are usually not 
made fully explicit (that is the point of this essay), but their role is acknowl- 
edged as a regular part of chemical education.

5. 5 Representational pluralism
Many historians and philosophers of science have defended broadly pluralist 
conceptions of scientific representations and practices that criticize aspects 
of what we have been calling the stereotypical conceptions. We have already 
mentioned an emphasis on the role of pictorial representations that, we hope, 
can be assimilated to the framework of inferential architecture that we deploy 
here. An aspect of this sort of pluralism that is especially relevant to the phi- 
losophy of chemistry is the idea that much of the knowledge of synthetic 
chemists is not the sort of fundamental knowledge celebrated by logical em- 
piricists, and that much of their research is not aimed at testing highly general 
hypotheses. Instead, much of their knowledge is a matter of know-how: they 
know how to make new compounds and to experimentally explore particular 
sorts of chemical reactions. Chang (2012) and Hoffmann (2007) have been 
especially successful in making these important points about chemical 
knowledge and practices.

We see the treatment of non-stereotypical representations, inferential 
practices, and natural kinds offered here as an important complement to 
Chang’s and Hoffmann’s emphasis on know-how. Everyone agrees that, in 
addition to know-how, chemists have lots of ‘know-that’ knowledge, and 
that they deploy that knowledge in implementing their know-how. In fact, if 
one focuses on how synthetic chemists are able to make new compounds and 
to design particular experiments, it turns out that much of the knowledge 
that that they depend on is represented in non-stereotypical ways and is ap- 
plied via non-stereotypical inferential practices. Thus, the pluralist point that 
much chemical knowledge is a matter of know-how leads, on reflection, to 
the pluralist point that much chemical knowledge that is a matter of ‘know-
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that’ involves the rich range of non-stereotypical representational resources 
described here.

Of course, these points are really quite general with respect to scientific 
knowledge and practice. What they illustrate is the very non-stereotypιcal 
point that an essential feature of science is informed guessing.

Three cheers for hunches!
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