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THREE-DIMENSIONAL HUMAN NEURAL STEM CELL CULTURE 

FOR HIGH-THROUGHPUT ASSESSMENT OF DEVELOPMENTAL 

NEUROTOXICITY 

PRANAV JOSHI 

ABSTRACT 

Only a few hundred of compounds, among tens of thousands of commercially available 

compounds, have been tested for developmental neurotoxicity (DNT) due to the limitations 

of current guidelines for DNT which are based entirely on in vivo experiments. In vivo 

studies are highly expensive and time-consuming, which often do not correlate to human 

outcomes. There is a key gap in our ability to predict in vivo outcomes accurately and 

robustly using in vitro assays. This is particularly the case for predicting the toxicity of 

chemicals on the developing human brains. Conventional in vitro assays are typically 

performed in two-dimensional (2D) cell culture systems and use cytotoxicity assays that 

do not provide the information on mechanisms of toxicity. High-content imaging (HCI) 

assays performed on three-dimensional (3D) cell cultures can provide better understanding 

of mechanisms of toxicity needed to predict DNT in humans. However, current 3D cell 

culture systems lack the throughput required for screening DNT against a large number of 

chemicals. Thus, there is a need for cost-effective, high-throughput, alternative in vitro test 

methods based on mechanisms of toxicity.  

In this study, we first developed a miniaturized, 3D human NSC culture with 

ReNcell VM on the micropillar chip platform and established a high-throughput promoter-

reporter assay system using recombinant lentiviruses on human NSC spheroids to assess 



viii 
 

cell viability, self-renewal, and differentiation. Next, we identified major ion channels and 

ABC-transporters expressed in ReNcell VM via RNA-seq analysis and established high-

throughput ion channel and ABC-transporter assays in 3D-cultured ReNcell VM on the 

384-pillar plate. In the third step, we established high-content imaging (HCI) assays in 3D-

cultured ReNcell VM with multiple assays which were tested with four model compounds. 

Finally, we established a high-throughput metabolism-mediated neurotoxicity testing 

system by combining 3D-cultured ReNcell VM on the 384PillarPlate and HepaRG 

spheroids in a ULA 384-well plate. Alternative in vitro systems for high-throughput 

neurotoxicity assessment established in this study will enable researchers to screen a library 

of test compounds with high confidence in terms of predictability of adverse reactions in 

vivo from those compounds.  
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CHAPTER I 

INTRODUCTION 

1.1. Current issues on developmental neurotoxicity 

The disabilities associated with the functioning of developing nervous system is 

known as neurodevelopmental disorders which include disabilities such as attention 

deficit/hyperactivity disorders (ADHD), autism, cerebral palsy, intellectual disability 

(mental retardation), and learning disabilities.  One out of six children in US are diagnosed 

with a neurodevelopmental disorder and ADHD alone affects 14% of the children born in 

US each year. Neurodevelopmental disorders can occur due to combination of genetic, 

biological, psychosocial and environmental risk factors [1].  Out of all the cases of 

neurodevelopmental disorders, genetic factors contribute to nearly 30-40% of it whereas 

rest of the cases are more likely attributed to environmental risk factors [2].  

Environmental risk factors such as use of alcohol, tobacco, and opioids during pregnancy, 

premature birth, and prenatal or childhood exposure to environmental toxicants can all 

contribute towards the above mentioned disorders [1]. According to US National Research 

Council, 3% of developmental disabilities are directly related to environmental exposure 

of toxic chemicals while another 25 % is the result of interaction between other 

environmental factors and genetic susceptibility of individuals [3].  
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 Developmental neurotoxicity (DNT) can be defined as any adverse effect in the 

structure or function of the nervous system resulting from chemical exposure during the 

prenatal or gestational period [4], [5]. The developing nervous system is known to be more 

vulnerable to chemical exposure as compared to the adult nervous system due to the 

complexity of human brain development consisting of various processes such as 

proliferation, differentiation, migration, cell to cell communication that must take place in 

a highly controlled time frame. The blood-brain barrier (BBB) which protects the adult 

brain is also not completely developed until about 6 months after birth. Moreover, the 

susceptibility of developing brain to environmental chemicals is further augmented by their 

increased exposures, absorption rates, and decreased ability to detoxify as compared to 

fully developed adult brain [3], [6].  

Despite the potential vulnerability of developing brain to the environmental 

toxicants, there is only a small amount of data available for developmental neurotoxicity. 

Out of more than 200 chemicals known to be neurotoxic, only 5 of these have been 

documented to be the cause of developmental neurotoxicity. However, it is highly likely 

that many of these chemicals are capable of causing developmental neurotoxicity [2], [7]. 

This lack of documentation is mainly because there is no a priori requirement for chemicals 

to be tested for DNT effects prior to their registration and use under the present regulation.  

DNT study is not a mandatory requirement in the USA for pesticides, biocides, 

pharmaceuticals or industrial chemicals and is carried out only when relevant observations 

are made in other studies based on structure activity relationships or evidence of 

neurotoxicity in standard in vivo adult, developmental or reproduction studies either after 

acute exposure, or sub-acute and sub-chronic or chronic exposure [6]–[9].  
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 Identification of chemicals for their potential to cause DNT is primarily based on 

the guidelines from organization for economic co-operation and development (OECD), 

OECD TG 426 (an update to the US EPA DNT guideline (OPPTS 8706300, EPA 712-C-

98-239)) and OECD TG 443 guidelines. These guidelines require neurobehavioral 

determination of cognitive, sensory and motor functions accompanied by morphometric 

and histopathological evaluation of the brain and are entirely based on animal studies 

performed mainly in rat. Since, the in vivo studies are extremely resource intensive in terms 

of the number of animals used, time and overall cost [10], these guidelines have been used 

only for a limited number of chemicals (approximately 120) [11], [12]. In addition, in vivo 

studies are unsuitable for screening large numbers of chemicals, due to the use of large 

number of animals and long duration of tests [7]. 

Identification of chemical’s toxic effect on developing brain is an important first 

step towards prevention of neurodevelopmental disorders thereby restricting the use and 

limiting the exposure of those chemicals [3]. Therefore, an alternative approach to identify 

DNT chemicals and further guide chemical prioritization for testing in a rapid and cost-

effective manner needs to be developed [6].  

1.2. Conventional methods of developmental neurotoxicity assessment: In vivo vs. In 

vitro models 

 Current guidelines for DNT based on in vivo studies are ethically questionable, 

time-consuming, and highly expensive. Testing one compound requires about 700 rodents, 

lasts up to 12 months and costs up to one million USD [10], [11], [13]. However, even with 

the time-consuming and expensive in vivo studies, the predictability of human 

neurotoxicity is still questionable due to the lack of pharmaco-/toxicodynamics relation of 

the developing brain of rodents with humans [14], [15] and concern over species-specific 
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differences in the extrapolation of human neurotoxicity [7], [16], [17]. Studies have shown 

that toxicity testing in rodents are predictive of human toxicity in less than only half of the 

cases [18] and mouse brains differ in the temporal aspects of neurogenesis from human 

brains [19], which is important for developmental neurotoxicity (DNT) [9]. 

Reliable, fast and efficient screening and assessment tools are needed to improve the 

identification, and evaluation of chemicals with the potential to induce DNT in shorter 

time, cost-efficient manner, and with human-specific toxicity pathways [7], [20]. This 

requires a major shift from the current OECD guidelines with animal experiments towards 

new in vitro approaches to identify the mechanism of toxicity [9], [21], [22]. Replacing the 

OECD guidelines requires an in vitro test battery of DNT responses to provide data 

predicting the adverse effect of chemicals on human health [23], [24]. Prevention of 

neurodevelopmental disorders has been severely restricted due to the lack of in vitro testing 

of environmental pollutants and toxic chemicals. Moreover, mimicking the complexity of 

the central nervous system (CNS) and modeling of functional disturbances manifested by 

neurotoxicity in vitro pose a serious challenge for in vitro assessment of neurotoxicity [12]. 

Therefore, efforts have been made to overcome these hurdles to some extent by developing 

in vitro neurotoxicity testing system in platforms such as 96-well plates [25], cellular 

microarrays [26], and microfluidic devices [27].  

1.2.1. Well Plate Assays  

Several in vitro models for neurotoxicity testing have been developed in 96-well 

plates due to the ease of use and flexibility to test different culture conditions. Neurotoxic 

effect of various toxicants including heavy metals [28], insecticides [29], nanoparticles 

[30], and therapeutic drugs [25]  and their differences among human and mouse models 
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have been widely investigated using the 96-well plate platform [30], [31]. For example, 

Chang et al. reported that human NSCs treated with MeHg underwent caspase-dependent 

apoptosis, autophagy, and inhibition of differentiation [32]. Similarly, Zychowicz et al. 

demonstrated the effect of MeHg on viability, proliferation, and differentiation of NSCs, 

cultured on various bio-functionalized surfaces coated with fibronectin, vitronectin, and 

poly-L-lysine (PLL) in 96t-well plate. All three endpoints were shown to be significantly 

inhibited in cells attached to PLL, whereas cells attached to fibronectin and vitronectin 

were shown to be less sensitive to MeHg toxicity at certain doses [28]. Likewise, the effects 

of insecticides and nanoparticles on human NSCs have also been well studied using this 

platform. For example, Lee et al. evaluated the mechanisms involved in neurotoxic effects 

of chlorpyrifos (CPF) on human neural progenitor cells (hNPCs) for the first time. The 

authors demonstrated the effect of oxidative stress in CPF-induced cell death via activation 

of NF-kB mediated p53 pathway [29]. Liu et al. investigated the neurotoxic effects of silver 

nanoparticles (Ag-NPs) in human and rat embryonic NSCs by evaluating endpoints such 

as viability, proliferation, apoptosis, and oxidative stress. Similar neurotoxic effect of Ag-

NPs in both human and rat NSCs in dose and exposure-time dependent manner were 

observed [30].  

1.2.2. Microfluidic Assays 

A microfluidic device contains an array of microchannels for cell culture with 

multiple inlets and outlets providing access to desired reagents (Figure 1.1). Microfluidic 

devices enable miniaturized biochemical assays (also known as “lab on a chip”) with the 

advantage of culturing cells under various flow conditions in a single chip. This platform 

has been implemented  for various applications such as in vitro drug toxicity testing [33], 
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anticancer drug screening [34], and intracellular signaling studies [35], [36]. It has also 

been commonly used to study the self-renewal [37], differentiation [38]–[40], and 

migration [41], [42]. For example, Lee et al. [38] demonstrated the utility of microfluidics 

technology for the study of neurite outgrowth and axonal guidance of neural cells derived 

from human embryonic stem cells (hESCs). H9 hESCs were differentiated into neuronal 

lineages and the migration of axons into the microchannels were studied via pre-neural cell 

marker fluorescent staining such as TUJ1 (neuron-specific class III beta-tubulin) [38].   

 

Figure 1.1. Microfluidic device. (i) Top view of a bilayer microfluidic chip fabricated with 

PDMS on top of a glass slide. Several inlet and outlet channels provide parallel access to cell 

suspension, growth medium and other reagents. (ii) Overview of the cell culture process in the 

microfluidic device: (Step 1) Bi-layer chip is fabricated with PDMS containing several 

channels on top of a glass slide. (Step 2) A mixture of cells and hydrogel precursor is fed from 

the cell inlet channel. (Step 3) A growth medium is supplied from the medium inlet channel 

for cell culture. (Farrel, K., Joshi, P., Roth, A., Kothapalli, C.R., Lee, M.Y., High-throughput 

screening of toxic chemicals on neural stem cells, Human Stem Cell Toxicology, Royal Society of 

Chemistry, 31-63 (2016)) 

 

Medium inlet

Medium outlet

Cell inlet
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Similarly, an advanced microfluidic platform capable of generating stable 

concentration gradient was used for studying the migration of NSCs within stable linear 

cytokine stromal cell-derived factor 1α (C-X-C motif chemokine 12, or CXCL12) gradients 

[41]. Other work, which includes the capability of brain-derived neurotrophic factor 

(BDNF) to direct chemotaxis of NSCs towards CXCL12 without affecting the migration 

speed, has been demonstrated. This effect was mediated through the CXCL12/ C-X-C 

chemokine receptor type 4 (CXCR4) system [41]. In addition, Yang et al. reported a 

microfluidic array platform providing in vivo-like 3D niche conditions for the study of NSC 

self-renewal and differentiation. Four combinations of ECM proteins were used to develop 

the in vivo-like 3D niche environment under low oxygen (i.e., hypoxic) culture conditions, 

and its effects on hNSC self-renewal and differentiation were investigated [37]. The 

application of microfluidic devices have been demonstrated in wide areas of neuroscience 

research such as the study of neurite response to growth factor gradient [43], testing of 

neurotoxic effect of amyloid beta proteins [27], neurotoxicity testing in co-culture of 

neurons and astrocytes [44]. However, these studies were all based on the use of primary 

neurons and studies implementing NSCs are limited only to the investigation of stem cell 

differentiation and migration. Issues such as air bubble trapping and clogging of 

microchannels from cells also pose limitations for high-throughput application of this 

platform. For these reasons, limited work specific to developmental neurotoxicity has been 

applied using this platform.  

1.2.3. Cellular Microarrays  

Cellular microarray technology is a miniaturized platform consisting of 3D cell 

spots encapsulated in a hydrogel matrix on glass slides or plastic chips (Figure 1.2). The 
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microarray platforms have already found their niche in various applications such as in vitro 

testing of drug candidates and their metabolites for metabolism-induced toxicity [45], [46], 

screening of anticancer drug efficacy [47], and stem cell differentiation and toxicity 

[48][49]. For example, Fernandes et al. demonstrated the utility of 3D cell-based 

microarray platform for the study of embryonic stem cell differentiation with the 

combination of retinoic acid and fibroblast growth factor-4 (FGF-4) [48]. However, it is 

only recently that this platform was applied for neurotoxicity testing with hNSCs [26][49]. 

(A)  

(B)  
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Figure 1.2. (A) Cellular microarrays on a functionalized glass slide. A mixture of cells 

and hydrogel precursor is printed on a glass slide coated with poly(styrene-co-maleic anh

ydride) (PS-MA). Various polymer coating is done on top of the PS-MA coating to attach 

different hydrogels to the glass slide. Cells are encapsulated in a hydrogel matrix, forming 

3D structures after gelation (which occurs via various mechanisms). (B) Cellular microa

rrays on a micropillar/microwell chip platform. Cells mixed with hydrogel are printed 

on top of the micropillar chip. After gelation, the micropillar chip containing cells encaps

ulated in hydrogel is sandwiched with a complementary microwell chip containing growt

h media or other reagents. (Farrel, K., Joshi, P., Roth, A., Kothapalli, C.R., Lee, M.Y., High-thr

oughput screening of toxic chemicals on neural stem cells, Human Stem Cell Toxicology, Royal S

ociety of Chemistry, 31-63 (2016)) 

 

Apart from the above mentioned platforms, toxicity testing in NSCs have been performed 

using various other culture platforms such as cell-culture flasks [50] and petri dishes [51]. 

The convenience of culturing NSCs and the flexibility to modify the culture conditions m

ay drive researchers to use simple cell culture flasks and dishes. For example, Demir and 

Laywell [50] used culture flasks for testing neurotoxicity of azidothymidine (AZT), an an

ti-HIV drug, in which neural colony-forming cell (NCFC) assay was performed along wit

h drug treatment. Long-term administration of AZT was found to be associated with pertu

rbations in both proliferative capacity and neurogenesis [50]. In another example, Bai et a

l. investigated the neurotoxic effects of ketamine in hNSCs and neurons on petri dishes an

d demonstrated that short term exposure of ketamine increased hNSC proliferation, where

as long-term exposure caused apoptosis in neurons without affecting hNSCs [51].  

 

1.3.Representative cell-based assays for neurotoxicity assessment 

Evaluation of DNT in an in vitro system possess challenge due to the dependency 

of adverse effect of toxicants on not only the dosage and duration of exposure but also on 

the developmental stage of the brain at the time of exposure [6], [52]. In addition, 
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mimicking the complex physiological organization of the nervous system with network of 

several cell types in an in vitro system is a major hurdle in implementing in vitro cell-based 

assay systems for DNT testing [53]. For any in vitro model to be highly predictive, it should 

recapitulate the basic processes involved in CNS development such as proliferation, 

migration, differentiation, and synaptogenesis. Therefore, endpoints such as cell viability, 

apoptosis, proliferation, differentiation, migration, and neurite outgrowth are commonly 

used to evaluate neurotoxicity [25], [28], [30], [54].   

 Current in vitro methods for neurotoxicity testing have been developed 

utilizing various cellular models such as immortalized cell lines, neural stem cells (NSCs), 

and primary cells from both rodent and human species. Primary cells are limited in their 

ability to proliferate and differentiate, and transformed cell lines derived from tumors such 

as PC12 cell lines (rat pheochromocytoma) and B50 cell lines (rat neuroblastoma) do not 

represent the native neural cells [55]. In addition, species-specific differences exist between 

rodents and humans in terms of sensitivity to toxins [25], [30]. Therefore, human NSCs are 

highly desirable for developing a predictive model system for developmental neurotoxicity 

assay due to its ability to self-renew and to differentiate into neurons, astrocytes and 

oligodendrocytes [8], [26], [56]. Various assays have been developed to evaluate 

neurotoxicity in NSCs which are summarized in Table 1. 
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Table 1. Conventional in vitro assays used for neurotoxicity screening in NSCs. 

Application Assays/Endpoints Reference 

Generation and assessment of 

neurons for drug screening 

Differentiation, cell viability, 

mitochondria, nuclei tracking 
[57] 

HTS of neurotoxic compound Cell viability, cellular morphology [25] 

Evaluate the influence of cell-ECM 

interaction on response to toxic 

compounds 

Viability, proliferation, differentiation [28] 

Investigating MeHg-induced 

cytotoxicity pathway 

Proliferation, western blot analysis for 

apoptosis, autophagy, differentiation 

marker 

[32] 

Investigating the mechanism 

involved in CPF-induced 

neurotoxicity in NSC 

Viability, cytotoxicity, intracellular 

ROS and malondialdehyde (MDA) 

measurement, nuclear morphology, 

western blot analysis 

[29] 

Determining the toxic effects of Ag-

NPs in NSCs 

Viability, cytotoxicity, proliferation, 

apoptosis, oxidative stress 
[30] 

HTS of chemical-induced toxicity Proliferation, apoptosis, viability [31] 

Quantification of neurite growth in 

high-density cultures for toxicity 

detection 

Viability, algorithm for neurite 

identification, western blot analysis 
[54] 

HTS of neurotoxic compounds 

Viability, proliferation, western blot 

analysis of marker proteins, 

immunofluorescence assay 

[26] 

Evaluate the neurotoxic effect of 

AZT drug 

NCFC assay, neurosphere assay, 

proliferation, neurogenesis, SAβGal+ 

labeling 

[50] 

Abbreviations: extracellular matrix (ECM), methylmercury (MeHg), chlorpyrifos (CPF), r

eactive oxygen species (ROS), silver nanoparticles (Ag-NP), azidothymidine (AZT), neur

al colony-forming cell (NCFC), senescence-associated β-galactosidase (SAβGal) (Farrel, 

K., Joshi, P., Roth, A., Kothapalli, C.R., Lee, M.Y., High-throughput screening of toxic chemicals 

on neural stem cells, Human Stem Cell Toxicology, Royal Society of Chemistry, 31-63 (2016)) 

 

1.4. Neural stem cells (NSCs) and 3D culture 

Human in vitro neuronal cultures derived from NSCs have been intensively studied 

over the past decade as they are self-renewable, and can be differentiated into several 

neuronal and glial cell types [6], [56]. NSCs have been identified in several regions of the 
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human brain in all stages of development [58]. A substantial population of NSCs are present 

in ventricular and subventricular zones (VZ and SVZ, respectively). Studies in rat 

embryogenesis CNS models have shown that NSCs compose most of the neural crest and 

around 50% of the spinal neural tube [59]. NSCs have the capability to self-renew and 

differentiate into neurons, astrocytes, and oligodendrocytes and therefore play a critical 

role in the developing embryonic nervous system where the ability for self-renewal is 

important for normal functions, such as learning, memory, and response to injuries. NSCs 

expand and maintain an undifferentiated phenotype in the presence of epidermal growth 

factor (EGF) and/or basic fibroblast growth factor (bFGF), and differentiate into neuronal 

and glial lineages upon the removal of these growth factors [60]. The proliferation, 

differentiation, and migration of NSCs are crucial in human brain development; 

disturbance of which has been linked to neurodevelopmental disorders [8], [61]. Therefore, 

NSCs can be used to model neurodegeneration and are considered as the most suitable cells 

for DNT testing [62], [63]. 

NSCs derived from induced pluripotent stem cells (iPSCs), the NIH approved H9 

(WA09) hESC line, or cells derived from human fetal brain tissue immortalized via 

retroviral transduction with the myc oncogene (e.g., ReNcell VM, ReNcell CX) are 

commercially available from vendors including Life Technologies, Alstem, and EMD 

Millipore. In addition, NSCs are also directly harvested from either embryonic or adult 

mammalian brain tissue using established protocols [64]. Due to the efficient harvesting 

and expansion of these cells, they have been successfully implemented as models for in 

vitro DNT tests [65]. Moreover, NSCs are highly sensitive to neurotoxicants, as compared 

to other neural cell types [53], [66].  
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It is now widely accepted that cells cultured in conventional two-dimensional (2D) 

systems differ from three-dimensionally (3D) cultured cells in terms of their morphology, 

physiology, protein/gene expression, and metabolism [67]–[71]. Stem cells are known to 

lose phenotypic properties in 2D monolayer culture due to the lack of intercellular contacts 

and interactions thereby restricting the formation of in-vivo like tissue structures [67], [68], 

[70], [71]. In addition, important biological cues provided to cells by the ECM in response 

to external stimuli are also missing in 2D grown cells.  

On the other hand, 3D cell culture have been known to maintain normal cell 

function such as differentiation, migration, and proliferation [72], [73] and have further 

been shown to recapitulate in vitro brain tissue physiology and microenvironmental 

conditions [6], [74], [75]. In addition, complex tissue structures can be developed in 

controlled conditions with the combination of 3D cell culture technology and the 

knowledge on stem cell differentiation. Efforts have been made towards developing 3D 

cell culture platform capable of maintaining specific in vivo-like biochemical and 

morphological features of human cells [13]. For example, Pasca et al. generated a 

laminated cerebral cortex with spheroid culture of pluripotent stem cells demonstrating 

electrophysiologically mature neurons from various cortical layers [76]. Likewise, Kim et 

al. developed a model system for characterization of Alzhiemer’s disease using 3D culture 

of neural stem cells [77]. Therefore, a 3D cellular model with NSCs enhances the 

understanding of the molecular and cellular mechanisms underlying DNT/NT and serves 

as a powerful tool for assessing the impact of chemical exposure on developing brain [13], 

[78].  
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1.5. High-throughput, high-content imaging (HCI) platforms for neurotoxicity 

assessment  

There is an urgent need to develop in vitro neurotoxicity testing system which are high-

throughput, economically-feasible, and highly-predictive [8]. However, due to the 

challenge in mimicking the complexity of the CNS, there have been limited development 

in terms of high-throughput in vitro assays for screening toxic chemicals for their effect on 

developing nervous system. Development of high-throughput screening (HTS) assays 

utilizing hNSCs will therefore prove to be beneficial in assessing the chemical toxicity on 

stem cells and their differentiated lineages, providing a predictive model system for 

evaluating neurotoxicity [26]. Several in vitro cell-based assays have been developed with 

NSCs to study the toxic effect of various neurotoxicants; however, only a few of them have 

been able to demonstrate HTS capability for neurotoxicity screening. For example, Malik 

et al. developed a 96-well in vitro cell-based assay where 2000 compounds including drugs, 

natural products, and bioactive compounds were tested on human NSCs and rat cortical 

mixed cells with results highlighting species-specific differences in the toxicity of the 

compounds [25]. Nearly a hundred of these compounds showed significant toxicity to 

hNSCs without affecting rat cortical mixed cells. This HTS assay was built on an in vitro 

model developed by Efthymiou et al. to culture human NSCs and differentiate into neurons 

and astrocytes for HTS application in drug discovery [57].  

Conventional high-throughput cell-based assays implemented for toxicity 

screening in NSCs evaluates a single endpoint involved in decreased cellular health or 

death. This approach often lacks the ability to provide predictive information of the NSC 

responses in vivo against toxic chemicals and drug candidates, which is critical to reduce 
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the high attrition rate in downstream drug discovery pipelines and determine the toxicity 

of environmental toxicants [67], [79]. Modeling the functional disturbances manifested by 

neurotoxicity in vitro possess a big hurdle in developing a highly-predictive assay for 

neurotoxicity assessment [12]. Based on the knowledge that impairment in the 

development of nervous system is the combined effect of disturbances/impairment in 

various neuro-developmental processes/endpoints [13], [80], the screening of large number 

of neurotoxic chemicals require characterization of those chemicals based on their 

biological activity i.e. the ability to trigger an impairment of specific end points.  This can 

be achieved by investigating the effects of chemicals at the molecular and cellular level 

implementing high-content imaging (HCI) assays with particular emphasis on studying the 

mechanisms of neurotoxicity [81]–[85].  

HCI assays are high-throughput, automated, cell-based assays that provide 

information on multiple properties of individual cells simultaneously by utilizing several 

fluorescent dyes thereby enabling a systematic and accurate evaluation of neurotoxicants 

[86], [87]. HCI assays are capable of analyzing numerous cellular functions and features 

such as cell growth, cell viability/cytotoxicity, nuclear morphology, apoptosis/necrosis, 

mitochondrial membrane potential, oxidative stress, intracellular calcium levels, and 

glutathione levels at the individual cell level which enables us to understand the mechanism 

of action of drug candidate and toxic chemicals [88], [89]. Various fluorescent 

probes/reagents are used to label different parameters for example Hoechst 33342 (ex. 361 

nm/em. 497 nm) for nuclear morphology and cell count, calcein AM (ex. 495 nm/em. 515 

nm) and propidium iodide (PI) (ex. 535 nm/em. 620 nm) for cell viability, tetramethyl 

rhodamine methyl ester (TMRM, ex. 545 nm/em. 575 nm) for mitochondrial membrane 
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potential (MMP), fluo-4 AM (ex. 490 nm/em. 520 nm) for intracellular calcium levels, YO-

PRO-1 (ex. 490 nm/em. 510 nm) for apoptosis, monochlorobimane (mBCl, ex. 380 nm/em. 

460 nm) for glutathione levels, and H2DCFDA (ex. 495 nm/em. 527 nm) for oxidative 

stress damage [88], [90]–[93]. The fluorescent dyes/reagents target specific organelles or 

function and does not interfere with global physiological conditions of cells.  

HCI assays have been implemented on various cellular models such as primary 

cells [94], immortalized cell lines [88], and stem cells [95] for investigating the toxic 

effects of various drug compounds, nanoparticles and environmental chemicals in human 

organs. Although there has been some progress in developing HCI assays to assess 

neurotoxicity, most of the assays are based on differentiated neuronal cell models [96]–

[98] and does not correlate well with potential in vivo neurotoxicity mechanisms. 

Furthermore, conventional 3D cell culture systems are not amenable to high-throughput 

platform mainly due to difficulty in handling large volume of viscous solutions and 

acquisition of 3D-cultured cell images. For example, dispensing the mixture of cell 

suspension and viscous hydrogel and changing growth media over time without affecting 

the consistency and reproducibility in 96-well plate is a challenging task [70]. Moreover, 

the cost of reagents and compounds in conventional 3D culture system limits the number 

of assays that can be performed for HCI [99]. Image acquisition and processing of 3D cells 

on polymer scaffolds pose significant challenges due to growth of cells in multiple focal 

plane. This issue is addressed to some extent with confocal microscopy followed by 3D 

image reconstruction, however, with the compromise in throughput. In addition, some 

polymer scaffolds are inadequate for imaging due to their opaque nature. Few HCI assays, 
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therefore, have been implemented on 3D culture system due to the above-mentioned 

limitations of 3D cell culture systems for HTS.   

HTS of large libraries of toxic chemicals for prediction of neurotoxicity requires 

miniaturization as it offers several advantages such as reduced sample volume, decrease in 

cost, and an increase in efficiency over contemporary macro-scale cell culture technology 

such as 3D NSC cultures in 96-well plates [46], [47]. Cellular microarrays based on a 

micropillar chip and a complementary microwell chip have recently been developed for 

high-throughput cell based assays such as 3D culture of mammalian cells, enzymatic 

reactions, viral infection, and compound screening [46], [47]. Cellular microarrays on the 

chip offers several advantages in HTS of compound libraries assays as they require 

extremely small amount of cells, natural and synthetic hydrogels or extracellular matrices 

(ECMs), growth factors, compounds, and reagents for 3D cell cultures [46], [47]. 

Reduction in assay volume and reagent consumption further facilitates the use of expensive 

hNSCs, thereby leading to enhanced predictability of in vivo responses towards toxicants 

[100]. Moreover, the image acquisition period is shorter and the process in itself becomes 

simpler due to the thin depth of focus position of samples, further leading to increased 

signal-to-noise ratios [101]. Varieties of cell culture conditions and individual 

drugs/mixtures of drugs in combinations can be tested, making it well suited for early stage 

HTS of compound libraries. In addition, miniaturized 3D cell culture on the chip can 

provide a microenvironment that simulates in vivo ECM conditions, and thus help maintain 

biochemical functions and morphological features similar to in vivo human tissues [102]. 

Therefore, high-throughput microarray platforms with HCI can be an attractive tool for 

studying the NSC response against large library of neurotoxicants.  



18 
 

The goal of our research is to develop 3D bioprinting chip platforms for HTS of 

compounds including drug candidates and environmental toxicants for mechanistic 

toxicology and chemical metabolism with organotypic cells. Specifically, to overcome the 

limitations of existing HTS technologies for neurotoxicity and enhance predictability of 

compound toxicity in vivo, we proposed to construct physiologically-relevant cellular 

microarrays in 3D using human NSC cultures and elucidate mechanistic toxicity by using 

HCI techniques, all in a high-throughput fashion. 

The specific aims of this project are to: 

1) Develop three-dimensionally (3D) cultured, neural stem cell (NSC) microarrays 

for high-throughput assessment of developmental neurotoxicity.  

2) Establish high-throughput ion channel and ABC-transporter assays on 3D-

cultured NSCs for neurotoxicity assessment.  

3) Establish high-content imaging (HCI) assays on 3D NSC microarrays to 

investigate mechanistic profiles of toxicity by compounds and their metabolites.   

 

1. Develop three-dimensionally (3D) cultured, neural stem cell (NSC) microarrays 

for high-throughput developmental neurotoxicity  

We aim to establish 3D culture of NSC with extracellular matrices and synthetic 

hydrogels on the chip platform. High-throughput assessment of key variables critical 

for growth and induced differentiation of NSCs will be performed on the chip using 

recombinant lentiviruses with fluorescent NSC biomarkers. 

2. Establish high-throughput ion channel and transporter assays on 3D-cultured 

NSCs for the neurotoxicity assessment. 
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We aim to establish high-throughput ion channel and transporter assays on 3D NSC 

microarrays to evaluate whether model compounds interact with cell surface receptors 

such as ion channels and transporters on NSCs. 

3. Establish high-content imaging (HCI) assays on 3D-cultured NSCs for the 

assessment of mechanistic neurotoxicity by the test compounds and their 

metabolites. 

We aim to establish HCI assays on 3D NSC microarrays to evaluate toxic effects of 

various compounds and their metabolites within NSCs. For this, we will first establish 

high-content imaging (HCI) assays in 3D-cultured NSC microarrays for the assessment 

of mechanistic neurotoxicity which will be combined with human liver cell spheroids 

expressing cytochrome P450 enzyme to demonstrate metabolism-mediated 

neurotoxicity.  
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2.1. Introduction 

Exposure to toxic compounds during early fetal development has been linked to various 

neurodevelopmental disorders such as attention deficit disorders, autism, cognitive and 

behavioral alterations, and mental retardation [3], [13], [103]. Conventional animal models 

for developmental neurotoxicity (DNT) testing are expensive, time-consuming low-
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throughput, subject to genetic and age-related variability, and often poorly correlate with 

human toxicity [104]. Species-specific differences exist in the microarchitecture of 

mammalian brains, and rodents, for example, are predictive of human neurotoxicity in only 

half the cases [9]. In addition, a substantial number of drug candidates have failed in 

clinical trials even after successful animal studies. Therefore, various alternatives have 

been pursued, including embryonic stem cells [105]–[107], neural stem/progenitor cells 

(NSCs) [28], [108], [109], primary neuronal cells [97], [110], [111], and immortalized 

neuronal cell lines [96], [112], [113] to reduce the use of animal models and provide 

predictive developmental neurotoxicity. The focus of these alternatives is the development 

of in vitro assay platforms for mechanism-based, target-specific endpoints to evaluate the 

human health risk of various chemicals and environmental toxicants [8], [16], [61].  

 NSCs have been identified in several regions of the human brain in all stages of 

developmental [58], and are capable of self-renewal and differentiation into neurons, 

astrocytes, and oligodendrocytes. NSC proliferation, differentiation and migration are 

crucial in human brain development; disturbance of which has been linked to 

neurodevelopmental disorders [8], [61]. Therefore, development of an in vitro assay system 

for assessing self-renewal and differentiation of NSCs is essential not only to identify 

compounds that can cause neurodevelopmental disorders, but also to restrict the use of 

those chemicals [3], [114], [115]. 

 High-throughput assessment of NSC viability in an in vitro system, characterization 

of its self-renewal and differentiation into specific lineages, and real-time monitoring with 

quantification of the differentiation process are critical to implement in vitro cultures of 

NSCs for applications in tissue engineering, disease modeling, and drug development. NSC 
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differentiation is typically determined by monitoring changes in cell morphology and 

assessing neural and glial lineage-specific biomarkers via often nonspecific 

immunofluorescence assays. In addition, measuring the efficiency of NSC differentiation 

under different culture conditions and as a function of time is tedious, inherently low-

throughput, and involves destruction of analyzed samples [116].  

 An in vitro model system for DNT testing should be capable of mimicking in vivo 

human neurodevelopment. Assays carried out in two dimensional (2D) cell cultures are 

limited in terms of cell-cell and cell-matrix interactions that are crucial for cell-signaling 

and gap-junction connection formation, as well as for promoting proliferation and 

differentiation [8]. To address these limitations, we have developed a miniaturized three-

dimensional (3D) NSC microarray platform for high-throughput assessment of cell 

viability. This platform exploits a promoter-reporter assay system that generates stable 

mCherry- and EGFP-expressing NSCs for high-throughput characterization of self-

renewal and differentiation. Using this high-throughput, high-content in vitro platform we 

demonstrated high-throughput assessment of cell viability, self-renewal and lineage-

specific differentiation of 3D NSC culture in spontaneous and directed differentiation 

methods, thereby eliminating the need to use low-throughput immunofluorescence staining 

to monitor the developmental stages of NSCs. 

2.2. Materials and Method 

2.2.1. Human NSC cultures 

 Human NSCs (ReNcell VM; EMD Millipore, Burlington, MA, USA) were 

passaged in a complete ReNcell medium (ReNcell NSC maintenance medium, EMD 

Millipore) supplemented with 20 ng/mL epidermal growth factor (EGF, EMD Millipore), 
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20 ng/mL basic fibroblast growth factor (bFGF, EMD Millipore), and 1% (v/v) 

penicillin/streptomycin (Thermo Fisher, Waltham, MA, USA), on laminin-coated, tissue 

culture-treated, T-75 flasks in a humidified 5% CO2 incubator at 37 °C (Heracell 150i, 

Thermo Fisher). The complete medium was replaced every two days with a freshly 

prepared complete medium until the cells reached 90% confluency, after which they were 

detached with accutase (EMD Millipore), suspended in ReNcell NSC maintenance 

medium, and centrifuged. The resulting cell pellets were resuspended in the complete 

medium, cell concentration determined, and 1.5  106 cells were seeded on freshly prepared 

laminin-coated T-75 flasks.  

2.2.2. Preparation of 3D-cultured ReNcell microarrays 

 All chemicals and reagents were from Sigma-Aldrich (St. Louis, MO, USA), unless 

specified otherwise. For 3D microarray culture of ReNcell VM, micropillar chips (Medical 

& Bio Device (MBD) Korea, Suwon, Republic of Korea) were coated with 0.01% (w/v) 

poly(maleic anhydride alt-1-octadecene) (PMA-OD) and dried. A mixture of poly-L-lysine 

(PLL) and barium chloride (BaCl2) was prepared at a final concentration of 0.0033% (w/v) 

PLL and 16.66 mM BaCl2 in sterile deionized water and printed on top of the PMA-OD 

coated micropillar chips at a volume of 60 nL, with an S+ Microarrayer (Advanced 

Technology Inc. (ATI), Incheon, Republic of Korea) and dried. In parallel, a mixture of 

PLL and CaCl2 was prepared in an analogous manner at a final concentration of 0.0033% 

(w/v) PLL and 25 mM CaCl2 in sterile deionized water and printed on top of the PMA-OD 

coated micropillar chips. The complete medium was printed into microwell chips (MBD 

Korea) at a volume of 950 nL and stored in a humidified chamber for later use.  

 ReNcells were encapsulated in either alginate alone or in a mixture of alginate and 
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growth factor reduced (GFR) Matrigel® (Corning, Corning, NY, USA). For the former, 

ReNcell suspension was mixed with low-viscosity alginate, prepared from sodium alginate 

powder reconstituted in sterile deionized water, to achieve a final cell concentration of 

6106 cells/mL in 0.75% (w/v) alginate. Similarly, for encapsulation in a mixture of 

alginate and GFR Matrigel, cell suspension was mixed with alginate and GFR Matrigel to 

achieve a final cell concentration of 6106 cells/mL in a mixture of 0.75% (w/v) alginate 

and 1 mg/mL GFR Matrigel and stored on ice until printing. The cell-hydrogel mixtures 

were then printed on top of dried PLL/BaCl2 or PLL/CaCl2 layers (Figure 2.1), while 

maintaining the slide deck (loaded with the micropillar chips) at 7 °C. After incubating the 

chips on the slide deck for 2 mins for gelation, the micropillar chips with cell spots were 

sandwiched with the microwell chips containing 950 nL of the complete medium. The 

sandwiched micropillar and microwell chips were then stored in a humidified petri dish 

and incubated at 37 °C in the 5% CO2 incubator.   

 

 



25 
 

Figure 2.1. Schematic diagram of 3D NSC microarray culture. (A) ReNcell VM in a 

mixture of alginate and GFR Matrigel was printed on the functionalized micropillar chips, 

and the complete ReNcell VM medium at a volume of 950 nL was printed into the 

microwell chips. After hydrogel gelation, the micropillar chip with ReNcell VM spots was 

sandwiched with the microwell chip containing the complete medium for 3D cell culture. 

(B) Picture of the injection-molded micropillar and the microwell chips (25 mm x 75 mm) 

used in this study is shown with respect to microscopic glass slide. 

 

2.2.3. Cell viability assay 

 Viability and spheroid formation of ReNcell in 3D microarray culture were assessed 

using Live/Dead® viability/cytotoxicity kit for mammalian cells (ThermoFisher). Briefly, 

3D-cultured ReNcells on the micropillar chips were separated from the microwell chips 

and rinsed twice with a saline solution containing 140 mM NaCl and 20 mM CaCl2. The 

micropillar chips were then stained with 0.5 µM calcein AM and 1 µM ethidium 

homodimer-1 at room temperature for an hour, rinsed twice with the saline solution, and 

dried in the dark for at least 3 hours to ensure complete drying of the micropillar chips. 

Dried micropillar chips were then scanned with S+ scanner (ATI), an automated 

epifluorescence microscope developed for rapid image acquisition at 15 frames per second 

(FPS). Green and red fluorescent cell images were obtained at 4X magnification with the 

Olympus UPLFLN 4X (numerical aperture (NA) 0.13, f-number 26.5, and depth of field 

(DOF) ~ 32.3 µm) (Olympus, Tokyo, Japan) and a green filter (XF404 from Omega 

Optical) and a red filter (TxRed-4040C from Semrock). The images were batch-processed 

using ImageJ (NIH) to extract fluorescence intensity from the entire cell spots on the 

micropillar chips. The fluorescence intensities were plotted using SigmaPlot software ver. 

12 (Systat Software Inc., San Jose, CA, USA). 
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2.2.4. Construction of dual reporter lentiviral vectors for the reporter gene assay 

 To construct lentiviral vectors having a dual reporter system, the promoter regions 

of the human GFAP gene (ref, PMID: 19457099) and the synapsin I gene (ref, PMID: 

19318117) were amplified using phGFAP-fLuc (Addgene 40589) and pLV-hSyn-RFP 

(Addgene 22909) plasmids, respectively. The MBP (chr18-:72859280-72857953) and 

SOX2 promoters (chr3+:182911368-182912675) were amplified from the genomic DNA 

of ReNcell VM. The PCR products of each promoter and EGFP gene were assembled into 

pLV-mCherry (Addgene 36084) via in-fusion assembly of multiple fragments (ref, PMID: 

17907578), resulting in constructing pLV-mCherry-hGFAP-EGFP, pLV-mCherry-hSyn-

EGFP, pLV-mCherry-hMBP-EGFP, and pLV-mCherry-hSOX2-EGFP, respectively.  

2.2.5. Preparation of recombinant lentiviruses 

 Recombinant lentiviruses were prepared using 2nd generation packaging systems, 

which require a single packaging plasmid (psPAX2, Addgene 12260), an envelope plasmid 

(pMD2.G, Addgene 12259), and our transfer vectors including pLV-mCherry-hGFAP-

EGFP, pLV-mCherry-hSyn-EGFP, pLV-mCherry-hMBP-EGFP, or pLV-mCherry-hSOX2-

EGFP. Briefly, HEK293T cells (ATCC® CRL-3216™, Manassas, VA, USA) were grown 

in T25 flasks in DMEM supplemented with 10% (v/v) FBS and 1% (v/v) 

penicillin/streptomycin until 50-60% confluence was achieved. Two viral packaging 

plasmids (pVSV-G for envelope and psPAX2 for packaging) and one transfer plasmid 

carrying a gene for each specific biomarker (pLV-mCherry-hSOX2-EGFP for self-renewal, 

pLV-mCherry-hSyn-EGFP for neurons, pLV-mCherry-hGFAP-EGFP for astrocytes, and 

pLV-mCherry-hMBP-EGFP for oligodendrocytes) were mixed and added to HEK293T 

cells and incubated at 37 °C in the 5% CO2 incubator. After 24 hours, the supernatant was 
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collected from T25 flasks and fresh DMEM was added to the cells. The supernatant was 

collected again after 3 days, pooled with the supernatant collected at day 1 and stored at -

80 °C until further use. The transfer plasmid contains dual promoters (monomer cherry 

protein, mCherry and enhanced green fluorescent protein, EGFP), which enables ReNcell 

transduced with the lentiviruses to express mCherry under the control of CMV promoter, 

while EGFP is expressed only when the NSC-specific biomarkers are turned on. These 

recombinant viruses can be used to monitor self-renewal and differentiation of 3D-cultured 

ReNcell in high throughput on the micropillar/microwell chip platform.  

2.2.6. Characterization of ReNcells cultured in 2D  

 ReNcells were seeded on laminin-coated tissue culture-treated T25 flasks at 7105 

cells/flask and incubated at 37 °C in the 5% CO2 incubator. Once the cells reached 50-60% 

confluency, lentiviruses containing the reporter for SOX2, GFAP, synapsin1 or MBP were 

diluted in the complete medium without antibiotics and added to their respective flasks for 

infection. After overnight incubation, the lentivirus-containing medium was replaced with 

a freshly prepared complete medium containing antibiotics. Lentivirus-infected cells were 

grown until they reached 90% confluence, after which the cells were detached and 

suspended in the complete medium. For 2D culture in 96-well plates, tissue-culture treated 

flat-bottom 96-well plates were coated with laminin and lentivirus-infected cells were 

seeded at 5,000 cells/well with 24 replicates per cell type. After two days of culture in the 

complete medium, differentiation was induced by replacing the complete medium with a 

differentiation medium (i.e., ReNcell maintenance medium without EGF and bFGF). 

Differentiation was monitored over 21 days, with medium change every two days.  

For 2D culture on the microarray chip platform, the micropillar chips were coated 
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with 75 µg/mL poly-L-lysine (PLL) for 2 hours at 37 °C, and then with 40 µg/mL laminin 

for 4 hours at 37 °C. Both lentivirus-infected and non-infected ReNcells in the complete 

ReNcell medium was printed directly into the microwell chips at 6105 cells/mL and 

sandwiched with the PLL and laminin-coated micropillar chips. The sandwiched chips with 

the microwell chip on the top and the micropillar chip at the bottom were incubated 

overnight at 37 °C in the 5% CO2 incubator, after which the spent medium was replaced 

with a fresh medium. The viability of non-infected ReNcell VM after two weeks of culture 

on the chip platform was assessed from live/dead staining with calcein AM and ethidium 

homodimer-1. For the assessment of differentiation in lentivirus-infected ReNcells, growth 

factors (EGF and bFGF) were removed after two days of incubation to induce NSC 

differentiation. Images were obtained over a period of 10 days to monitor cell 

differentiation with medium change every two days.   

2.2.7. Immunofluorescence assays for comparison of ReNcell differentiation 

 Non-infected ReNcells were seeded on laminin-coated 96-well plates at 5,000 

cells/well and incubated at 37 °C in the 5% CO2 incubator. The cells were grown for 10 

days in the complete medium and in the differentiation medium (without EGF and bFGF), 

with medium change every two days. The cells were rinsed briefly in 1 sterile PBS and 

fixed with 4% paraformaldehyde for 10 minutes at 37 °C. After fixation, cells were washed 

using 1 Tri-buffered saline (TBS) and blocked with 3% bovine serum albumin (BSA) in 

1 TBS for 1 hour at 37 °C. The cells were then incubated overnight with their respective 

primary antibodies for specific biomarkers; SOX2, MBP, GFAP, and synapsin1 (Santa Cruz 

biotechnology, Dallas, TX, USA), which were diluted at 1:200 in the blocking solution. 

After overnight incubation with primary antibodies, fluorophore-conjugated secondary 
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antibodies – Alexa Fluor®488 anti-mouse and AlexaFluor® anti-goat Superclonal™ 

(Carlsbad, CA, Invitrogen) – were diluted at 1:200 in the blocking solution and added to 

the cells for 1 hour at room temperature. This was followed by 4′,6-diamidino-2 

phenylindole (DAPI; Sigma-Aldrich) staining for 10 minutes at room temperature and 

image acquisition with an inverted fluorescence microscope (Axio Vert. A1, Zeiss, 

Germany).  

2.2.8. Characterization of ReNcells cultured in 3D 

 For 3D cell culture, cell suspensions of lentivirus-infected ReNcells were 

encapsulated in a mixture of 0.75% (w/v) alginate and 1 mg/mL GFR Matrigel and printed 

on top of PLL/CaCl2 coated micropillar chips. After gelation, the pillar chips were 

sandwiched with the microwell chips containing 950 nL of the complete medium and 

incubated at 37 °C in the 5% CO2 incubator. ReNcells were cultured on the 

micropillar/microwell chip platform for four days, after which differentiation was induced 

by replacing the complete medium in the microwell chips with the differentiation medium. 

The cells were incubated in the differentiation medium for 7 days, with medium change 

every two days, and ReNcell differentiation was captured using a Zeiss Axio Vert. A1 

inverted fluorescence microscope.  

2.2.9. Differentiation of lentivirus-infected ReNcells in 2D and 3D cultures with 

compounds 

 To induce ReNcell differentiation in 2D and 3D cultures with additives, three 

differentiation media were prepared in the complete medium by supplementing with 30 

ng/mL triiodothyronine (T3) for oligodendrocytes [117]–[121], 1% N2 supplement for 
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astrocytes [122]–[125], and 0.5 mM 3-iso-butyl-1-methylxanthine (IBMX) for neurons 

[126]–[128]. For differentiation in 2D culture on the chip, lentivirus-infected ReNcells in 

the complete medium were printed in the microwell chips at 3106 cells/mL and 

sandwiched with PLL and laminin-coated micropillar chips. The sandwiched chips were 

incubated overnight at 37 °C in the 5% CO2 incubator after which the spent medium was 

replaced with a fresh medium. After 4 days of incubation, monolayers of ReNcells on the 

micropillar chip were exposed to the differentiation medium individually for 7 days, with 

medium change every two days. For differentiation in 3D culture on the chip, lentivirus-

infected ReNcells were encapsulated in a mixture of 0.75% (w/v) alginate and 1 mg/mL 

GFR Matrigel and printed on PLL/CaCl2 coated micropillar chips. After gelation, the 

micropillar chips were sandwiched with the microwell chips containing the complete 

medium and incubated at 37 °C in the 5% CO2 incubator. The cells were incubated for 4 

days in the complete medium, with medium change every two days before inducing 

differentiation. Images of ReNcells in 2D and 3D cultures were obtained at two time-points 

– 4 days before and 7 days after differentiation with the S+ scanner. 

2.2.10. Statistical analysis 

 All the values were expressed as mean ± SD. For each test condition, n = 126 

biological replicates per pillar chip per experiment were studied, and three individual 

experiments were performed. Statistical analysis was performed with GraphPad Prism 5 

(La Jolla, CA) and plotted in SigmaPlot 12 (San Jose, CA). For comparison between 

various culture conditions, statistical significance (p < 0.01) between various culture 

conditions was measured using a Student’s t-test.  
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2.3. Results 

2.3.1. Optimization of 3D ReNcell cultures on the micropillar/microwell chip platform 

 ReNcell VM was chosen due to its ability to self-renew and differentiate into 

neurons and glial cells, and for its commercial availability as a human dopaminergic 

neuroprogenitor cell line. These attributes make ReNcell a useful NSC model, although the 

v-myc oncogene immortalization by retroviral transduction may impact neural cell 

differentiation marker expression [129], [130]. Live/dead staining with calcein AM and 

ethidium homodimer-1 was performed to assess ReNcell viability and spheroid formation 

on the micropillar chips. The use of alginate hydrogel alone for 3D ReNcell cultures has 

previously been shown to induce lag-phase of growth [26]. ReNcells encapsulated in 

0.75 % (w/v) alginate with 16.66 mM BaCl2 as a crosslinker starting from day 1 of 

incubation showed a time-dependent decrease in cell viability indicating some degree of 

cytotoxicity (Figure 2.2A). On the other hand, the use of relatively nontoxic CaCl2 when 

compared to BaCl2 as a crosslinker resulted in significantly improved cell viability and 

increased 3D spheroid formation of ReNcells in alginate (Figure 2.2A). However, there 

was still an initial lag phase of cell growth in alginate-alone conditions even with CaCl2 

(Figure 2.2B). This problem was diminished by using a mixture of alginate and GFR 

Matrigel. Combining GFR Matrigel with alginate significantly increased cell viability, cell 

growth, and 3D spheroid formation over time on the micropillar chip, compared to the 

alginate-alone conditions. Since alginate derived from brown seaweed is inert and not 

degraded by cellular proteases, the mixture of alginate and GFR Matrigel provided strong 

mechanical support and cell-extracellular matrix (cell-ECM) interactions for long-term 

culture of ReNcell VM in 3D without any adverse effect on differentiation over two months 
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(data not shown). Adding 1 mg/mL GFR Matrigel in 0.75% (w/v) alginate greatly enhanced 

ReNcell VM viability on the micropillar chip over the 9-day cultures and supported 

formation of ReNcell VM spheroids compared to that within 0.75% (w/v) alginate alone. 

GFR Matrigel alone was not used as a matrix, as it was difficult to maintain sufficiently 

low temperatures in the micro-solenoid valves and tubes, and thus prevent unwanted 

gelation. 
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Figure 2.2. Optimization of 3D ReNcell culture conditions on the microarray chip 

platform. (A) Representative images of ReNcell VM encapsulated in 0.75% (w/v) alginate 

alone with BaCl2, 0.75% (w/v) alginate alone with CaCl2, and 0.75% (w/v) alginate and 1 

mg/mL GFR Matrigel® with CaCl2 on the micropillar chip. Cell viability was determined 

over a period of 9 days by live/dead staining with calcein AM and ethidium homodimer-1. 

The scale bar is 150 µm. Green dots from calcein AM staining represent live cells whereas 

red dots from ethidium homodimer-1 staining represent dead cells. (B) Fluorescence 

intensity extracted from ReNcell VM encapsulated in 0.75% (w/v) alginate alone with 

BaCl2 (filled triangle), 0.75% (w/v) alginate alone with CaCl2 (filled circle), and 0.75% 

(w/v) alginate and 1 mg/mL GFR Matrigel with CaCl2 (filled square). Statistically 

significant fluorescence difference between alginate alone with CaCl2 and alginate-GFR 

Matrigel with CaCl2 conditions is indicated by *** for P < 0.001. The difference between 

the alginate-alone conditions with BaCl2 and CaCl2 was indicated by ### for P < 0.001. 

 

2.3.2. Assessment of self-renewal and differentiation via the promoter-reporter assay 

in 2D and 3D cultures 

Recombinant lentiviruses were constructed carrying dual promoters, a mCherry gene for 

measuring viral gene transduction efficiency and an EGFP gene for determining the 

expression levels of four NSC-specific biomarkers, including SOX2 for self-renewal, MBP 

for oligodendrocytes, GFAP for astrocytes, and synapsin1 for neurons (Figure 2.3). 

Various multiplicities of infection (MOIs) were tested to identify the optimum 

concentrations of each lentivirus by FACS analysis (data not shown). While removing 

growth factors in the culture medium, real-time monitoring of self-renewal and 

differentiation of ReNcell VM was performed with the promoter-reporter assay system in 

96-well plates over a 21-day period (Figure 2.4). Increased expression of MBP, GFAP, and 

synapsin1 was observed over this period with continued expression of SOX2. 

Differentiation of non-infected ReNcell VM into neurons, astrocytes, and oligodendrocytes 

was assessed in parallel, in laminin-coated 96-well plates over 10 days by using 

immunofluorescence assays (Figure 2.5). Expression of all three lineages was observed 
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over the 10 days period with increased expression of GFAP and synapsin1.  

 

Figure 2.3. Construction of lentiviral vectors carrying promoter-reporter assay 

system for high-throughput assessment of ReNcell VM differentiation. The CMV 

promoter-driven mCherry gene is constitutively expressed in ReNcell VM, and EGFP gene 

are expressed under control of cell-type specific promoters. Four NSC-specific biomarkers, 

including SOX2, synapsin1, glial fibrillary acidic protein (GFAP), and myelin basic protein 

(MBP), were used to evaluate self-renewal, neuron differentiation, astrocyte 

differentiation, and oligodendrocyte differentiation, respectively. (Lentiviruses constructed 

by Dr. Dordick’s group at RPI) 

 

Figure 2.4. Promoter-reporter assay system for monitoring self-renewal and 

differentaition of lentivirus-infected ReNcell monolayers in 96-well plates. Monolayers 

of lentivirus-infected ReNcell VM were seeded in 96-well plates, and differentiation was 

monitored after the removal of growth factors (EGF and bFGF) over a period of 21 days 

through EGFP expression. The scale bar is 50 µm.  
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Figure 2.5. Immunofluorescence assay for monitoring self-renewal and differentaition 

of non-infected ReNcell monolayers in 96-well plates. Monolayers of ReNcell VM were 

seeded in 96-well plates, and the expression levels of lineage-specific markers were 

monitored after removal of growth factors (EGF and bFGF) over a period of 10 days 

through immunofluorescence staining with anti-SOX2, anti-MBP, anti-GFAP, and anti-

synapsin1 antibodies. The scale bar is 50 µm. Blue dots indicate nucleus stained with 

DAPI, green fluorescence indicates the expression of the respective biomarkers. 

 

 Self-renewal and differentiation characteristics of ReNcell VM were further 

investigated in both 2D (Figure 2.6) and 3D (Figure 2.7) cultures on the 

micropillar/microwell chip platform. mCherry expression indicates live ReNcells infected 

with lentiviruses whereas EGFP expression indicates differentiation of ReNcells into 

specific lineages. The cells infected with the SOX2 promoter-reporter lentivirus 

demonstrated both EGFP and mCherry expression before differentiation, whereas the cells 

infected with MBP, GFAP, and synapsin1 promoter-reporter lentiviruses showed only 
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mCherry expression, indicating the self-renewal characteristics of ReNcell VM (Figures 

2.6B and 2.7). EGFP expression in cells infected with MBP, GFAP, and synapsin1 

promoter-reporter lentiviruses was observed only after differentiation. Out of the cell 

population, 36% were differentiated into oligodendrocytes quantified from the EGFP 

expression of MBP marker, 10% into astrocytes measured from GFAP marker expression, 

and 7.5% into neurons measured from synapsin1 marker expression in the 3D culture of 

ReNcell VM.  

 

 

Figure 2.6. ReNcell monolayers cultured in 2D on the micropillar chip before and 

after infection with lentiviruses. (A) 2D-cultured ReNcells on the micropillar chip were 

monitored over time using brightfield and fluorescence microscopes. The cells were 
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stained with calcein AM for determining viability after two weeks of culture on the 

micropillar chip. The scale bar is 200 µm. (B) 2D-cultured ReNcells on the micropillar 

chip were infected with lentiviruses and monitored over time for self-renewal and 

differentiation. The red-colored cells indicate ReNcell VM infected with the lentiviruses. 

The green-colored cells represent ReNcell VM differentiated into respective lineages. The 

scale bar is 100 µm. 

 

Figure 2.7. ReNcell VM cultured in 3D on the micropillar chip after infection with 

lentiviruses for self-renewal and differentiation. Lentivirus-infected ReNcell VM 

encapsulated in a mixture of 0.75% (w/v) alginate and 1 mg/mL GFR Matrigel was printed 

on the micropillar chip. Differentiation was induced by removing the growth factors (EGF 

and bFGF) in the growth medium. Images were obtained before and after differentiation (7 

days) to determine the self-renewal and differentiation capability of ReNcell VM. The red-

colored cells indicate the ReNcell VM infected with the lentiviruses, and the green-colored 

cells indicate ReNcell VM differentiation into respective lineages. The scale bar is 200 µm.   

 

 We further evaluated the robustness and reproducibility of our promoter-reporter 

assay by calculating the Z factor and the coefficient of variation (CV) [131], [132]. The 

calculated Z factors for both self-renewal and differentiation assays were between 0.5 

(SOX2) and 0.8 (MBP), indicating that the promoter-reporter assay is highly robust; a Z 

factor between 0.5 and 1 is considered highly robust. Similarly, CV values were < 20%, 
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showing the reproducibility of the promoter-reporter assay. The CV value for the self-

renewal assay was 17%, whereas it was 13% for MBP.  

2.3.3. Compound-induced differentiation of 3D-cultured ReNcell microarrays with 

the promoter-reporter assay 

 After establishing the promoter-reporter assay for monitoring self-renewal and 

differentiation of ReNcell VM in the absence of growth factors, we assessed the 

differentiation of ReNcell VM in 2D and 3D cultures with compounds well known to direct 

NSCs into specific lineages. As a proof of concept, three compounds including T3, N2 

supplement, and IBMX were used at a concentration that was known to direct NSCs into 

oligodendrocytes, astrocytes, and neurons, respectively. The complete ReNcell medium 

containing growth factors was supplemented with each of these compounds to prepare 

three different growth medium forumulations, which were added to ReNcell VM cultures 

after four days of pre-incubation with complete ReNcell medium. As a result, T3 induced 

differentiation of ReNcells into oligodendrocytes, as evidenced by EGFP expression in 

MBP lentivirus-infected cells (Figure 2.8). Similarly, the growth medium supplemented 

with N2 supplement and IBMX induced differentiation of ReNcells into astrocytes and 

neurons, respectively, which was evidenced by GFAP and synapsin1 expression, 

respectively, in lentivirus-infected cells. As the outcomes were monitored only over a 

period of 7 days after inducing diffferentiation, the level of EGFP expression was not 

particularly high in individual cultures. Nonetheless, the assessment of self-renewal and 

differentiation of ReNcell VM in both 2D and 3D cultures was observed without using cell 

fixation and immunofluorescence staining, thus representing a major advantage of the 

promoter-reporter assay system. 
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Figure 2.8. ReNcell VM cultured in 2D and 3D on the micropillar chip after infection 

with lentiviruses and exposed to compounds for inducing differentiation. Lentivirus-

infected ReNcell VM were cultured in (A) 2D and (B) 3D using the complete medium 

containing the growth factors supplemented with 30 ng/mL T3, 1% (w/v) N2, and 0.5 mM 

IBMX for differentiation into oligodendrocytes, astrocytes, and neurons, respectively. The 

scale bar is 50 µm. (Figure 2.8 generated by Dr. Kyeong-Nam Yu)  

 

2.4. Discussion 

 The goal of this study was to develop an NSC-based in vitro 3D culture system that 

enables high-throughput analysis of viability, growth, self-renewal, and differentiation of 
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human NSCs in real-time, without the need for extensive post-culture sample processing. 

3D on-chip NSC microarrays may serve as useful tools to model and analyze 

neurodegenerative disorders in vitro. The features of microarray bioprinting such as 

automated cell dispensing, miniaturized 3D cell culture, and high-throughput acquisition 

and analysis of cell images make the micropillar/microwell chip platform of interest in 

predictive modeling of DNT and high-throughput screening of compounds. ReNcell VM 

was deemed a useful, albeit imperfect, cellular model, as the cells are capable of self-

renewal and differentiation into neurons and glial cells. This platform could be extended to 

other NSC types such as ReNcell CX®, ENStem-A™, Gibco™ H9-derived NSCs, and 

NSCs derived from human induced pluripotent stem cells (hiPSCs). Moreover, ReNcell 

VM is a commercially available human neural progenitor cell line obtained from the 

midbrain region of a 10-week human fetus and immortalized by retroviral transduction 

with v-myc oncogene [77], [133]–[135].  

 Alginate was selected as a cell-encapsulation hydrogel as it is biologically inert 

[136]. Cell-cell and cell-matrix interactions have been shown to alter cell morphology, 

signaling mechanisms, and cell function [130], [137], [138]. GFR Matrigel was 

supplemented with alginate to promote cell-ECM interactions. For cell-cell interactions, 

which are important for NSC survival and proliferation, relatively high density of ReNcells 

(6106 cells/mL) were printed on the micropillar chip, resulting in 360 cells/micropillar 

within 60 nL of cell spots. The viability of ReNcell VM in alginate hydrogel was first 

assessed with BaCl2 and CaCl2 as crosslinkers. Time-dependent decrease in ReNcell VM 

viability in alginate gel crosslinked with BaCl2 was observed due to well-documented 

cytotoxicity of BaCl2 against NSCs [26], [139]. Similar results were observed from human 
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embryonic stem cells (hESCs) in alginate microcapsules crosslinked with 20 mM BaCl2, 

where the viability decreased from 90% to 5% after 5 days of encapsulation [140]. Unlike 

BaCl2, ReNcells encapsulated in alginate with CaCl2 maintained their viability after 5 days 

of culture and spheroid formation. This lag-phase of ReNcell growth in alginate with CaCl2 

has been previously reported [26], and we resolved this issue by supplementing GFR 

Matrigel in alginate. In addition to cytotoxicity, the selection of divalent cations could 

influence the permeability of nutrients as well as soluble factors such as growth factors and 

compounds [139], [140]. 

 The importance of cell-ECM interactions in maintaining self-renewal and in 

guiding stem cell differentiation has been reported by several groups [141]–[144]. For 

example, the intrinsic scaffold characteristics such as topology, elasticity, stiffness, 

porosity, and pore size are known to play a key role in directing the differentiation of stem 

cells into specific lineages [141], [143], [144]. Laminin is known to influence NSC 

proliferation and differentiation [137], [142], and laminin-rich Matrigel could be highly-

effective in increasing NSC viability, proliferation, and differentiation [142]. Stem cells 

typically remain in contact with basement membrane proteins during early developmental 

stages in vivo. Matrigel, a basement membrane matrix rich in ECM components such as 

laminin, entactin, collagen, and heparin sulfate proteoglycans [145], [146], is widely used 

in 3D culturing of stem cells and neurons to provide cell-ECM interactions [147]. 

Therefore, addition of GFR Matrigel in alginate significantly enhanced cell viability and 

spheroid formation of ReNcell VM in 3D culture on the micropillar/microwell chip 

platform. Due to technical difficulties, such as the maintenance of low temperature in 

micro-solenoid valves and tubes and reproducible cell printing, we supplemented 1 mg/mL 
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GFR Matrigel in 075% alginate, which did not cause temperature-induced premature 

gelation nor increased viscosity, while enhancing cell viability significantly. 

 NSCs are characterized by their ability of self-renewal and differentiation into 

neural lineages. Lentiviral vectors are very effective for delivering transgenes into cultured 

neural progenitor cells due to high tropism levels of neural tissues [148]. Therefore, 

transgenic ReNcells were created with recombinant lentiviruses for high-throughput 

analysis of self-renewal and differentiation in 2D and 3D cultures. Expression of NSC-

specific markers demonstrated that removal of growth factors (EGF and bFGF) in ReNcell 

cultures initiate the differentiation into glial and neuronal lineages. ReNcell VM expressed 

EGFP for SOX2 before differentiation, which is the self-renewal marker of NSCs, whereas 

there was no expression of EGFP for other differentiation markers, indicating the stemness 

characteristics of ReNcell VM in the miniaturized 3D culture on the chip, which is in 

accordance with previous studies [26], [130], [133]. NSCs maintain their pluripotency in 

the presence of EGF and bFGF signaling (supplemented in the growth medium) [149], and 

their removal encourages NSCs to differentiate into various lineages. In our study, removal 

of growth factors induced EGFP expression for MBP, GFAP and synapsin1, indicating the 

early stage differentiation of ReNcell VM into glial and neuronal lineages. MBP expression 

was the highest with 36% differentiation compared to GFAP and synapsin1 at 10% and 

7.5%, respectively, indicating increased differentiation into oligodendrocytes. Similar 

results have been reported in microscale 3D NSC cultures in GFR Matrigel, where Olig2 

expression for oligodendrocytes was significantly higher after differentiation compared to 

3D cultures in collagen gel [40]. The ability of miniaturized 3D cell cultures to accumulate 

soluble factors released from NSCs could be one reason for the increased expression of 
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neural specific markers in NSC cultures after differentiation in Matrigel scaffolds [40].  

 Interestingly, we noted continued expression of SOX2 even after the induction of 

differentiation. Similar to our observations, other groups have reported that SOX2 was 

expressed in both 2D and 3D ReNcell VM cultures even after differentiation [130], or 

SOX2 expression increased in v-myc immortalized cells [129], or SOX2 expression down-

regulated after NSC terminal differentiation as shown by expression of the III tubulin 

marker [150]. These results suggest that pluripotency marker SOX2 continues to be 

expressed until NSCs are terminally differentiated into specific lineages. Considering the 

short period of induced differentiation (7-10 days) in our study, continued expression of 

SOX2 could be justifiable.  

 Finally, we investigated the ability of ReNcell microarrays in 2D and 3D cultures 

to perform compound-induced differentiation into oligodendrocytes, astrocytes, and 

neurons. As a proof-of-concept, we selected one compound per lineage based on extensive 

literature search, i.e., T3 for oligodendrocytes [119], [121], N2 for astrocytes [124], [125], 

and IBMX for neurons [127], [128], which were chosen based on their role in cell survival 

and differentiation to specific lineages, both in vitro and in vivo. For example, Jones et al. 

demonstrated the effect of T3 on proliferation, survival, and differentiation of precursor 

cells to oligodendrocytes in vitro [117]. Similarly, human neural progenitor cells 

differentiated to oligodendrocytes after one week of treatment with 30 nM T3 [118]. 

Moreover, the role of T3 on differentiation, survival and proliferation of oligodendrocytes 

has been validated in various in vivo studies with rat models [119], [121]. N2 supplement 

has been widely used in NSC differentiation [122]–[124]. Shin and Vemuri used N2 to 

optimally formulate the medium for differentiating human NSCs into astrocytes [122]. In 
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a recent study, hiPSCs and hESCs were shown to differentiate into functionally mature 

astrocytes in DMEM/F12 medium supplemented with N2 and B27 [124]. In addition, 

hiPSC-derived neural progenitor cells in 3D cultures readily differentiated into astrocytes 

after exposure to N2 in the growth medium [125]. In other studies, 0.5 mM IBMX was 

shown to induce neuronal differentiation of human mesenchymal stem cells compared to 

other compounds such as dibutyryl-cAMP and retinoic acid [126], and a significant 

increase in the differentiation of rat mesenchymal stem cells into neurons was noted with 

0.3 mM IBMX compared to other inducers such as 2-mercaptoethanol and tretinoin [127]. 

Collectively, T3, N2, and IBMX have been widely used for directed differentiation of NSCs 

into oligodendrocytes, astrocytes, and neurons, which was demonstrated successfully using 

lentivirus-infected ReNcells on the micropillar/microwell chip platform.  

2.5. Conclusions 

 In this chapter, we successfully established miniaturized 3D ReNcell VM culture 

in alginate-Matrigel matrices on the micropillar/microwell chip platform and demonstrated 

high-throughput assessment of lineage-specific differentiation with lentivirus-infected 

ReNcells by using the growth medium without growth factors as well as the complete 

growth medium with differentiation inducers. The recombinant lentiviruses with dual 

promoters – mCherry for constitutive expression to measure viral transduction efficiency 

and EGFP for NSC-specific biomarkers – were highly effective in quantitatively assessing 

ReNcell differentiation into neurons, astrocytes, and oligodendrocytes. The promoter-

reporter assay system developed herein with recombinant lentiviruses to monitor NSC 

developmental stages is straightforward to use to calculate the efficiency of cell 

differentiation and self-renewal by simply comparing green and red fluorescence 
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intensities from ReNcell cultures on the chip, compared to time-consuming 

immunofluorescence assays, which are known to give variable specificities and variable 

responses. In conclusion, our system may be used to predict rapidly and accurately the 

effects of a variety of compounds on NSC differentiation, survival, and proliferation, with 

high reproducibility. 3D ReNcell microarrays also may be combined with high-content 

imaging assays to detect critical changes in NSC morphology, cell function, molecular 

actions on cell surface receptors, and mechanisms of toxicity, thereby ultimately enhancing 

the predictability of DNT in vivo.  

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

 

 

 

 

CHAPTER III 

ESTABLISHMENT OF ION CHANNEL AND ABC-TRANSPORTER ASSAYS 

(MEMBRANE PROTEINS) IN 3D-CULTURED NSC MICROARRAYS FOR 

HIGH-THROUGHPUT NEUROTOXICITY ASSESSMENT 

3.1. Introduction 

Membrane proteins such as ion channels and transporters are involved in cell-cell 

signaling, transporting ions and molecules across the membrane, mediating the immune 

system, and energy transduction [151]. Ion channels are a class of membrane proteins that 

play a vital role in the development and function of human brains [152]–[155]. They 

regulate several physiological processes in human brains including proliferation [156], 

migration [157], and differentiation [152], and are involved in disease pathogenesis as well 

[158], [159]. Nearly 13% of pharmaceutical drugs target ion channels as their primary 

therapeutic targets due to their involvement in a wide range of physiological processes and 

disease pathogenesis [160]–[165]. In addition, several ion channels with relevance to 

specific diseases have been identified for drug discovery [163]. Therefore, identifying 

potent and selective ion channel modulators will undoubtedly contribute towards reducing 

the effect of neurodevelopmental disorders and neurological diseases.  
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Despite the knowledge of ion channels as a major target for drug discovery, the 

progress in this field has been limited due to the lack of availability of HTS platforms for 

the assessment of ion channel activities. Most of ion channel studies still rely on labor 

intensive patch-clamp electrophysiology assays. Although a new generation of automated 

patch clamp systems have been developed to record multiple cells simultaneously, their 

throughput is still limited for applications in HTS of pharmaceutical drugs and industrial 

chemicals [164] [166]. Despite the sophisticated technologies, automated patch-clamp 

technology possesses challenges in terms of reproducibility. The patch-clamp assays 

further require a large number of cells, which is infeasible when it comes to screening 

potential drug candidates in primary cells from patients. In addition, these patch-clamp 

methods are expensive, requiring big capital investment and highly skilled personnel [163], 

[164]. 

Likewise, influx and efflux transporters represent a major class of membrane 

proteins that are located on the cell membrane through which they transport nutrients and 

waste products, and assist in sensing environmental conditions [151][3, 4]. Among them, 

ATP-binding cassette (ABC) transporters characterized by homologous ATP binding 

transport various drugs and drug conjugates out of the cells via energy-dependent 

mechanisms and play an important role in drug disposition in humans [167], [168]. Three 

major drug-transporting ABC-transporters including MDR1, MRP1, and BCRP 

demonstrate broad substrate specificities for a wide range of compounds such as 

endogenous compounds, drugs, and metabolites [167]–[169]. Owing to the important role 

of ABC transporters in absorption and disposition of drugs, pharmaceutical companies 

have been investigating the interactions between drug candidates and ABC-transporters to 
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determine the substrate/inhibitor relationship [170]. Several in vitro studies have shown 

the effect of inhibitors and activators on the modulation of these efflux transporters. In vitro 

transporter assays based on cellular models have been recognized as a low-cost and high-

throughput alternative for in vivo animal studies [171]. One of the most common high-

throughput cellular assays used for the assessment of transporter activity is the 

accumulation assay where the accumulation/uptake of fluorescent dyes is measured in the 

presence or absence of known transporter modulators. Increased fluorescence intensity due 

to increased accumulation of fluorescent substrates is observed in the presence of 

transporter inhibitors whereas decreased accumulation is observed in the presence of 

activators or inducers [171], [172].  

Cell-based assays utilizing bright fluorescent dyes have become a valuable tool to 

rapidly screen and investigate the effect of potential modulators for ion channels as well as 

transporters [163], [164], [173]. Several studies have been performed to identify ion 

channel modulators and transporter inhibitors in various cell lines [173]. However, most of 

these in vitro cell-based studies are performed using cell lines overexpressing ion channels 

and transporters to amplify signal intensity, which often do not represent indigenous neural 

stem cells (NSCs) that are important for the assessment of developmental neurotoxicity. In 

addition, current ion channel and transporter assays have been performed on 2D 

monolayers, which may limit predictivity of the assays [56]. Thus, 3D cell culture 

platforms are necessary to investigate potential developmental neurotoxicity of drug 

candidates and environmental toxicants using high-throughput assays for ion channels and 

transporters. The overarching goal of this study is to establish high-throughput ion channel 

and transporter assays on a 384-pillar plate with 3D-cultured ReNcell VM, an immortalized 



49 
 

human neural stem cell line, which can be used for screening ion channel modulators and 

transporter inhibitors. RNA sequencing data analysis of ReNcell VM is performed to 

identify ion channels and transporters uniquely expressed in ReNcell VM. In addition, 

fluorescence-based ion channel and transporter assays have been established in 3D-

cultured ReNcell VM and validated with model compounds.  

3.2. Materials and Methods 

 

3.2.1. Analysis of RNA-sequencing (RNA-Seq) data 

For RNA-Seq data analysis of ReNcell VM, raw sequencing files were obtained from the 

Sequence Read Archive (SRA) with accession number GSE89623 and converted into 

FASTQ files. Quality control (QC) of the RNA-Seq reads was performed using FastQC. 

The mean quality score for each base pair was verified to be above 28, indicating good 

quality base calls in the library. Reads in the FASTQ files were then processed and aligned 

to the UCSC homo sapiens reference genome (build hg38) using Spliced Transcripts 

Alignment to a Reference (STAR) Version 2.5.2b-0. The aligned BAM files were used to 

find abundance of gene expression using Salmon. Abundance data was normalized using 

edgeR to find count per million transcripts (CPM) for each gene variant, and the genes of 

interest were extracted. Since RNA-Seq can provide alternatively spliced variant of each 

gene, the splice variant with the highest abundance was selected. The expression data was 

visualized using web-based data visualization tool called Clustergrammer (Figure 3.1). 
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Figure 3.1. Workflow of the different steps carried out in RNA-Seq data analysis 

pipeline. Raw data was obtained from SRA with accession number GSE89623 and 

converted into FASTQ files. Quality control (QC) for the RNA-Seq reads was assessed 

using FastQC. The reads in the FASTQ files were aligned to the human genome with 

Spliced Transcripts Alignment to a Reference (STAR). Salmon was applied to assign reads 

to genes, and visualization of gene clusters was implemented with web-based data 

visualization tool called Clustergrammer (Data analysis performed by Rushabh Patel).  

 

3.2.2. NSC culture in 2D 

ReNcell VM (EMD Millipore, Burlington, MA, USA) was passaged in a complete NSC 

medium (ReNcell NSC maintenance medium, EMD Millipore) supplemented with 20 

ng/mL epidermal growth factor (EGF, EMD Millipore), 20 ng/mL basic fibroblast growth 

factor (bFGF, EMD Millipore), and 1% (v/v) penicillin/streptomycin (P/S, Thermo Fisher, 

Waltham, MA, USA) on laminin-coated, tissue culture-treated, T-75 flasks in a humidified 

5% CO2 incubator at 37°C. The complete NSC medium was replaced every 2 d with a 

freshly-prepared complete medium until the cells reached 90% confluency, after which 

they were detached with Accutase™ (EMD Millipore), suspended in ReNcell NSC 

maintenance medium, and centrifuged at 300 g for 4 min. The resulting cell pellet was 
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resuspended in the complete NSC medium to determine cell density using a Moxi cell 

counter (ORFLO Technologies, MXZ001), and then 1.5  106 cells were seeded on freshly 

prepared laminin-coated T-75 flasks.  

3.2.3. NSC culture in 3D on a 384-pillar plate 

For 3D culture of ReNcell VM, 384-pillar plates (MBD, Suwon, South Korea) were coated 

with 0.01% (w/v) poly(maleic anhydride alt-1-octadecene) (PMA-OD) and dried for at-

least 4-6 h at room temperature. A mixture of 0.0033% (w/v) poly-L-lysine (PLL) and 25 

mM calcium chloride (CaCl2) was prepared in sterile deionized water and printed on top 

of the PMA-OD-coated 384-pillar plates at a volume of 2 µL with a microarray spotter (S+ 

Microarrayer, Samsung Electro Mechanics Co. or SEMCO, Suwon, South Korea). NSC 

medium plates were prepared by dispensing the complete NSC medium into 384-well 

plates (Corning) at a volume of 50 µL per 384-well and incubated in the 5% CO2 incubator 

at 37°C for later use. For 3D NSC culture on the 384-pillar plate, the suspension of ReNcell 

VM was mixed with 3% (w/v) low-viscosity alginate (Sigma-Aldrich) and 15 mg/mL 

growth factor reduced (GFR) Geltrex® (ThermoFisher) to achieve a final cell concentration 

of 2106 cells/mL in 0.75% (w/v) alginate and 2.5 mg/mL Geltrex and stored on ice until 

printing. The suspension of ReNcell VM in the alginate-Geltrex mixture was then printed 

on top of dried PLL/CaCl2 spots at a volume of 2 µL (4,000 cells per 384-pillar) while 

maintaining the slide deck at 7°C to prevent water evaporation during printing (Figure 

3.2). The 384-pillar plates were left on the chilling slide deck for 4 min for gelation and 

then sandwiched with the 384-well plates containing 50 µL of the complete NSC medium 

per 384-well. The sandwiched 384-pillar/well plates were incubated in the 5% CO2 

incubator at 37°C.  



52 
 

 

 

Figure 3.2. Schematics and pictures of the 384-pillar plate with NSCs encapsulated in 

hydrogel spots. ReNcell VM was suspended in a mixture of 0.75% (w/v) alginate and 2.5 

mg/mL GFR Geltrex at a final density of 2106 cells/mL and printed at a volume of 2 µL 

on the 384-pillar plate coated with PMA-OD and PLL+CaCl2 layers. 

 

3.2.4. Establishment of ion channel assays in 2D- and 3D-cultured ReNcell VM  

Potassium ion channel assay 

FluxOR™ potassium ion channel assay kit (ThermoFisher) was used to establish high-

throughput potassium ion channel assays in 2D- and 3D-cultured ReNcell VM. For the 2D 

cell assay, ReNcell VM suspension at 10,000 cells/well was seeded in a 96-well plate and 
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incubated in the 5% CO2 incubator at 37°C for 48 h. All the buffer solutions, including the 

loading buffer containing the FluxOR™ reagent, the assay buffer, and the stimulus buffer 

containing thallium sulfate, were prepared according to the manufacturer’s protocol. 

Powerload™ concentrate and water-soluble probenecid were used as directed by the kit 

protocol to enhance the dye solubility and retention. Stock solutions of model compounds, 

such as XE-991 and fluoxetine (both from Sigma-Aldrich), were prepared in DMSO at a 

concentration of 25 mM and 50 mM, respectively. The cells in the 96-well plate were 

treated with the loading buffer for 60 min at room temperature, after which the loading 

buffer was removed and replaced with the assay buffer. Baseline reading was obtained with 

a microtiter plate reader (Synergy H1, BioTek) at 475 nm excitation and 530 nm emission, 

and then the assay buffer was removed. XE-991 and fluoxetine were diluted in the stimulus 

buffer at six different concentrations including a stimulus buffer only control and added to 

the 96-well plate with the cells, which was immediately followed by kinetic reading of the 

fluorescent intensity in the microtiter plate reader.  

For the 3D cell assay, ReNcell VM encapsulated in 0.75% (w/v) alginate and 2.5 

mg/mL GFR Geltrex on the 384-pillar plate was incubated in the complete NSC medium 

for 4 d prior to performing the FluxOR™ assay. The loading buffer was dispensed into a 

384-well plate at 50 µL/well, and 3D-cultured ReNcell VM on the 384-pillar plate was 

incubated with the loading buffer in the 384-well plate for 60 min at room temperature. 

After incubation with the loading buffer, the cells on the 384-pillar plate were washed once 

with a dye-free assay buffer in a 384-well plate before treating with XE-991 and fluoxetine 

in the stimulus buffer. XE-991 and fluoxetine were diluted in the stimulus buffer at six 

dosages including the control and added to a 384-well plate. The cells were incubated with 
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the stimulus buffer contatining the two potassium ion channel blockers, immediately 

followed by kinetic reading of thallium-sensitive fluorescence intensity from the microtiter 

plate reader. 

Store-operated calcium ion channel assay 

 

Fluo-4 Direct calcium channel assay (ThermoFisher) was used to establish high-throughput 

calcium channel assays in ReNcell VM culture. The stock solution of 2X Fluo-4 Direct 

calcium reagent was prepared in 10 mL of Fluo-4 Direct calcium assay buffer according to 

the manufacturer’s protocol. The stock solution of 2-aminoethyldiphenyl borinate (2-APB) 

(Sigma-Aldrich) was prepared in DMSO at a concentration of 100 mM. Fluo-4 Direct 

reagent was diluted in the NSC medium at 1:1 ratio to obtain the final concentration of the 

reagent with 5 mM of Probenecid in the final solution. Six concentrations of 2-APB were 

prepared in Fluo-4 Direct assay buffer. For the 2D cell assay, ReNcell VM suspension was 

seeded at 10,000 cells/well in a 96-well plate and incubated with the complete NSC 

medium in the 5% CO2 incubator at 37°C for 48 h prior to the assay. On the day of the 

assay, the cells in the 96-well plate were loaded with Fluo-4 Direct reagent and incubated 

for 60 min at room temperature, after which the cells were treated with six dosages of 2-

APB. Kinetic reading of fluorescence intensity was performed over a period of 1 h with 10 

min interval with the microtiter plate reader at 494 nm excitation and 516 nm emission.  

For the 3D cell assay, ReNcell VM encapsulated in 0.75% (w/v) alginate and 2.5 

mg/mL GFR Geltrex on the 384-pillar plate was incubated in the complete NSC medium 

in a 384-well plate for 4 d prior to performing the Fluo-4 Direct assay. The stock solution 

of Fluo-4 Direct reagent was diluted in the NSC medium to obtain the final concentration 

and added to a 384-well plate at a volume of 50 µL/well. The cells on the 384-pillar plate 
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were incubated with the reagent in a 384-well plate for 60 min at room temperature, after 

which the cells were exposed to six dosages of 2-APB including a no compound control. 

The changes in fluorescence intensity were monitored with the microtiter plate reader over 

time. 

Measuring ion channel activities in ReNcell VM 

The changes in fluorescence intensity for both the FluxOR potassium ion channel assay 

and the Fluo-4 Direct calcium ion channel assay were obtained from the microtiter plate 

reader. The intensity reading was normalized with control conditions (i.e., stimulus buffer 

without XE-991 and fluoxetine for the potassium ion channel assay and the Fluo-4 Direct 

assay buffer without 2-APB for the calcium ion channel assay) and dose response curves 

were obtained using GraphPad Prism (GraphPad Software, San Diego, CA).   

3.2.5. Establishment of transporter assays in 2D- and 3D-cultured ReNcell VM  

Identification and evaluation of fluorescent substrates and transporter inhibitors 

Inhibitors specific to three major ABC-transporters including verapamil for 

ABCB1/MDR1, MK-571 and probenecid for ABCCs/MRPs, and novobiocin for 

ABCG2/BCRP (all from Sigma-Aldrich) were selected from literature search. Optimum 

concentrations of these inhibitors were determined based on their effect on viability of 2D-

cultured ReNcell VM. Briefly, ReNcell VM was seeded in a laminin-coated, 96-well plate 

at 10,000 cells/well and incubated in the 5% CO2 incubator at 37°C for 48 h. After 48 h of 

incubation, the cells were exposed to six dosages of  the ABC transporter inhibitors such 

as verapamil (0.8 - 200 µM), MK-571 (1.6 - 400 µM), probenecid (0.8 - 200 µM), and 

novobiocin (1.6 - 400 µM) for 2 h, stained with calcein AM at 0.25 µM for 30 min, and 
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then scanned with an automated fluorescent microscope (S+ scanner, SEMCO) to assess 

cell viability. The fluorescent cell images were obtained with a green filter (XF404 from 

Omega Optical), a red filter (TxRed-4040C from Semrock), and a blue filter (DAPI-5060C 

from Semrock) at 4 magnification with the Olympus UPLFLN 4× (numerical aperture 

(NA) 0.13, f-number 26.5, and depth of field (DOF) ~ 32.3 μm) (Olympus, Tokyo, Japan). 

Cell images obtained from the 384-pillar plates were batch-processed using ImageJ (NIH) 

to extract fluorescence intensity from the entire cell spots and were analyzed using 

SigmaPlot software ver. 12 (Systat Software Inc., San Jose, CA, USA). 

Calcein AM and Hoechst 33342 were evaluated for their application as fluorescent 

substrates of the three ABC-transporters. Briefly, ReNcell VM seeded in two 96-well plates 

at 10,000 cells/well and cultured in the 5% CO2 incubator at 37°C for 48 h was exposed to 

six dosages of the ABC-transporter inhibitors, including verapamil (0.8 - 200 µM) for 

MDR1, MK-571 (0.4 - 100 µM) and probenecid (0.8 - 200 µM) for MRP1, and novobiocin 

(1.6 - 400 µM) for BCRP, all prepared in two complete NSC media containing either 0.25 

µM calcein AM or 10 µM Hoechst 33342. After removing old NSC media, inhibitor 

solutions containing either calcein AM or Hoechst 33342 were added to the 96-well plates 

with the cells. The cells were incubated at 37°C for 45 min, after which the inhibitor 

solutions were removed, and the 96-well plates were rinsed with cold D-PBS before 

fluorescence reading. The changes in fluorescence intensity in the 96-well plates were 

determined by the microtiter plate reader at 490 nm excitation and 520 nm emission for 

green fluorescence from calcein AM and at 350 nm excitation and 461 nm emission for 

blue fluorescence from Hoechst 33342. 
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Establishing high-throughput ABC-transporter assays in 3D-cultured ReNcell VM  

To establish high-throughput ABC transporter assays on the 384-pillar plate with 3D-

cultured ReNcell VM, Hoechst 33342 was used to measure activities of MDR1, MRP1, 

and BCRP in the presence and absence of specific inhibitors of the three transporters, 

including verapamil for MDR1, probenecid for MRP1, and novobiocin for BCRP. Briefly, 

ReNcell VM encapsulated in 0.75% (w/v) alginate and 2.5 mg/mL GFR Geltrex on the 

384-pillar plate was sandwiched with the complete NSC medium in a 384-well plate and 

cultured in the 5% CO2 incubator at 37°C for 4 d to ensure 3D spheroid formation. Varying 

concentrations of verapamil (0.8 - 200 µM), probenecid (0.8 - 200 µM), and novobiocin 

(1.6 - 400 µM) were prepared in the complete NSC medium containing 10 µM Hoechst 

33342. 3D-cultured ReNcell VM on the 384-pillar plate was exposed to the inhibitors in 

the 384-well plate for 60 min, after which the inhibitors were removed, and the 384-pillar 

plate was rinsed with a cold saline solution. The changes in blue fluorescence intensity was 

determined by the microtiter plate reader and fluorescent cell images were acquired by the 

S+ scanner. 

Assessment of ABC transporter activities in 3D-cultured ReNcell VM  

  Hoechst 33342 was used to measure the activity of the ABC transporters by 

blocking MDR1, MRP1, and BCRP in 3D-cultured ReNcell VM using verapamil, 

probenecid, and novobiocin. Fluorescence intensity was obtained to determine the 

transporter activity factor (TAF) of the ABC transporters using the following equation: 

TAF = [(Fn – Fcntrl) / Fn]  100 

where, Fn is the fluorescence intensity from inhibitor-treated ReNcell VM and Fcntrl is the 

fluorescence intensity from the untreated control sample. 
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3.3. Results  

 

3.3.1. Expression of ion channels in ReNcell VM 

Since RNA-Seq can provide alternatively spliced variant of each gene, the splice variant 

with the highest abundance was selected. From RNA-Seq analysis, we found that there are 

low expression levels of all voltage-gated sodium ion channels, voltage-gated calcium ion 

channels, and major chloride ion channels in undifferentiated ReNcell VM. Interestingly, 

voltage-gated potassium channels including KCNQ2 (Kv 7.2) and KCND3 (Kv 4.3) were 

expressed at relatively high levels as compared to other voltage-gated and non-voltage 

gated potassium ion channels (Figure 3.3). In addition, store-operated calcium channels 

(SOCCs) showed higher expression levels as compared to other types of calcium ion 

channels (Figure 3.4). Thus, we focused on these potassium and calcium ion channels in 

the follow-up experiments.  

 

Figure 3.3. Gene expression level of major ion channels in ReNcell VM visualized in 

Clustergrammer after processing RNA-Seq data obtained from the RNA-Seq 

workflow. Only few voltage-gated potassium ion channels are well expressed in ReNcell 

VM as compared to other potassium ion channels, sodium ion channels, and calcium ion 

channels. 
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Figure 3.4. Gene expression level of voltage-gated calcium channels (VGCCs) and 

store-operated calcium channels (SOCCs) in ReNcell VM visualized in 

Clustergrammer. Only SOCCs are well expressed in ReNcell VM in comparison to 

VGCCs. 

 

3.3.2. Viability of 3D-cultured NSC on 384-pillar plate 

The ability of self-renewal and differentiation into neurons and glial cells makes ReNcell 

VM human neural progenitor cell line a suitable NSC model for DNT studies (Breier et al. 

2010; Kim et al. 2015). ReNcell VM viability and spheroid formation in 3D culture on the 

384-pillar plate were assessed over time (days 2, 4, 6, and 14) with calcein AM and 

ethidium homodimer-1 staining. In chapter 2, we demonstrated improved viability and 

spheroid formation of ReNcell VM in the mixture of 0.75% (w/v) alginate and 1 mg/mL 

GFR Matrigel on a micropillar chip with 60 nL of cell spots. However, the micropillar chip 

was small (25 mm  75 mm) for easy maneuverability and incompatible with HTS 

instruments used widely. Thus, we have established 3D-cultures of ReNcell VM on a 384-

pillar plate, which contains 16  24 pillar arrays (i.e., 384 pillars) and compatible with 

conventional 384-well plates and HTS instruments. This is the first demonstration of HCI 

VGCCsSOCCs

R
e

N
c

e
ll V

M
 1

R
e

N
c

e
ll V

M
 2



60 
 

assays on 3D-cultured ReNcell VM on the 384-pillar plate for the assessment of DNT. GFR 

Matrigel was replaced with GFR Geltrex because Geltrex is free from lactate 

dehydrogenase-elevating virus (LDEV) and has less lot-to-lot variation in protein 

composition although both Geltrex and Matrigel are purified from basement membrane 

extract of Engelbreth-Holm-Swarm mouse sarcoma cells and have similar compositions. 

High viability of ReNcell VM in a mixture of 0.75% (w/v) alginate and 2.5 mg/mL GFR 

Geltrex was maintained over a period of two weeks as evidenced by the increased size of 

spheroids and the increased fluorescence intensity from the ReNcell VM images at days 2, 

4, 6, and 14 (Figure 3.5). The green-colored dots represent live cells stained with calcein 

AM. The 3D-cultured ReNcell VM on the 384-pillar plate was maintained further over a 

period of two months to establish long-term cell culture on the 384-pillar plate with calcein 

AM staining at day 14, and H&E staining after two months, to monitor changes in cell 

viability and morphology (Figure 3.6). ReNcell VM formed large spheroids of nearly 400 

µm in average diameter and maintained high viability as indicated by the green color in 

Figure 3.5A. In addition, H&E staining after two months revealed compact hydrogel spots 

filled completely with 3D spheroids as seen in Figure 3.6. 
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(A) 

 
 

(B) 

 
Figure 3.5. Viability and growth of 3D-cultured ReNcell VM on the 384-pillar plate. 

(A) ReNcell VM cells mixed with 0.75% (w/v) alginate and 2.5 mg/mL GFR Geltrex, 

printed on the 384-pillar plate, incubated for 14 days, and stained with Live/Dead® 

viability/cytotoxicity kit at day 2, 4, 6, and 14. Green dots represent live cells stained with 

0.25 µM calcein AM. Spheroid formation can be observed from day 6. The scale bar is 400 

µm. (B) Changes in green fluorescence intensity in 3D-cultures of ReNcell VM over 2 

weeks.  
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Figure 3.6. Long-term (2-months) 3D culture of ReNcell VM on the 384-pillar plate. 

(A) Cross-sectional image of a single ReNcell spot (2 μL) after two months of incubation 

on the 384-pillar plate. The cell spot containing ReNcell spheroids was fixed with 4% 

paraformaldehyde and embedded in the paraffin cassette to make slices. To observe 

ReNcell spheroids, the cross-sectioned slice on the glass slide was stained with 

hematoxylin and eosin. Scale bar: 200 µm. (B) The blown-up image of the ReNcell 

spheroids. The red arrows indicate nuclei stained with hematoxylin. The entire hydrogel 

spot was packed with ReNcell spheroids, which remained viable and exhibited normal 3D 

morphology. Scale bar: 20 µm. 

 

3.3.3. Ion channel activities in 2D- and 3D-cultured ReNcell VM 

ReNcell VM-based potassium channel assays were established in 2D and 3D culture using 

FluxOR™ potassium ion channel assay kit containing a membrane-permeable FluxOR™ 

reagent that is transformed into a fluorogenic thallium-sensitive indicator inside the cells. 

When thallium ions are added to the cells by opening potassium ion channels with a 

stimulus buffer, the thallium-sensitive dye binds to thallium ions and generates a green 

fluorescent signal. To measure the activity of the specific voltage-gated potassium channels 

highly expressed in ReNcell VM, we selected inhibitors specifically binding to each 
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channel (i.e., XE-991 for Kv 7.2 channel and fluoxetine for Kv 4.3 channel). Six dosages 

of XE-991 (0.4 - 100 µM) and fluoxetine (0.4 - 100 µM), including a no compound control, 

were prepared in the stimulus buffer to observe inhibition of specific potassium ion channel 

activity. Nearly 30% inhibition of Kv 7.2 channel and 20% inhibition of Kv 4.3 channel 

were observed in both 2D- and 3D-cultured ReNcell VM at the highest dosage of XE-991 

and fluoxetine, respectively (Figure 3.7). 

 

Figure 3.7. Potassium channel activity in 2D- and 3D-cultured ReNcell VM. For the 

2D cell assay, ReNcell VM was seeded in the 96-well plate with 10,000 cells/well and 

incubated for 2 d before performing the assay (n=6). ReNcell VM was encapsulated in a 

mixture of 0.75% (w/v) alginate and 2.5 mg/mL GFR Matrigel and cultured for 4 d for 3D 

cell culture before performing the potassium ion channel assay (n=12). On the day of the 

assay, the cells were loaded with thallium-sensitive FluxOR reagent and treated with XE-

991 (Kv 7.2 channel blocker) and fluoxetine (Kv 4.3 channel blocker) along with thallium 

stimulus to observe the activity of the potassium ion channels.  

 

 

From the RNA-Seq analysis, we also found that voltage-gated calcium ion channels are 

not expressed in ReNcell VM. Therefore, we focused on non-voltage gated calcium ion 

channels such as SOCCs that were shown to be expressed in ReNcell VM (Figure 3.4) and 

selected 2-APB, which is a widely used SOCC modulator. To measure the SOCC activity 

in 3D-cultured ReNcell VM, a cell-based calcium channel assay was established using 

Fluo-4 Direct calcium ion channel assay kit. The kit contains a membrane-permeable Fluo-
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4 Direct reagent, which is hydrolyzed by esterases inside the cells into a calcium-sensitive 

fluorescence reagent. When calcium ions enter inside the cells or are released from 

endoplasmic reticulum (ER) due to SOCC activity, green fluorescence is observed. The 

cells were loaded with Fluo-4 Direct reagent for 1 h, after which the cells were exposed to 

six dosages (0.4 – 100 µM) of 2-APB including a no compound control, and the 

fluorescence intensity reading was obtained. The highest activation of SOCC was observed 

at 6.25 µM from both 2D- and 3D-cultured ReNcell VM (Figure 3.8). Inhibition of the 

SOCC activity was observed beyond that concentration (i.e., 25 - 100 µM), which is 

correlated well with literature [174], [175].  

 

 

Figure 3.8. Store-operated calcium channel (SOCC) activity in 2D- and 3D-cultured 

ReNcell VM. For the 2D cell assay, ReNcell VM was seeded in the 96-well plate with 

10,000 cells/well and incubated for 2 d before performing the assay (n=6). For the 3D cell 

assay, ReNcell VM was encapsulated in a mixture of 0.75% (w/v) alginate and 2.5 mg/mL 

GFR Matrigel and cultured for 4 d before performing the calcium channel assay (n=12). 

Both cells were loaded with Fluo-4 Direct reagent and treated with 2-APB (SOCC 

modulator) to observe the changes in the activity of calcium channels over time. The 2-

APB exhibited biphasic behavior by activating SOCCs at lower concentrations (1.56 - 6.25 

µM) and inhibiting the channels at higher concentrations (25 -100 µM), which is well 

correlated with the mechanism of 2-APB action. 
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3.3.4. ABC transporter activities in ReNcell VM  

 The concentrations of transporter inhibitors which are nontoxic to ReNcell VM were 

selected to accurately measure transporter activity. Verapamil at 200 µM and MK-571 

above (Figure 3.9). Calcein AM has been widely known as a fluorescent substrate for 

MDR and MRP transporters, but the inhibition of MDR1 and MRP1 transporters in 

ReNcell VM with verapamil and probenecid, did not lead to increase in green fluorescence. 

On the other hand, Hoechst 33342 widely used as a fluorescence substrate for BCRP and 

MDR1 transporters, was found to be a useful substrate for MRP1 transporter as well as 

indicated by the increase in fluorescence with probenecid (Figure 3.10). We further found 

that MK-571 did not selectively inhibit the MRP transporter for both fluorescent substrates, 

calcein AM and Hoechst 33342.   
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Figure 3.9. Basal toxicity of ReNcell VM with the transporter inhibitors. ReNcell VM 

seeded in the 96-well plate was treated with various concentrations of verapamil, MK-571, 

probenecid, and novobiocin and stained with 0.25 µM calcein AM to determine the non-

cytotoxic ranges of the inhibitors for accurate assessment of transporter activity (n = 6). 

 

 

Figure 3.10. Hoechst 33342 used to determine MRP1 transporter inhibition with 

probenecid. ReNcell VM seeded in the 96-well plate was treated with 12.5 - 200 µM of 

probenecid and 10 µM of Hoechst 33342 for 30 min and rinsed with ice cold D-PBS, 

followed by fluorescence intensity reading from the microtiter plate reader (n=6). Increase 

in blue fluorescence intensity indicated that there is an accumulation of Hoechst 33342 in 

ReNcell VM due to the inhibition of MRP1 transporter by probenecid.   

 

 Therefore, we selected verapamil, probenecid, and novobiocin as selective inhibitors 

of MDR1, MRP1, and BCRP to determine the transporter activity in 3D-cultured ReNcell 

VM. Blocking of these transporters with the inhibitors could result in accumulation of 

Hoechst 33342, the fluorescent transporter substrate, inside the cells, leading to an increase 

in blue fluorescence intensity with increasing concentrations of the inhibitors (Figure 

3.11). Thus, transporter activity was determined based on the increase in blue fluorescence 
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intensity of inhibitor-treated ReNcell VM at varying concentrations of the inhibitors. The 

TAF of ABC transporters in ReNcell VM was determined at the highest concentration of 

the inhibitors (i.e., 200 µM verapamil, 200 µM probenecid, and 400 µM novobiocin). 

Relatively high TAFs (30% and 22%) were observed for MDR1 and MRP1 as compared 

to BCRP, demonstrating that MDR1 and MRP1 transporter  activities are increased in 3D-

cultured ReNcell VM (Figure 3.12). Interestingly, there was significant difference between 

2D- and 3D-cultured ReNcell VM in terms of MDR1 activity. The TAF of MRP1 was high 

(30% and 22%) for both 2D- and 3D-cultured ReNcell VM, which was well correlated with 

the result of RNA-Seq analysis where high expression of MRP1 transporter was observed 

as compared to the expression level of MDR1 and BCRP transporters (Figure 3.13). 

 

(A)  (B) 

 

Figure 3.11. Inhibition of MDR1, MRP1, and BCRP transporters in (A) 2D- and (B) 

3D-cultured ReNcell VM with varying concentrations of specific inhibitors. ReNcell 

VM in both 2D (n=6) and 3D culture (n=12) were exposed to six concentrations of 

verapamil, probenecid, and novovbiocin for the inhibition of MDR1, MRP1, and BCRP 

transporters with 10 µM of Hoechst 33342, the fluorescent transporter substrate.  
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(A)       (B) 

 

Figure 3.12. Average TAF of MDR1, MRP1, and BCRP transporters in (A) 2D- and 

(B) 3D-cultured ReNcell VM. The accumulation of Hoechst 33342 in ReNcell VM was 

determined using the highest concentration of verapamil (200 µM), probenecid (200 µM), 

and novobiocin (400 µM), respectively. Unlike the other transporters, there might be 

MDR1 overexpressed in 3D-cultured ReNcell VM. 

 

 

Figure 3.13. Gene expression levels of major ABC transporters in ReNcell VM 

visualized in Clustergrammer after processing RNA-Seq data. Among the three 

transporters tested, only MRP1 was expressed higly as compared to the expression level of 

MDR1 and BCRP, which is consistent with what we discovered in Figure 3.10A. 
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3.4. Discussion 

  Ion channels and ABC-transporters have emerged as attractive drug targets in 

modern drug discovery [167], [176]–[179]. In this study, we established high-throughput 

fluorescent assays for the assessment of ion channel and transporter activities in 3D-

cultured ReNcell VM on a 384-pillar plate. We implemented RNA-Seq analysis to identify 

gene expression levels of ion channels and transporters in ReNcell VM. RNA-Seq enables 

the discovery, quantification, and profiling of RNAs, thereby providing information on the 

expression level of each gene in a cell. The expression level of mRNA in a cell is indicative 

of the potential expression levels of proteins in the cell. Therefore, depending on the 

relative gene expression levels of major ion channels and ABC-transporters from RNA-

Seq, we were able to select specific inhibitors/blockers as test compounds to measure the 

activity of ion channels and transporters in ReNcell VM and establish high-throughput, 3D 

NSC-based, ion channel and efflux transporter assays. 

The minimal expression of voltage-gated ion channels and major efflux transporters in 

ReNcell VM observed from RNA-Seq was consistent with literature [180]–[185] where 

minimal expression of functional channels such as voltage-gated sodium and calcium 

channels or receptors in progenitor cells from the nervous system has been reported when 

grown under proliferative conditions. This can be attributed to the fact that proliferation 

and functional expression of ion channels or receptors may not occur at the same time 

[180]. This may be the reason why voltage-gated sodium channels are not expressed in 

embryonic human neural progenitor cells and neonatal neural progenitor cells [181]. In 

addition, the expression of voltage-gated potassium channels and the absence of voltage-

gated sodium channels in ReNcell VM discovered from our study are consistent with 
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literature. For example, Cho et al. reported the expression of both tetraethylammonium 

(TEA)-sensitive delayed rectifying potassium channel and inwardly rectifying potassium 

channel with no expression of sodium channel in human NSC cell line [182]. Likewise, 

Piper et al. found that cultured human NPCs express 4-aminopyridine (4-AP)-sensitive and 

delayed-rectifier type potassium currents with no observed expression of sodium channel 

currents under non-differentiating conditions. On the other hand, the majority of them 

expressed inward tetrodotoxin-sensitive and resistant sodium currents, sustained calcium 

currents, inwardly rectifying potassium currents) and outward time- and voltage-dependent 

currents and neuronal markers upon differentiating the cells [183]. Thus, the absence of 

sodium currents combined with the presence of voltage-activated potassium currents might 

be one of the characteristic features of NSCs/NPCs [182], [183]. 

Fluorescent assays enable functional readout of ion channel activity over time in high-

throughput platforms [186]. The assays that measure intracellular ionic concentrations are 

widely used in research and for HTS of ion channel modulators [162]. We initially focused 

on establishing a high-throughput potassium ion channel assay in 3D-cultured ReNcell VM 

with FluxOR potassium channel assay kit because of the expression levels of voltage-gated 

potassium channels (Kv) and the important role of Kv channels in various physiological 

processes. The FluxOR assay relies on measuring changes in ion concentrations in the 

intracellular compartment, resulting from potassium ion channel activity. Thallium ions 

can permeate potassium ion channels and have been substituted for potassium ions in the 

assay to provide an enhanced signal-to-background ratio [187]–[189]. Kv channels are 

generally involved in the regulation of membrane potential, cell volume, proliferation, and 

apoptosis in a wide range of cells [181]. In addition, disruption of even a subtype of 
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potassium ion channels can result in neurodegenerative diseases such as Alzheimer’s and 

Parkinson’s diseases. Due to this important physiological role played by potassium ion 

channels, it has been used as a therapeutic target for various diseases. The high expression 

levels of Kv 4.3 and Kv 7.2 in ReNcell VM from RNA-Seq analysis in our study were 

correlated well with other studies, indicating that they are highly expressed in the human 

brain [190]. The inhibitor of KCNQ2 channel, XE-991, has been extensively used to block 

the Kv 7.2/KCNQ2 channel in several in vitro and in vivo studies even though there has 

been no clinical trials conducted for this compound [191]–[193]. On the other hand, 

fluoxetine is a selective serotonin reuptake inhibitor used for treating depression with 

relatively few side effects [194]–[196]. The effects of fluoxetine on voltage-gated channels 

have been widely studied [197], [198]. Jeong et al. investigated the effects of fluoxetine on 

cloned Kv4.3 channels expressed in CHO cells using the whole-cell patch-clamp technique 

and reported that fluoxetine blocked Kv4.3 in a concentration-dependent manner with IC50 

of 11.8 µM [198]. Our result was correlated with the literature, with more than 20% 

inhibition observed at 100 µM. In addition, the concentration of fluoxetine in the brain 

seems to be 20 times higher than the corresponding blood level because of high 

lipophilicity of the drug [198], [199].  

The function of store-operated calcium channels (SOCCs) indicates the inverse relation of 

calcium ion concentrations in the endoplasmic reticulum (ER) with the rate at which 

calcium ions cross the plasma membrane and enter the cell [174]. Given the 

neuroectodermal lineage and non-excitable nature of neural stem/progenitors cells, SOCCs 

play an important role for neurodevelopmental processes including neurogenesis, 

proliferation, and migration [200]. Fluorescence-based measurement of calcium ions is 
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shown to be robust for monitoring the activity of SOCCs [201]. Fluo-4 Direct calcium 

assay, in particular, allows direct addition of the fluorescence reagent in microtiter well 

plates, without the need for medium removal and wash steps, and is commonly used for 

high-throughput assessment of calcium channel activities [202], [203]. 2-APB is one of the 

most widely studied compound for SOCC modulation, which acts as both the activator and 

the inhibitor of SOCCs [174], [201], [204]. The biphasic response from 2-APB observed 

in 2D- and 3D-cultured ReNcell VM is in line with literature that have shown the biphasic 

action of 2-APB in SOCCs where lower concentration ranges in 1 - 20 µM enhanced store-

operated entry whereas higher concentration range in 25 - 100 µM blocked SOCCs [174], 

[201], [204]. In addition, this complex pharmacological action of 2-APB has not only been 

shown to be related to applied concentrations but also in the pH levels and cell types [205]. 

For example, Takahasi et al. reported that 2-APB at 100 μM inhibited SOCCs at pH 7.4 

whereas it enhanced the store-operated calcium entry at pH 6.5, indicating the dual mode 

action of 2-APB dependent on external pH [206], [207]. Likewise, in many cell types, the 

activation of phospholipase C through G protein-coupled receptors liberates calcium ions 

from the lumen of the ER, resulting in the activation of SOCCs [175].  

Efflux transporters including MDR1, MRP1, and BCRP from the ABC transporter family 

play a major role in drug disposition, limiting the uptake of drugs in target cells and tissue 

barriers such as the blood-brain barrier [208]. Traditionally, the identification of substrates 

and inhibitors of ABC efflux transporters and the assessment of their activities has been 

performed using membrane-based assays, which are prepared from cells expressing ABC 

transporters [171]. However, these assays are low throughput and do not represent the 

native transporter expression in the human brain. Therefore, the 3D NSC-based transporter 
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assay established on the 384-pillar plate is not only high throughput but also provides 

functional readout of transporter activities and transporter/substrate interactions [171]. 

RNA-Seq analysis of ReNcell VM revealed minimal expression of ABCB1 (MDR1) and 

ABCG2 (BCRP) genes and some levels of expression of ABCC1 (MRP1) gene in our 

study. This result is in contrary to previous studies where higher levels of ABCB1 and 

ABCG2 gene expression in human neural stem/progenitor cells have been reported [209]–

[211]. On the other hand, ABCC1 (MRP1) was found to be expressed highly as compared 

to the expression levels of the other two efflux transporters. ABCC1 (MRP1) transporters 

are known to be expressed in the human brain and are involved in removal of endogenous 

substances and toxic organic anions [184], [185]. In our study, MK-571 did not selectively 

inhibit the MRP1 transporter for both calcein AM and Hoechst 33342 fluorescent 

substrates, indicating that MK-571 is a non-selective inhibitor of ABC transporters 

commonly used to inhibit over-expressed MRP transporters [168]. Probenecid on the other 

hand, has been shown to be a selective inhibitor of MRP1 transporter [212]. The TAF 

enabled the comparison of the activity of efflux transporters including MDR1, MRP1, and 

BCRP among different samples or cell lines [172], [213]. In addition, the TAF of the three 

ABC-transporters in our study was correlated with the mRNA expression level of those 

transporters in ReNcell VM identified from RNA-Seq analysis. As the TAF is unitless, the 

theoretical range is considered to be between 0 to 100 where TAF values > 25 are 

considered clinically relevant and the cells/specimens are regarded as multi-drug resistance 

positive whereas with TAF values < 25, the cells/specimens are considered multi-dug 

resistance negative [172], [213]. In positive control cells, the TAF values can go up to 95 - 

98 [214].  
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3.5. Conclusions 

We have successfully established fluorescence-based assays on a 384-pillar plate with 3D-

cultured ReNcell VM for high-throughput compound screening for ion channels and 

transporters. RNA-seq analysis was used to identify ion channels and transporters 

expressed in ReNcell VM. Only few ion channels and one major ABC transporter was 

found to be expressed comparatively higher than other functional channels and 

transporters. Voltage-gated potassium channel and store-operated calcium channel assay 

was established, and activity of those channels were measured in 3D-cultured ReNcell VM 

using the known inhibitors of the respective channels. Similarly, ABC-transporter assay 

was established and TAF was measured for the respective transporter in 3D-cultured 

ReNcell VM. It is important to develop 3D cell models on HTS systems that can offer 

highly predictive information at low costs. In the future, we will investigate the effect of 

unknown compounds on the modulation of ion channels and transporters, and their 

influence on physiological functions of 3D-cultured NSCs such as proliferation, 

differentiation, and migration. Rapid, direct, and reliable measurement of compound 

effects on ion channels and transporters can be used for drug discovery and environmental 

toxicant screening. 
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4.1. Introduction 

Neurodevelopmental disorders including autism,  attention deficit hyperactivity disorder, 

dyslexia, and other cognitive impairments have been increasing in recent years [215]. 

Environmental toxicants including heavy metals, pesticides, and herbicides accumulated 

in the body presumably play an important role in developmental neurotoxicity (DNT). 

However, only a limited number of compounds have been tested for DNT among a large 

number of chemicals available in the market [2], [10], [62]. Out of 80,000 – 100,000 

chemicals in the market, only about 150 chemicals have been subjected to international 

DNT guidelines [10], [13], [62]. The lack of information and studies can be attributed to 
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the current guidelines for DNT which are based entirely on in vivo experiments. In vivo 

studies for each chemical requires approximately 700 rodents, costs nearly $1 million, and 

could take more than a year, making it not only expensive and time-consuming but also 

ethically questionable [10], [11], [13]. In addition, due to the species-specific difference 

and the lack of knowledge on pharmaco-/toxicodynamics between rodents and humans, the 

predictivity of DNT in humans from in vivo animal studies is uncertain [7], [14], [15]. 

Therefore, alternative in vitro test methods which are cost-effective, high-throughput, and 

predictive, based on human-specific toxicity pathways, are required to close the gap [11], 

[20]. Mechanism-based, target-specific endpoints are required to predict the neurotoxicity 

of compounds including drug candidates and environmental toxicants in humans [216].  

High-throughput screening (HTS) systems implemented for DNT testing of a large 

number of chemicals should be capable of analyzing the adverse effects on cell and 

organelle levels [55], [215], [217]. High-content imaging (HCI) assays are indispensable 

when it comes to high-throughput assessment of DNT as they provide multi-parametric 

information on cellular functions that play pivotal roles in DNT [62]. HCI analyzes target-

specific endpoints (e.g., mitochondrial membrane potential, intracellular glutathione level, 

oxidative stress, apoptosis/necrosis), morphological changes, and reporter signals thereby 

improving understanding of the mechanism of action of drug candidates and environmental 

toxicants. However, HCI assays performed on two-dimensional (2D) cell monolayers limit 

the predictability of in vivo toxicity due to inaccurate representation of in vivo tissue 

structure. Cells in 2D cultures are restricted in various aspects of cell-cell and cell- matrix 

interactions that are crucial for maintaining regular cell functions, and lack in vivo 

phenotypic and genotypic characteristics [218].   
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On the other hand, three-dimensional (3D) cell cultures better mimic the physiology 

of human tissues. Therefore, HCI assays performed on 3D-culture cells can potentially 

provide better understanding of its morphological and functional features. This further aids 

in the evaluation of toxicity of drug candidates and environmental toxicants in vivo. 

However, current 3D cell culture systems lack the throughput required for screening DNT 

against a large number of chemicals [219]. To overcome these limitations, we have 

developed miniature 3D neural stem cell (NSC) cultures on a unique 384-pillar plate that 

allows high-throughput, HCI assays to better predict DNT in humans. Stem cells including 

embryonic stem cells and induced pluripotent stem cells have been used as cellular models 

for drug discovery and toxicology studies [130]. Among the stem cell models, human 

neural stem/progenitor cells are suggested as a highly predictive cellular model for 

neurotoxicity testing [7], [62], [220], due to their ability to proliferate and differentiate into 

multiple neural lineages from different regions of developing brains [182], [221], [222]. 

We have recently developed a 384-pillar plate that can be coupled with standard 

384-well plates for high-throughput, 3D cell-based, metabolism-induced toxicity assays 

[223]. Our goal in this study is to demonstrate the HCI capability of the 384-pillar plate 

using 3D-cultured ReNcell VM for assessing DNT of compounds. Four model compounds 

have been evaluated against multiple parameters, including mitochondrial membrane 

impairment, intracellular glutathione levels, cell membrane integrity, DNA damage, and 

apoptosis, using dyes such as tetramethyl rhodamine methylester (TMRM), 

monochlorobimane (mBCl), calcein AM, Hoechst 33342, and YO-PRO-1, respectively. 

Finally, IC50 values have been calculated from the dose-response curves obtained to 

establish 3D HCI assays on the 384-pillar plate. 
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4.2. Materials and Methods 

4.2.1. Human neural stem cell (NSC) culture 

ReNcell VM, a human NSC line (EMD Millipore, Burlington, MA, USA) was passaged in 

complete NSC medium (ReNcell NSC maintenance medium, EMD Millipore) 

supplemented with 20 ng/mL epidermal growth factor (EGF, EMD Millipore), 20 ng/mL 

basic fibroblast growth factor (bFGF, EMD Millipore), and 1% (v/v) 

penicillin/streptomycin (Thermo Fisher, Waltham, MA, USA) on laminin-coated, tissue 

culture-treated, T-75 flasks in a humidified 5% CO2 incubator at 37°C. The medium was 

replaced every two days with freshly-prepared complete NSC medium until the cells 

reached 90% confluency, after which they were detached with Accutase™ (EMD 

Millipore), suspended in ReNcell NSC maintenance medium, and centrifuged at 300 g for 

4 min. The resulting cell pellets were resuspended in 1 mL of complete NSC medium. The 

density of ReNcells was determined using a Moxi cell counter (ORFLO Technologies, 

MXZ001), and 1.5  106 cells were seeded on freshly-prepared, laminin-coated, T-75 

flasks.  

4.2.2. Establishment of 3D-cultured NSC on 384-pillar plate  

For 3D NSC culture, 384-pillar plates (MBD, South Korea) were coated with 0.01% (w/v) 

poly(maleic anhydride alt-1-octadecene) (PMA-OD) and dried for at-least 4-6 h at room 

temperature. A mixture of 0.0033% (w/v) poly-L-lysine (PLL) and 25 mM calcium 

chloride (CaCl2) was prepared in sterile deionized water and printed on top of the PMA-

OD-coated 384-pillar plates at a volume of 2 µL with a microarray spotter (S+ Microarrayer 

from Samsung Electro Mechanics Co. or SEMCO, Suwon, South Korea). NSC medium 

plates were prepared by dispensing complete NSC medium into 384-well plates (Corning) 
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at a volume of 50 µL per 384-well and incubated in the 5% CO2 incubator at 37°C for later 

use. For 3D NSC culture on the 384-pillar plate, the suspension of ReNcell VM was mixed 

with 3% (w/v) low-viscosity alginate (Sigma-Aldrich) and 15 mg/mL growth factor 

reduced (GFR) Geltrex® (ThermoFisher) to achieve a final cell concentration of 2106 

cells/mL in 0.75% (w/v) alginate and 2.5 mg/mL Geltrex and stored on ice until printing. 

The suspension of ReNcell VM in the alginate-Geltrex mixture was then printed on top of 

dried PLL/CaCl2 spots at a volume of 2 µL (4,000 cells per 384-pillar) while maintaining 

the slide deck at 7°C to prevent water evaporation during printing. The 384-pillar plates 

were left on the chilling slide deck for 4 min for gelation and then sandwiched with the 

384-well plates containing 50 µL of complete NSC medium per 384-well. The sandwiched 

384-pillar/well plates were incubated in the 5% CO2 incubator at 37°C.  

4.2.3. Compound treatment on 3D-cultured NSC  

Four model compounds including rotenone, 4-aminopyridine, digoxin, and topotecan (all 

from Sigma-Aldrich) with different mechanisms of action were selected to demonstrate 

high-throughput assessment of mechanistic neurotoxicity on the 384-pillar plate platform. 

These compounds were selected based on previous information of their ability to induce 

cell death through various mechanisms (Table 2). A powder form of each compound was 

dissolved in DMSO to prepare compound stock solutions. Five concentrations of each 

compound with 4-fold serial dilution, and one DMSO-alone control, were prepared to 

obtain dose response curves and calculate IC50 values. The concentration ranges of the 

compounds used were as follows: rotenone (0.16 – 40 µM), 4-aminopyridine (19.5 – 5,000 

µM), digoxin (0.04 – 10 µM), and topotecan (0.08 – 20 µM). The dosage range of these 

compounds were selected based on their known IC50 values obtained from literature. The 
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compounds at five dosages and one control were dispensed at a volume of 50 µL/384-well 

with 12 replicates per concentration in a 384-well plate. For the assessment of mechanistic 

neurotoxicity, the 384-pillar plate pre-incubated for 72 h was sandwiched with the 384-

well plate containing compounds, and then incubated in the 5% CO2 incubator for 24 h at 

37C. 

Table 2. The four model compounds with their classifications and concentration 

ranges used in this study. 

Compound Classification 
Mechanisms of action 

[Reference] 

Test conc. 

(µM) 

Rotenone 

Pesticide, 

insecticide, and 

piscicide 

AP, MI, OS  

[224], [225] 
0.16 – 40 

4- Aminopyridine 

(4-AP) 
Vertebrate pesticide 

MI, OS, PCB,  

(Glover 1982; Jensen et al. 2014; 

Soares et al. 2018) 

19.5 – 5,000 

Digoxin Inotropic agents 
AP, OS  

[229], [230] 
0.04 – 10 

Topotecan 
Chemotherapeutic 

drug 

AP, TI  

[231]–[233] 
0.08 – 20 

Abbreviations: mitochondrial impairment (MI), oxidative stress (OS), apoptosis (AP), 

potassium channel blocking (PCB), and topoisomerase inhibition (TI). 

 

4.2.4. HCI assays of 3D-cultured NSC on 384-pillar plate 

Multiple endpoints including mitochondrial impairment with TMRM, DNA damage with 

Hoechst 33342, decrease in intracellular glutathione level with mBCl, cell membrane 

integrity with calcein AM, and apoptosis with YO-PRO-1, were evaluated for the 

determination of mechanisms of compound-induced neurotoxicity. Stock solutions of 

fluorescent dyes were prepared in DMSO at the following concentrations: 0.5 mM TMRM, 

10 mM Hoechst 33342, 200 mM mBCl, 1 mM calcein AM, and 1 mM YO-PRO-1. After 
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24 h incubation with the model compounds, the 384-pillar plate with 3D-cultured ReNcell 

VM was rinsed twice for 5 min each by sandwiching it with a 384-well plate containing 50 

µL of the saline solution, followed by staining with 50 µL per 384-well of the fluorescent 

dye solutions in a 384-well plate for 1 h at room temperature. Final working concentrations 

of fluorescent dyes (0.5 µM TMRM, 10 µM Hoechst 33342, 200 µM mBCl, 0.25 µM 

calcein AM, and 10 µM YO-PRO-1) were obtained by diluting the dyes in the saline 

solution containing 140 mM of NaCl and 20 mM CaCl2 in sterile deionized water. After 1 

h incubation, excess dyes in the cell spots were removed by rinsing it twice with the saline 

solution in 384-well plates for 10 min. Apoptosis was assessed with YO-PRO-1 staining 

after 6, 12, and 24 h of incubation with the compounds.  

4.2.5. Image acquisition of 3D-cultured NSC on 384-pillar plate 

Images of 3D-cultured ReNcell on the 384-pillar plate were acquired in high-throughput 

with an automated fluorescence microscope (S+ scanner from SEMCO, South Korea). The 

S+ scanner contains four filter channels for detecting multicolor, blue, green, and red 

fluorescent dyes, individually or simultaneously. Fluorescent images stained with different 

fluorescent dyes were obtained with appropriate filters: TMRM stained cells with the red 

filter, Hoechst 33342 and mBCl stained cells with a blue filter (DAPI-5060C from 

Semrock), and calcein AM and YO-PRO-1 stained cells with the green filter. A 4 objective 

lens (UPLFLN 4X, Olympus, Japan) was used to obtain the image of the entire cell spots 

from the 384-pillar plate. Exposure times for the filter channels were adjusted based on 

histogram to obtain optimum fluorescence intensity and prevent photobleaching of the 

fluorescent dyes.  
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4.2.6. Image processing and data analysis 

Images obtained from the HCI assays were processed using a batch processing macro 

developed in ImageJ for the extraction of fluorescence intensity, following the method 

published previously [131]. The intensity data were further analyzed using GraphPad Prism 

(GraphPad Software, San Diego, CA), except for the intensity data obtained from the 

apoptosis assay, to determine the concentration-dependent effect of the four model 

compounds. The data obtained from the apoptosis assay was analyzed using SigmaPlot 

software to measure both concentration- and time-dependent effects of the compounds on 

ReNcell VM apoptosis. Changes in fluorescence intensity from TMRM, Hoechst 33342, 

mBCl, and calcein AM were evaluated to determine mitochondrial impairment, DNA 

damage, intracellular glutathione level, and cell membrane integrity, respectively. Since the 

background fluorescence of completely dead ReNcell VM (following treatment with 70% 

methanol for 1 h) was negligible due to background subtraction, the percentage of live 

ReNcell VM was calculated using the following equation: 

% 𝐋𝐢𝐯𝐞 𝐜𝐞𝐥𝐥𝐬 = [
𝑭𝑹𝒆𝒂𝒄𝒕𝒊𝒐𝒏

𝑭𝑴𝒂𝒙
] 𝐱 𝟏𝟎𝟎 

where FReaction is the fluorescence intensity of the spot exposed to the compounds and FMax 

is the fluorescence intensity of fully viable cells. The fluorescent intensities of all the cell 

spots were normalized with respect to the fluorescent intensity of fully viable cells (i.e., 

cell spots in control) to generate sigmoidal dose-response curves with response values 

ranging from 0 to 100% plotted against the logarithm of test concentrations. The sigmoidal 

dose-response curves and IC50 values (concentration of the compound where 50% of 

cellular mechanism is inhibited) were obtained using the following equation: 
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𝐘 = 𝐁𝐨𝐭𝐭𝐨𝐦 +  [
𝑻𝒐𝒑 −  𝑩𝒐𝒕𝒕𝒐𝒎

𝟏 +  𝟏𝟎(𝑳𝒐𝒈𝑰𝑪𝟓𝟎−𝑿)×𝑯
] 

 

where IC50 is the midpoint of the curve, X is the log concentration of test compound, H is 

the hill slope, and Y is the cellular response (% live cells), starting from the top plateau 

(Top) of the sigmoidal curve to the bottom plateau (Bottom) [223]. 

4.2.7. Calculation of the Z’ factor and the coefficient of variation (CV)  

Robustness and reproducibility of HCI assays on the 384-pillar plate was established by 

calculating the Z′ factor and the coefficient of variation (CV). The Z′ factor was calculated 

using the following equation: 

𝐙′ =  
(𝑨𝒗𝒈𝑴𝒂𝒙  −  𝟑𝑺𝑫𝑴𝒂𝒙)  −  (𝑨𝒗𝒈𝑴𝒊𝒏  +  𝟑𝑺𝑫𝑴𝒊𝒏)

𝑨𝒗𝒈𝑴𝒂𝒙  −  𝑨𝒗𝒈𝑴𝒊𝒏
 

where AvgMax is the average of all maximum fluorescence intensity from fully viable 

ReNcell VM on the 384-pillar plate, SDMax is the standard deviation of maximum 

fluorescence intensity, AvgMin is the average of all minimum fluorescence intensity from 

the dead cells affected by the highest dose of highly cytotoxic compound (topotecan), and 

SDMin is the standard deviation of minimum fluorescence intensity. The reproducibility of 

HCI assays on the 384-pillar plate was measured using the coefficient of variation (CV) 

which is the ratio of the standard deviation (SD) to the average (Avg). 

𝐂𝐕 =  
𝑺𝑫

𝑨𝒗𝒈
× 𝟏𝟎𝟎 

It represents variability in relation to the average signal strength, therefore the inverse of 

the signal-to-noise ratio [223]. 
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4.2.8. Statistical analysis 

To investigate the main mechanism of toxicity for the model compounds, statistical 

analysis was performed with GraphPad Prism. One-way analysis of variance (ANOVA) 

was used to compare the mean IC50 values of the test compounds obtained from 3D-

cultured ReNcell VM. Statistically significant IC50 difference among the HCI assays was 

indicated by * for p < 0.05, ** for p < 0.01, and *** for p < 0.001. 

4.3. Results 

4.3.1. Robustness of high-content imaging (HCI) assays on 384-pillar plate 

HCI assays of 3D-cultured ReNcell VM on the 384-pillar plate were assessed for 

robustness and reproducibility by calculating Z′ factors and the coefficient of variation 

(CV: ratio of the standard deviation and the overall mean), prior to testing mechanisms of 

action of the model compounds. Briefly, ReNcell VM cells printed on the 384-pillar plate 

were incubated with complete NSC medium for 72 h and treated with the four model 

compounds for 24 h, followed by cell staining with the fluorescent dyes. To calculate Z′ 

factors, AvgMax was obtained from control samples exposed to no compound, whereas 

AvgMin was obtained from the cell spots exposed to the highest dose of highly cytotoxic 

compound (topotecan). The calculated Z′ factors from topotecan for TMRM, mBCl, and 

calcein AM staining were 0.59, 0.61, and 0.58 respectively. Since, Hoechst 33342 stained 

cells showed increase in blue fluorescence intensity due to condensed nuclei, indicating 

apoptosis, we could not calculate the Z′ factor for Hoechst 33342. Since 0.5  Z′  1 is 

considered highly robust for an assay, the HCI assays we performed on the 384-pillar plate 

platform are robust and suitable for accurately identifying mechanisms of compound 

toxicity. In addition, the coefficient of variation (CV) was calculated from control samples 
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exposed to no compound to measure reproducibility of cell printing and the HCI assays on 

the 384-pillar plate. The fluorescence intensity obtained from staining 3D-cultured ReNcell 

VM on the 384-pillar plate exposed to no compound was used to calculate CV values for 

cell printing and day-to-day variability (Figure 4.1A). Experimental errors determined by 

the CV value less than 25% are considered acceptable and reproducible. The overall CV 

values obtained at different days for the TMRM, calcein AM, mBCl, and Hoechst 33342 

assays were 12.4%, 11.8%, 11.3%, and 10.8% respectively, indicating that the HCI assay 

performed on the 384-pillar plate platform was highly reproducible (Figure 4.1B).  

(A) 

 
    

(B) 

 
Figure 4.1. (A) Representative fluorescent images of 3D-cultured ReNcell VM at day 4 

stained with multiple fluorescent dyes: (I) Tetramethyl rhodamine methylester (TMRM), 

(II) monochlorobimane (mBCl), (III) Calcein AM, (IV) Hoechst 33342, and (V) YO-PRO-

1. (B) Day-to-day variability of CV values determined by TMRM staining for 

mitochondrial membrane potential. Triplicate 384-pillar plates with each plate containing 

12 replicates of each test condition were stained and analyzed on March 14, September 18, 

and December 18, 2018. The mean CV values obtained at different days were 12.9, 13.6, 
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and 10.7, respectively. Thus, the overall CV value was 12.4%, indicating high 

reproducibility of the assay performed on the 384-pillar plate. 

 

4.3.2. Mechanisms of compound toxicity on 3D-cultured NSC 

Mechanistic toxicity of the four model compounds was assessed by treating 3D-cultured 

ReNcell VM on the 384-pillar plate with rotenone, 4-aminopyridine, digoxin, and 

topotecan, followed by cell staining with the four fluorescent dyes. Fluorescent images 

were obtained by using the S+ scanner, and fluorescence intensity from cell images was 

quantified using the ImageJ plugin (Figure 4.2). Dose-response curves of the compounds 

for the four mechanisms of toxicity were plotted by using the normalized fluorescent 

intensity method (Figure 4.3). IC50 values were calculated for each compound and assay, 

in which 50% inhibition of the assessed mechanism of toxicity was observed (Table 3). 

For example, more than 90% impairment in mitochondrial membrane potential (MMP) 

was observed from the highest concentration of both digoxin and topotecan, whereas only 

60% inhibition was observed from the highest concentration of 4-aminopyridine. TMRM 

is a cell permeable fluorescent dye and its accumulation in the mitochondrial matrix space 

is dependent on MMP. Since MMP is regarded as a key indicator of mitochondrial health, 

a decrease in TMRM fluorescence is an indicator of mitochondrial impairment [234]–

[236].  

Monochlorobimane is a non-fluorescent cell permeable dye that emits blue 

fluorescence only after conjugation with intracellular glutathione. Intracellular glutathione 

acts as an antioxidant in mammalian cells and is subjected to depletion by the reactive 

oxygen species (ROS) generated by toxic compounds [237] [238]. Therefore, a decrease in 

intracellular glutathione level is an indicator of oxidative stress by the compound. Both 
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topotecan and digoxin reduced nearly 60% of intracellular glutathione levels in 3D-

cultured ReNcell VM. Calcein AM was used to evaluate cell membrane integrity as a 

measure for cell viability [239]. Calcein AM is a hydrophobic fluorescent dye that 

permeates live cells and is hydrolyzed by the intracellular esterases to calcein which emits 

green fluorescence. Calcein is a hydrophilic compound that remains trapped inside the 

cytosol of intact membranes. The IC50 values of topotecan in our study from the calcein 

AM assay were comparable to those obtained from spheroids of glioma stem cells by 

Zhang et al. [240]. As compared to major changes in MMP after compound exposure, there 

were minor changes in cell membrane integrity observed at the highest dosage after 24 h 

incubation with 4-aminopyridine, digoxin, and topotecan. This could be because the cells 

go through apoptosis with intact cell membrane, as evidenced by YO-PRO-1 staining at 

different time points. Likewise, Hoechst 33342 which binds to nucleic acid and is widely 

used to assess condensed pyknotic nuclei in apoptotic cells showed an increase in blue 

fluorescence intensity, indicating condensed nuclei due to apoptosis [241].  

 
Figure 4.2. Images of 3D-cultured ReNcell VM arrays on the 384-pillar plate exposed to 

varying concentrations of topotecan (0.08 – 20 µM) for 24 h and stained with four 

fluorescent dyes: (A) TMRM for mitochondrial membrane potential (MMP), (B) mBCl for 

intracellular glutathione (ICG) levels, (C) Calcein AM for cell membrane integrity (MI), 

(D) Hoechst 33342 for DNA damage (DD), and (E) YO-PRO-1 for apoptosis. A decrease 

in fluorescence intensity in (A), (B), and (C) and an increase in fluorescence intensity in 

(D) with increasing compound dosages (from top to bottom) was observed from 3D-

cultured ReNcell VM arrays. 

(A) (B) (C) (D) (E)
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Figure 4.3. Dose response curves of (A) Rotenone, (B) 4-aminopyridine, (C) Digoxin, and 

(D) Topotecan obtained from four HCI assays: (I) TMRM for mitochondrial membrane 

potential (MMP), (II) mBCl for intracellular glutathione level (IGL), (III) Calcein AM for 

membrane integrity (MI), and (IV) Hoechst 33342 for DNA damage (DD). The array of 

3D-cultured ReNcell VM on the 384-pillar plate was exposed to rotenone (0.16 – 40 µM), 

4-aminopyridine (19.5 – 5000 µM), digoxin (0.04 – 10 µM), and topotecan (0.08 – 20 µM), 

for 24 h and stained with TMRM, mBCl, calcein AM, and Hoechst 33342 to obtain dose-

response curves and IC50 values. 
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Table 3. Summary of IC50 values of four compounds obtained from the HCI assays on 384-

pillar plate. 

Compound 

HCI assays (Endpoints) 

TMRM 

(MMP) 

mBCl 

(IGL) 

Calcein AM 

(MI) 

Hoechst 33342 

(DD) 

Rotenone 31.52 ± 7.33 Nontoxic Nontoxic NA 

4-

aminopyridine 
4.9 ± 0.45 5.9 ± 0.5 Nontoxic NA 

Digoxin 0.16 ± 0.08 2.06 ± 0.3 3.4 ± 0.8 NA 

Topotecan 0.69 ± 0.01 4.24 ± 0.6 6.5 ± 1.0 NA 

Abbreviations: mitochondrial membrane potential (MMP), intracellular glutathione level 

(IGL), membrane integrity (MI), DNA damage (DD), and not applicable (NA). 

 

Apart from indirect assessment of apoptosis via condensed nuclei with Hoechst 

33342, apoptosis in 3D-cultured ReNcell VM was assessed directly from YO-PRO-1 

staining. As apoptosis is a dynamic process, 3D-cultured ReNcell VM on the 384-pillar 

plate was treated with the four compounds for 6, 12, and 24 h, and then stained with YO-

PRO-1 for 1 h. As a result, dose- and time-dependent effects on apoptosis were observed 

from the compounds (Figure 4.4). For example, nearly 50 % increase in apoptosis was 

observed after 12 and 24 h incubation with 5 µM topotecan as compared to the controls 

(no compound). Interestingly, the percentage of apoptosis dropped at the highest 

concentration of 20 µM topotecan at all the time points, possibly indicating that necrosis 

could have been induced at that concentration. Similarly, digoxin demonstrated both dose- 

and time-dependent effects on apoptosis. There was a slow and gradual increase in 

apoptotic cells with increasing digoxin concentration after 6 h incubation, whereas more 

rapid increase in apoptosis was observed after longer incubation (12 h and 24 h). Necrosis 

was observed at  3.125 µM digoxin after 24 h incubation, as evidenced by a decrease in 
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green fluorescence intensity. 

 

Figure 4.4. Dose-response curves of (A) rotenone, (B) 4-aminopyridine, (C) digoxin, and 

(D) topotecan, obtained from the YO-PRO-1 assay for apoptosis. The array of 3D-cultrued 

ReNcell VM on the 384-pillar plate was treated with varying concentrations of the four 

compounds for 6, 12, and 24 h, and stained with 10 µM YO-PRO-1 for an hour to obtain 

the dose-response curves.  

 

Apoptosis was measured by the increase in fluorescence intensity relative to the 

control condition. The response of each concentration of a compound was calculated from 

12 replicates on a 384-pillar plate, with three independent replicates of the experiment (n 

= 36 in total). The IC50 values of all four compounds obtained from different assays were 

compared to evaluate the effect of compounds on 3D NSC culture on the 384-pillar plate. 

Among the five assays/endpoints studied, changes in MMP was found to be the most 

sensitive mechanism of toxicity based on the IC50 values compared to other assays (Fig. 
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4.5). For all the four compounds, changes in MMP was found to be the most sensitive 

compared to changes in IGL, MI, and DD. Therefore, MMP could be considered as an 

initiator of the mechanism of toxicity. 

 

Figure 4.5. One-way ANOVA analysis of IC50 values obtained from 3D-cultured ReNcell 

VM pre-incubated for 72 h, exposed to digoxin and topotecan for 24 h, and stained with 

calcein AM, TMRM, and mBCl (n=3 independent repeats, **p < 0.01, ***p < 0.001). 

Statistically significant difference in IC50 values of digoxin was observed from TMRM 

staining, indicating that the main mechanism of toxicity for digoxin is MMP. Statistically 

significant difference in IC50 values of topotecan was observed from TMRM and mBCl 

staining, indicating that the main mechanism of topotecan toxicity is MMP and IGL. 

 

4.4. Discussion  

There is an unmet need among pharmaceutical companies and regulatory agencies to 

develop a highly predictive in vitro cell-based assay platform for early stage detection of 

neurotoxicity. High-throughput, cell-based assay systems capable of analyzing the adverse 

effect on human cells are inevitable when it comes to screening a large number of drug 

candidates and potentially toxic chemicals for DNT testing [6], [9], [53], [130]. Therefore, 

our goal in this study was to establish 3D-cultured NSCs on a unique 384-pillar plate and 

demonstrate high-throughput HCI capability for predictive assessment of neurotoxicity. 

ReNcell VM was selected as a cell model for human NSCs as the progenitor cell line 

demonstrates the typical features of NSCs, such as the ability to proliferate, self-renew, and 
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differentiate into neurons, astrocytes, and oligodendrocytes, which represent the lineages 

from different regions of developing brains. ReNcell VM is a commercially available 

human neural progenitor cell line obtained from the midbrain region of a 10-week human 

fetus and immortalized by retroviral transduction with v-myc oncogene [133], [216], [242].  

The 3D-cultured ReNcell arrays on the 384-pillar plate established in this study are 

robust and high-throughput for studying mechanistic compound toxicity. The automated 

cell printing on the 384-pillar plate combined with 3D cell culture in the 384-well plate 

ensured highly reproducible outcomes for HCI assays with compounds. The mixture of 

alginate and Geltrex for cell encapsulation was easily printable and biomimetic for 3D NSC 

culture. Alginate is biologically inert and provides structural rigidity for cell encapsulation 

and culture, while Geltrex being bioactive promotes cell-ECM interactions to support cell 

growth and spheroid formation [136]. For optimum cell-cell interactions, seeding density 

of 2 ×106 cells/mL was used on the 384-pillar plate, resulting in ~4000 cells per 384-pillar 

in a 2 µL cell spot. The 384-pillar plate offers several unique advantages in terms of 

mimicking cell-ECM interactions, ease of media change, high-throughput compound 

screening, and rapid in situ cell imaging as compared to other 3D cell culture systems such 

as spheroid culture in ultra-low attachment (ULA) plates, microfluidic systems, transwell 

inserts, and hanging droplet plates. For example, media changing in ULA plates and 

hanging droplet plates without disturbing the cell aggregates inside is challenging and often 

time-consuming, leading to damage of those aggregates. Long-term culture and assays of 

3D spheroids in hanging droplet plates require transferring the spheroids into a different 

plate, thus making it cumbersome and low-throughput [243]. In addition, spheroid cultures 

in ULA plates and hanging droplet plates often lack cell-ECM interactions which are vital 
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for organotypic 3D cell cultures [244]. Moreover, most of the existing 3D cell cultures such 

as ExVive 3D bioprinted human tissues from Organovo require cryo-sectioning of the 

spheroids for imaging. Therefore, we envision that the 384-pillar plate and its cell printing 

technology can be adopted in an industry setting for high-throughput, predictive compound 

screening, critical for pharmaceutical and chemical companies. 

The importance of 3D cell culture models in assessing mechanisms of action of 

pharmaceutical drug candidates and environmental chemicals for neurotoxicity have been 

highlighted earlier [6], [131], [216], [245]–[247]. In a recent study, Koo et al. established 

a 3D brain on a chip model with multiple immortalized neuronal cells and reported the 

correlation of the effect of organophosphates on in vitro 3D culture with in vivo data [245]. 

Similarly, Pamies et al. reported that a 3D spheroid model of NSCs recapitulates human 

brain development and demonstrated the reproducible result of neurotoxicity with test 

compounds for cell viability, ROS generation, and mitochondrial dysfunction [247]. 

Sirenko et al. performed HCI assays on 3D spheroid neural cultures in a 384-well plate 

with multiple fluorescent dyes to assess cytotoxicity and mitochondrial toxicity of several 

compounds, demonstrating 3D cultures as a biologically-relevant model system to study 

neurotoxicity of pharmaceutical drugs and environmental toxicants [246].  

Recently, our group has demonstrated the application of  this 384-pillar plate 

platform for the first time in metabolism-induced toxicity assays, using combinations of 

HEK293 cells and drug metabolizing enzymes [223]. The current study is the first 

demonstration of high-throughput, HCI capability on the 384-pillar plate with 3D-cultured 

ReNcell VM for the assessment of compound-induced acute neurotoxicity. Multiple 

fluorescent dyes such as TMRM, mBCl, calcein AM, Hoechst 33342, and YO-PRO-1, were 
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used to establish HCI assays and understand various mechanisms of cell death in 3D-

cultured ReNcell VM by evaluating the changes in mitochondrial membrane potential, 

intracellular glutathione levels, cell membrane integrity, DNA damage, and apoptosis, 

respectively. In particular, apoptosis is an important mechanism of cell death in the 

developing nervous systems as neural stem/progenitor cells in an early development phase 

systematically undergo apoptosis during the process of proliferation and differentiation into 

neurons and glial cells [248], [249]. Due to the high expression of pro-apoptosis activating 

proteins such as p53 in NSCs, these cells may be even more sensitive to apoptosis than 

fully differentiated lineages [250]. Therefore, establishing HCI assays for the assessment 

of apoptosis in NSCs through direct and indirect measures is important for DNT tests in 

vitro. Considering these factors, we investigated the adverse effect of the compounds on 

various mechanisms of cell death in 3D-cultured ReNcell VM. Studies have shown that the 

formation of reactive oxygen species (ROS) by toxic compounds leads to a decrease in 

antioxidant levels, reducing the level of intracellular glutathione [238]. A decrease in the 

glutathione level further increases the accumulation of ROS, thereby damaging 

mitochondria and nucleus, and eventually resulting in cell death [88]. In addition, the 

formation of ROS has been known to induce specific cell death mechanisms such as 

apoptosis and necrosis [224], [251], [252]. In particular, mitochondria are highly 

susceptible to oxidative damage as it is a major source of ROS production and thus a 

primary target for the large amounts of ROS. Mitochondrial intermembrane space houses 

pro-apoptotic factors such as cytochrome c and apoptosis-inducing factor (AIF) which act 

in caspase-dependent and caspase-independent manners, respectively [253]. When 

mitochondrial membranes are disrupted, cytochrome c is released to cytosol, which binds 
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to Apaf-1 and induces caspase activation in the presence of ATP [254], whereas AIF when 

released from mitochondria enters the nucleus and activates nuclear endonucleases, leading 

to chromatin condensation and DNA degradation and ultimately resulting in cell death 

[224]. Therefore, MMP is a highly sensitive assay to study the mechanism of cell death in 

neurotoxicity. Undoubtedly, the MMP assay was shown to be the most sensitive assay 

among the other HCI assays tested for all four compounds. 

The mechanisms of toxic action identified through HCI assays are defined as 

biologically relevant series of key events/endpoints that ultimately lead to adverse 

outcomes in vivo [255]. Therefore, DNT-specific in vivo processes can be linked to the 

changes in various cellular processes such as apoptosis, necrosis, differentiation, and 

proliferation due to the mechanisms of toxic action that occur at cellular and organelle 

levels, and thus can be recapitulated with various in vitro endpoints. [6], [82]. For example, 

inhibition of mitochondrial complex I leading to mitochondrial dysfunction has been 

known to induce motor deficit disorder [82]. Moreover, the brain is known to be highly 

sensitive to oxidative stress due to low levels of antioxidants and high levels of oxygen 

consumption. Various opioids and psychostimulant drugs have been shown to trigger 

oxidative stress and apoptosis via mitochondrial dysfunction. These evidences further 

bolster the need for in vitro assays which identify various mechanisms of toxicity to predict 

the effect of toxic chemicals in human brains [256].  

The four model compounds used in this study were selected to demonstrate various 

mechanisms of toxicity. Rotenone, a common insecticide and pesticide, is known to inhibit 

the mitochondrial respiratory chain at the complex I site and cause ROS generation. As 

discussed earlier, accumulation of ROS decreases the glutathione level, resulting in 
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oxidative stress and disrupting the mitochondrial membrane. This damage in the 

mitochondrial membrane has been shown to release cytochrome c and induces apoptotic 

cell death [225]. However, some studies have reported the inhibition of respiratory chain 

reactions by rotenone-induced necrotic cell death as characterized by intact chromatin and 

loss of plasma membrane integrity [224], [257]. Therefore, rotenone-induced cell death is 

variable and depends on multiple factors such as concentration, duration of exposure, and 

cell type [224]. Jin et al. reported rotenone-induced mitochondrial damage in dopaminergic 

cells via caspase-3 activation [225], whereas Li et al. reported caspase 9/3-independent cell 

death in human NSCs by rotenone [224]. Interestingly, we observed a high level of 

apoptosis in 3D-cultured ReNcells exposed to rotenone for 24 h even at relatively low 

concentrations, which was comparable to the results of digoxin and topotecan. The effect 

of rotenone on the other assays was not noticeable as compared to other highly toxic 

compounds used in this study.  

4-Aminopyridine was initially developed as an avicide (Avitrol®) in 1960s. It 

causes birds to emit distress calls and has been reported to only kill about 1% of the animals 

when used within the dosage range [258], [259]. However, in the later years it gained wide 

applications as a treatment for multiple sclerosis. It is a potent potassium channel blocker 

that protects nerve conduction in demyelinated nerve fibers and improves motor function 

by enhancing the neuromuscular synaptic transmission [226], [227]. Blocking of voltage-

gated potassium channels has been shown to have little to no effect on apoptosis of stem 

cells [260], which correlated well with our observation in this study. For example, Benı´tez-

Rangel et al. observed nearly 40% reduction in caspase activity, which is known to be the 

initiator of apoptosis, in the presence of 4-aminopyridine and other potassium channel 
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blockers [261]. On the other hand, Soares et al. demonstrated the effect of 4-aminopyridine 

on mitochondrial activity and oxidative stress in Drosphilia melanogaster [228]. Based on 

our observations, 4-aminopyridine seems to be relatively nontoxic with less than 50% 

inhibition of MMP and IGL, as compared to the other model compounds with relatively 

high toxicity on 3D-cultured ReNcell VM.  

Both digoxin and topotecan were highly toxic with IC50 values blow µM ranges for 

the sensitive assays such as MMP and IGL. Digoxin is a member of the cardiac glycoside 

family of naturally derived compounds, commonly used for the treatment of heart failure 

and atrial arrhythmia [229]. Cardiac glycosides have been known to induce apoptosis via 

release of cytochrome c and activation of caspase cascade by the increase in Ca2+ 

concentration. Digoxin is known to inhibit Na+/K+ pumps causing increase in intracellular 

Na+ levels by decreasing the rate of Na+ influx through the Na+/Ca2+ exchanger, which in 

turn inhibits Ca2+ efflux through the Na+/Ca2+ exchanger, thereby increasing the Ca2+ 

concentration [262]. Various mechanisms such as calcium-dependent activation of 

caspases, generation of ROS, and topoisomerase inhibition have been suggested as the 

mechanisms of cell death by digoxin [229], [230]. Prassas et al. reported that digoxin 

induces caspase-dependent apoptosis in multiple cell lines [229]. In our study, digoxin 

demonstrated both dose- and time-dependent apoptosis with reduction in MMP as its 

primary mechanism of toxicity. 

Topotecan, a semi-synthetic derivative of camptothecin, is an inhibitor of DNA 

topoisomerase I and has been approved for the treatment of various cancer types [263]. 

Inhibition of DNA topoisomerase I results in inhibition of DNA replication and 

transcription that eventually leads to apoptotic cell death [231]–[233]. Studies in multiple 
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neuroblastoma cell lines reported that cytotoxic activity of topotecan is highly dependent 

on exposure time. For example, Chernov et al. demonstrated decreasing IC50 values for 

cell viability with Presto Blue with increasing exposure time for various neuroblastoma 

cell lines [233]. Similarly, Zhang et al. showed dose- and time-dependent effects of 

topotecan on glioma stem cell viability and apoptosis [240]. Topotecan demonstrated both 

dose- and time-dependent apoptosis in 3D-cultured ReNcell VM over a period of 24 h in 

our study. In addition, we observed dose-dependent effects of topotecan on all the assays 

evaluated, with the MMP assay being the most sensitive of all. Overall, our high-

throughput 3D cell culture platform was suitable for HCI assays to evaluate various 

mechanisms of cell death in human NSCs from model compounds, which can be 

implemented for large-scale screening of neurotoxicity. 

4.5. Conclusions 

We have successfully demonstrated HCI capability in 3D NSC culture on 384-pillar plate 

for the first time for the assessment of predictive neurotoxicity. The 3D-cultured ReNcell 

VM on the 384-pillar plate with five HCI assays, including TMRM, mBCl, calcein AM, 

Hoechst 33342, and YO-PRO-1 for the evaluation of mitochondrial impairment, 

intracellular glutathione level, cell membrane integrity, DNA damage, and apoptosis, 

respectively, generated reproducible data for the assessment of DNT. The HCI assays 

performed on 3D NSC culture on the 384-pillar plate may need further validation with 

many model compounds to calculate sensitivity and specificity. With additional DNT-

specific endpoints such as proliferation, migration, neurite outgrowth, and synapse 

formation, our high-throughput, 3D cell culture platform can be implemented for large-

scale screening of drug candidates and environmental toxicants in an industry setting. 
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CHAPTER V 

HIGH-THROUGHPUT ASSESSMENT OF METABOLISM-MEDIATED 

NEUROTOXICITY BY COMBINING 3D-CULTURED NEURAL STEM CELLS 

AND LIVER CELL SPHEROIDS 

5.1. Introduction 

Systematic testing of developmental neurotoxicity (DNT) is not mandatory for the 

regulatory assessment of chemicals in the USA and EU. It is only performed when there is 

clear evidence of neurotoxicity in systemic acute toxicity or repeated dose studies or based 

on chemical structure similarity with previously known toxicants [6]. Testing of chemicals 

for their potential to cause DNT is primarily based on guidelines that require in vivo animal 

studies. In addition, these in vivo animal studies do not generate mechanistic data required 

for scientifically based human-risk assessment. Therefore, significant efforts have been 

made for validating in vitro and in silico methods in predicting the neurotoxicity of 

chemicals in humans, ultimately for reducing the use of animals [6], [223]. To this end, a 

wide range of in vitro systems have been developed to study the effects of neurotoxicants 

on various cellular functions relevant to the events in humans [264].  

High-throughput screening (HTS) with two-dimensional (2D) cell monolayers and 

preclinical evaluations with animal models are often inaccurate due to the lack of 



100 
 

correlations between in vitro cell models and in vivo animal models and differences in 

genetic makeups between animals and humans. In addition, the poor predictivity of in vitro 

models to in vivo models can be attributed in part due to the lack of multicellular models 

with biotransformation capability. Chemicals can be transformed into their metabolites by 

drug-metabolizing enzymes (DMEs) in the liver, some of which can be severely toxic to 

organs including the brains [16], [265]. Therefore, it is important to maintain 

physiologically relevant levels of DMEs in HTS assays and understand the roles of these 

enzymes in human toxicology [223]. However, despite the knowledge of biotransformation 

playing an important role in the augmented toxicity of chemicals, relatively little efforts 

have been made to incorporate biotransformation into an in vitro neurotoxicity testing 

system. Conventional in vitro systems for neurotoxicity tests lack the capability of 

investigating the qualitative and quantitative differences between parent chemicals and 

their metabolites in the human body [265].  

To the best of our knowledge, no high-throughput, in vitro methods for evaluating 

metabolism-mediated neurotoxicity of chemicals have been developed and validated, 

emphasizing the urgent need for predictive in vitro neurotoxicity test systems [264]. 

Existing in vitro hepatotoxicity test models including liver microsomes, recombinant 

DMEs, primary hepatocytes, isolated liver slices, and transformed hepatic cell lines (e.g., 

THLE2, HepG2, Hep3B, etc.) are limited to testing neurotoxicity [264], [266]–[268]. For 

examples, isolated enzymes such as liver microsomes and recombinant DMEs lack the 

correlation of metabolic activity with in vivo metabolism [269], liver slices are difficult to 

obtain in consistent quantities and qualities and rapidly deteriorated [267], [268], hepatic 

cell lines express low levels of DMEs [270], and primary hepatocytes have limited lifespan 
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and are difficult to maintain high DME activity [269], [271]. In addition, there is lack of 

hepatic and neural cell co-culture systems that can be easily adopted in HTS of chemicals. 

Therefore, there is an urgent need to develop an in vitro toxicity screening system that can 

incorporate hepatic biotransformation of chemicals and predict the susceptibility of their 

metabolites to induce neurotoxicity [272]. Co-cultures of metabolically competent hepatic 

cells with neural cells can be of critical importance for screening test compounds 

susceptible to cytochrome P450 enzymes (CYP450s) metabolism [272]. However, 

simulating metabolism-mediated neurotoxicity in vitro is a challenging task due to 

reduction in activities of specific DMEs in the in vitro system as compared to their activities 

found in the liver. To address these issues, we adopted 3D cultures of metabolically 

competent and consistent hepatic cells such as a HepaRG cell line with neural stem cells 

(NSCs) such as ReNcell VM and established a high-throughput, metabolism-mediated 

neurotoxicity testing system. Spheroids of HepaRG cells were generated in an ultra-low 

attachment (ULA) 384-well plate and 3D-cultured ReNcell VM was established by printing 

ReNcell VM in hydrogel on a 384-pillar plate with 4 sidewalls and 4 slits (384PillarPlate). 

To demonstrate the proof of concept of metabolism-mediated neurotoxicity, model 

compounds were added in the ULA 384-well plate with HepaRG spheroids, which was 

coupled with the 384PillarPlate with 3D-cultured ReNcell VM. This simple and 

straightforward approach allows us to generate metabolites in situ by HepaRG cells and 

systematically test them against ReNcell VM by incorporating high-content imaging (HCI) 

assays for various cellular functions. We envision that this approach can be widely adopted 

in pharmaceutical and chemical industries for HTS of compounds and their metabolites for 

the assessment of neurotoxicity. 
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5.2. Materials and Methods 

5.2.1. HepaRG spheroid culture in ULA 384-well plate 

HepaRG complete base medium with supplements (MH100, Lonza, Basel, Switzerland) 

and the thawing additive (MHTAP, Lonza) were warmed in a 37°C water bath for 30 min. 

A complete thawing medium was prepared by adding 11.8 mL of MHTAP in 100 mL of 

MH100. NoSpin HepaRG™ cells (Lonza) were transferred into a 50 mL conical tube 

containing 7.5 mL of the warm thawing medium. HepaRG cell suspension at 1 million 

cells/mL was prepared by gently pipetting the solution up and down and seeded in an ultra-

low attachment (ULA) 384-well plate (Corning, USA) (Figure 5.1B) at 5000 cells/384-

well by dispensing 50 µL/384-well. The ULA 384-well plate was incubated for 24 h in a 

humidified 5% CO2 incubator (ThermoFisher, Waltham, MA, USA) at 37°C to form 

HepaRG aggregates (Figure 5.1D). After 24 h incubation, the thawing medium was 

replaced with a warm maintenance medium prepared by adding the maintenance additive 

(MHMET, Lonza) in MH100. The medium was changed by taking out 30 µL of the thawing 

medium from each 384-well and then adding 30 µL of the fresh maintenance medium 

followed by medium change every 2 days.  
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(A)      (B) 

    

(C)     (D) 

 

   

Figure 5.1. Pictures of (A) the 384PillarPlate and (B) the ULA 384-well plate as well as 

brightfield images of (C) 3D-cultured ReNcell VM on the 384PillarPlate and (D) 

HepaRG spheroids in the ULA 384-well plate. (Scale bar: 700 µm)  

 

5.2.2. Viability of hepatic spheroids in ULA 384-well plate 

Viability of HepaRG spheroids in the ULA 384-well plate was assessed at day 3 and day 7 

using CellTiter-Glo® assay kit (Promega). Briefly, an equal volume of CellTiter-Glo 

reagent was added to the 384-wells containing HepaRG spheroids in the maintenance 

medium and incubated for 10 min at room temperature on an orbital shaker (Fisher 
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Scientific) to induce cell lysis. The lysate was transferred to an opaque white luminometer 

plate (Corning) and incubated further for 10 min at room temperature to stabilize 

luminescent signals. Control wells containing the maintenance medium without the 

spheroids were prepared to measure background luminescence. Luminescence intensity 

was measured at 560 nm with an integration time of 0.25 - 1 s using a microtiter plate 

reader (Synergy H1, BioTek).  

5.2.3. Human neural stem cell (NSC) culture 

ReNcell VM, a human NSC line (EMD Millipore, Burlington, MA, USA) was passaged in 

a complete NSC medium (ReNcell NSC maintenance medium, EMD Millipore) 

supplemented with 20 ng/mL epidermal growth factor (EGF, EMD Millipore), 20 ng/mL 

basic fibroblast growth factor (bFGF, EMD Millipore), and 1% (v/v) 

penicillin/streptomycin (ThermoFisher) on laminin-coated, tissue culture-treated, T-75 

flasks in the 5% CO2 incubator at 37°C. The medium was replaced every 2 days with 

freshly-prepared complete NSC medium until the cells reached 90% confluency, after 

which they were detached with Accutase™ (EMD Millipore), suspended in ReNcell NSC 

maintenance medium, and centrifuged at 300 g for 4 min. The resulting cell pellets were 

resuspended in 1 mL of complete NSC medium. The density of ReNcell VM was 

determined using a Moxi cell counter (ORFLO Technologies, MXZ001), and 1.5  106 

cells were seeded on freshly-prepared, laminin-coated, T-75 flasks.  

5.2.4. Establishment of 3D-cultured NSCs on 384PillarPlate  

For 3D NSC culture, 384PillarPlates (Figure 5.1A) were coated with 0.01% (w/v) 

poly(maleic anhydride alt-1-octadecene) (PMA-OD) and dried for at-least 4-6 h at room 

temperature. A mixture of 0.0033% (w/v) poly-L-lysine (PLL) and 25 mM calcium 
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chloride (CaCl2) was prepared in sterile deionized water and printed on top of the PMA-

OD-coated 384PillarPlates at a volume of 3 µL with a microarray spotter (ASFA™ spotter, 

MBD Korea, Suwon, South Korea). NSC medium plates were prepared by dispensing 

complete NSC medium into deep well 384-well plates (Corning) at a volume of 130 µL 

per 384-well and incubated in the 5% CO2 incubator at 37°C for later use. For 3D NSC 

culture on the 384PillarPlate, the suspension of ReNcell VM was mixed with 3% (w/v) 

low-viscosity alginate (Sigma-Aldrich) and 15 mg/mL growth factor reduced (GFR) 

Geltrex® (ThermoFisher) to achieve a final cell concentration of 2106 cells/mL in 0.75% 

(w/v) alginate and 2.5 mg/mL Geltrex and stored on ice until printing. The suspension of 

ReNcell VM in the alginate-Geltrex mixture was then printed on top of dried PLL/CaCl2 

spots at a volume of 3 µL (6,000 cells per pillar) while maintaining the slide deck at 7°C 

to prevent water evaporation during printing. The 384-pillar plates were left on the deck 

for 4 min for gelation and then sandwiched with the deep well 384-well plates containing 

130 µL of complete NSC medium per 384-well (Figure 5.1C). The sandwiched 

384Pillar/well plates were incubated in the 5% CO2 incubator at 37°C.  

5.2.5. Viability of 3D-cultured NSCs on 384PillarPlate 

The viability of 3D-cultured ReNcell VM on the 384PillarPlate was measured over a period 

of 10 days using a Live/Dead® viability/cytotoxicity kit for mammalian cells 

(ThermoFisher). In addition, to simulate the effect of HepaRG and ReNcell VM co-culture 

in HepaRG maintenance medium, viability of 3D-cultured ReNcell VM at day 7 was 

assessed using the Live/Dead assay kit after exposing ReNcell VM to HepaRG 

maintenance medium for 3 days. Briefly, the 384PillarPlate with 3D-cultured ReNcell VM 

was separated from the 384-well plate with complete NSC medium and rinsed with a saline 
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solution containing 140 mM NaCl and 20 mM CaCl2. The 3D-cultured ReNcell VM on the 

384PillarPlate after exposing to HepaRG maintenance medium for 3 days was stained with 

a mixture of 0.25 µM calcein AM and 1 µM ethidium homodimer-1 from the kit in a 384-

well plate for 1 h at room temperature. The 384PillarPlate was rinsed twice with the saline 

solution to remove excess dyes, and fluorescent images were acquired in high throughput 

with an automated fluorescent microscope (S+ scanner from Samsung Electro-Mechanics, 

Co., Suwon, South Korea). The fluorescent cell images were obtained with a green filter 

(XF404 from Omega Optical) and a red filter (TxRed-4040C from Semrock) at 4 

magnification with the Olympus UPLFLN 4× (numerical aperture (NA) 0.13, f-number 

26.5, and depth of field (DOF) ~ 32.3 μm) (Olympus, Tokyo, Japan). Cell images obtained 

from the 384PillarPlate were batch-processed using ImageJ (NIH) to extract fluorescence 

intensity from the entire cell spots and were analyzed using SigmaPlot software ver. 12 

(Systat Software Inc., San Jose, CA, USA). 

5.2.6. Measurement of drug-metabolizing enzyme (DME) activities in HepaRG 

spheroids 

 

CYP3A4 activity 

 

Among representative DMEs, CYP3A4 activity in HepaRG spheroids was measured using 

P450-Glo™ assay kit (Promega). Briefly, lyophilized luciferin detection reagent and the 

reconstitution buffer solution were brought to room temperature and mixed together several 

times to achieve a homogeneous solution. Luminogenic substrate was prepared by diluting 

the luciferin-PFBE in HepaRG maintenance medium at 1: 40 dilution. For the CYP3A4 

assay, the medium was removed from the 384-wells of the ULA plate and 40 L of the 

luminogenic substrate solution was added. The cells were then incubated in the CO2 
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incubator at 37C for 3.5 h after which 25 L/384-well of the luminogenic substrate 

solution from the ULA plate was transferred into a 384-well opaque white luminometer 

plate. An equal volume of reconstituted luciferin detection reagent (LDR) was added into 

the wells containing the luminogenic substrate and incubated for 20 min at room 

temperature, followed by luminescence measurement at 560 nm with the microtiter plate 

reader. 

Glutathione-S-transferase (GST) activity  

The activity of GSTs in HepaRG spheroids was measured using a GST assay kit (Sigma-

Aldrich). Briefly, HepaRG spheroids in the ULA plate were rinsed with DPBS and 

incubated with 40 L of Cell Lytic™ MT (Sigma-Aldrich) for 20 min at room temperature 

on the orbital shaker. The cell lysate was collected from each 384-well into a cold 

microcentrifuge tubes and centrifuged for 10 min at 16,000 g to remove cell debris. The 

protein-containing supernatant was transferred to a chilled microcentrifuge tube and kept 

on ice until use.  For the GST assay, 200 mM of L-glutathione (GSH) solution was kept on 

ice while DPBS and 100 mM of 1-chloro-2,4-dinitrobenzene (CDNB) solution were kept 

at room temperature. A substrate master mix was prepared by adding 200 mM of GSH and 

100 mM of CDNB in DPBS to achieve a final concentration of 2 mM GSH and 1 mM 

CDNB. GST control was prepared by diluting the GST solution 50-fold in a sample buffer. 

The substrate master mix was dispensed in a new 384-well plate at 45 L, followed by 

dispensing 5 L of the sample per 384-wells and 5 L of GST control in control wells. 

Blank control was prepared by dispensing 50 L of the substrate master mix into the 384-

well plate. Absorbance was measured at 340 nm using the microtiter plate reader over a 
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period of 30 min immediately after preparing the reaction test. GST activity was 

determined by using the following equation. 

∆𝑨𝟑𝟒𝟎
𝒎𝒊𝒏

× 𝑽(𝒎𝑳) × 𝒅𝒊𝒍

𝜺𝒎𝑴 × 𝑽𝒆𝒏𝒛(𝒎𝑳)
=

𝝁𝒎𝒐𝒍

𝒎𝑳 × 𝒎𝒊𝒏
 

Where  

∆𝐴340

𝑚𝑖𝑛
=

𝐴340 (𝑓𝑖𝑛𝑎𝑙) − 𝐴340 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (min)
 

V = reaction volume (0.05 mL) 

Venz = volume of the enzyme sample tested (0.005 mL) 

dil = dilution factor of the original sample 

mM = extinction coefficient of CDNB conjugate at 340 nm (3.6 mM-1cm-1 for a path length of 

0.37 cm of the 384-well plate) [4] 

 

UDP glucuronosyltransferase (UGT) activity 

Luminescence-based UGT-Glo™ assay kit (Promega) was used to measure UGT activity 

in HepaRG spheroids. All the reagents were prepared and diluted according to the 

manufacturer’s protocol. Briefly, 40 µL of the HepaRG maintenance medium was 

aspirated out from the ULA 384-well plate, 5 µL/384-well of 16 mM UDPGA solution and 

the HepaRG medium were added into sample wells and control wells, respectively. The 

UGT reaction mixture was added at 10 µL/384-well to all wells including the control wells. 

The ULA 384-well plate was incubated in the 5% CO2 incubator at 37C for 2 h, which 

was followed by adding 20 µL of reconstituted luciferin detection reagent with D-cysteine 
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into all wells and incubated for 20 min at room temperature. Luminescence was measured 

using the microtiter plate reader at 560 nm with an integration time of 0.25 - 1 s.  

Albumin secretion 

Albumin secretion from HepaRG spheroids was measured using human albumin (ALB) 

Elisa kit (ThermoFisher). Before performing the assay, all the reagents were brought to 

room temperature and prepared according to the manufacturer’s protocol. Supernatants 

were collected from the ULA 384-well plate and stored at -80C until use. Samples and 

standards were added into appropriate wells of anti-human albumin precoated 96-well strip 

plate and incubated for 2.5 h at room temperature with gentle shaking. The 96-well plate 

was rinsed with 1x wash buffer and incubated with biotinylated antibody for 1h followed 

by washing and incubation with streptavidin-HRP solution for 45 min at room temperature 

with gentle shaking. After incubation with streptavidin-HRP solution, 3,3',5,5'-

tetramethylbenzidine (TMB) substrate was added and incubated for 30 min at room 

temperature in the dark with gentle shaking, which was followed by adding the stop 

solution. Absorbance was measured with the microtiter plate reader at 450 nm and 550 nm. 

The absorbance values at 550 nm was subtracted from the values obtained at 450 nm to 

correct for optical imperfections in the microplate. 

5.2.7. Compound treatment for metabolism-mediated neurotoxicity  

Metabolism-sensitive model compounds including acetaminophen, cyclophosphamide, 

and 3,3’-iminodipropionitrile (IDPN) (all from Sigma-Aldrich) were selected to investigate 

metabolism-mediated neurotoxicity in the HepaRG and ReNcell VM co-culture system. A 

powder form of each compound was dissolved in DMSO to prepare compound stock 

solutions. Five concentrations of each compound with 4-fold serial dilution and one 
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DMSO-alone control were prepared in HepaRG maintenance medium to obtain dose 

response curves and calculate IC50 values. The concentration ranges of the compounds used 

were as follows: acetaminophen (0.1 - 25 mM), cyclophosphamide (0.1 - 25 mM), and 

IDPN (0.02 - 4 mM). The dosage range of these compounds were selected based on their 

known IC50 values obtained from literature. The compounds at five dosages and one control 

were dispensed at a volume of 40 µL/well in the ULA 384-well plate containing 7 day-

cultured HepaRG spheroids. For the assessment of metabolism-mediated neurotoxicity, the 

384PillarPlate with 7 day-cultured ReNcell VM was sandwiched with the ULA 384-well 

plate containing compounds and HepaRG spheroids, and the sandwiched plates were 

incubated for 48 h in the 5% CO2 incubator at 37C (Figure 5.2). As a control, 3D-cultured 

ReNcell VM was exposed to the test compounds in the absence of HepaRG spheroids in a 

deep-well 384-well plate. 
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Figure 5.2. Schematic of experimental procedures for metabolism-mediated 

neurotoxicity. Metabolism-induced neurotoxicity of compounds was assessed with 3D-

cultured ReNcell VM on the 384PillarPlate coupled with HepaRG spheroids and test 

compounds in the ULA 384-well plate. ReNcell VM was encapsulated in 0.75% (w/v) 

alginate and 2.5 mg/mL Geltrex and cultured in 3D on the 384PillarPlate for 7 days. 

HepaRG cells were incubated for 7 days to form spheroids and maintain high hepatic 

functions prior to compound exposure. Compound exposure in the ReNcell VM and 

HepaRG co-culture system was performed for 2 days. 

 

5.2.8. Assessment of metabolism-mediated neurotoxicity 

Viability of 3D-cultured ReNcell VM on the 384PillarPlate after exposure to metabolites 

generated by HepaRG spheroids in the ULA plate was measured by calcein AM staining 

for cell membrane integrity. Briefly, a stock solution of 1 M calcein AM was prepared in 

DMSO. A final working concentration of the fluorescent dye (0.25 µM calcein AM) was 
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obtained by diluting the dye stock solution in the saline solution containing 140 mM of 

NaCl and 20 mM of CaCl2 in sterile deionized water. After 48 h compound exposure with 

HepaRG spheroids, the 384PillarPlate with 3D-cultured ReNcell VM was rinsed twice for 

5 min each by sandwiching it with a 384-well plate containing 50 µL of the saline solution, 

followed by staining with 50 µL/384-well of 0.25 µM calcein AM in a 384-well plate for 

1 h at room temperature. After 1 h incubation, excess dye in the cell spots was removed by 

rinsing it twice with the saline solution in 384-well plates for 10 min. Viability of HepaRG 

spheroids in the ULA 384-well plate after compound exposure was measured using the 

CellTiter-Glo assay as described above. Green fluorescent images of 3D-cultured ReNcell 

VM on the 384PillarPlate were acquired rapidly with the S+ scanner. Exposure times for 

the filter channels were adjusted based on histogram to obtain optimum fluorescence 

intensity and prevent photobleaching of the fluorescent dye.  

5.2.9. Image processing and data analysis 

Image processing and data analysis were performed according to the published methods 

[131], [223]. Briefly, green fluorescent images obtained from calcein AM staining of 

ReNcell VM on the 384PillarPlate were processed using a batch processing macro in 

ImageJ for the extraction of fluorescence intensity. The intensity data were plotted using 

GraphPad Prism 8 (GraphPad Software, San Diego, CA) to determine the concentration-

dependent effect of the test compounds. Since the background fluorescence of completely 

dead ReNcell VM (following treatment with 70% methanol for 1 h) was negligible due to 

background subtraction, the percentage of live ReNcell VM was calculated using the 

following equation: 
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% 𝐋𝐢𝐯𝐞 𝐜𝐞𝐥𝐥𝐬 = [
𝑭𝑹𝒆𝒂𝒄𝒕𝒊𝒐𝒏

𝑭𝑴𝒂𝒙
] 𝐱 𝟏𝟎𝟎 

where FReaction is the fluorescence intensity of the spot exposed to the compounds and FMax 

is the fluorescence intensity of fully viable cells. The fluorescent intensities of all the cell 

spots were normalized with respect to the fluorescent intensity of fully viable cells (i.e., 

cell spots in control) to generate sigmoidal dose-response curves with response values 

ranging from 0 to 100% plotted against the logarithm of test concentrations. The sigmoidal 

dose-response curves and IC50 values (concentration of the compound where 50% of 

cellular mechanism is inhibited) were obtained using the following equation: 

𝐘 = 𝐁𝐨𝐭𝐭𝐨𝐦 +  [
𝑻𝒐𝒑 −  𝑩𝒐𝒕𝒕𝒐𝒎

𝟏 +  𝟏𝟎(𝑳𝒐𝒈𝑰𝑪𝟓𝟎−𝑿)×𝑯
] 

 

where IC50 is the midpoint of the curve, X is the log concentration of test compound, H is 

the hill slope, and Y is the cellular response (% live cells), starting from the top plateau 

(Top) of the sigmoidal curve to the bottom plateau (Bottom). 

5.2.10. Statistical Analysis 

To investigate the effect of compound biotransformation on toxicity, statistical analysis was 

performed with GraphPad Prism 8. The data are presented as the means ± standard 

deviation (SD). Students’ t-tests were conducted at the same concentration of a test 

compound in the presence and absence of HepaRG spheroids. Statistically significant 

difference between no HepaRG control and HepaRG test conditions was indicated by * for 

p < 0.05 and *** for p < 0.001. 
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5.3. Results  

5.3.1. Viability of 3D-cultured ReNcell VM and HepaRG spheroids 

The viability of ReNcell VM encapsulated in alginate-Geltrex on the 384PillarPlate and 

cultured in complete NSC medium was measured at days 1, 4, 7, and 10 with calcein AM 

and ethidium homodimer-1 staining. In addition, the viability of 3D-cultured ReNcell VM 

was also assessed after 24 h and 72 h of culture in HepaRG maintenance medium. High 

viability of ReNcell VM in the mixture of 0.75% (w/v) alginate and 2.5 mg/mL GFR 

Matrigel on a regular 384-pillar plate with a flat surface has been reported previously in 

chapter 2. Similarly, we have observed high viability of 3D-cultured ReNcell VM in the 

mixture of 0.75% (w/v) alginate and 2.5 mg/mL Geltrex on the 384PillarPlate. Formation 

of ReNcell VM spheroids on the 384PillarPlate was observed over a period of 10 days as 

evidenced by the increased size of spheroids (Figure 5.3A) and the increased fluorescence 

intensity from the ReNcell VM images at days 4, 7, and 10 (Figure 5.3C). The green-

colored dots represent live cells stained with calcein AM. In addition, the viability of 3D-

cultured ReNcell VM was maintained even after 3 days of culture in HepaRG maintenance 

medium, demonstrating the similarity in media compositions between the HepaRG 

medium and the ReNcell VM medium, and the robustness of 3D-cultured ReNcell VM on 

the 384PillarPlate (Figure 5.3B and 5.3D). On the other hand, the viability of HepaRG 

spheroids in the ULA plate was measured at day 3 and day 7 with the CellTiter-Glo assay, 

which measures the ATP level in the cells. We observed that HepaRG spheroids maintained 

high viability in the HepaRG maintenance medium over a period of 1 week (Figure 5.3E). 
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(A) 

 

(B)  

 

(C)    (D)     (E) 

  

Figure 5.3. Viability of 3D-cultured ReNcell VM on the 384PillarPlate and HepaRG 

spheroids in the ULA 384-well plate. (A) Pictures of ReNcell VM encapsulated in 0.75% 

alginate and 2.5 mg/mL Geltrex on the 384PillarPlate, incubated for 10 days, and stained 

with the Live/Dead cell viability assay kit (Scale bar: 500 µm). (B) ReNcell VM viability 

assessed after 24 h and 72 h incubation in HepaRG maintenance medium (Scale bar: 500 

µm). (C) Changes in green fluorescence intensity in 3D-cultured ReNcell VM over 10 

days. (D) Changes in green fluorescence intensity in 3D-cultured ReNcell VM after 

incubation for 24 h and 72 h in HepaRG media. (E) Changes in luminescence in HepaRG 

spheroids cultured in the ULA 384-well plate over 1 week to determine cell viability. 
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5.3.2. Hepatic functions of HepaRG spheroids 

HepaRG spheroids in the ULA 384-well plate were tested for several liver functions 

including representative DME activities and albumin secretion using commercially 

available cell-based assays. Among the most important DMEs, the activity of CYP3A4 

was determined by a non-lytic, cell-based P450-Glo assay, which contains a cell-permeable 

luminogenic substrate (proluciferin) that is converted to luciferin by intracellular CYP3A4. 

Luciferin comes out of the cells, reacts with a luciferin detection reagent (LDR), emits light 

which is proportional to the activity of CYP3A4. CYP3A4 activity in HepaRG spheroids 

was found to be increased over time at day 5 and 9 in HepaRG maintenance medium as 

supported by the increase in luminescence (Figure 5.4A). One of representative Phase II 

enzymes, GST activity was also shown to be increased after 5 days of incubation in 

HepaRG maintenance medium (Figure 5.4B). The activity of GSTs increased nearly 9-

fold over a period of 9 days from 1 µmol/mL/min to 9 µmol/mL/min. CDNB has been used 

as a substrate of GSTs, which is conjugated with GSH through the thiol group of GSH by 

the catalytic activity of GSTs. The GS-CDNB conjugate was detected at 340 nm, and the 

rate of absorbance increase was directly proportional to GST activity. GST activity was 

expressed as µmol/mL/min, which indicates the amount of GS-CDNB conjugate generated 

per min by 1 mL of the reaction solution [273]. Likewise, the activity of UGTs in HepaRG 

spheroids increased from day 5 as evidenced by the increase in the consumption of 

luminogenic proluciferin substrate at day 5 determined by the UGT-Glo assay (Figure 

5.4C). Since proluciferin was converted into glucuronidated luciferin by UGT enzymes in 

the presence of UDPGA, there was decrease in luminescence when UGTs were active, 

whereas native proluciferin reacted with D-cysteine and emitted strong light after 
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conjugation with the luciferin detection reagent. Therefore, the activity of UGTs in 

HepaRG spheroids was determined by subtracting the luminescence from the sample with 

UDPGA from those without UDPGA.  

(A)       (B)                  (C) 

          

Figure 5.4. Representative DME activities in HepaRG spheroids cultured in the ULA 

384-well plate. (A) CYP3A4 activity measured with the P450-Glo assay kit from Promega, 

(B) GST activity measured with the GST assay kit from Sigma-Aldrich, and (C) UGT 

activity measured with the UGT-Glo assay kit from Promega. 

In addition, high levels of albumin secretion from HepaRG spheroids were 

maintained when measured at day 3 and day 7 (Figure 5.5). This result correlates well with 

literature where albumin secretion has been maintained constant over a period of 6 weeks 

in HepaRG cells [274]. A human albumin ELISA kit was used to measure the level of 

albumin secretion in HepaRG spheroids. The standard curve of albumin was generated by 

plotting the average of absorbance difference (i.e., absorbance at 450 nm minus absorbance 

at 550 nm) on Y-axis as a function of the concentrations of albumin standard on X-axis 

(Figure 5.5A). The albumin standard solutions were prepared by diluting 1200 ng/mL of 

albumin with solvent provided in the kit (Assay Diluent C) 2.5-fold serially. The level of 

albumin secretion at day 3 and day 7 was determined by the sigmoidal standard curve, and 

the maximum detection limit was approximately 3000 ng/mL (Figure 5.5B). These results 
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demonstrate the utility of HepaRG spheroids as a metabolically-competent cell model for 

investigating metabolism-mediated neurotoxicity in combination with 3D-cultured 

ReNcell VM. 

(A)         (B) 

 

Figure 5.5. The level of albumin secretion by HepaRG spheroids. (A) The sigmoidal 

standard curve of albumin obtained by plotting absorbance as a function of albumin 

concentration. (B) Albumin secreted by HepaRG spheroids and quantified by the standard 

curve.  

 

5.3.3. High-throughput, metabolism-mediated neurotoxicity on the 384PillarPlate 

Metabolism-mediated neurotoxicity has been demonstrated using metabolism-sensitive 

compounds such as acetaminophen, cyclophosphamide, and IDPN, all of which are known 

to be converted into more cytotoxic metabolites in the presence of hepatic DMEs. 

Metabolites of the compounds were generated by HepaRG spheroids in the ULA 384-well 

plate and tested against 3D-cultured ReNcell VM on the 384PillarPlate by simply 

sandwiching the two plates together. The HepaRG maintenance medium was used as a 

universal medium to maintain high cell viability during the drug exposure for 48 h. The 
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compounds exposed to 3D-cultured ReNcell VM in the absence of HepaRG spheroids were 

used as controls. In addition, dose response curves were plotted by normalizing 

fluorescence intensity obtained from different concentrations of the compounds with those 

from no compound controls. The metabolism effect on 3D-cultured ReNcell VM by the 

compounds at the highest concentration due to the presence of metabolically competent 

HepaRG spheroids was compared with those from the ReNcell VM alone conditions. 

Statistically significant difference was observed between the ReNcell VM-HepaRG case 

and the ReNcell VM alone case in terms of metabolism-mediated neurotoxicity.  

For example, the viability of ReNcell VM reduced up to 50% when exposed to 25 

mM of acetaminophen in the presence of HepaRG spheroids as compared to those in 10% 

reduction in the absence of HepaRG spheroids. This difference was statistically significant 

(p value < 0.001) when analyzed by Students’ t-test (Figure 5.6A). We hypothesized that 

acetaminophen is transformed into its toxic metabolite, NAPQI [275], in the presence of 

HepaRG spheroids, which influenced the viability of 3D-cultured ReNcell VM. This 

hypothesis was supported by high activity of CYP3A4 in HepaRG spheroids (Figure 5.4A) 

and low viability of HepaRG spheroids in the presence of acetaminophen (Figure 5.7 A). 

Similarly, the viability of ReNcell VM reduced approximately 40% when exposed to 25 

mM of cyclophosphamide in the presence of HepaRG spheroids as compared to those in 

15% reduction in the absence of HepaRG spheroids. This difference was statistically 

significant (p value < 0.05) (Figure 5.6B). The prodrug, cyclophosphamide, is well known 

to be metabolized by CYP450 isoforms including CYP3A4 and CYP2B6 [276]–[278] into 

active metabolite, 4-hydroxycyclophosphamide. Therefore, the augmented toxicity of 

cyclophosphamide in the presence of HepaRG spheroids in our study correlates well with 
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literature where the cytotoxic effect of 4-hydroxycyclophosphamide has been reported by 

its metabolism by CYP3A4 [276], [279]. Finally, the viability of ReNcell VM reduced 32% 

when exposed to 4 mM of IDPN in the presence of HepaRG spheroids whereas there was 

only 8% reduction in the viability of ReNcell VM in the absence of HepaRG spheroids 

(Figure 5.6C). This difference was statistically significant (p value < 0.05), thereby 

demonstrating the effectiveness of our co-culture system in assessing metabolism-mediated 

neurotoxicity of chemicals in high throughput.  

 (A)         (B)         (C) 

  

Figure 5.6. Dose response curves of 3D-cultured ReNcell VM on the 384PillarPlate 

tested with HepaRG spheroids in the ULA 384-well plate in the presence of test 

compounds: (A) acetaminophen, (B) cyclophosphamide, and (C) IDPN. For cell viability, 

membrane integrity of 3D-cultured ReNcell VM was measured with calcein AM staining. 

* is for p < 0.05 and *** is for p < 0.001. 

(A)         (B)         (C) 

 

Figure 5.7. Dose response curves of HepaRG spheroids in the ULA 384-well plate 

tested with the compounds: (A) acetaminophen, (B) cyclophosphamide, and (C) IDPN. 

Cell viability was measured by the Cell Titer-Glo assay. 
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5.4. Discussion 

Assessing the toxicity of parent compounds and their metabolites is of critical importance 

in pharmaceutical and chemical industries for safer product development. To investigate 

metabolism-mediated effects of potential neurotoxicants in vitro, it requires to incorporate 

hepatic cell culture in neural cell culture [272]. Primary hepatocytes and hepatic cell lines 

expressing individual or multiple DMEs are primarily used to provide metabolism 

competence [271], [280]. In our study, we incorporate HepaRG spheroids due to their 

robustness and user friendliness. Although HepaRG cells are derived from tumors of a 

female patient suffering from chronic hepatitis C infection and hepatocarcinoma [281]–

[283], they have gained enormous popularity as an in vitro model system in the field of 

drug metabolism and toxicology due to its similarity to primary human hepatocytes in 

terms of DME gene expressions and liver-specific functions as compared to other cells 

lines [270], [282], [284], [285]. For example, HepaRG cells express similar or higher levels 

of CYP450 enzymes compared to primary human hepatocytes [270], [274], [283]. CYP450 

enzymes, monooxygenases, are a class of DMEs, which play a major role in 

biotransformation of various compounds including drug candidates and environmental 

chemicals. Since some of their metabolites are more cytotoxic than parent compounds, 

CYP450 enzymes are in part responsible for metabolism-induced toxicity [264], [276], 

[278]. Among dozens of major isoforms of CYP450s, CYP3A4 alone can metabolize 

almost 50% of known therapeutic drugs [286] and is therefore subjected to a wide range of 

studies [269], [287], [288]. Formation of reactive metabolites after CYP3A4 metabolism 

is a critical issue in drug safety screening [289].  
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Increased activities of CYP450s along with GSTs and UGTs in our HepaRG 

spheroids correlated well with other HepaRG cell studies where increased expression levels 

of DMEs and hepatic functions were observed in 2D monolayer cultures and 3D spheroid 

cultures with hepatic cell culture media supplemented with DMSO [270], [274], [282], 

[283]. For example, Aninat et al. demonstrated increased expression levels of DMEs with 

longer periods of incubation in 2% DMSO-supplemented media [283]. Similarly, in the 

study by Hart et al., up-regulation of CYP3A4 and UGTs in HepaRG cells incubated over 

a period of 2 weeks in the maintenance medium was observed, which was comparable to 

the levels of the enzymes in primary hepatocytes [270]. In addition, Kanebratt and 

Andersson showed the increased expression level of CYP3A4 over time in the presence of 

2% DMSO [274]. Moreover, albumin secretion from HepaRG spheroids at day 3 and 7 in 

this study is comparable to the level of albumin secretion obtained by Wang et al., in their 

study with tethered spheroids of HepaRG cells [290]. In our study, the HepaRG 

maintenance medium containing DMSO was added after 24 h of HepaRG cell seeding in 

the ULA 384-well plate, replacing the thawing and plating media. As a result, increased 

activity of DMEs was observed after 72 h of incubation in the maintenance medium.  

Metabolism-sensitive compounds including acetaminophen, cyclophosphamide, 

and IDPN were selected based on the information of their metabolism by DMEs. For 

example, acetaminophen is widely used as an analgesic and antipyretic drug and its 

overdose is known to be one of the most common drug-induced liver injuries [1,2]. 

Acetaminophen is well known to be metabolized by CYP450s into highly reactive and 

unstable metabolite, N-acetyl-p-benzoquinone imine (NAPQI), which is primarily 

responsible for acetaminophen-induced hepatotoxicity. Detoxification of NAPQI occurs 
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through its binding to the sulfhydryl group of GSH to form acetaminophen-glutathione. 

However, high dosages of acetaminophen consume intracellular GSH and saturate 

glucuronidation reaction mediated by UGTs, both of which are the main mechanism of 

liver protection from toxic compounds, resulting in high levels of NAPQI in the hepatic 

cells and leading to liver injury [275], [291], [292]. Cyclophosphamide, a widely used 

chemotherapeutic drug, is known to have severe side effects and metabolism-induced 

toxicity at high dosages in humans when metabolized into 4-hydroxycyclophosphamide by 

CYP450s such as CYP3A4 and CYP2B6 [223], [278], [279]. In the study by Yokoyama et 

al., HepaRG cell viability was reduced to 57% at 25 mM of cyclophosphamide dosage for 

48 h, which was alleviated by co-treatment with 100 µM of 1-aminobenzotriazole, a broad 

CYP inhibitor [278]. In our study, statistically significant, metabolism-mediated 

hepatoxicity and neurotoxicity were observed at 25 mM of cyclophosphamide dosage, 

indicating the effect of the reactive metabolite generated by CYP450s in HepaRG 

spheroids. IDPN that produces profound behavioral abnormalities has been widely 

explored for its neurotoxic potential in in vivo studies [293]–[295]. It has been known to 

be metabolized by DMEs, specifically flavin-containing monooxygenases (FMOs) to 

reactive metabolites including N-hydroxy-IDPN that are more neurotoxic than the parent 

compound [296], [297]. FMOs have been known to be expressed moderately as compared 

to CYP450s in HepaRG cells [270], [284]. We have explored the metabolism-mediated 

cytotoxic effect of IDPN with HepaRG spheroids and its downstream effect on 3D-cultured 

ReNcell VM on the 384PillarPlate for the first time.  

Metabolism-mediated neurotoxicity of xenobiotics has been primarily investigated with 

the CYP enzymes locally expressed in brain [288], [298], [299].  However, considering the 
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interactions between organs such as liver and brain in the whole organism and its role in 

determining the accumulation of xenobiotics in the target organ, a single organ cell culture 

might be insufficient to predict the probable toxic effects of drugs in vivo [300].  In 

addition, the permeability of metabolites through blood brain barrier (BBB) also needs to 

be considered since, the BBB provides the first line of defense against xenobiotics and 

regulates the effect of compounds and their metabolites in human brain. The BBB is formed 

by specialized endothelial cells lining cerebral micro-vessels characterized by high 

electrical resistance, epithelial-like tight junctions that facilitates the uptake of essential 

nutrients and efflux of xenobiotics [301], [302]. Thus, understanding the metabolite 

penetration of the BBB will be critical in considering the co-culture system for metabolism-

mediated neurotoxicity. However, modeling the complex interactions between BBB and 

other cellular components of the CNS in vitro is a challenging task. Therefore, it is only 

recently, that in vitro models with BBB has been considered for neurotoxicity studies. For 

example, Koo et al., recently reported a microfluidic 3D brain culture platform consisting 

of two membrane-free compartments and an endothelial cell-lined vascular compartment 

to take into account the penetration of xenobiotics across BBB [245].  

Microfluidic tissue-on-chip platforms possess limitations in terms of its adaptation in high-

throughput compound screening. On the other hand, the 384PillarPlate is compatible with 

standard 384-well plates and existing HTS equipment and cell imagers. The unique 

384PillarPlate platform offers robust, high-throughput, cost-efficient, 3D cell culture for 

testing mechanisms of toxicity by various compounds and environmental chemicals. 

Individual cell spots or multiple cell spots in layers can be printed accurately on the 

384PillarPlate using a microarray bioprinter or manually dispensed using multichannel 
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pipettes for tissue engineering and disease modeling. The 384PillarPlate requires relatively 

small amounts of cells, hydrogels, extracellular matrices, growth factors, compounds, and 

reagents for creating and evaluating bioprinted cells/tissues. Cell image acquisition from 

bioprinted cells/tissues is straightforward because the entire sample depth fits within the 

focus depth of a normal objective (4x). Although the metabolism-mediated neurotoxicity 

testing system established in 384PillarPlate/384-well plate combination in this study did 

not consider BBB for the simplicity and high-throughput testing. Multiple cell types can in 

fact be cultured in 3D in the ULA 384-well plate and on the 384PillarPlate separately and 

combined later for compound tests for relatively short periods of time, which reduces 

critical concerns for developing universal media for co-cultures significantly. Moreover, 

highly reproducible, high-throughput precision printing allows us to test a variety of cell 

culture conditions and individual drugs/mixtures of drugs in combination, which makes it 

well suited for early-stage HTS of compound libraries. 

5.5. Conclusions 

We successfully established a metabolism-mediated neurotoxicity testing system by 

combining metabolically competent HepaRG spheroids in the ULA 384-well plate with 

3D-cultured neural stem cell line, ReNcell VM on the 384PillarPlate. To the best of our 

knowledge, the 384PillarPlate coupled with the ULA 384-well plate is the only system that 

can provide a simple and straightforward method to facilitate two organ-organ 

communications (e.g., liver metabolism influencing brain developmental toxicity) in high 

throughput. This system will require validation with several known neurotoxic and non-

neurotoxic compounds for their potential to induce neurotoxicity after biotransformation 

accompanied by high-content imaging assays. Overall, the 384PillarPlate can be used as a 
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promising tool for predictive human toxicology in pharmaceutical and chemical industries 

with 3D-cultured human cells. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE DIRECTIONS 

6.1. Conclusions 

Relatively small numbers of commercially available chemicals have been subjected to 

international guidelines studies for developmental neurotoxicity, creating a high demand 

for evaluating the neurotoxicity potential of drug candidates and industrial chemicals. The 

assessment of neurotoxicity and developmental neurotoxicity (DNT) is based on high-dose 

animal testing according to OECD test guideline (TG) 426 and TG 443. Adverse effects 

on neurodevelopment could also result in altered neuronal cell populations in the absence 

of cell death and thus may not be detected by regular cytotoxicity screening. In addition, 

there are differences in the brain development of humans and animals, leading to inaccurate 

assessment of human health risk based on animal data. Significant efforts have been 

exerted towards the development of mechanism-based, in vitro assays using human cells, 

particularly after the release of the Tox21 vision document (NRC 2007) in 2007. However, 

the majority of existing in vitro systems are still based on 2D cell monolayers which do not 

provide physiological relevance required for high predictability of neurotoxicity in vivo. 

 This dissertation details the methods for creating 3D-cultured NSCs in high-throughput 

platforms and demonstrates the feasibility for performing high-throughput neurotoxicity 
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assessment to predict the toxicity of unknown chemicals in vivo. In this study, we 

successfully established miniaturized 3D-cultured ReNcell VM in biocompatible 

hydrogels on multiple high-throughput cell culture platforms and constructed a highly-

efficient promoter-reporter assay system for rapid assessment of lineage-specific 

differentiation of human NSCs. We further established various high-content imaging (HCI) 

assays for the assessment of mechanisms of neurotoxicity and demonstrated rapid 

assessment of metabolism-mediated neurotoxicity using 3D-cultured ReNcell VM and 

HepaRG spheroids. 

 The high-throughput neurotoxicity testing system presented in this work can be 

implemented in various industrial and academic settings to identify the effects of 

therapeutic drug candidates and environmental chemicals in NSC morphology, cell 

function, molecular actions on cell surface receptors, and mechanisms of toxicity, thereby 

ultimately enhancing the predictability of DNT in vivo. For example, the 3D NSC culture 

system combined with recombinant lentiviruses developed in Aim 1 can be used to rapidly 

assess the effect of compounds on viability and differentiation of NSCs. The promoter-

reporter assay system developed in this study enabled efficient measurement of cell 

differentiation and self-renewal by simply comparing green and red fluorescence 

intensities from the NSCs. The high-throughput ion channel and ABC-transporter assays 

established in Aim 2 combined with the HCI assays established in Aim 3 will enable 

researchers to rapidly screen the effect of unknown compounds on various morphological 

and functional features with high predictability. In addition, our unique demonstration of 

metabolism-mediated neurotoxicity in the two 3D cell culture systems enabled 

identification of the toxic effect of compounds and their metabolites. The outcomes from 
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all the aims can be combined to establish an intensive neurotoxicity testing system with a 

battery of tests that can ensure rapid assessment of neurotoxicity in a physiologically 

relevant cellular model. We envision that our high-throughput, 3D NSC platform can be 

implemented for large-scale screening of drug candidates and environmental toxicants for 

their potential in causing DNT. Table 4 summarizes the key findings of each aims. 

Table 4. Summary of results from individual aims 

Aim 1 Aim 2 Aim 3 

Demonstrate high 

neuronal cell functions 

on 3D NSC microarrays 

within biomimetic 

microenvironments in 

high-throughput on the 

chip platform 

Establish high-throughput 

ion channel and 

transporter assays in 3D-

cultured NSCs for 

neurotoxicity assessment 

Establish HCI assays on 3D 

NSC microarrays to 

investigate mechanistic 

profiles of toxicity by 

compounds and their 

metabolites 

• Optimized ReNcell 

VM encapsulation 

conditions on the 

micropillar and 

microwell chip 

platform 

• Established 

miniaturized 3D 

ReNcell VM culture in 

alginate-GFR Matrigel 

hydrogels with high 

NSC viability and 

spheroid formation 

• Constructed 

recombinant 

lentiviruses with dual 

promoters for 

measuring transduction 

efficiency and NSC-

specific biomarkers 

• Infected ReNcell VM 

with recombinant 

lentiviruses and 

demonstrated high 

• Identified major ion 

channels and ABC-

transporters expressed 

in ReNcell VM via 

RNA-Seq 

• Established 3D NSC 

culture on the 384-

pillar plate for long-

term cell culture 

• Demonstrated high cell 

viability and spheroid 

formation over 2 

months 

• Established high-

throughput potassium 

channel and calcium 

channel assays in 3D-

cultured NSCs with a 

high signal-to-

background ratio 

• Measured the activity 

of Kv 7.2, Kv 4.3 and 

SOCC in 3D-cultured 

• Optimized the 

concentrations of 

fluorescent dyes to get a 

high signal-to-background 

ratio in 3D NSC culture 

• Established robust and 

reproducible HCI assays 

in 3D-cultured NSCs to 

assess mechanisms of 

action of test compounds 

• Investigated the dose-

dependent effect of test 

compounds and 

determined IC50 values 

from the dose-response 

curves 

• Identified mitochondrial 

impairment as the main 

mechanism of toxicity 

among the HCI assays 

• Established 3D NSC 

culture on the 

384PillarPlate and 
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neuronal functions in 

3D NSC culture 

• Validated the 

selectivity of 

recombinant 

lentiviruses with 

differentiation inducers 

NSCs with specific 

inhibitors 

• Established high-

throughput ABC-

transporter assays and 

measured the TAF with 

specific inhibitors 

HepaRG spheroids in the 

ULA 384-well plate 

• Demonstrated high DME 

activities in HepaRG 

spheroids  

• Combined 3D NSC 

culture and HepaRG 

spheroids for the 

assessment of 

metabolism-mediated 

neurotoxicity with test 

compounds 

 

6.2. Future Directions 

1. Although cell viability and spheroid formation of NSCs were shown to be increased 

in the mixture of alginate and GFR Matrigel/Geltrex, alginate which is an inert 

hydrogel did not facilitate cell-ECM interactions. In the future, naturally derived 

ECM hydrogels should be considered for 3D cell/organoid culture to achieve high 

cell viability and cell-ECM interactions, mimicking the in vivo features. 

2. The 3D NSC culture established on the 384PillarPlate platform was a simple proof-

of-concept system which needs to be improved by developing brain organoids 

comprising of all major cell types, including neurons, astrocytes, and 

oligodendrocytes, which recapitulate the aspects of human brain development and 

function more closely. 

3. Various combinations of growth factors and small molecules should be investigated 

for efficient differentiation of NSCs into neurons, astrocytes, and oligodendrocytes 

and compare the effect of test compounds on differentiation of NSCs. 
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4. Gene expression data for major ion channels and ABC-transporters obtained from 

RNA-Seq analysis should be validated at protein levels with immunofluorescence 

assays or western blots.  

5. The effect of unknown compounds on the modulation of ion channels and 

transporters, and their influence on physiological functions of 3D-cultured NSCs 

such as proliferation, differentiation, and migration should be investigated. 

6. We did not investigate the expression of functional ion channels and transporters 

in differentiated NSCs (excitable neuronal cells). Future studies should consider 

investigating the differentiated cells for the activities of ion channels and 

transporters. 

7. The HCI assays established in Aim 3.1 need to be validated with a large number of 

test compounds including neurotoxic compounds and control compounds with no 

known neurotoxicity. 

8. Sensitivity and specificity must be calculated to determine the predictivity of the 

HCI assays established in Aim 3.1. 

9. DNT-specific endpoints such as migration, proliferation, neurite outgrowth, 

synapse formation must be included to improve the predictability of in vivo DNT. 

10. In Aim 3.2, we established metabolism-mediated neurotoxicity assays with only 

three metabolically active test compounds and one assay. To validate the two 3D 

cell culture systems and ensure high predictability of metabolism-mediated 

neurotoxicity in vivo, a large number of metabolically active compounds along with 

control compounds must be tested with multiple DNT-specific endpoints.   
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11. Incorporation of microvasculature and blood-brain barrier in in vitro brain organoid 

models would enable understanding of the expression of efflux and transporter 

proteins and small molecules and the permeability of reactive metabolites to the 

brain and provide more accurate predictability of in vivo exposure scenarios. 
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APPENDIX 

 

Apart from voltage-gated potassium channels and store-operated calcium channels, 

chloride ion channel assays were also investigated on monolayers of ReNcell VM in the 

96-well plate using Premo™ halide sensor kit (Thermo Fisher). This assay consists of 

baculovirus-mediated gene delivery (BacMam technology) to introduce genes for the 

Premo™ halide sensor into the cells and express the corresponding protein. The Premo™ 

halide sensor is based on a green fluorescent protein (GFP) that is sensitive to iodide ions, 

an analog of halide ions. When iodide ions permeate through chloride ion channels, they 

react with the Premo™ halide sensor, resulting in a loss of fluorescence emission intensity. 

Thus, bright intracellular fluorescence can be observed at an excitation/emission 

wavelength of 515/530 nm when chloride ion channels are closed in the presence of 

blockers. Similarly, the opening of chloride ion channels with activators can be detected 

by measuring decrease in GFP fluorescence. 

The expression level of Premo™ halide sensor was optimized on 2D-cultured ReNcell 

VM. Briefly, ReNcell VM was seeded in the laminin-coated 96-well plate at 10,000 

cell/well and incubated for 24 h prior to infection with varying concentrations of the 

baculovirus carrying genes for Premo™ halide sensor. Five different concentrations of the 

baculovirus solutions were prepared by mixing the baculovirus stock solution with growth 

media at different ratios (10:90, 20:80, 30:70, 40:60, and 50:50), and then 50 µL of the 

mixtures were added in the 96-well plate with ReNcell VM monolayers for over 16 h to 

allow the expression of Premo™ halide sensor. The optimum ratio of baculovirus to growth 

media was determined by analyzing green fluorescent cell images obtained from S+ 
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Scanner (Figure 1). As a result, the optimum level of Premo™ halide sensor expression 

was achieved at the 40:60 ratio of baculovirus to growth media. The opening of chloride 

ion channels and subsequent quenching of Premo™ halide sensor was achieved by adding 

a stimulus buffer containing sodium iodide (NaI) at a final concentration of 75 mM (Figure 

1). The decrease in green fluorescence signals in the cell images indicates the entry of 

iodide ions into the cells through chloride ion channels and subsequent reaction with 

Premo™ halide sensor.  

After determining the optimum transduction condition with the baculovirus, the 

Premo™ halide ion channel assay was tested with a chloride ion channel activator, 

lubiprostone, on monolayers of ReNcell VM. Briefly, ReNcell VM was seeded in the 

laminin-coated 96-well plate at 10,000 cell/well and incubated for 24 h prior to the 

baculovirus infection with the 40:60 ratio of baculovirus to growth media. After the 

baculovirus infection for over 16 h for expressing the Premo™ halide sensor, the 

monolayers of ReNcell VM in the 96-well plate were exposed to 6 different concentrations 

of lubiprostone for 30 min. This was followed by adding a stimulus buffer containing 75 

mM of sodium iodide and imaging the cells with S+ Scanner. To obtain baseline 

fluorescence and investigate the effect of lubiprostone on 2D-cultured ReNcell VM 

expressing the Premo™ halide sensor, the pictures were taken before and after stimulation 

and the dose response curve was obtained (Figure 2). As expected, dose-dependent 

decrease in fluorescence was observed, which indicate that chloride ion channels were 

activated with lubiprostone and iodide ions entered through chloride ion channels reacted 

with the Premo™ halide sensor, resulting in the quenching of fluorescence. 
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(A) 

 

(B) 

 

 

Figure 1. Optimization of Premo™ halide sensor performed on monolayers of ReNcell 

VM in a 96-well plate. ReNcell VM was seeded in the 96-well plate at 10,000 cells/well 

and cultured for 24 h prior to infection with recombinant baculovirus carrying genes for 

Premo™ halide sensor. Baculovirus solutions were prepared by mixing the baculovirus 

stock solution with growth media at different ratios (10:90, 20:80, 30:70, 40:60, and 50:50). 

In addition, 50 µL of the mixtures were added in the 96-well plate with ReNcell VM 

monolayers and incubated for over 16 h as recommended by the vendor to infect ReNcell 

VM and allow the expression of Premo™ halide sensor. (A) Images of baculovirus-infected 

ReNcell VM obtained at exposure time of 500 milliseconds. The optimum expression of 

Premo™ halide sensor in ReNcell VM was observed at a ratio of 40:60 for baculovirus to 

growth media. Scale bar: 100 µm. (B) Images of baculovirus-infected ReNcell VM 

obtained after stimulation with a buffer containing sodium iodide (NaI) at 75 mM. The 

decrease in fluorescence intensity after stimulation is indicative of the subsequent entry of 

iodide ions into the cells. Scale bar: 100 µm. 
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(A) 

  

 

(B)  

  

Figure 2. Premo™ halide sensor-based chloride channel assay performed on 

monolayers of ReNcell VM in a 96-well plate with an activator. ReNcell VM was seeded 

in the 96-well plate at 10,000 cells/well and cultured for 24 h prior to infection with 

recombinant baculovirus carrying genes for Premo™ halide sensor. A baculovirus solution 

was prepared by mixing the baculovirus stock solution with growth media at 40:60 ratio. 

In addition, 50 µL of the mixture was added in the 96-well plate with ReNcell VM 

monolayers and incubated for over 16 h to infect ReNcell VM and allow the expression of 

Premo™ halide sensor. (A) Images of baculovirus-infected ReNcell VM after stimulation 
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with a buffer containing sodium iodide (NaI) at 75 mM and exposure to lubiprostone, a 

potent chloride channel activator. The decrease in fluorescence intensity after stimulation 

and exposure to lubiprostone is indicative of the subsequent entry of iodide ions into the 

cells. The black dotted image represents baculovirus-infected ReNcell VM before 

stimulation and lubiprostone exposure (control). All images were obtained at exposure time 

of 700 milliseconds with S+ Scanner. Scale bar: 100 µm. (B) Decrease in green 

fluorescence intensity due to lubiprostone-induced chloride ion channel opening, obtained 

from baculovirus-infected ReNcell VM in the 96-well plate. Scale bar: 100 µm. 
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