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ABSTRACT: The cobalt(II) complex salts [Co(bpy)(az)2](PF6)2 and [Co(az)4](PF6), each bearing the unusual cis-N, N'- 
diphenylazodioxide ligand, were both screened as possible anticancer agents against SK-HEP-1 liver cancer cells. Both 
compounds were found to induce substantial apoptosis as an increasing function of concentration and time. Measurement of 
apoptosis-related proteins indicated that both the extrinsic and intrinsic pathways of apoptosis were activated. The apoptotic 
activity induced by these salts is not displayed either by simple cobalt(II) salts or complexes or by the free nitrosobenzene 
ligand. Additionally, these compounds did not induce apoptosis, as assessed by poly(adenosine diphosphate-ribose) polymerase 
cleavage, in several other cell lines.

■ INTRODUCTION
Since the discovery of the antitumor activity of cisplatin by 
Rosenberg and co-workers, 1 it and other platinum complexes 
have seen widespread use in the treatment of a variety of 
cancers, and their mechanisms of action have been extensively 
explored. 2 Other transition metals have been explored in 
cancer therapy, such as ruthenium2a, b, 3 osmium, 2c rhodium, 4,5a 
and iridium, 5 but nonplatinum anticancer drugs in clinical use 
remain predominantly organic. In particular, despite the high 
natural abundance of cobalt6 and the extensive synthetic 
chemistry of its complexes, there are, to the best of our 
knowledge, so far no cobalt compounds in widespread clinical 
use other than vitamin B12 (cobalamin), though the 
cobalt(II) imine complex CTC-96 (Doxovir) has been 
explored as a treatment for herpes simplex virus, 8 reaching 
phase II clinical trials. 81’

Although a variety of cobalt compounds have been shown to 
be cytotoxic against certain cancer cell lines, those that have 
been demonstrated to induce apoptosis remain fairly few in 
number. All of these complexes feature cobalt in either the 
Co (II) or Co (III) oxidation state. Klegeris and co-workers 
prepared a series of square-planar Co (II) complexes of β- 
ketoaminato ligands, which increase the activation of caspase-3
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and induce apoptosis in prostate cancer cells? ’ Pombeiro and 
co-workers showed that a series of Co(II) tris(pyrazolyl)- 
methane (“scorpionate”) complexes induced apoptosis in 
colorectal and liver cancer cells, with the generation of 
oxygen-centered radicals proposed as the mechanism of action 
based on their observed ability to cleave plasmid DNA.10 
Chiniforoshan and co-workers showed that Co(II), Ni(II), and 
Cu(II) complexes of phenanthroline and the conjugate base of 
the natural product juglone induced early-phase apoptosis in 
liver, cervical, and colorectal cancer cells, likely involving 
intercalation with DNA. 11

Gao and co-workers demonstrated that ellipsoid-shaped, 
bimetallic Co(II) and Ni(II) complexes with bis(pyrazolyl)- 
phthalate bridging ligands induced apoptosis in oral epithelial 
carcinoma cells, with a proposed mechanism of DNA 
intercalation and cleavage. 12 Similar behavior was observed 
by the same group for both mono- and bimetallic Co(II) 
complexes of tris(imidazolyl)benzene, with the monometallic 
complex being more potent. 13 Ghosh and co-workers showed

Received: June 8, 2019
Accepted: August 13, 2019
Published: August 27, 2019

DOI: 10. 1021∕acsomega. 9b01684
ACS Omega 2019, 4, 14503-14510

14503

http://pubs.acs.org/journal/acsodf
https://pubs.acs.org/sharingguidelines


ACS Omega Article

Scheme 1. Structures of Cobalt(II) Azodioxide Complexes 1 and 2

Figure 1. Cell morphology after treatment with compound 1 for 12 h.

that a bimetallic Co(II) complex with 4, 4'-azopyridine as the 
bridging ligand was able to induce apoptosis in osteosarcoma 
cells by a caspase- and p53-independent mechanism proposed 
to consist of DNA binding followed by the generation of 
reactive oxygen species (ROS). 14 Simpson and co-workers 
demonstrated that a series of Co(II) and Ni(II) complexes of 
benzyl carbazate-derived imines induced apoptosis in leukemia 
cells, though the mechanism of apoptosis induction was not 
identified. 13 Similarly, Katsaros and co-workers showed that a 
series of bimetallic Co(II) complexes with macrocyclic ligands 
were highly toxic to chronic myelogenous leukemia cells with 
little to no necrosis observed, but the mechanism of cell death 
(and potential apoptosis) was not identified. 16

Co (III) complexes capable of inducing apoptosis include a 
bimetallic Co (III) dihydrazide complex with a chiral helical 
structure, prepared (as a racemic mixture) by Sladic and co-
workers. This complex was shown to increase the fraction of 
early apoptotic cells in samples of breast cancer cells, but 
experiments with plasmid DNA indicated that it did not induce 
apoptosis by DNA cleavage. 1 Chen and co-workers prepared a 
pair of Co oxoisoaporphine complexes, one Co (II) and one 
Co (III), and found that both induced apoptosis in cisplatin- 
resistant ovarian cancer cells by increasing mitochondrial ROS 
levels and activating caspase-3 and caspase-9. Additionally, the 
Co (III) complex was found to induce cell senescence by acting 
as a telomerase inhibitor, binding strongly to G-quadruplex 
DNA. 18

Satyanarayana and co-workers demonstrated that a series of 
Co (III) complexes of an imidazole-fused phenanthroline 
ligand induced apoptosis in ovarian cancer cells. Experiments 
with plasmid DNA showed that the complexes were potentially

phototoxic, able to cleave plasmid DNA when irradiated with 
UV light (365 nm) but not in the dark. It was not, however, 
determined whether their induction of apoptosis in ovarian 
cancer cells was photodependent. 19 Filipovic and co-workers 
prepared a series of cobalt complexes of (chalcogen)- 
semicarbazones, with a Co (II) complex of the O-donor ligand 
and Co (III) complexes of the S- and Se-donor ligands. Each of 
these complexes was shown to induce differentiation in all- 
trans retinoic acid-resistant acute myeloid leukemia cells, and 
each was cytotoxic toward cervical cancer cells, with the O- 
donor and S-donor complexes inducing apoptosis by DNA 
damage from ROS generated by Fenton-type reactions and by 
G2/M cell cycle arrest, respectively. 21’ Qin and co-workers 
showed that a Co(II) complex of a substituted terpyridine 
induced G1-phase apoptosis in bladder cancer cells, with a 
mechanism involving mitochondrial membrane depolarization, 
caspase-3 and caspase-9 activation, and an increase in 
intracellular Ca2+ levels. 21

An important subset of apoptosis-inducing cobalt complexes 
consists of the Co(II) complexes of long-chain primary amine 
surfactants, studied by Arunachalam and co-workers. 22 These 
authors showed that undecylamine complexes formed micelles 
at low concentrations and induced apoptosis in breast cancer 
cells with DNA damage and mitochondrial membrane 
depolarization. 22a Further work by the same group showed 
that one of these complexes caused downregulation of Bcl-2 
and upregulation of p53 in breast cancer cells, though long 
treatment times with this complex resulted in some necrosis by 
oxidative stress, in addition to apoptosis. 22b These groups later 
demonstrated that a related tetradecylamine complex induced 
apoptosis in cervical cancer cells with DNA fragmentation,

14504 DOI: 10. 1021∕acsomega. 9b01684
ΛCS Omega 2019, 4, 14503-14510



ACS Omega Article

Figure 2. Cell morphology after treatment with compound 2 for 12 h.

Annexin V-FITC

Figure 3. Flow cytometry results for treatment with compounds 1 and 2 (10 μM, 12 h).

whereas a decylamine complex induced apoptosis in liver 
cancer cells. 22c Nagaraj and co-workers demonstrated that a 
related Co (III) decylamine complex with different ancillary 
ligands was both an effective surfactant and able to induce both 
apoptosis and necrosis in liver cancer cells. ” '

Recently, one of our groups has prepared two novel Co(II) 
complexes of the unusual ligand cis-N, N'-diphenylazodioxide 
(az): the six-coordinate, trigonal prismatic complex salt 
[Co(bpy)(az)2](PF6)2, where bpy = 2, 2' -bipyridyl (compound 
l), and the eight-coordinate, tetragonal complex salt [Co- 
(az)4 ](PF6)2 ( compound 2), both high-spin with three 
unpaired electrons per complex cation. 24 The structures of 1 
and 2 are shown in Scheme 1.

The unusual coordination geometries for cobalt displayed by 
these complexes, combined with the rarity of crystallo­
graphically characterized azodioxide complexes of any 
metal, 25 suggested that they may display novel reactivity, 
including potentially novel biological effects. We were, thus, 
inspired to investigate their biological activity and medicinal 
potential. We have now found that each of compounds 1 and 2 
induces apoptosis in human liver adenocarcinoma (SK-HEP-l) 
cells and carried out a series of experiments to elucidate the 
possible mechanisms of cytotoxicity.

■ RESULTS AND DISCUSSION
We investigated the concentration-dependent changes in the 
SK-HEP-l cell morphology induced by cobalt(II) azodioxide

complexes. Cells were treated with or without dimethyl 
sulfoxide (DMSO) (vehicle control) or compound 1 (Figure 
l) or 2 (Figure 2) at concentrations of 1, 2, 5, or 10 μM for 12 
h. Cell morphology was examined by phase-contrast 
microscopy under 20× magnification. Both compounds 
induced rounding and detachment of cells suggestive of cell 
death in the culture. An increased response by the cells to 
higher doses of the compounds was observed, as more dead 
cells detached from the culture dishes after the concentration 
of compound 1 or 2 was increased to 10 μM.

We conducted flow cytometry measurements of SK-HEP-l 
cells after treatment with each of compounds 1 and 2 at 10 μM 
for 12 h. The percentages of apoptotic cells were significantly 
increased after treatment with compound 1 or 2 compared 
with control cells (Figure 3). After treatment with compound 
1, the apoptotic population increased from 4. 8 to 16. 6%. With 
compound 2, the apoptotic population increased from 4. 8 to 
22. 5%. These results suggest that compounds 1 and 2 are able 
to efficiently induce apoptosis in SK-HEP-l cells. Fluorescence 
spectroscopy of compounds 1 and 2 showed that neither one 
displayed an emission spectrum, indicating that fluorescence 
from neither compound served as an artifact in the flow 
cytometry measurements.

We next investigated the molecular mechanisms underlying 
apoptosis induced by compounds 1 and 2. We first examined 
the proteolytic processing of caspases by immunoblotting 
analysis, as it has been demonstrated that the activation of

14505 DOI: 10. 1021∕acsomega. 9b01684
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caspases plays a vital role in apoptosis. 26 Apoptosis induced in 
SK-HEP-1 cells was involved with the cleavage of poly- 
(adenosine diphosphate-ribose) polymerase (PARP) and the 
activation of procaspase-8 and procaspase-9, as assessed by the 
appearance of the respective cleaved, active caspases compared 
to the control. The presence of each of these apoptosis-related 
proteins was measured after treatment with compounds 1 and 
2 in both concentration-dependent and time-dependent 
experiments.

To determine the involvement of the caspases and PARP, 
we carried out concentration-dependent treatments with 
compounds 1 or 2 for 12 h. Interestingly, the cleavage of 
both procaspase-8 and procaspase-9 was observed at 5 and 10 
μM concentrations of each compound. The cleavage of PARP 
was observed slightly at 2 μM concentrations and increased 
significantly at 5 and 10 μM (Figure 4).

Figure 4. Concentration-dependent protein levels after 12 h of 
treatment with compounds 1 or 2.

We also investigated the effect of compounds 1 and 2 on 
other pro- and antiapoptotic proteins. The levels of these 
proteins were significantly regulated after treatment with 
compound 1 or 2 compared to the control, in a concentration- 
dependent manner (Figure 4).

In addition, we found that the apoptosis-related proteins 
were affected in a time-dependent manner compared to the 
control upon treatment with compound 1 or 2 at 2 μM 
concentration. Substantial amounts of cleaved PARP, caspase- 
8, and caspase-9 were observed as early as 6 h after treatment 
with 1 or 2. There are a variety of gene products involved in 
the process of cell apoptosis. A well-known group of these gene 
products is the Bcl-2 family, which includes both antiapoptotic 
and proapoptotic members. " Upon the treatments, the level of 
Bcl-2, an antiapoptotic member, decreased over time, whereas 
BAD and Bim, two proapoptotic members, were upregulated 
(Figure 5). These data not only confirmed that compounds 1 
and 2 induced the apoptosis of SK-HEP-1 cells in a 
concentration- and time-dependent manner but also indicated 
that they induced apoptosis via both the extrinsic and intrinsic 
pathways, since both procaspase-8 and procaspase-9 were 
cleaved after treatment. "0 The cleavage of procaspase-8, 
involved in the extrinsic pathway, occurred to a greater extent 
than the cleavage of procaspase-9, involved in the intrinsic 
pathway, 20 suggesting that more apoptosis proceeded by the 
extrinsic pathway than the intrinsic one.

Cobalt(II) salts are known to induce oxidative DNA damage 
via the generation of reactive oxygen species such as hydroxyl

radical and superoxide, akin to the iron-catalyzed Fenton 
reactions. 29 Additionally, the mechanism of apoptosis induced 
by some cobalt complexes has been proposed to involve the 
generation of ROS and subsequent oxidative DNA dam­
age. 10,14,20 Thus, we decided to examine the possibility of ROS 
involvement in the proapoptotic activities of 1 and 2. We 
treated SK-HEP-1 cells with several different concentrations of 
1 and 2 for an incubation time of 14 h and then ran a 
fluorescence-based ROS assay. This assay showed significant 
increases in ROS levels at high concentrations of 1 and 2, but 
only modest increases in ROS levels at concentrations used in 
the flow cytometry and western blot assays (Figure 6). These 
results suggest that 1 and 2 do not induce apoptosis primarily 
via ROS-mediated DNA damage.

We performed the 3-(4, 5-dimethyIthiazol-2-yI)-2, 5-diphenyI 
tetrazolium bromide (MTT) assay to assess the cytotoxicity of 
both 1 and 2 to SK-HEP-1. We incubated cells with 1 or 2 for 
48 h at a series of concentrations (5. 12 nM, 25. 6 nM, 128 nM, 
640 nM, 3. 2 μM, 16 μM, 80 μM, 400 μM, 2 mM) and then 
performed the MTT assay. This assay showed a significant loss 
of cell viability only at 400 μM and 2 mM concentrations of 1 
or 2. These are higher doses than those shown to induce 
substantial cell death by phase-contrast microscopy (Figures 1 
and2), apoptosis and necrosis by flow cytometry (Figure 3), 
and the upregulation of proapoptotic proteins and down-
regulation of antiapoptotic proteins by western blot (Figures 4 
and 5). The MTT assay has been shown to overestimate cell 
viability (and underestimate cytotoxicity) in certain cases, 30 
which may explain the apparent discrepancy between it and the 
other assays.

14506 DOI: 10. 1021∕acsomega. 9b01684
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The ability of compounds 1 and 2 to induce PARP cleavage 
was shown to be cell line-specific. We treated several other cell 
lines with 2 and 10 μM concentrations of 1 and 2 for 12 h: 
HEK 293 (human embryonic kidney cells), HT-29 (colon 
cancer), MCF-7 (breast cancer), and PC-3 (prostate cancer). 
In none of these cases, extensive PARP cleavage was observed 
compared to the response of SK-HEP-l to 1 and 2. These 
results suggest that 1 and 2 may allow for the selective 
apoptosis of liver cancer cells, with minimal harm to the 
surrounding tissue. The western blots from these experiments 
are shown in Figures SI—S4 (see the Supporting Information).

We also examined whether the starting materials used in the 
synthesis of compounds 1 and 2 were capable of causing 
apoptosis by themselves. These compounds included CoCl2, 
used in the synthesis of compound 2, Co(bpy)Cl2, 31 used in 
the synthesis of compound 1, nitrosobenzene (PhNO), used in 
the synthesis of both compounds, and the additional 
compound Co(phen)Cl2, 32 where phen = l, 10-phenanthroline, 
a compound related to Co(bpy)Cl2. Interestingly, treatment of 
SK-HEP-l cells with each of these compounds for 12 h at 10 
μM did not lead in any case to significant PARP cleavage 
compared with that observed after treatment with 1 or 2 
(Figure 7). We observed minor PARP cleavage after treatment 
with CoCl2 but much less than that observed after treatment 
with 1 or 2 at this concentration and time.

Figure 7. Effect of starting materials and Co(phen)Cl2 (12 h, 10 μM) 
on PARP cleavage.

Due to the small number of azodioxide complexes known, it 
is difficult to identify a structure—activity relationship with 
confidence regarding the biological activity of such complexes. 
As 1 and 2 are the only cobalt azodioxide complexes known, 
the differences in their coordination numbers and geometries 
cannot be compared in depth. The data do suggest, however, 
that the azodioxide ligand is essential to the activity. The 
inactivity of CoCI2, Co(bpy)Cl2, and Co(phen)Cl2 toward the 
induction of PARP cleavage demonstrates the neither Co(II) 
alone nor Co (II) bound to a π-delocalized, redox-active 
ligand33 such as bpy or phen is necessary to induce apoptosis. 
The azodioxide ligand, although stable in the solid state, 
dissociates to monomeric PhNO in the solution, which is also 
inactive toward the induction of PARP cleavage. We propose 
that the stabilization of dimeric azodioxide by coordination is 
responsible for the proapoptotic activity. Nicholas and co-
workers have shown that the iron azodioxide compound 
[Fe(az) 3](FeCl4)2 is capable of catalyzing allylic amination/ 
C—C double-bond migration reactions of alkenes, with a 
mechanism proposed to involve the transfer of a PhNO moiety 
from a coordinated azodioxide to an alkene in a nitroso-ene- 
type reaction. 25b PhNO transfer from 1 and 2 to unsaturated 
biomolecules may be involved in their proapoptotic activity. 
The low levels of ROS generated at the concentrations of 1 
and 2 shown to induce apoptosis suggest that ROS generation 
through Fenton-type electron transfer reactions is at best a

minor contribution to the proapoptotic activity of these 
compounds.

■ CONCLUSIONS
In this study, we have demonstrated that each of compounds 1 
and 2 induces apoptosis in SK-HEP-l cells and examined their 
mechanisms of action. Our results showed that the compounds 
induce apoptosis via both the extrinsic and intrinsic pathways, 
though with a preference for the extrinsic pathway. Both 
compounds induce the cleavage of PARP and the activation of 
procaspase-8 and procaspase-9. It is clear that the activation of 
procaspase-8 proceeded to a greater extent than that of 
procaspase-9. Additionally, we found that both compounds led 
to a significant decrease in the levels of the antiapoptotic 
protein BcI-2 as well as an increase in the expression of Bim 
and BAD, members of the BcI-2 family that promote apoptosis. 
Future work will consist of examining the pharmacological 
potential of 1 and 2 in mouse models of liver adenocarcinoma. 
Mechanistically, the effect of 1 and 2 on additional apoptosis- 
related proteins, such as the NEDD8-activating enzyme, 34 
Weel, 3s Cdc2, 35b and Pinl, 36 will be examined. Additionally, 
transition-metal azodioxide complexes synthesized in the 
future will be screened for potential anticancer activity against 
SK-HEP-l liver cancer cells and other types of cancer cells.

■ METHODS
Reagents and Antibodies. Compounds 1 and 2, 

Co(bpy)Cl2 were prepared as previously described by the 
Boyd group. "4 Co(phen)Cl2 was prepared as described by 
Nami and Siddiqi. 32 Antibodies to PARP, procaspase-8, 
cleaved caspase-8, procaspase-9, cleaved caspase-9, Bim, Bcl- 
2, and BAD were obtained from Cell Signaling Technology, 
Inc. (Danvers, MA). The antibody to GAPDH was obtained 
from Santa Cruz Biotechnology (Dallas, TX).

Cell Culture and Treatment. SK-HEP-l and other cells 
were grown in RPMI-1640 (purchased from the Cleveland 
Clinic Foundation Core Facility) supplemented with 10% 
cosmic calf serum (HyClone) and 1% antibiotics. The cells 
were kept in a humidified atmosphere with 5% CO2 at 37 oC. 
When the cell confluence reached 70%, the cells were treated 
with or without compound 1 or 2 at different concentrations 
(0, 1, 2, 5, or 10 μM) for a given amount of time (l, 6, 12, 24, 
or 36 h). Compounds 1 and 2 were dissolved in DMSO before 
being diluted in the aqueous solution.

Morphology of Apoptotic Cells. An inverted phase- 
contrast fluorescence microscope (Carl Zeiss, Heidenheimer, 
Germany) was used to directly observe morphological changes 
in the cell line after treatment with 1 or 2. Cells were seeded 
into 6-welI (12 × 104 cells/well) plates, cultured to confluence, 
and treated with a solution of compound 1 or 2 at the relevant 
concentration at 37 oC for 12 h. After the 12 h treatment, cells 
were washed with phosphate-buffered saline (PBS), and 
images were taken from five random fields for each well.

Western Blot Analysis. After treatments, cells were 
washed twice with ice-cold PBS and collected with a scraper. 
Total protein extracts were prepared by the suspension of cell 
pellets in Triton-X 100 lysis buffer (50 mM N-(2- 
hydroxyethyl)piperazine-N'-ethanesuIfonic acid, 150 mM 
NaCl, 1% Tris-X 100, and 5 mM ethylenediaminetetraacetic 
acid). After centrifugation at 20 000g in a microcentrifuge at 4 
oC for 10 min, the total protein in the supernatant was 
measured using a UV-1280 UV—visible spectrometer (Shi-

14507 DOI: 10. 1021∕acsomega. 9b01684
ΛCS Omega 2019, 4, 14503-14510



ACS Omega Article

madzu, Kyoto, Japan). Equal amounts of protein from each 
sample were introduced to 10% sodium dodecyl sulfate- 
polyacrylamide gel electrophoresis. After electrophoresis, 
proteins were transferred to a poly(vinylidene difluoride) 
membrane using a Bio-Rad Mini-PROTEAN 3 wet transfer 
unit at 100 V for 80 min. The membrane was then incubated 
with 5% nonfat milk in TBST buffer (l mM Tris with pH 7. 4, 
150 mM NaCl, 0. 2% Tween-20) for 1 h at room temperature. 
The membrane was then incubated with a primary antibody in 
TBST overnight at 4 oC. After several washes with TBST, the 
membrane was incubated with the relevant horseradish 
peroxidase-linked secondary antibody diluted 1: 3000, followed 
by three washes. The membrane was then processed with the 
Pierce ECL Plus Western Blotting Substrate (Thermo Fisher 
Scientific, Waltham, MA) and the enhanced chemolumines­
cence signal acquired.

Flow Cytometry Analysis of Apoptosis. An Annexin V 
fluorescein isothiocyanate (FITC)∕propidium iodide (PI) 
apoptosis detection kit (BD Biosciences, San Jose, CA) was 
used. Briefly, following treatment with compound 1 or 2 (10 
μM for 12 h), SK-HEP-1 cells (l × 105 cells/sample) were 
collected in cold PBS, centrifuged at 1500g at 4 oC for 5 min, 
washed twice with PBS, and resuspended in 1× binding buffer 
(100 μL∕sampIe). Each sample was stained with Annexin V- 
FITC (5 μL) and PI (5 μL) in the dark at 4 oC for 15 min, and 
400 μL 1× binding buffer was added. The cells were 
immediately analyzed with a flow cytometer equipped with 
the BD FACSDiva software (BD Biosciences). Annexin V- 
FITC-∕PI- cells were identified as viable, Annexin V-FITC+∕ 
PI- cells were identified as early apoptotic, Annexin V-FITC+∕ 
PI+ cells were identified as late apoptotic, and Annexin V- 
FITC-∕PI+ cells were identified as necrotic. 3 Fluorescence 
spectroscopy of compounds 1 and 2, as a control, was 
performed on a Hitachi F-7000 fluorescence spectrometer. No 
emission peaks were observed for acetonitrile solutions of 
either compound.

Reactive Oxygen Species (ROS) Assay. A fluorometric 
intracellular ROS kit (Sigma-Aldrich, product number 
MAK143) was used to test for the production of ROS during 
the treatment of SK-HEP-1 cells with 1 or 2. Briefly, cells were 
grown overnight in the medium in a 96-weIl plate at 4000 
cells/well. The master reaction mix was prepared according to 
the protocol provided by Sigma-Aldrich, and 100 μL of this 
mixture was added to each well. The cells were incubated for 1 
h and then treated with the relevant concentrations of 1 or 2 
with PBS buffer. After further incubation for 14 h, the 
fluorescence intensity was measured on a Hitachi F-7000 
fluorescence spectrometer, with an excitation wavelength of 
490 nm and an emission wavelength of 525 nm. Each 
treatment was performed with 16 replicates.

MTT Assay. Cells were grown overnight in the medium in a 
96-weIl plate at 3000 cells/well. The growth medium was 
replaced by the relevant concentrations of 1 or 2, and the cells 
were incubated for 48 h. An MTT solution was prepared as a 
1: 3 ratio of 5 mg/mL MTT and growth medium, and 100 μL 
of this MTT solution was added to each well. The cells were 
then incubated for a further 2—4 h, after which 200 μL of 
DMSO was added to each well. Once all precipitates had 
dissolved, absorbance was measured at 570 nm. Each 
treatment was performed with 8 replicates.
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O Supporting Information
The Supporting Information is available free of charge on the 
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