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ROBUST IMPEDANCE CONTROL OF A FOUR DEGREE OF FREEDOM

EXERCISE ROBOT

SANTINO BIANCO

ABSTRACT

The CSU 4OptimX exercise robot provides a platform for future research

into advanced exercise and rehabilitation. The robot and its control system will au-

tonomously modify reference trajectories and impedances on the basis of an optimiza-

tion criterion and physiological feedback. To achieve this goal, a robust impedance

control system with trajectory tracking must be implemented as the foundational

control scheme. Two control laws will be compared, sliding mode and H∞ control.

The above robust control laws are combined with underlying impedance control

laws to overcome uncertain plant model parameters and disturbance anomalies affect-

ing the input signal. The sliding mode control law is synthesized based on a nominal

plant model due to its inherent nature of overcoming unspecified, un-modeled dy-

namics and disturbances. Implementation of the H∞ control law uses weights as well

as the nominal plant, a structured parametric uncertainty model of the plant, and

a model with multiplicative uncertainty. The performance and practicality of each

controller is discussed as well as the challenges associated with attempts to implement

controllers successfully onto the robot.

The findings of this thesis indicate that the closed loop controller with sliding

mode is the superior control scheme due to its abilities to counter non-linearities. It

is chosen as the platform control scheme. The 2 out of 3 H∞ controllers performed

well in simulation but only one was able to successfully control the robot. Challenges

associated with H∞ control implementation toward impedance control include defin-

ing proper weight shapes that balance performance and practicality. This challenge

is a starting point for future research into general weight shape determination for H∞
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robust impedance control.
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CHAPTER I

Introduction

Impedance control is an approach to the control of the dynamic interaction

between a manipulator and its environment. It is different from force and position

control techniques that act on the feedback error between an actual and desired value.

Impedance control aims to regulate the ratio of force output to motion input of a de-

sired impedance behavior [5]. This characteristic makes it a suitable control approach

for environment manipulation and human-machine interaction in robotics. Given a

motion input, an impedance force is imparted at the interaction point between the

machine and an object/human. All achievable impedance forces can be characterized

by an impedance equation where M is the mass, B is the damping, K is the spring

constant, and x is the position along with its subsequent time derivatives.

f(x, ẋ, ẍ) = Mẍ+Bẋ+Kx (1.1)

Simple impedance regulation involves integrating the function above with

a plant in order to imitate a prescribed behavior. Essentially, impedance control is

equivalent to adding a physical mass-spring-damper to a plant. However, it is evi-

dent that the mass-spring-damper effect is entirely virtual and produces the behavior

through a control input.
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(a) Plant (b) Desired Behavior of Plant

Figure 1: Impedance Control Interpretation

In order to explain impedance control implementation, an elementary example shows

how a simple impedance controller is constructed for a mass with two input forces.

Beginning with a dynamic equation of a mass, an actuator force, FA, is added in one

direction and a force applied by a person, FP , is added in the opposite direction, as

seen in Figure 1a.

mẍ = FA − FP (1.2)

For the plant to produce the desired impedance shown mathematically in (1.1) and

physically in Figure 1b, the impedance function must be set equal to the force of the

person pushing on the mass. This mathematical relation means that the force pro-

duced by the person pushing on the mass must equal a general impedance behavior.

It is important to set the impedance function equal to a measured or observed force

for increased performance in obtaining the desired impedance.

Mẍ+Bẋ+Kx = −FP (1.3)

In order to combine the impedance function with the plant, both accelerations must

be set equal to one another. This merging of functions allows for a virtual mass-

spring-damper to be added to the plant.

FA − FP
m

=
−FP −Kx−Bẋ

M
(1.4)

2



Solving for the inverse dynamics where FA is now the controller output force yields a

simple impedance controller.

FA =
(

1− m

M

)
FP −

mK

M
x− mB

M
ẋ (1.5)

This controller and plant yields a closed loop control system shown below.

Figure 2: Simple Impedance Closed Loop Block Diagram

Simple impedance controllers are practical where exact impedance is not

required. For increased accuracy in achieving a desired impedance, additional control

laws, such as the laws used in this thesis, are necessary to achieve desired behav-

ior during manipulator interaction. These strategies are needed due to modeling

errors and disturbances that affect the plant from producing the exact impedance

that equation (1.5) theoretically dictates. Non-robust, model-based controllers, such

as this simple impedance controller, generally fall victim to such problems. Those

control strategies are implemented on a custom exercise machine at Cleveland State

University, the CSU 4OptimX.

1.1 Motivation

Exercise machines produce forces that apply stress to selected muscle groups.

These force vectors are normally static, such as weights, or linearly dynamic, such as

resistance bands. Common exercise machines have the ability to change the amount

of resistance but not in real time. Using impedance control with electric motors to

dynamically modulate the force vector presented to the user in real time has many

3



benefits to different applications and in different industries. Examples of applications

will be presented in the upcoming section.

The impedance control application presented in this thesis is a stepping stone

in a much larger research effort. Currently, much of the impedance control applica-

tions are in rehabilitation robotics. There are few to no examples where impedance

control is applied to exercise machines for able-bodied individuals. This presents a

path for growth in the technology of exercise machines. In an effort to create ad-

vanced exercise machines, this application of robust impedance control will provide

the footing for a larger research effort into developing adaptive exercise machines.

Adaptive exercise machines will be capable of adjusting impedance parameters and

trajectories based on biological input from the user.

The goal of this thesis is to implement a robust impedance control sys-

tem with trajectory tracking as the foundational control scheme. A secondary goal

is to compare the performance and practicality of two robust control laws toward

impedance control: sliding mode and H∞ control. The need for comparison arises

from the lack in knowledge of using H∞ control toward achieving accurate impedance

control. This thesis will answer the question of whether an optimized, robust, fixed

gain controller can outperform a robust non-linear controller for the given application.

1.2 Literature Review

Applications involving impedance control can be a broad topic to describe

concisely. Therefore, previous research is broken down according to applications in-

volving similar machines to the one described in this thesis, applications of those

machines to different industries, and applications that show where this research will

be headed in the future. Examples of these applications include upper body reha-

bilitation robots, exercise machines in space, and robots utilizing muscle activation

4



feedback.

1.2.1 Upper Body Rehabilitation Robots

Impedance control for rehabilitation robots has been achieved in various

applications throughout recent history. The control theory can be used in robotics

to aid movement and apply varying degrees of force, simultaneously, for user reha-

bilitation. In this cited case, a 3 degree of freedom robotic arm utilizing impedance

control theory aids the user in varying degrees during upper body exercises [13].

Figure 3: Rehabilitation Robot with Hybrid Force/Impedance Control [13]

The resulting goal of the “Active-Assist” mode, which utilizes impedance control, is to

keep the user on a predefined trajectory as the user moves the robotic arm through a

predefined space. Similar research by Ju et al. uses a hybrid force/position controller

to maintain wrist position to a required trajectory while simultaneously providing a

resistive force tangential to the path [6].

5



(a) Robot
(b) Schematic

Figure 4: Rehabilitation Robot with Hybrid Force/Position Control [6]

Although this example does not include impedance control, the design of

this robot and other impedance control robots is of great value when describing

where impedance control and rehabilitation efforts lie in the past and present. Many

of the rehabilitation robots, such as the ones listed previously, are more comparable to

exoskeletons in the sense that they operate next to the arm and its joints either to aid

or to resist movement. The robot presented in this thesis will aid the user by resisting

movement from an individual standing opposite to the robotic arm. Many able-bodied

exercise machines, as opposed to rehabilitation machines, have this approach.

It is also notable to add that there is not an abundance of research pertain-

ing to the development of gym-style exercise machines utilizing electric motors with

impedance control such as the CSU 4OptimX. One such recent example includes work

done by Richter et al. at Cleveland State University toward impedance control and

energy regeneration on an electric motor controlled rowing machine [20], [16], [2].

6



Figure 5: Electric Motor-controlled Rowing Machine [2]

Another decades-old application includes an electric motor-aided weight stack that

provides asymmetric force output to the user [17]. The device is an attachment to

a weight stack and uses force control to apply added force when lowering the weight

stack. This addition of force is useful for eccentric muscle movements during exercise

to increase muscle activation during the full range of motion.

(a) Full View

(b) Motor

Figure 6: Electric Motor-aided Weight Stack [17]
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The rowing machine is most similar to the CSU 4OptimX in the sense that electric

motors will replace weights, not aid them. Also, using only electric motors gives full

control of the weight to the control system. This provides an extra measure of safety

for the user, no matter the application.

1.2.2 Exercise Machines in Space

Exercising in space is slightly more complicated than on Earth. Since the

International Space Station (ISS) is falling around Earth, so is everything else in

it. This concept creates the illusion of weightlessness. Moreover, any masses used

in traditional, Earth-based exercise cannot be used because they would appear to be

weightless as well. Only the inertia effects of the mass would provide resistance to the

user. Therefore, any resistances used for weight training or to aid in other exercises,

such as staying positioned on a treadmill, must be produced by other sources than

gravity. Once such paper describes many of the exercise devices used on the space

station and their effectiveness [15].

One such exercise machine is the Advanced Resistive Exercise Device (ARED).

This device operates on two different force producing mechanisms. Once mechanism

is a lever arm attached to a vacuum piston assembly. The other is the use of a flywheel

and its inertial properties to mimic the inertial load of a free weight. This device is

meant for lower body exercises such as squats, dead lifts, and calve raises, but can

be used for all muscle groups. It can produce up to 600 lbs. of force to the user [18].

This device is retired from the ISS. It was replaced by the device presented next.

8



Figure 7: Advanced Resistive Exercise Device (ARED)

Another exercise device used on the space station is the Interim Resistive

Exercise Device (iRED) [1]. The iRED contains a series of 16 flex packs stacked

vertically inside cylindrical canisters and is designed to provide resistance training

for crew members in micro-gravity. A flex pack consists of a ring disk aluminum

outer rim, with rubber spokes protruding inward toward a center hub. The flex packs

revolve about a metal axle. When the metal axle is turned, the rubber spokes are

stretched, increasing the resistance offered by the device [4]. This device is capable

of up to 300 lbs. of force and can support all muscle groups in the human body.

9



Figure 8: Interim Resistive Exercise Device (iRED)

Ways of training the cardiovascular system on the international space station

include the use of the Treadmill with Vibration Isolation and Stabilization (TVIS)

system [11]. On the ISS, the TVIS is suspended within an opening in the service

module floor and allows limited movement in six degrees of motion. The Vibration

Isolation and Stabilization (VIS) System is intended to minimize the dynamic forces

of exercise being transferred to the structure of the ISS service module, while main-

taining a relatively stable exercise surface. Movement of the TVIS is counteracted

with active (gyroscope and stabilizer) and passive (bungees and wire ropes) vibration

isolation systems. The active components of the VIS system are the gyroscope, four

linear slide-mass stabilizers, four motor controllers and a VIS controller. The running

surface of the treadmill is used in much the same way as any conventional treadmill,

except the user is held to its surface by the Series Bungee Systems (SBS), which

uses latex rubber tubes and/or by the Subject Load Device (SLD), which attach

to a shoulder and waist treadmill harness to counter the micro-gravity (µg) environ-

10



ment. When used without the SLDs, the SBSs are considered the contingency loading

configuration [14].

Figure 9: Treadmill with Vibration Isolation and Stabilization (TVIS)

The second way of cardiovascular training in space uses the Cycle Ergometer

with Vibration Isolation and Stabilization (CEVIS) system. The system is essentially

a recumbent bicycle. CEVIS is computer controlled and maintains an accurate work-

load independent of pedal speed. The ergometer contains the main mechanics and

electronics. Friction and resistance are applied to an internal flywheel via a braking

band, which is adjusted by a stepper motor. The stepper motor adjusts the tension

in the braking band to maintain a constant workload independent of pedal speed [23].

11



Figure 10: Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS)

As described in the above examples, none of the current or former ISS exer-

cise machines use electric motors to produce dynamic resistance. The CSU 4OptimX

provides a conceptual platform for the development of space exercise machines such

as the ARED and the iRED. A concept that will advance dynamically controlled

exercise machines is presented in the next section.

1.2.3 Muscle Activation Feedback

Impedance control is fundamental and essential for human/machine inter-

action. Successful implementation of impedance control techniques involve the use

of a force sensor to quantify the amount of human interaction with the robot. That

interaction quantification is used by the controller for increased accuracy in obtain-

ing the desired impedance. Elaborating further, it is a goal of many researchers in

human/machine interaction to provide a bridge of data directly from the user to the

12



robot in order to allow for more advanced impedance control of robots. That bridge

is muscle activation sensing through surface electromyography (sEMG). Li et al. uses

these biological signals to design the optimal reference impedance model that allows

an exoskeleton to supply the correct amount of impedance to the user [9].

Figure 11: Upper Limb Robotic Exoskeleton Using Biological Signals [9]

Developing an electro-skeletal model of the human upper limb and calibrating it to

match the users motion behavior allows for this type of advanced impedance con-

trol to happen. More similar work done by Kiguchi et al. involves the same goal

of advanced impedance control for exoskeletons using neural networks for optimal

reference impedance determination [7].

(a) Mechanism

(b) EMG Placement

Figure 12: Upper-Limb Power-assist Exoskeleton Robot [7]

Song et al. also conducted successful research using EMG aided impedance
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control to assist stroke patients during rehabilitation [22]. All of these examples apply

to either robotic arms or exoskeletons that assist severely disabled users while they

regain strength and mobility. Work toward exercise machines for advanced training

or space applications using these concepts and ideas is sparse or non-existent based

on extensive background research. It is in this thesis where the literature toward the

previously stated idea will advance the next generation of exercise machines for a

multitude of applications.

1.3 Mechanical Design

The CSU 4OptimX robot is a four degree of freedom, upper body exercise

robot. It was designed and built by Funk Engineering under the specifications set

forth by CSU researchers in human-machine systems. The robot consists of two arms

that are independent of one another. Each arm allows for movement in two degrees

of freedom (vertical, horizontal, and any orientation combination of the two) about a

fixed pivot point. Each degree of freedom of each arm is powered by an independent

servomotor system. There are four servo motor systems in total. Encoders specific to

each servo motor system measure the rotational position of the motors. Force sensors

strategically mounted on the arms of the robot capture the impedance forces of the

manipulator. Shown below is a picture of the robot.
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Figure 13: CSU 4OptimX Exercise Machine

The mechanical design of the robot for each degree of freedom is identical.

Therefore, the description of the mechanical path from the motor to the force sensor

is identical. The path begins at the motor. The motor is geared to produce a 25:1

ratio of motor rotations to output shaft rotations. Any variables with the subscript

m hereafter refers to the geared output shaft of the motor, not the motor itself. The

output shaft is attached to a sprocket/timing belt mechanical system that ultimately

attaches directly to the arm. The gear ratio from the motor output shaft to the arm of
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the robot is 3.858:1. Finally, a force sensor is mounted between the arm of the robot

an a fixture attached to the large sprocket of the sprocket/timing belt mechanical

system. This clever design allows for the large sprocket and the arm to be fixed

in rotation together while allowing an external force on the arm to be measured in

relation to the movement of the arm itself.

(a)

(b)

Figure 14: Detailed View of Exercise Machine

Four motors in total allow for the movement of the arms. The horizontal

movement of each arm is powered by individual Estun PKS-PRO-E-08-B-JP22 ser-

vomotor systems. The vertical movement of each arm is powered by individual Estun

PKS-PRO-E-04-A-JP22 servomotor systems. Below is table showing the parameter

values for each servomotor system.

System
Rated Rated Rated Rated Rated

Brake
Shaft

Power Voltage Speed Torque Current Diameter
(W) (VAC) (RPM) (N-cm) (A rms) (mm)

PKS-PRO-E-08-B-JP22 750
85-132

3000 238.68 8.2 No 19
Single Phase

PKS-PRO-E-04-A-JP22 400
170-253

3000 127.11 2.7 No 14
Single Phase

Table I: Servomotor System Parameters

Speed versus torque curves are shown for each motor. Curve A represents the con-
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tinuous working area while curve B represents the repeated working area.

(a) EMJ-08-B (b) EMJ-04-A

Figure 15: Motor Speed vs. Torque Curves

The servomotor systems are able to be operated in position, speed, or torque control.

For this application, the servomotors are operated in torque control. Each servomotor

has a 2500 pulse per revolution (PPR) incremental encoder for reading motor position.

Similarly, four force sensors are mounted on the robot; two per arm and one per degree

of freedom. The sensors are single axis, tension/compression force sensors distributed

by Omega Engineering. The following table is the force sensor specifications.

LC703-500 Load Cell
Material 17-4 PH Stainless Steel

Capacity (lbs) 500
Excitation (VDC) 10 (15 max)
Output (mV/V) 2

Max Deflection (in) 0.003

Table II: Force Sensor Specifications

Together, the described sensors and actuators make up a mechatronic system capable

of being modeled and controlled.

The kinematics and dynamics of this exercise machine allow the user to

perform a plethora of upper body exercise movements such as lat pull downs, shoulder
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presses, pectoral flies, bicep curls, and triceps extensions to a challenging degree. The

mechanical and electrical design goals of this robotic exercise machine are to enable a

wide range of exercises using multiple muscle groups and to provide adequate muscle

activation for control system feedback research. Listed below are end effector abilities.

Direction
Displacement Rated Force Rated Speed

(Rad) (N) (RPM)
Vertical +0.894, -0.627 108.49 31.1

Horizontal +0.449, -0.235 203.72 31.1

Table III: End Effector Capabilities

Using data presented in Kulig et al., determining whether the exercise machine is

capable of producing “adequate” muscle activation can be addressed [8]. Adequate

muscle activation, as it pertains to this thesis and application, refers to the amount

of muscle activation needed to see a variation in force production for a control system

to use as feedback. A verified example of “adequate” muscle activation as a result of

a conducted experiment will be presented later on in this thesis. Data presented in

Kulig et al. is shown as force verses joint angle curves, or strength curves. Extracting

maximum forces produces by shoulder and elbow joint torques will provide a reason-

able quantification for comparing the input forces of the user to the output forces of

the exercise machine end effector.
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Figure 16: Shoulder Press Exercise

The amount of force at the hand generated during shoulder flexion in college

males and females was found to be roughly 500 N and 225 N, respectively [8]. Com-

paratively to the exercise machine, college age males and females were able to produce

4.6 and 2.0 times the force able to be produced by motor 1 of the exercise machine.

Shoulder flexion is the main movement in a general shoulder press gym exercise and

is a vertical movement. For that reason, motor 1 was chosen for the comparison.

For research purposes, the largest possible amount of muscle activation is preferred.

College age males and females are able to generate 200 N and 140 N during elbow

extension, which also occurs in a shoulder press movement [8]. Comparatively, they

are generating 1.85 and 1.3 times the force that motor 1 of the exercise machine can

produce. Similar to shoulder flexion, the exercise machine is capable of producing

forces nearing the maximum force of elbow extension in women.

Comparing the data in the literature with the capabilities of the robot end
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effector, it is not immediately evident that the robots end effector force capacity is

large enough to produce adequate muscle activation. Notably, this machine was built

for experimentation purposes. It was not intended to supply a larger end effector force

than the user can manage. Its purpose is to produce adequate muscle activation, as

defined earlier. In order to verify that the machine is capable of inducing adequate

muscle stimulation, an experiment was done on this machine using a male subject.

1.3.1 Muscle Activation Verification Experiment

The experiment consisted of the male subject attempting to follow a predefined,

circular trajectory with the arm of the robot while his muscle activation in multiple

upper body muscles is measured. For clarity, a figure of the visual interface the

subject used the follow the trajectory is shown below.

Figure 17: User Interface for Muscle Activation Experiment

The black circle is what can be referred to as the zero impedance trajectory. If the

user is in phase with the desired position and on the zero impedance trajectory, the

user will feel no impedance force imposed by the robot. When the user deviates in

any direction from that zero impedance trajectory or becomes out of phase with the
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desired position, an impedance force will be felt by the user. Using this concept,

the subject was told to follow the desired position as it travels around the blue

ellipse. This intentional deviation causes upper body muscle activation, which is

then measured by electromyography (EMG) sensors. This procedure was done using

different robot impedance parameters and circular trajectory speeds. A portion of

the data gathered from this experiment is shown below.

Figure 18: Muscle Activation Experimental Results

As is evident, there are significant spikes in muscle activation for the period

of rotation. Various muscles record activation spikes at different times during the

period of rotation, which is also a very promising result. This experiment verifies

the ability of the CSU 4OptimX to produce enough impedance force to significantly

activate various muscles of the male user.
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1.4 Organization

In order to represent the methods used in this thesis and the results obtained

from them, a thorough review of the background material is presented at the beginning

of every chapter. If applicable, an simple example of the theory being implemented is

shown next. The theory will then be implemented toward the goal of this thesis. The

chapters follow the flow of the control design procedure. In Chapter 2, the nominal

and uncertain plant is mathematically modeled and its parameters identified. In

Chapter 3, the nominal and uncertain plant is used in the sliding mode andH∞ robust

control lows to synthesize respective controllers. Chapter 4 presents and explains the

results pertaining to the performance, robustness, and practicality of each synthesized

controller. Finally, concluding remarks comparing the success of each controller and

the limitations in the control laws observed during synthesis are discussed in Chapter

5. Future work pertaining to the possibility of increased success with select control

laws is also explained.
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CHAPTER II

Modeling and Identification

This chapter begins with a description of the physical model of the plant.

From that physical model, first order transfer functions are obtained that describe

the input-output behavior of the CSU 4OptimX. System identification is then ex-

plained and performed to find parameter values for the nominal transfer function

variables. The H∞ robust control law implemented in this thesis uses an uncertain

plant description to synthesize a controller. The theory behind various uncertain

plant descriptions is elaborated upon at the end of the chapter.

2.1 Physical Modeling

Each joint was modeled independently. Inertial coupling between the joints

was ignored to maintain simplicity. The modeling assumption is justified due to the

low operating speeds of the joints. Beginning with the servo motor, the modeling of

the plant will capture the dynamics all of the way through to the force sensor on the

arm of the robot. The plant will be assumed to have no gravitational forces acting

on the arm. Forces due to gravity will be compensated via a control loop during

controller implementation. This assumption allows the dynamic equation to be linear

and therefore easier to implement the control laws. The goal will be to find a first
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order linear differential equation that describes the CSU 4OptimX robot.

Traditional modeling techniques require the creation of a free body diagram.

As stated earlier, this free body diagram will show the single plane dynamics of one

of the robot arms.

Figure 19: Schematic of Single Plane Dynamics

A linear first order differential equation of the servo motor is where the analysis

begins.

Jmω̇m + bmωm = KTU − TL (2.1)

Jm is the rotational inertia of the motor, bm is the rotational damping of the motor,

ω̇m is the angular acceleration of the motor, ωm is the rotational velocity of the motor,

KT is the torque voltage constant, U is the control voltage, and TL is load torque

on the motor. Inductive and resistive dynamic effects were not modeled since torque

control was chosen for this application. Those effects are only modeled in applications

involving speed control. Examining electric servomotor equations will verify this

claim. The load torque of the motor due to the arm and imposed impedance force

can be modeled as such.

TL =
Jsω̇s + bsωs + dF

n
(2.2)

Js is the sprocket rotational inertia, ω̇s is the angular acceleration of the sprocket, bs

is the rotational damping of the sprocket, ωs is the angular velocity of the sprocket, d
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is the moment arm length from the pivot point of the sprocket to the load sensor, F

is the load sensor force, and n is the gear ratio between the motor and the sprocket.

Combining equations (2.1) and (2.2) yields the following linear first order differential

equation describing the dynamics of one degree of freedom of the CSU 4OptimX

robot.

JT ω̇m + bTωm = KTU − ndF (2.3)

where JT and bT given by the following equations:

JT = Jmn
2 + Js (2.4)

bT = bmn
2 + bs (2.5)

Equations (2.4) and (2.5) represent the inertial and damping effects of the motor and

gears reflected to the arm. These relations will be denoted as the total rotational

inertia and damping of the plant. The respective transfer functions are the following:

ωm(s)

U(s)
=

KT

JT s+ bT
,

ωm(s)

F (s)
=

nd

JT s+ bT
(2.6)

As a summary, this plant model can be applied to each degree of freedom

for each arm as the mechanics of the modeled arm for each degree of freedom is

identical. It is evident in the equations that the effects of gravity on the arm were not

modeled. Those effects were treated separately using a compensation control loop in

application.

2.2 Modeling by System Identification

System identification is a methodology for building mathematical models of

dynamic systems using measurements of the system’s input and output signals. The
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process of system identification requires that the designer:

• Measure the input and output signals from a system in time or frequency domain

• Select a model structure.

• Apply an estimation method to estimate value for the adjustable parameters in

the proposed model structure.

• Evaluate the estimated model to see if the model is adequate for your application

needs.

System identification can be done using black-box or grey box modeling structures.

Black-box modeling does not specify a detailed, parametric structure of the system

that the data attempts to fit. Black-box modeling is useful when the primary interest

is in fitting the data regardless of a particular parametric structure of the model.

Figure 20: Black-Box System Identification

Grey-box modeling specifies a detailed, parametric structure of a physical system that

the data attempts to fit. In situations where the theoretical mathematical model of

the physical system can be found, grey-box modeling fits the input-output data to

that particular model by finding the exact parameters of that model.
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Figure 21: Grey Box System Identification

2.2.1 Nominal Plant

The parameter identification any system involves exciting all frequencies

of the system that will occur during operation. For the nominal plant of the CSU

4OptimX, a general frequency range of 0-125 rad
s

was chosen as the general opertaiong

bandwidth of the system. In order to excite the bandwidth frequencies, a random

input signal was chosen for this application due to its ability to create unstructured

inputs that produce varying frequencies. In this application, a force sensor will pro-

duce random inputs to the system. Therefore, it is advantageous to use a random

input when identifying the system. Input-output data is gathered for input into the

MATLAB System Identification toolbox.

The input-output data is used to fit the following first order transfer func-

tion.

G1(s) =
KT

JT s+ bT
(2.7)

The first order transfer function is the mathematical model of the physical system

presented below.
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Figure 22: Parameter Identification Physical Model

Using MATLAB and the function ident brings up the System Identification

Toolbox. This toolbox is a powerful tool for estimating the parameters of a grey-box

or black-box system. For this parameter identification, black-box identification was

used to fit a first order transfer function with one pole and no zeros. Black-box system

identification was used due to its ability to better fit the transfer function structure.

Even though a plant structure is specified, the plant structure is simple enough to

back calculate the parameter values from the specified black-box transfer function.

Firstly, the input/output data must be frequency filtered. This is done so that a

preferred frequency range can be chosen for the identification. It is advantageous to

limit the bandwidth of the identification data to the expected bandwidth of operation

in order to produce optimally fitting parameters. It is also beneficial to remove means

and trends in the data. Using this filtered data and specifying the transfer function

as a first order transfer function consisting of only one pole and no zeros, a statistical

fit done by the toolbox estimates the coefficients of the transfer function. MATLAB

shows the fitted transfer function in the following form.

TF (s) =
K
J

s+ B
J

(2.8)

Separate from the system identification, a static hold test must be conducted

to determine the voltage/torque relation, KT , for future use in comparing the MAT-
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LAB results of the system identification presented by (2.8) with the user-defined

function (2.7). The principle of a static hold test is to determine the amount of

torque per volt needed to maintain the arm of the robot at its maximum inertial po-

sition without movement. That position is parallel with the ground. The associated

equation for testing is shown below.

KTU − ndF = 0 (2.9)

This equation can be solved for KT knowing values of U and F obtained in testing.

Comparing the MATLAB results of the respective mechanical systems in the form of

(2.8) to equation (2.7) will yield the coefficients JT , bT .

2.2.2 Uncertain Plant

In order to extract the benefits from controllers synthesized using robust

control techniques, it is necessary to model the amount of uncertainty present in the

parameters of the plant. Alternatively, if the amount of parametric uncertainty is not

known, un-modeled dynamics of any form can be included as information to the robust

controller synthesis algorithms. Factoring in parametric uncertainty or un-modeled

dynamics gives the controller increased knowledge of the possible variations of plants it

may be controlling. This will directly increase controller performance and robustness.

There are different methods in which to model unknown information within a control

system. The three explained in this thesis will be structured parametric uncertainty,

additive model error, and multiplicative model error.

2.2.2.1 Structured Parametric Uncertainty

Parametric uncertainty is the idea that the variables of a plant model vary

in a range, either statically or dynamically, over a range of frequencies. It is struc-
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tured because the variations in plant output can be precisely described in terms of

corresponding variations of the parameters. Identifying and modeling this parameter

variation is essential to understanding the capabilities of a plant in order to synthe-

size a controller to manipulate it. Initially, a nominal model of a plant using nominal

parameters can be found using methods in Section 2.2.1. Intuitively, it is understood

that this nominal plant model is not representative of the true dynamics of the plant

for many reasons. Therefore, nominal variables in a plant can be modified to include

uncertainty in their values. For example, using the plant in Figure 1a, an uncertain

mass parameter can be described by the equation below.

m = mo +Wm(s)∆ (2.10)

xm is the nominal mass value, Wm(s) is a weight that shapes the variation in the

magnitude of the mass of the parameter over a frequency range, and ∆ is the nor-

malized uncertainty where ||∆||∞ ≤ 1. The left hand side of the inequality is the

H∞ norm of the uncertain dynamics. The H∞ norm is simply the peak value of a

frequency function (i.e. transfer function).

||f(s)||∞ , max |f(jω)| (2.11)

Normalized uncertainty can be expressed in MATLAB using the ultidyn function.

This uncertain equation can then be combined with the plant dynamics.

moẍ+Wm(s)∆ẍ = FA − FP (2.12)

The idea of un-modeled dynamics and its association with parametric uncertainty

becomes increasingly clear when represented in a block diagram.
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Figure 23: General Structured Parametric Uncertainty

Variable d represents the acceleration of the mass, ẍ, variable e represents Wm∆ẍ,

which is the mass uncertainty dynamics that are added to the nominal mass, mo.

This concept can be more clearly explained using a detailed block diagram.

Figure 24: Detailed Structured Parametric Uncertainty Example

This method of bounding the uncertainty in plant parameters is important when

synthesizing anH∞ controller. The details ofH∞ controller synthesis will be discussed

in the next chapter.
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2.2.2.2 Additive Model Uncertainty

Model uncertainty is a discrepancy in the dynamics of a model between

the nominal, experimentally-modeled dynamics and the true dynamics of the system.

Normally, this discrepancy is within a specified frequency range instead of over the

entire operating frequency range of the system. This gap in modeled dynamics is

commonly known as the un-modeled dynamics of a system. In the previous section,

structured uncertainties in the parameters of the plant are addressed. That method

can be considered a more detailed description of system uncertainty due to the de-

signer having knowledge of the range of plant parameters though out the frequency

range of the system. Model uncertainty is more vague. It is the idea that there is

uncertainty in the system, but a definite structure cannot be defined. This is known

as unstructured uncertainty.

Unstructured uncertainty can be expressed additively within a plant. Addi-

tive model uncertainty is the absolute error between the true plant and the nominal

plant. Generally, system block diagrams factoring in additive uncertainty take the

form of the figure below.

Figure 25: Additive Model Uncertainty

Additive model uncertainty is expressed as the difference between the true plant, G,
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and the nominal plant, Go.

W (s)∆ = G−Go (2.13)

W (s) is a weight that shapes the amount of unmodeled dynamic uncertainty through

a frequency range. The weight shape must satisfy the following equation:

|∆i(jω)| = |Gi(jω)−G(jω)| ≤ |W (jω)| (2.14)

where ∆ is the normalized uncertainty where ||∆||∞ ≤ 1. Gi(i = 1, 2, ...) are a number

of identified plants that have varying errors from the true plant, G. This equation

means that the weighting function used to shape the error must be less than or equal

to the iterative error found through identification and comparison. Practically, the

true dynamics of the plant can never be known fully. Typically, the nominal plant

model is used as the true plant model and any other plant models found through

system identification can be used as iterative plant models, pertaining to equation

(2.14). Using this practical method, a plant modeling error is produced and a weight

can be shaped that describes this modeling error. The final description of additive

modeling error is similar to structured parametric uncertainty but at a plant level

and not a parameter level.

G = Go +W (s)∆ (2.15)

2.2.2.3 Multiplicative Model Uncertainty

Multiplicative model uncertainty is similar to additive uncertainty in the

sense that it is the discrepancy between the unmodeled dynamics of the true plant

and nominal plant, but, instead of the error being absolute, the error is now relative

to the nominal plant model. A block diagram representing multiplicative uncertainty

is shown below.
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Figure 26: Multiplicative Model Uncertainty

The relative error can be found by the following equation:

W (s)∆ =
G−Go

Go

(2.16)

where ∆ is the normalized uncertainty where ||∆||∞ ≤ 1. Normalized uncertainty

can be expressed in MATLAB using the ultidyn funciton. Go is the nominal plant

model and G is the true plant model. W(s) is a weight that shapes the amount of

unmodeled dynamic uncertainty through a frequency range. The weight shape must

satisfy the following equation:

|∆i(jω)| =
∣∣∣∣Gi(jω)−G(jω)

G(jω)

∣∣∣∣ ≤ |W (jω)| (2.17)

where Gi(i = 1, 2, ...) are a number of identified plants that have varying errors from

the true plant, G. This equation means that the weighting function used to shape

the error must be less than or equal to all errors found through system identification.

Practically, the true dynamics of the plant can never be fully known. Typically, the

nominal plant model is used as the true plant model and any other plant models found

through system identification can be used as the iterative plant models, pertaining to

equation (2.17). Using this practical method, a plant modeling error is produced and

a weight can be shaped that describes relative modeling error. The final description
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of multiplicative modeling error is shown below.

G = (1 +W (s)∆)Go (2.18)
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CHAPTER III

Robust Control

Robust control is a group of control laws that explicitly deal with plant un-

certainties, whether they are structured or unstructured, and disturbances. For many

physical systems, determining accurate plant parameters and disturbances models is

challenging or even infeasible. By quantifying the uncertainty in plant parameters

and disturbances, a controller with increased performance is able to be obtained. Due

to the parameter identification errors (friction and disturbance anomalies evident in

the motor input signals), robust control was chosen as a viable solution to properly

controlling the CSU 4OptimX.

The controllers in this chapter are designed under the following assumptions:

• Each joint will be independently controlled.

• A controller will be designed for each joint.

• Gravity will be compensated for the vertical joints by an independent control

loop.

Two robust methods are chosen for this application: sliding mode control and H∞

control. In this chapter, an outline of the theory will be presented first. Then an

elementary example that applies the theory to impedance control is explained in
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detail. Finally, the controller design for the CSU 4OptimX is incrementally explained

as well as the minor modifications to the theory that allow a practical controller to

be synthesized.

3.1 Sliding Mode Control

The first type of control implemented on the CSU 4OptimX robot is sliding

mode control. By nature, it is less abstract and computationally intensive than other

advanced control techniques. It proves to be a sufficient introductory impedance

control for this robot and for the engineer developing it. Much of the theory and

design of this sliding mode impedance controller is referenced from Advanced Control

of Turbofan Engines by Dr. Hanz Richter [19] and Advanced Sliding Mode Control for

Mechanical Systems: Design, Analysis and MATLAB Simulation by Jinkun Liu and

Xinhau Wang [10]. Discussed in this section will be the background theory describing

sliding mode control, a simple example that shows how to use sliding mode control to

regulate impedance, and the impedance/sliding mode controller design as is pertains

to the CSU 4OptimX exercise machine.

3.1.1 Theory

Sliding mode control (SMC) is a branch of non-linear robust control tech-

niques that has become popular due to its insensitivity to plant uncertainties and

remarkable disturbance rejection capabilities. The controller operates on a general,

non-linear, switching function called a reaching law.

ṡ = −ηsgn(s)− f(s), η > 0 (3.1)
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The purpose of this reaching law is to drive a sliding function, s, to zero and keep that

function within predetermined bounds around zero. It is important that the sliding

function is driven to zero because it generally represents the error. In the majority

of control applications, minimizing the error between two variables is the goal. The

general reaching law is presented above in (3.1). The signum function is a non-linear

function that switches instantaneously from sgn(s) = −1 if s < 0 and sgn(s) = 1 if

s > 0. Common reaching laws implemented in practice are specified in Table IV.

Name Function (ṡ) Specification
Constant Rate −ηsgn(s) η > 0

Exponential −ηsgn(s)− ks η > 0, k > 0
Power Rate −k|s|αsgn(s) k > 0, 1 > α > 0

Table IV: Sliding Mode Reaching Laws [10]

The zero line on a time plot in SMC is referred to as the sliding surface.

The sliding function, s, must reach the sliding surface (s = 0) in finite time

and remain on the sliding surface in order to achieve the goal, which is the sliding

function. An example of the sliding surface is shown in Figure 27.

Figure 27: Sliding Function Reaching the Sliding Surface

The sliding function, s, allows one state variable to be represented in terms of one
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or more state variables. When it is combined with the plant model later on in the

design, the order of the system is reduced. In order to ensure that the sliding function

will reach the sliding surface from any direction, the switching and sliding functions

must satisfy equation (3.2) for s < 0 and s > 0.

sṡ < 0 (3.2)

Combining a preferred reaching law with the inverse dynamics of the plant to produce

the controller is a design and implementation problem. It will be discussed in the

next section.

3.1.2 Example

The following is a conceptual example that will show how to correctly

apply SMC theory to impedance control. This example will use the physical and

mathematical plant description shown in Figure 1a and equation (1.2). Also, the

same impedance relation shown in (1.3) will be used as the sliding function, s, and

shown in (3.3).

s = Mẍ+Bẋ+Kx+ FP = 0 (3.3)

Next, a reaching law will be chosen that will force the sliding function to the sliding

surface, s = 0. The reaching law chosen for this example will be the constant rate

reaching law found in the second row of Table IV. In order to verify that the function

will reach and remain on the sliding surface, it must satisfy (3.2).

sṡ = −ηsgn(s)(Mẍ+Bẋ+Kx+ FP ) < 0 (3.4)

If s > 0, sgn(s) = 1 and ṡ < 0, therefore sṡ < 0. If s < 0, sgn(s) = −1 and ṡ > 0,

therefore, sṡ < 0. The reaching law can now be combined with (1.3) in the following
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manner.

Mẍ+Bẋ+Kx = −Fp − ηsgn(s) (3.5)

This equation shows that the force of all impedance components must be equal to the

opposite of the applied force of the person pushing on the mass minus the reaching

law. The reaching law forces the impedance force and the applied force of the person

to be equal to a small degree of error. Perfect impedance with sliding mode is not

achievable. What is achievable is near perfect impedance within a boundary layer

condition presented in Section 3.1.1. Next, as shown in (1.4) for the simple impedance

example, equations (3.5) and (1.2) can be solved for their accelerations and combined

as shown in (3.6).

FA − FP
m

= −ηsgn(s) + FP +Kx+Bẋ

M
(3.6)

Finally, the above equation can be solved for the actuator force, FA. The controller

equation is shown below.

FA = −m
M
ηsgn(s) +

(
1− m

M

)
FP −

mK

M
x− mB

M
ẋ (3.7)

3.1.3 Controller Design

Using the sliding mode control theory established in Section 3.1.1, an SMC

impedance controller is formulated for the CSU 4OptimX exercise machine. Reiter-

ating, each motor will have its own controller. Therefore each plane of motion will

have its own controller. These controllers act independent of each other. The con-

troller designed hereafter is suitable for each plane of motion of the robot and can be

implemented directly without modification.

Initially, a target behavior must be established and is represented below.

I(ω̇m − ω̇d) +B(ωm − ωd) +K(θm − θd) = −ndF (3.8)
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From the target behavior, a sliding surface is determined. The sliding function for

the CSU 4OptimX is the following function.

s =

∫
I(ω̇m − ω̇d) +B(ωm(t)− ωd) +K(θm − θd) + ndF dt = 0 (3.9)

Variables with subscript d represent desired tracking variables acceleration, veloc-

ity, and position. This use of the integral in the sliding function is called impulse-

momentum SMC. It becomes necessary to take the integral of the impedance func-

tion to obtain a relative degree of one between the sliding surface and the impedance

function. When taking the derivative of the integral of the sliding surface, s, the

impedance equation is the result and is equal to ṡ. It can then be set equal to the

reaching function, which is also ṡ.

Using impulse-momentum SMC aids the practical implementation of this

controller as well. Theoretically, acceleration can be calculated in simulation but not

in practice. In simulation, measurements are ideal, meaning measurement noise is not

present. In practice, measurement noise is present and prevents the application of

more than one derivative to a signal. In some cases, even one derivative is challenging

to compute the amplification of noise. Shown below is an example of measurement

noise.

Figure 28: Measurement Noise Example

Red lines represent positive slopes and blue lines represent negative slopes. As is
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evident, the slopes of this signal at different points in time vary greatly and does not

represent the true slope of this line at different points in time. If the individual slopes

represented in Figure 28 were plotted in time, only noise would be present.

Due to the noise amplification phenomenon of derivatives, motor acceler-

ation, ω̇m, cannot be obtained from the measured motor position, θm, in practice.

Taking the integral of the sliding function does not change the integrity of the dif-

ference relation present in the function. Using this integral, ω̇m can be integrated to

ωm.

s = Iωm +

∫
−Iω̇d +B(ωm − ωd) +K(θm − θd) + ndF dt = 0 (3.10)

The constant rate reaching law is incorporated with (3.8).

I(ω̇m − ω̇d) +B(ωm − ωd) +K(θm − θd) = −ndF − ηsgn(s) (3.11)

Finally, to produce a controller, equations (2.3) and (3.11) must each be solved for ω̇m,

combined, and solved for the input control voltage, U . This produces a sliding mode

controller that uses a target behavior, the control theory, and the inverse dynamics

of the plant to ultimately control the behavior of the arm to an applied force.

U = − JT
IKT

ηsgn(s) +

[
bT
KT

− BJT
IKT

]
ωm −

KJT
IKT

θm +
KJT
IKT

θd +
BJT
IKT

ωd

+
JT
KT

ω̇d +

[
nd

KT

− ndJT
IKT

]
F

(3.12)

For implementation purposes, it is not practical to use a signum function.

Avoiding its use will prevent against instantaneous switching in the control input,

called chatter. If chatter is large or constant in the input, it will induce extra wear on

the motor, changing its dynamics over time. It is common practice to approximate

the switching function as a saturation function, sat( s
φ
), with a boundary layer, φ.
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(a) Signum Function (b) Saturation Function

Figure 29: Signum vs. Saturation Function Representation [19]

This resolution will allow for a gradual switching between ±φ when close

to the sliding surface and prevent chatter in the motor. Simulink implementation of

ηsat( s
φ
) is shown below. The minimum and maximum values when specifying the

saturation function are -1 and 1.

Figure 30: Reaching Function Practical Implementation in Simulink

A SMC impedance controller has been synthesized for one degree of freedom

in the CSU 4OptimX robot. This control design process is identical for all 4 degrees

of freedom given specific motor parameters for each degree of freedom. The results

of the SMC impedance controller will be shown and discussed in Section 4.2.

3.2 H-Infinity Control

This section will highlight the theory behind H-Infinity control. Standard

H-Infinity control background will be explained and lead into H-Infinity control with

loop shaping in the form of weighted sensitivities. Also, H-Infinity control theory with

plant uncertainties will be elaborated on as well. Much of the information presented in
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this section is referenced from Multi-variable Feedback Control: Analysis and Design

by Sigurd Skogestad and Ian Postlethwaite unless referenced otherwise [21].

3.2.1 Theory

H-Infinity (H∞) control is a frequency-domain optimization and synthesis

theory that specifically addresses modeling errors. It is a worst-case-scenario optimal

control technique, meaning if little is known about the plant model or the disturbances

affecting the system, plan for the worst and optimize. This linear classical optimal

robust control method calculates a fixed gain controller that minimizes the norm of

the closed loop transfer function, H(s), between the disturbances/reference/model

error input(s), w, and the selected performance output(s), z. The H-Infinity norm of

a transfer function is the peak value of that transfer function over a frequency range.

||H(s)||∞ = max|σ̄(H(jω))| (3.13)

σ̄ is the maximum singular value. Optimizing a controller that minimizes those

peaks in the closed loop transfer function(s) from ω to z allows for the distur-

bance/reference/modeling error inputs to have a minimum possible effect on the

chosen performance output. This characteristic creates a high margin of robustness

toward disturbances and plant uncertainties.

Describing a plant in such a form that is useful for optimization problems

involves the use of linear fractional transformations (LFT). A linear fractional trans-

formation is a mapping transfer functions of the form below.

F (s) =
a+ bs

c+ ds
(3.14)

This mapping of transfer functions allows easy access and use of closed loop trans-
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Figure 31: Closed Loop System with Disturbance Input

fer functions for optimal control problems. Any closed loop system can be put into

LFT form. Fundamentally, a feedback control system with a disturbance input is

a great example to explain the conversion. The comparisons between the closed

loop feedback and LFT forms is as simple as matching up variables. Simply, dis-

turbance/reference/modeling error variable, ω, in the LFT consists of the reference

variable, r, and the disturbance variable, d, in any order. The performance variable,

z, in the case of this feedback system is the error, e. The control input, u, and the

measured variable, y, are the same in both forms. An LFT is a standard form for

block diagrams when designing and analyzing a robust controller.

Figure 32: LFT Block Diagram Standard Form

The state space representation of a feedback control system with disturbance inputs

can be shown in a two port state space representation.


ẋ

z

y

 =


A B1 B2

C1 D11 D12

C2 D21 D22



x

w

u

 (3.15)
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To extract the state space representation of a LFT block diagram structure shown

in Figure 32, the output equations z and y can be extracted from the two port state

space and described in its own state space.

 z

y

 =

 D11 D12

D21 D22

 (3.16)

u = Ky (3.17)

LFT form allows for the straightforward computation of closed loop transfer functions

between disturbance/reference/modeling error inputs, w to performance outputs, z,

which is advantageous when attempting to minimize the norm of said transfer func-

tion(s).

Tzω = Fl(G,K) = D11 +D12K(I −D22K)−1D12 (3.18)

As stated before, obtaining the optimal H∞ controller involves finding a controller

such that ||Tzω||∞ is minimized. In special cases, such as in this thesis, a sub-optimal

controller is more practical for implementation. In that case, given γ > 0, a sub-

optimal controller can be found such that ||Tzω||∞ < γ, where γ is a lower bound on

the optimization of the closed loop transfer function(s); meaning that the optimization

will stop and produce a controller at a specified ||Tzω||∞ instead of the smallest ||Tzω||∞

it can find. Initial assumptions that must hold when designing an H∞ controller, in

continuous time using the Riccati method, are the following:

1. (A,B1) must be controllable.

2. (A,C2) must be observable.

3.

 A− jω B2

C1 D12

 must have full column rank for all ω.
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4.

 A− jω B1

C2 D21

 must have full row rank for all ω.

The Riccati algorithm is extremely mathematically intensive and cumber-

some to explain. The work of Doyle et al., the group of researchers who created

and verified the H∞ and H2 controller synthesis mathematics, explains precisely the

mathematical theory behind the algorithm [3]. Also, A. Megretski elaborates on the

algorithms for H∞ optimization of the Ricatti-based approach [12]. The goal of this

thesis is not to educate the reader on the detailed theory, but to provide an overview

of the theory that is useful for application.

The Robust Control Toolbox in Matlab has many functions that either per-

form H∞ synthesis directly or a variation such as H2 synthesis or H2/H∞, multi-

model/multi-objective synthesis with pole placement. Those functions are hinfsyn,

h2syn, and msfsyn, respectively. This thesis will describe a method for using hinfsyn.

hinfsyn has the ability to preform H∞ synthesis using multiple methods such as the

Riccati-based algorithm, the Linear Matrix Inequality-based algorithm, and the Max-

imum Entropy algorithm. Used in this thesis is the Ricatti-based algorithm. Below

is a general description of the MATLAB function hinfsyn,

[K,CL,GAM,INFO] = hinfsyn(P,NMEAS,NCON,KEY1,VALUE1,KEY2,VALUE2,...) (3.19)

where P is the plant represented in (3.15) and (3.16). NMEAS is the number of measured

variables, y, from the plant used by the controller, NCON is the number of control vari-

ables, u, from the controller to the plant. The KEY and VALUE placeholders represent

alterations to the controller synthesis algorithm.
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Figure 33: hinfsyn Algorithm Modification Chart

K is the synthesized H∞ controller, CL is the closed loop system, GAM is the H∞ cost

variable, γ, and INFO is additional information relating to the method used.

3.2.1.1 Mixed Sensitivity Weighting

Weights hold a large significance in many robust control theories commonly

used today. A weight on a signal is either a scalar or transfer function that shapes a

signal in the frequency domain to a designers specifications. Weights fit into the H∞

control design problem by shaping different transfer functions found within a closed

loop feedback controller.

Figure 34: Weighted Plant with Feedback

The typical signals and transfer functions shaped in H∞ control weighting

are the sensitivity transfer function, S, the control signal, u, and the complementary
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sensitivity transfer function, T . The sensitivity transfer function, S, of a control

system describes the performance of a closed loop system and is the closed loop

transfer function from the reference, r, to the error, e.

S(s) =
1

1 +G(s)K(s)
(3.20)

A typical weight shape for the sensitivity transfer function is of the form seen below.

W1(s) =
s
M

+ ωc

s+ ωcA
(3.21)

This weight, 1
W1(s)

, acts as an upper bound on S, where A is the low frequency gain,

M is the high frequency gain, and ωc is the crossover frequency. This upper bound

allows the performance variable magnitude to be shaped in such a way that meets

the performance requirements specified by the designer and bounds the performance

variable, z, to a frequency range that aids in the synthesis of a practical controller.

The control weight, W2, is typically a scalar value, which is effectively a gain

on the transfer function from the reference, r, to the control, u.

R(s) =
K(s)

1 +G(s)K(s)
(3.22)

The weight is not required to be a scalar, but much of the literature dealing with

weighted feedback systems specify a scalar value as it aids in the synthesis of a

practical controller. Alternative control weight types may be pass-band filters that

limit the control authority to a frequency range needed based on the application.

The final weight, W3, is a weight on the complementary sensitivity, T , which

is the transfer function from the reference, r, to the output, y.

T (s) =
G(S)K(s)

1 +G(s)K(s)
= I − S (3.23)
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The complementary sensitivity transfer function is a measure of the disturbance rejec-

tion properties of the feedback system. Most closed loop systems prefer to eliminate

high frequency disturbances that negatively impact the overall performance of the

system. In order to accomplish this goal in the H∞ controller synthesis, the weight

shape presented below is a common solution.

W3(s) =
s+ ωc

M

As+ ωc
(3.24)

This weight, 1
W3(s)

, acts as an upper bound on T , where A is the low frequency gain,

M is the high frequency gain, and ωc is the crossover frequency. This upper bound

allows the complementary sensitivity magnitude to be shaped in such a way that

meets the disturbance rejection requirements specified by the designer. The weights

previously presented are common to feedback controllers. The shape of the weights

is entirely up to the designer and relative to the problem at hand.

Once the weights have been created, they can be factored into the H∞

controller design process by using a stacking approach. The stacking approach groups

the weighted transfer functions by stacking them vertically inside a vector, N .

N =


W1S(s)

W2R(s)

W3T (s)

 (3.25)

The maximum singular value of this matrix can be calculated for all frequencies,

||N ||∞ = max|σ̄(N(jω))| (3.26)

where σ̄(N) is the Euclidean norm of a vector.

σ̄(N) =
√
|W1S(s)|2 + |W2R(s)|2 + |W3T (s)|2 (3.27)
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Now, the H∞ controller synthesis objective is to find a controller that minimizes the

maximum singular value of matrix N over all frequencies.

When using weights in hinfsyn, those weights must be combined with the

plant state space to create an augmented plant state space. That augmented plant

state space is then used as the variable P in the hinfsyn function. MATLAB has

alternative functions such as augw, which creates an augmented negative feedback

plant with specified weights. Another helpful function with synthesizing a controller

for a negative feedback plant is the mixsyn function. The ordinary plant as well as

the weights can be specified in the function. It then creates and augmented state

space and synthesizes a controller in a single step.

3.2.2 Example

The plant (1.2) and impedance relation (1.3) of the elementary examples

shown at the beginning of Chapter 1 and Section 3.1.2 will be used to show a basicH∞

impedance controller synthesis. The plant and impedance relation must be converted

to the LFT state space representation shown in (3.15) and (3.16). State and input

variables are specified below.

x1 = x, x2 = ẋ, x3 = xI , x4 = ẋI (3.28)

u1 = FP , u2 = FA (3.29)
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Using the specified state and input variables, state equations can be constructed from

(1.2) and (1.3)

ẋ1 = x2

ẋ2 = 1
m
u2 − 1

m
u1

ẋ3 = x4

ẋ4 = 1
M
u1 − K

M
x3 − B

M
x4

(3.30)

These state equations are represented in state space form below according to the

specifications outlined by the MATLAB function hinfsyn. Control inputs to the

plant and measured plant outputs to the controller must be last in the respective

vectors of inputs and outputs.



ẋ1

ẋ2

ẋ3

ẋ4


=



0 1 0 0

0 0 0 0

0 0 0 1

0 0 −K
M
− B
M





x1

x2

x3

x4


+



0 0

− 1
m

1
m

0 0

− 1
M

0


 u1

u2

 (3.31)



z

y1

y2

y3

y4

y5


=



−1 0 1 0

1 0 −1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0





x1

x2

x3

x4


+



0 0

0 0

0 0

0 0

0 0

1 0



 u1

u2

 (3.32)

The performance variable, z, is the difference between the actual position of the

mass and the target impedance position. This performance specification is critical to

the formulation of a robust impedance controller. A block diagram representing the
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performance specification can be seen below.

Figure 35: H∞ Performance Variable Block Diagram Representation

Using (3.19) with NMEAS = 5 and NCON = 1 will produce an optimal

controller that produces an actuator force that allows the mass to act as a mass-

spring-damper when acted upon by the force of the person. Adjusting GMIN to

different values produces a sub-optimal controller with decreased performance and

robustness but may be more practical in application.

Notice that weights are not used in this elementary example ofH∞ impedance

control. This was done for simplicity in showing the setup of an H∞ impedance con-

trol problem unconstrained by weights. Weights will most likely provide performance

and disturbance rejecprtion benefits when applied to this example problem, but that

is not the goal of this problem. Also, the number of measured plant outputs to the

controller is a design choice made by the engineer. The number of measured out-

puts given to the controller effects all aspects of the closed loop performance and

disturbance rejection capabilities and must be chosen accordingly.

3.2.3 Controller Design

The H∞ impedance controller design will be broken down into 3 different

categories. These categories are based on the multiple attempts to produce a practical

controller with adequate performance and disturbance rejection capabilities. Each
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category elaborates on the H∞ control design theory pertaining to proper weighing

and plant modeling uncertainty implementation. The first attempt to produce an

H∞ impedance controller uses only a nominal plant with constraining weights on the

performance, control, and measured variables. Weights on disturbance inputs may

be present to further constrain the plant during design. The second attempt includes

weights as well as a structured parametric representation of the uncertainties present

in the plant. The theory of structured parametric plant uncertainty modeling can

be understood by reading Section 2.2.2.1. The final attempt includes weights and a

representation of the un-modeled dynamics of the plant. The un-modeled dynamics

are taken into consideration using a multiplicative model uncertainty description.

This type of uncertainty description can be understood by reading Section 2.2.2.3.

The controller design processes for all three attempts will be shown and the results

will be discussed in the next chapter.

3.2.3.1 Weighted Plant

In order to create a weighted plant for the H∞ controller synthesis, an

augmented plant consisting of the CSU 4OptimX plant, the target impedance, and

the weights for the performance, control, and disturbance signals must be created.

Creating a state space for this application involves specifying the states of the aug-

mented plant to be the motor position and velocity of the CSU 4OptimX as well as
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the position and velocity of the target impedance.

x1 = θm U1 = F y1 = x1 − v1

x2 = θ̇m U2 = θdI y2 = θm

v1 = θI U3 = θ̇dI y3 = θ̇m

v2 = θ̇I U4 = θ̈dI y4 = θI

U5 = U y5 = θ̇I

y6 = θdI

y7 = θ̇dI

y8 = θ̈dI

y9 = F

(3.33)

The input variables are the impedance force, desired target impedance position, ve-

locity, and acceleration trajectories, and the control voltage. The outputs have all

been described and can be inferred from past variable explanations. Notice that ref-

erence inputs U1 through U4 are also outputs in the state space. This is done so that

the hinfsyn function in MATLAB knows the number of outputs to the controller.

Normally, reference variables would be routed to the controller outside of the state

space. State derivative equations were calculated from differential equations (2.3) and

(3.8).

ẋ1 = x2

ẋ2 = KT

JT
U5 − nd

JT
U1 − bT

JT
x2

v̇1 = v2

v̇2 = U4 − B
I
v2 + B

I
U3 − K

I
v1 + K

I
U2 − nd

I
U1

(3.34)

Part of the augmented plant has been constructed. The weights are the next

and final addition. The weights chosen for this application are low pass filters for W1
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and W3 and a scalar value for W2.

W1(s) =
s

M1
+wc1

s+A1wc1
W2 = 1 W3 =

s
M3

+wc3

s+A3wc3
(3.35)

The values of the variables for the weights are the following: M1 = 2, A1 = 0.0001,

wc1 = 12 rad
s

, M3 = 2, A3 = 0.0001, and wc3 = 12 rad
s

. The weights were found

through a combination of prior knowledge of H∞ feedback weights, the signal fre-

quency response shape, and iterative syntheses using different weight shapes. The

determination of weights is neither intuitive nor easy for this application. The goal

of this thesis is not to propose general weight shapes for H∞ impedance applica-

tions, but to find weights that produce a well-performing, practical controller. The

crossover frequencies, wc, for the weights were found through Fast Fourier Transform

analyses of the associated signals. All dominant frequencies were amplified while

non-dominant or negligible frequencies were attenuated. The augmented plant can

now be interconnected using the sysic function in MATLAB. The block diagram of

the augmented plant before weight interconnection is the following figure.

Figure 36: H∞ Weighted Closed Loop Plant

G is the state space description of the equations (3.33) and (3.34). GA is
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the augmented plant for the H∞ controller synthesis algorithm. All z values are the

performance variables. There closed loop transfer functions from inputs U1 through U4

will be minimized. Using the hinfsyn function in MATLAB with the following setup,

an H∞ controller for a nominal, weighted CSU 4OptimX plant can be synthesized.

3.2.3.2 Weighted Plant with Structured Parametric Uncertainty

In this section, a controller will be designed that factors in a range of

known, possible values of the plant parameters. In order to include this range of plant

parameters into the controller synthesis, a technique which is discussed in Section

2.2.2.1 will be used. That technique is called Structured Parametric Uncertainty.

Using equations (3.33), (3.33), and (3.35) with identical equation variable values as

in the previous sections, an augmented state space can be assembled forH∞ controller

synthesis.

Figure 37: H∞ Weighted Closed Loop Plant with Structured Parametric Uncertainty
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W3 is normally a weight shape or matrix of weight shapes. For this thesis the weight

will be the following matrix:

W3 =


K̄T 0 0

0 b̄T 0

0 0 J̄T

 (3.36)

The scalar values have the following values: K̄T = 0, b̄T = 3.03, and J̄T = −0.65. J̄T

is negative in order to represent the direction of the parametric uncertainty between

the nominal and true JT value. The scalar values are multiplied by U , θ̇m, and θ̈m

as well as the 3x3 uncertainty matrix, ∆. Then, the signals are routed back into the

plant to complete the loop. For enhanced clarity, the dynamic equation of the CSU

4OptimX plant with structured parametric uncertainty is shown below.

JT θ̈m + J̄T∆θ̈m + bT θ̇m + b̄T∆θ̇m = KTU + K̄T∆U − ndF (3.37)

Using GA as the augmented plant, the structured uncertainty can be taken into

consideration during the controller synthesis.

3.2.3.3 Weighted Plant with Multiplicative Uncertainty

In this section, the modeled plant uncertainty is expressed as a multiplica-

tive model uncertainty. One can learn about multiplicative uncertainty as well as H∞

controller design in Sections 2.2.2.3 and 3.2.1. The H∞ controller design synthesis

involves specifying an augmented plant consisting of weights and the modeled multi-

plicative plant uncertainty. The augmented model can be best represented by viewing

Figure 36 in Section 3.2.3.1. Inside plant G, is where the multiplicative uncertainty is

modeled. A block diagram representing a properly modeled plant with multiplicative

uncertainty is found in Figure 26.
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Important to the successful modeling of the multiplicative model error is

choosing a weight that represents the error between the true plant and the modeled

plant. Using methods found in Section 2.2.2.3, a multiplicative model error weight

satisfying that criterion is developed. This weight can be found in Section 2.2.2. The

weight, combined with a block representing uncertain dynamics in MATLAB, applies

to all plant outputs since all plant outputs suffer from the modeling error as well as

anomalies in the control input signal. With this augmented plant representation, an

H∞ controller is synthesized.
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CHAPTER IV

Results and Discussion

The results of this thesis are broken down into three main sections: nominal

and uncertain plant results, sliding mode controller results, andH∞ controller results.

Plant parameter results for the nominal plants of all four motors and uncertain values

of motor 2 will be discussed first. Those results are used in the sliding mode and H∞

controller designs previously described and factor into the their overall performance.

The tracking performance as well as a discussion on implementation feasibility will

be elaborated upon. In order to concisely compare the control systems, only results

for motor 2 are shown and discussed.

4.1 Plant

The nominal plant parameters were found using methods described in Sec-

tion 2.2. The results are shown below.
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Parameter
Motor

1 2 3 4

KT (Nm
V

) 0.38 0.59 0.465 0.3275

JT ( kg
m2 ) 0.0238 0.0326 0.0214 0.0151

bt (Nms) 0.19 0.2314 0.1305 0.0919

Table V: Nominal Plant Parameters

Using equations (2.8) and (2.7), where the first equation is the numerical transfer

function derived from system identification, the parameters can be found by compar-

ing the numerators and denominators of each equation and solving for the variables

algebraically. The transfer functions fit the data to an 80 − 85% accuracy. The fit

percentage is the Normalized Root Mean Squared Error (NRMSE) between the identi-

fied transfer function output and the output data gathered through experimentation.

Notice that, even though motors 1 and 4 are identical, they have drastically different

plant parameters. This is due to the inability to obtain increased accuracy between

the data and the transfer function when performing system identification. Difficulties

in obtaining higher accuracy percentages include un-modeled dynamics known to be

present in the system such as a torsional stiffness present in the timing belt. The tor-

sional stiffness dynamics were left un-modeled in order to keep the plant model from

becoming overly complicated. Additionally, the robust control techniques inherently

compensate for such situations. It is a goal of this research to use robust control tech-

niques to compensate for un-modeled dynamics such as the torsional stiffness present

in the timing belt. It is not considered to be a problem if that characteristic was the

only source of error in the identification. Also, an electrical anomaly present while

the data acquisition system is in the loop with the robot causes the control voltage

to dip periodically if more than one motor is on at the same time. This anomaly

likely skewed the input, output data used for the parameter identification causing the

accuracy in fit to be less.
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It was also necessary to quantify the amount of uncertainty present in the

plant. Due to time constraints, the plant uncertainty was only able to be quantified

for motor 2. This was done by identifying the system many more times and comparing

the Bode plots of those systems to the nominal system. The plants found by system

identification are shown in the following figure. The red line is the nominal plant

used and the blue lines represent the uncertain plants.

Figure 38: System Identification Plant Uncertainty

These plants are used to construct the multiplicative modeling error weight used in

the H∞ controller design. The Bode plot of the multiplicative model errors and the

associated weight used in Section 3.2.3.3 is shown below.

(a) Relative Modeling Errors (b) Weight

Figure 39: Multiplicative Uncertainty Errors and Weight

The multiplicative modeling error weight was then found based on equation

(2.17). The weight is a 5th order transfer function. As is evident, the relative modeling
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errors vary significantly between one another, visually indicating the amount of error

between the specified nominal plant and subsequent system identifications of the same

plant. As will be shown in future sections, the robust controllers are able to overcome

these uncertainties.

4.2 Sliding Mode Control

Sliding mode control was found to be very successful in both simulation

and implementation. For that reason, only implementation results will bw shown.

Results for the determination of sliding mode control performance comes in three

forms. First, the sliding function (3.10) must reach the surface (s = 0) in finite time

and remain on the surface in between the bounds±φ for the duration of robot activity.

Second, adequate position and velocity tracking must be achieved. Velocity tracking

is especially important to validate that the target impedance is being produced by

the robot during human/machine interaction.

Using a 3 second period sinusoidal position input and a random force input

on the robot via human/machine interaction for the last 10 seconds of the test, the

following impedance parameters were tested on the robot.

Test Inertia Damping Spring Constant
1 Nominal Nominal 7
2 Nominal 1 1
3 0.12 Nominal 1
4 0.06 0.6 3.5

Table VI: Impedance Settings for Sliding Mode Controller Verification

All nominal values can be interpreted as the nominal rotational inertia and rotational

damping parameters of the plant. It is important to note that the same sliding mode

controller gains and sliding function tolerances were used for each test. Results vary

when changing these gains.
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Figure 40: SMC Impedance Verification Test 1 - Motor 2

Figure 41: SMC Impedance Verification Test 2 - Motor 2
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Figure 42: SMC Impedance Verification Test 3 - Motor 2

Figure 43: SMC Impedance Verification Test 4 - Motor 2

In all four figures above, the sliding function stayed within the bounds of the sliding

surface. Both the arm position and velocity curve tracked the target impedance curve

closely. These characteristics ensure that the required target impedance is being met
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to an acceptable degree of error. Shown in Table VII is a quantification of the tracking

error and chatter for motor 2.

Test RMS Position Error (%) RMS Velocity Error (%) Chatter
1 1.128 5.667 16.06
2 0.516 3.165 18.407
3 4.684 3.648 24.864
4 0.867 3.845 17.166

Table VII: Sliding Mode Control Verification Test Results

The tracking errors were found by applying a root-mean-squared (RMS) average

between the actual and target positions and velocities. Motor chatter is a phenomenon

that occurs in the control input of electric motor control systems. It is produced by

the high frequency switching of the control input signal. When the sliding model

tolerance, φ, is too small or the gain, η of the controller is too high, the sliding function

crosses the sliding surface, s = 0, too rapidly for the motor to physically respond.

These effects can be detrimental to the lifespan of a motor and must be minimized.

The amount of motor chatter present in the control signal is found by performing an

fast fourier transform (FFT) analysis on the control signal. All frequencies above a

minimum frequency are considered motor chatter in the signal and are summed to

produce the final chatter value in the control signal.

chatter =
n∑
i=1

Ai where ω1 ≥ ωmin (4.1)

Ai is the amplitude of each frequency in the FFT plot, ωmin is the smallest frequency

that does not encompass the dominant or fundamental frequencies of the signal, and

n is the number of frequencies plotted in the FFT plot. ωmin chosen for this analysis

is 2.5 rad
s

. The main use of this data is to compare its values with the values found

upon testing of the H∞ controllers later on in the chapter.

Sliding mode is especially valuable due to its non-discriminatory robustness.
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The switching action is able to deal with large, un-modeled uncertainties as well as

non-linearities of any nature that are present in a system. Sliding mode control is

inherently a more robust controller, but, due to time constraints, its level of robustness

could not be quantified. A glimpse of its robustness can be seen in its accurate tracking

performance in the face of the disturbance anomalies present in the system.

4.3 H-Infinity Control

In this section, the resulting H∞ controllers are analyzed for performance

and robustness. The designation of weights for the H∞ controller synthesis directly

determines the performance, disturbance rejection abilities, and implementable prac-

ticality of the synthesized controller. It is a delicate balance between those three

characteristics. For feedback systems, the weight shapes can be more readily spec-

ified due to 3 decades of H∞ control application experience. This information is

available in most H∞ literature. For other systems, such as systems with impedance

control, the weights are not directly known and may not be as intuitive. Achieving

desired performance and disturbance rejection goals may be possible, but synthesiz-

ing a practical controller with small negative closed loop poles poses a challenge to

any engineer attempting to implement the H∞ control law with impedance control.

Small negative closed loop poles consist of far left-hand-plane poles that exceed the

Nyquist frequency of the robot. If a closed loop pole exceeds the Nyquist frequency,

the system cannot respond to such dynamics since they are faster than the system

can reliably observe.

4.3.1 Weighted Plant

The augmented plant consisting of the CSU 4OptimX plant, the target

impedance and the associated weighted described in Section 3.2.3.1 synthesized a
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controller with satisfactory results in simulation. Below are the plots of the response

to an uncertain plant given step inputs for the impedance force and desired position.

The impedance parameter values are low for simulation testing. Those parameters

are 1 for K and the nominal values of the plant damping and inertia for both B and I.

Low impedance parameters were used in order to test the feasibility of the controller.

Assessing performance using larger impedance parameters will occur if the controller

is feasible for implementation.

(a) (b)

Figure 44: Simulated Weighted H∞ Closed Loop Step Response

Figure 44a represents the step response from an impedance force input to the position

error. The magnitude of the impedance force step response is 100 N, which is the max

force seen during testing of the sliding mode controller. Figure 44b represents the

step response from a desired potion input to the position error. The magnitude of the

desired motor position step response is 3 radians, which corresponds to 44.55◦ of arm

rotation due to the compounding of gear ratios between the motor shaft and the arm.

Although the overshoot and final values of the uncertain responses become worse,

they converge. It is also worthwhile to note that the magnitude of the overshoot in

Figure 44a is worse than the overshoot of Figure 44b. This fact is also evident in

the Bode plot of the same inputs and outputs. Large amounts of error between the

nominal and uncertain plants occur in the frequency range of operation from 10−1 to
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102 rad
s

.

Figure 45: Simulated Weighted H∞ Closed Loop Frequency Response

Off-nominal plant parameters in the closed loop system produce larger error in the

frequency response when compared to the nominal closed loop system. Overall, this

data shows that input impedance forces have a larger effect on the position error than

the desired impedance motor position input.

It is also worthwhile to check the initial condition response of the closed

loop system to ensure that it converges to a final value in a timely manner. In this

case, the system converges very closely to zero position error in all cases. Zero final

value convergence is not a requirement for this design. Instead, it is important that

the system converges from an initial position as quickly as possible.

Figure 46: Simulated Weighted H∞ Closed Loop Initial Condition Response
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The closed loop system converges in under a half second from a worst-case-scenario

initial condition. The initial value of the actual arm position was set to be 44.55◦ away

from the target impedance arm position. This displacement represents the maximum

displacement likely to be seen between those two states.

Lastly, it is important to look at the closed loop poles to confirm stability.

Also, the placement of the poles and zeros tell a great deal about the closed loop

system performance.

Figure 47: Weighted H∞ Closed Loop Pole-Zero Map

The largest negative real part of the closed loop poles, -190 s−1 is well under the

500 s−1 Nyquist frequency that the closed loop system must adhere to so that the

signals of the system do not have a faster frequency than the sampling frequency of

the system. If this happens, those signals will become aliased and unreliable.

Although the system is already stable for the uncertain plant, it is important

to know the amount of extra uncertainty that causes closed loop instability. To obtain

such information, a robust stability analysis is performed on the closed loop system.

The analysis shows that the closed loop system is marginally stable for the defined

model uncertainty. It can tolerate up to 99.8% of the modeled uncertainty before

instability occurs. Normally, this outcome would not be implementable, but the

instability occurs at an infinite frequency. The system does not have the ability to

respond to frequencies higher than the sampling frequency of 1000 s−1. The system
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is marginally stable in theory but can be considered robustly stable for the defined

modeled uncertainty. Any uncertainty outside of the defined range will cause the

closed loop system to become unstable.

Implementation results using the same tests run on the sliding mode con-

troller are shown below. The test parameters can be found in Table VI. Using a

sinusoidal tracking input of 3 rad
s

and a random impedance force input from 10 sec-

onds to 20 seconds, the same tests are run to quantify the root mean squared (RMS)

error in position and velocity as well as the amount of chatter present in the control

signal. Motor 2 is used as the testing motor.

Figure 48: Weighted H∞ Verification Test 1
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Figure 49: Weighted H∞ Verification Test 2

Figure 50: Weighted H∞ Verification Test 3
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Figure 51: Weighted H∞ Verification Test 4

Upon visual inspection of the plots, tracking for both position and velocity is fairly

accurate. A table showing the RMS errors in the position and velocity is shown below.

Test RMS Position Error (%) RMS Velocity Error (%) Chatter
1 8.527 10.219 11.096
2 11.724 13.264 10.299
3 7.114 6.358 13.087
4 16.758 13.155 16.807

Table VIII: Weighted H∞ Verification Test Results

Comparing the results in this table to the results of the sliding mode con-

troller in Table VII, it is immediately apparent that theH∞ controller produces larger

tracking errors in both position and velocity for each test. The comparison of both

tables also shows that the H∞ controller produces less chatter in the motor input

signal for every test. This is an expected result since the sliding mode controller

has inherent switching behavior associated with its operation. Weighing the benefits

associated with decreased motor chatter compared to an increase in tracking error is

dependent on the predicted operating life of the robot as well as the need for precise
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tracking. As a solution to this debacle, the sliding mode controller can be used when

precise tracking is needed and the H∞ controller can be used to extend the life of the

robot.

4.3.1.1 Weighted Plant with Structured Parametric Uncertainty

Using the theory in Section 2.2.2.1 and applying it in Section 3.2.3.2, an

H∞ controller is synthesized that factored in the structured plant uncertainty. Unfor-

tunately, the resulting controller is not practical for application or even in simulation.

Shown below is the step simulation of the closed loop system.

Figure 52: Simulated Weighted H∞ with Structured Parametric Uncertainty Closed
Loop Step Response

As is evident, the resulting step response is unstable. An examination of the

poles of the closed loop system verify the results shown in the step response.
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Figure 53: Weighted H∞ Closed Loop with Structured Parametric Uncertainty Pole-
Zero Map

As a final check to quantify the amount of instability in the uncertain plant,

a robust stability analysis is conducted. The results show that the uncertain closed

loop system can only tolerate up to 5.91% of the modeled uncertainty. Instability

occurs as a frequency of 4.46 rad
s

, which is a normal operating frequency of the system.

This controller does not have the ability to successfully control or stabilize the CSU

4OptimX plant.

4.3.1.2 Weighted Plant with Multiplicative Uncertainty

Using the theory presented in Section 2.2.2.3 along with the weighted plant

constructed in Section 3.2.3.1, a plant with multiplicative uncertainty is constructed.

Compared to the results of the previous controllers in this section, using a multiplica-

tive uncertainty representation provides initially provides the most promising results.

Shown below are the simulated step responses from input impedance force and desired

impedance target motor position to the position error between the target impedance

motor position and the actual motor position.
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Figure 54: Simulated Weighted H∞ with Multiplicative Uncertainty Closed Loop
Step Response

It is shown in the graph that the closed loop system response in unaffected

by the uncertainty in the plant since there is no variation in the response from nom-

inal. The peak response for each plot from left to right is 0.239 rad and 2.83 rad,

respectively. The settling times are 1.51 seconds and 0.987 seconds. For this con-

troller, the reference position step input of 3 rad produces a 1084% larger deviation

in the position error, but reaches zero steady state error a half a second faster than

the impedance force step response. For this application, it is important that both

the settling time and the position error be kept as small as possible. Also, these step

responses are considered worst-case-scenario step responses. Less sudden responses

with smaller amplitudes are more likely to be seen. Thus, the closed loop system is

likely to response with smaller position errors and settling times.

The response characteristics above can also be seen in the Bode plots.
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Figure 55: Simulated Weighted H∞ Closed Loop Frequency Response

Each plot has a peak gain of -42.3 dB at 9.87 rad
s

and 4.21 dB at 9.29 rad
s

along

with similar frequency response shapes. The larger, positive peak gain in the desired

impedance position Bode plot can be correlated with a larger peak response in the

desired impedance position step response. As assumed from the step response plots,

there is no uncertain plant Bode plots that deviate from the nominal plot, meaning

that the closed loop system is extremely robust to plant uncertainty.

In order to quantify the amount of robustness to plant uncertainties in the

closed loop system, a robust stability analysis is performed. The analysis shows that

the closed loop system is robustly stable for all modeled uncertainty. The system can

tolerate up to 1,000,000% of the modeled uncertainty. This is an unrealistic result

for for any fixed gain controller for this application. Compared to the robust stability

results of the previousH∞ controllers, this result doesn’t make sense. Further analysis

will show other problems in the controller that explain this result.

Lastly, a look at the poles of the closed loop system will give insight into

the performance and practicality of the controller.
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Figure 56: Weighted H∞ Closed Loop Pole-Zero Map

The map above shows pole-zero cancellations for all poles and zeros in the uncertain

closed loop plant, meaning the uncertain system has no dynamics. A system with

no dynamics is the easiest system to control. If this controller cancels the robots

dynamics upon implementation, then the closed loop system should show near perfect

performance and disturbance attenuation. This result appears unrealistic as well

compared to other controllers synthesized for this robot. This conclusion is most

likely the reason for the very large robustness tolerance percentage mentioned earlier.

The nominal plant, however, has dynamics. Its largest negative pole is at -8.43 rad
s

.

The results of the controller upon implementation to the CSU 4OptimX are

shown below. The impedance parameters used for this test are the parameters of test

1 in Table VI.
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Figure 57: Weighted H∞ with Multiplicative Uncertainty Verification Test

The controller shows poor tracking results on the very first test. These results do not

warrant further testing and analysis as its performance is not comparable to the other

controllers. This controller is unsuccessful at controlling the CSU 4OptimX and will

not be used.
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CHAPTER V

Conclusions & Recommendations

The main goal of this thesis is to design, analyze, and implement a robust

impedance controller as the foundational control for the CSU 4OptimX. The slid-

ing mode control law proves to be an immediate success and is currently the main

control on the robot. Its ability to track the desired impedance position, attenuate

disturbances, and change impedance parameters instantaneously without having to

redesign the controller cannot be matched by the fixed gain controller that is the H∞

controller. Even though the SMC is superior, the H∞ controller synthesized using

the nominal plant is capable of controlling the CSU 4OptimX in situations were ex-

treme accuracy in target impedance position is not necessary. This controller also

produces less motor chatter. This characteristic can greatly extend the life of the

CSU 4OptimX motors.

Each control law has advantages and disadvantages pertaining to design,

implementation, and performance. Below is a cumulative summary comparing the

advantages and disadvantages of each control law toward the application of robust

impedance control.
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Sliding Mode Control H∞ Control

Advantages

Simple controller design process Simple, fixed gain controller

Autonomously compensates for all disturbances and non-linearities Ability to achieve a larger range of impedances

Ability to change impedance parameters without controller re-design Little to no control input chatter

Superior impedance trajectory tracking

Disadvantages

Potential for significant control input chatter Must specify disturbance and non-linearities during design phase

Smaller range of achievable impedances Challenge to determine weights for implementable controller

Must re-design controller when changing impedances

Table IX: Advantages and Disadvantages of Controllers

These conclusions are the grounds for deciding which robust impedance controller

suits a particular application.

During this thesis, observations were made about the H∞ controller design

process that make designing an H∞ impedance controller challenging. The designa-

tion of weights for the H∞ controller synthesis directly determines the performance,

disturbance rejection abilities, and implementable practicality of the synthesized con-

troller. It is a delicate balance between those three characteristics. For feedback

systems, prior research dictates the proper weight shapes for successful controller

synthesis and implementation. For other systems, such as systems with impedance

control, the weights are not directly known and may not be as intuitive. Achieving

desired performance and disturbance rejection goals may be possible, but synthesiz-

ing a practical controller with small negative closed loop poles poses a challenge to

any engineer attempting to implement the H∞ control law with impedance control.

Future research into general weight shapes that produce practical controllers with

increased performance and disturbance rejection is needed to properly understand

the strengths and weaknesses of H∞. In this thesis, weights are chosen based on

a literature review of common weights and an iterative design process that became

cumbersome. Optimization of weight shapes for robust H∞ impedance control is a

valuable path of research for this topic.
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