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Long-Dose Intensive Therapy Is 
Necessary for Strong, Clinically 
Significant, Upper Limb Functional 
Gains and Retained Gains in 
Severe/Moderate Chronic Stroke

Janis J. Daly, PhD, MS1’2, Jessica P. McCabe, MPT3, John Holcomb, PhD4 
Michelle Monkiewicz, DPT3 , Jennifer Gansen, DPT3, 
and Svetlana Pundik, MD, MS3,5*

Introduction
Many stroke survivors do not fully recover upper limb func­
tion following stroke, leading to significant disability and 
diminished quality of life.1 Effective treatments are needed 
for chronic, severely impaired stroke survivors.2 Other stud­
ies showed improved upper limb motor function in chronic 
stroke for mild/moderately impaired,3"13 with traditional 
“constraint induced” treatment studies enrolling only those 
with preserved wrist and finger extension (acceptance 
rate, 10%).14 However, for those with moderate/severe 
impairment after stroke, improvement in function has 
been more difficult to realize. A recent study of constraint- 
induced movement therapy in more severe stroke reported 
no clinically significant change in upper limb Fugl-Meyer



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

assessment scores.15 Others have also tested the application 
of technologies and devices, in moderate ly/severely impaired 
chronic stroke survivors, with the following: functional elec­
trical stimulation (FES),16"18 sequenced bilateral and unilat­
eral task orientated training,19 mirror therapy,20 progressive 
abduction loading therapy,21 contralaterally controlled 
FES,22 and robotics.23'27 Limitations included small sample 
size,16"18’22"23 lacking control group,16'23 lacking statistically 
significant gains on impairment or functional measures,23 
lacking clinically significant change,2021 23"25'27 lacking 
retention of clinically significant gains,16 19 25'26 or lacking 
study of retention.20'23 Furthermore, many studies do not 
include both a measure of impairment and an array of actual 
everyday functional tasks. Our work has focused on moder- 
ately/severely impaired chronic stroke survivors, and in 
prior work we developed and tested a protocol that combines 
technology applications and motor learning.28,29 We found 
clinically and statistically significant gains for those with 
moderate/severe stroke considerably beyond that reported 
by others (eg, gains in coordination, Fugl-Myer coordination 
scale [FM], and gains on the Arm Motor Ability Test [AMAT; 
13 complex functional tasks]).

Others have cited this work stating that “a change in 
impairment of this magnitude was previously considered 
almost impossible in chronic stroke patients,”30 and that 
this is important first evidence for use of high dose neuro­
rehabilitation.31 Therefore, we considered it important to 
replicate the administration of the upper limb motor 
learning protocol in a follow-on study and again quantify 
response. Another consideration was that we had not 
given technology a full chance in application to the 
“whole arm,” that is, both distal and proximal upper limb 
regions. Therefore, a first purpose was to replicate admin­
istration of the upper limb motor learning protocol and to 
include a treatment group that would receive technology 
applications to both distal and proximal limb regions. In 
addition, there were 2 important and unanswered ques­
tions regarding the dose and efficacy of this new treat­
ment protocol.

The first question is whether a shorter treatment duration 
(ie, <300 hours) could produce the same degree of recovery, 
given that the existing protocol was tested in the paradigm of 
long-duration dose of 300 hours of therapy. Therefore, in the 
current work, we administered the same protocol as in prior 
work,28 and acquired mid-treatment (at 150 hours of treat­
ment) data on the Fugl-Meyer impairment measure, which 
underlies complex functional task performance. We studied 
whether a mid-treatment plateau occurred or whether sig­
nificant recovery occurred in response to the second half of 
treatment (mid-treatment to posttreatment).

The second question is whether the observed gains can 
be retained after cessation of treatment. Therefore, we stud­
ied retention of gains at 3 months after treatment ended.

Methods

Study Design

This was a singleblind, intervention study, stratified using 
standard methods, according to the following: (1) impair­
ment level of the upper limb, in order to equalize impair­
ment across groups and (2) relative impairment proximal/ 
distal, so one with greater shoulder/elbow impairment 
would not be assigned to the group focused on distal treat­
ment, for example. There were 3 groups, as follows: (1) 
distal-focused technology applications group for 30% of 
treatment time, (2) proximal-focused technology applica­
tions for 30% of treatment time, and (3) equal proximal and 
distal technology applications for 30% of time. The remain­
ing 70% of therapy time within each of the 3 groups was 
spent performing functional task practice guided by motor 
learning principles. Functional and impairment measures 
were acquired by a blinded examiner at pre-, post-treatment 
and 3-month follow-up (3moF/U), and the FM impairment 
measure was acquired also at mid-treatment.

Subjects. Inclusion criteria included the following: >6 
months post single unilateral stroke; <trace muscle contrac­
tion, of the affected wrist extensors; stable medically; no 
other prior neurological condition; and ability to follow 
2-step commands. The institutional review board provided 
study oversight; subjects provided written informed consent.

Intervention. Therapy was implemented 5 hours per day 
(total), 5 days per week, for 12 weeks.28 Technology-assist 
coordination training was 1.5 hours per session, with content 
for each group as follows: Distal Group, FES for wrist/hand 
muscles (EMS + 2 [Staodyn, Inc, Longmont, CO]; Proxi­
mal Group, FES and robotics for shoulder/elbow muscles/ 
movements (Vectra Pro (Chatanooga Group, Inc, Hixson, 
TN) and InMotion2 Shoulder-Elbow-Robot; InteractiveMo- 
tion Technologies, Inc, Cambridge, MA); and Whole Arm 
Group, equal proximal and distal applications of technology. 
The remainder of each session (3.5 hours/session) consisted 
of motor learning of coordinated movements, task compo­
nent, and full task practice.28

Participants were encouraged to take short rest breaks 
when their motor performance degraded; therefore, rest 
breaks were individualized. Participants were highly moti­
vated to work hard, but rest periods were important for pro­
ductive practice to occur. Also, in the middle of the 5-hour 
session, we took a 1-hour lunch break, so the schedule was 
as follows: 2.5 hours treatment, 1-hour lunch break, and 2.5 
hours of treatment. On average, participants rested about 15 
minutes for every hour of participation.

From our prior work, we are aware that a 1:3 group ther­
apy paradigm (therapist:patients) affords several advan­
tages. First, it is less costly than the 1:1 paradigm, rendering



 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 

the research more affordable. Second, participants enjoy the 
comradery and social aspects of the small group, and assist 
each other in numerous ways. Third, with 3 participants in a 
group, there are always 2 participants working indepen­
dently (as set up by the therapist), which is preferable in 
terms of learning. The technologies were of some assistance, 
in that a participant could be set up with either FES or robot­
ics as a practice-assist device, freeing up the therapist for 
that time to work more closely with another participant. The 
1:3 paradigm does require that the therapist is able to hold in 
mind simultaneously, the detailed goals and ability levels of 
3 participants and multitask throughout the entire session. 
Treatment planning is necessary outside of the patient treat­
ment sessions. The successful treatment and progression are 
dependent on the following: accurate analysis32 of motor 
deficits33; insightful synthesis of multiple, broad, and related 
factors34 influencing motor dyscontrol35; and generalization 
from known experience and creativity34 in generating a cus­
tomized approach to treatment planning and progression, 
accounting for unique arrays of symptomatology.35

Overall Principles of Treatment

The goal of training is recovery of the movement compo­
nents composing functional tasks, as well as recovery of 
performance of the whole complex task. The motor learning 
protocol is based first on our clinical observations that those 
with moderate/severe impairment are not able to produc­
tively practice complex functional tasks at the beginning of 
treatment. Rather, it is important to first treat at the level of 
isolated joint movement coordination, if impairment is 
present at that level. Some31 have described this as treat­
ment at the neurophysiological level, which was described 
early by Brunnstrom,36 Twitchell,37 and later by Crow and 
Harmeling-van der Wei.38 Krakauer and Carmichael31 rec­
ognize this accurately as different from repetition of task 
practice or even task component practice. We organized our 
treatment according to the hierarchy given in Table 1. The 
hierarchy begins with training isolated joint movement 
coordination of the scapula, shoulder, elbow, forearm, wrist, 
fingers, and thumb. As an individual mastered more coordi­
nated motor control of single and/or multiple joints, we 
incorporated those movements into functional task compo­
nents, and subsequently whole task practice. For each of 
these levels of training, we applied the following motor 
learning principles: movement practice as close to normal 
as possible,39'40 high number of repetitions,41"44 attention to 
the motor task,45 and training specificity.46 A few examples 
of practiced task components are reaching, grasp prepara­
tion, and grasp. In order to encourage participation, func­
tional tasks that were meaningful to the subject were 
selected from an array of over 60 tasks (each of which could 
be divided into task components), and practiced with sup­
plies and tools that were made readily available.

Table I. Upper Limb Training Protocol: Treatment 
Progression Hierarchy for Coordinated Movement 
Practice.3

"Table from Daly (2012) and McCabe (2015).

Accurate Selection of the Initial Task Difficulty Is 
Critical

Prior to assigning a motor task within the motor learning 
program of Table 1, performance of motor tasks was 
assessed for characteristics given in Table 2. The results of 
that assessment determined at which point in Table 1, the 
learner should begin for that day, for a given motor task. 
Progression of the motor learning program through the hier­
archy of difficulty in Table 1 was dependent on iterative 
assessment each day and within each session, as is the case 
in clinical neurorehabilitation practice. We followed the 
maxim, “test-treat-test.”

Example

The training provided for the task in Table 1 (point A) can 
serve as an example of the finely incrementalized approach 
used in this motor learning (ML) protocol 28. For inability to 
activate a given muscle in any body position, the first treat­
ment goal is to facilitate and elicit volitional muscle activa­
tion on demand. In a severely paretic muscle, activation was 
first elicited within a synergistic mass pattern, because in our 
prior work, we found that this is the easiest condition under 
which to obtain volitional muscle activation. For example,



 

 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Guidelines for Assigning Initial Training Level and Progression of Practice Task.

Step Guideline

1 50% of normal range of movement is executed, volitionally, independently; or 50% of motor task is executed with support
of verbal or tactile facilitation; or 50% of normal range of movement is executed, along with motor assist device.

2 Normal level of effort is expended during task (no holding breath or associative reactions in other limbs or trunk; relaxed
uninvolved muscles).

3 If motor compensatory strategies are employed, at least half of motor task is performed without compensatory strategies
4 Five or more repetitions of motor task can be performed in a row with only a “beat” between before motor task

deteriorates into uncoordinated or incorrect fashion.

we may begin with the subject in the side-lying position with 
the involved limb, uppermost, and supported on an exercise 
board in the horizontal plane. The limb can be positioned 
within a synergistic pattern for the “start” position. The clini­
cian can provide minimal assistance, gradually withdrawing 
external manual or device assistance as soon as the individual 
begins to regain volitional control during practice. As the 
individual recovers the ability to control muscle activation in 
this most facilitated position, motor task practice can be pro­
gressed to more difficult body positions.

Treatment progression occurs in finely incrementalized 
steps. Some of the methods used to incrementally support 
improved performance are as follows: awareness training 
of normal and abnormal movements; body position to mit­
igate abnormal muscle tone; functional electrical stimula­
tion to provide sensory feedback regarding muscle 
activation or to assist in practice of volitional movements; 
support of limb segments during movement practice (eg, 
either an overhead sling or a shoulder/elbow robot support 
of the upper limb); closed-chain motor practice (eg, 
weightbearing on palm or forearm) and open-chain motor 
practice; isometric, eccentric, and concentric muscle con­
traction practice; breakdown of meaningful tasks into sep­
arate movement components; practice of movement 
accuracy; speed practice; practice of variable movement 
directions and variable speed control; and empowerment 
of the individual to practice independently.47 For a number 
of subjects, there was abnormal soft tissue tightness, in 
which case tissue mobilization techniques were employed 
to stretch tissue to accommodate more normal active range 
of movement. For this, we iteratively stretched and 
strengthened in small increments in order to ensure main­
tenance of lengthened tissue. This type of treatment was 
routinely required for scapular/humeral tissue and recov­
ery of more normal movement patterns. FES and robotics 
were used as support devices or movement-assist devices 
to support practice of more normal movement patterns.

Measures

We used the Fugl-Meyer Assessment (FM). A dictionary 
definition of coordination is as follows: “the ability to use 
different parts of the body together smoothly and efficiently.” 
This definition inherently contains a spatial and temporal

component. That is, to work together, movement about joints 
must be occurring in a correct relative timeframe for the 
given movement(s). In the upper limb in some cases, this 
means that one joint must be stabilized and held motionless 
while another joint movement is executed for the given 
function. The FM contains items assessing coordination of 
upper limb movement of 4 categories as follows: (1) 15 
items (46% of the score) assessing coordination of single 
joint movement without interference from other joint muscle 
activations, (2) 12 items of movement about more than one 
joint (36% of score), (3) trajectory movement execution (9% 
of the score), and (4) joint movement in response to a tap or 
blow (reflex response; 9% of the score).48 The FM is consid­
ered a hierarchical scale of motor coordination performance 
of single and multiple joints, and lays out the pattern of 
motor recovery set forth by Brunnstrom,36 Twitched,37 and 
Crow and Harmeling-van der Wei.38 As such, the FM is the 
coordination impairment measure of choice for the motor 
learning protocol utilized here, which is based on the hierar­
chical progression given in Table 1. Internationally, the FM 
is the most widely used measure of coordination in stroke 
research.49 For ease of discussion, we will refer to the FM as 
a measure of coordination.

FM was obtained at Pre-, mid-, Post-treatment and at 
3moF/U. For the most meaningful results, the FM should be 
used in conjunction with a measure of actual functional 
tasks,49 which was satisfied in the current study by AMAT, 
the timed domain (AMAT-T) and the “function” domain 
(AMAT-F). The AMAT is a reliable, valid, and homogeneous 
measure of 13 actual functional tasks. AMAT is a “unique 
standardized measure”, as a homogenous measure of com­
plex functional tasks, indicating ADL (activities of daily liv­
ing) limitation,50 compared to other measures of functional 
tasks that include impairment items (eg, Wolf Motor Function 
Test) or limit to a few movements rather than actual func­
tional task performance (eg, Action Research Arm Test). 
AMAT is valid across a broad range of impairment levels50 
and is strongly correlated with FM.51 AMAT time was the 
time to perform the tasks (AMAT-T; 13 tasks, timed/ 
summed). The AMAT function domain (AMAT-F) is an ordi­
nal observational coordination measure (averaged; known 
minimal clinically important difference for AMAT-F is 0.44 
points52). Example tasks include ‘use a spoon to scoop up 
bean” and “unscrew jar lid”).



 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

 

 

 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

Table 3. Baseline Characteristics (n = 36).

Years
Stroke Type Poststroke Age Range (Years) Gender

Group Ischemic Hemorrhagic 0.5-3 >4 21-49 50-62 >63 Male Female

Proximal Group 7 3 10 0 3 5 2 7 3
Distal Group 5 3 6 2 2 4 2 6 2
Whole Arm Group 14 4 18 0 2 II 5 15 3

The Stroke Impact Scale (SIS)53 was used to assess self­
report recovery in a standardized manner. We calculated the 
overall score and the domain scores of “Hand” and “Daily 
Living,” which were the most germane subscales in the cur­
rent study.

We acquired qualitative therapist observational data and 
subject self-report data. Therapist observations of changes 
in impairment and functional task performance were 
recorded. Also, we queried the subjects during the course of 
their participation. We recorded answers to the question: Is 
there anything you can do this week that you were unable to 
do at the beginning of the study?

Statistical Analyses

In study measures, departures from normality were indi­
cated by the QQ plot and Shapiro-Wilk test of normality, 
therefore nonparametric methods were used for analyses. 
To determine if differences occurred between groups, we 
used ordinal regression with group as the factor variable 
and the pre-treatment measure as a covariate. For the 
Fugl-Meyer coordination test, to determine whether time 
(baseline, mid-, posttreatment, and 3moF/U) was signifi­
cant, we used the nonparametric Friedman test.54 Since 
time was significant, we then conducted further post hoc 
analysis to study change over time, using the nonparamet­
ric Wilcoxon signed rank test, and distribution free confi­
dence intervals55 to determine statistical significance. The 
same procedure was employed to identify significant gain 
between time points in the AMAT-F, AMAT-T, and SIS 
measures. The Hochberg procedure was used to correct 
for multiple testing (only corrected P values reported).

Correlations were calculated using the Spearman method to 
explore the potential association between baseline impairment 
level (FM) and impairment improvement (FM), as well as 
between impairment gain (FM) and gain in functional task per­
formance (AMAT-T and AMAT-F). We generated descriptive 
statistics to characterize the baseline, posttreatment, and gain 
scores separately for the hemorrhagic and ischemic subjects

Results

Baseline

Table 3 provides baseline subject characteristics. Group 
assignment was: Proximal Group (n = 10), Distal Group

(n = 8), and Whole Arm Group (n = 18) (Figure 1, 
CONSORT study flow diagram).

The unequal sample size across the three groups could 
have occurred for at least 2 reasons. First, we conducted a 
stratification procedure such that the Whole Group 
received enrollees from the whole pool of candidates, 
whereas each of the other 2 groups were blocked in terms 
of receiving subjects with the “wrong” location, respec­
tively, of impairment in the limb. Second, after stratifying, 
we used a random procedure of assigning to the treatment 
groups. A random procedure does not always result in 
equal sample size.

Descriptive Statistics

The impairment severity distribution across the whole 
group treated (n = 36), based on initial FM score was as 
follows: mild, n = 2; moderate, n = 4; severe, n = 30 based 
on the following ranges: mild = 43-66; moderate = 29-42; 
severe = 0-28.56

There was an attrition rate of 17% from beginning of 
enrollment (n = 38) to follow-up (7/38), which was equally 
distributed across the 3 groups (3, 2, and 2, respectively). 
The most frequent reason for leaving the study at any time 
point was difficulty with transportation. For this 7-person 
subsample, FM change scores ranged from 6 to 18 points 
with a mean change of 11.2 points, both comparable to the 
whole cohort performance.

At baseline, for hemorrhagic stroke, FM mean was 23.1 
(± 7.4) and for ischemic stroke, FM was 22.8 (± 10.4), a differ­
ence of 0.3 points. At posttreatment, for hemorrhagic stroke, 
FM was 33.6 (±10.1) and ischemic stroke was 32.3 (±12.7), 
a difference of 1.3 points. The FM mean gain score was 10.5 
points for hemorrhagic stroke and 9.5 points for ischemic 
stroke; the difference in gain score was 1 point. These very 
close descriptive results indicate no difference in baseline or 
treatment response for ischemic versus hemorrhagic stroke.

Group Comparison of Treatment Response:
Baseline to 3-Month Follow-up

Treatment Groups. At baseline, there was no difference 
among the 3 groups on any study measure (P .27), age 
(P = .85), or time since stroke (P = .39). There were a



 

 

 
 

 
 

Figure I. Patient flow CONSORT (Consolidated Standards of Reporting Trials) diagram. 
No adverse events occurred as a result of participation in the study.

Table 4. FM, AMAT-T, and AMAT-F Organized by Time Point (n = 31).

Measure Pretreatment, Mean (SD) Posttreatment, Mean (SD) Follow-up, Mean (SD)

FM 21.8(8-2) 31.5(11-3) 31.3(11-9)
AMAT-T 1722 (644) 1353 (677) 1244 (665)
AMAT-F 2.03 (0.83) 2.49 (0.94) 2.61 (0.95)

a: FM for pre-, mid-, and posttreatment (n = 36)

Pretreatment, Mean (SD) Mid-treatment, Mean (SD) Posttreatment, Mean (SD)

22.9 (9.6) 27.6 (10.8) 32.7 (11.9)
n = 36, group used for pre vs mid and mid vs post comparisons.

Abbreviations: FM, Fugl-Meyer assessment; AMAT-T, Arm Motor Assessment Test (Time domain); AMAT-F, AMAT Function domain assessing 
coordination; SD, standard deviation.

significantly greater number of males (n = 15) in the Whole 
Arm Group (P = .02). There was no difference across treat­
ment groups in response to treatment according to the

AMAT-T (P = .160), AMAT-F (P = .33), or FM (P = 
.97). Given that there was no significant difference across 
the 3 groups, we combined the 3 groups (Table 4) in the



 
 

 
 

 

 
 

 

 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 

 

 
 
 
 

 
 

Table 5. Results of Treatment Response.

(a) FM

Figure 2a. No plateau at mid-treatment indicated by clinically 
and statistically significant gain in coordination from mid- to 
posttreatment.
^Clinically and statistically significant improvements from pre- to 
mid- and from mid- to posttreatment, and overall from pre- to 
posttreatment. The minimum clinically important difference (MCID) for 
Fugl-Meyer is 4.25.

Figure 2b. Gain in Fugl-Meyer. 
*N = 36; other comparisons, N = 3 I. 
+P < .0001.
I = standard error.

study of 2 questions: (1) Was >150 hours of therapy bene­
ficial and (2) Were significant gains retained at follow-up?

Was >150 Hours of Therapy Beneficial? Change From Mid­
Treatment (150 Hours of treatment) to Posttreatment (300 
Hours ofTreatment). We found that there was a statistically 
and clinically significant improvement from mid- to post­
treatment for the FM (Figure 2; Table 5a), indicating an

Effect
Comparison Mean Gain (SE) P 95% Cl Size

pre/mida 4.7 (0.60) <.0001 (4, 6) 0.54
mid/posta S.8 (0.68) <.0001 (3.6) 0.59
pre/posta 9.8 (0.97) <.0001 (7. II) 0.60
post/follow-up 2.0 (0.70) .5315 (-2. 1) 0.08
pre/follow-up 9.4(1.28) <.0001 (5. 13) 0.61

(b) AMAT-F

Effect
Comparison Mean (SE) P 95% Cl Size

pre/post 0.47 (0.07) <.0001 (0.23, 0.55) 0.60
post/follow-up 0.11 (0.05) .0379 (0, 0.18) 0.26
pre/follow-up 0.57 (0.07) <.0001 (0.34, 0.73) 0.62

(c) AMAT-T

Effect
Comparison Mean (SE) P 95% Cl Size

pre/post 370 (60.7) <.0001 (219, 392) 0.60
post/follow-up 109 (28.0) .0003 (24, 182) 0.43
pre/follow-up 478 (57.0) <.0001 (303, 553) 0.62

Abbreviations: FM, Fugl-Meyer; AMAT-T, Arm Motor Ability Test (Time 
domain); AMAT-F, Arm Motor Ability Test (Function domain); Cl, 
confidence interval; SE, standard error.
an = 36; all other comparisons, n = 3 I.

additionally significant improvement (FM improvement = 
5.1 points) during the second half of treatment, which 
extended from 150 to 300 hours of treatment. This “second 
half’ improvement was greater than the FM improvement 
of 4.7 points that was observed during the first half of treat­
ment (from 0 to 150 hours of treatment; Figure 2; Table 5a). 
The total FM improvement, then, from pre- to posttreat­
ment was 9.8 points (Figure 2), which is double the mini­
mum clinically important difference (MCID) for the FM.57

Were Posttreatment Gains Maintained at Follow-up After 3 
Months of No Treatment? (Change From Posttreatment to 
3moF/U). For the FM coordination scale, we found that the 
significant gains achieved throughout treatment were main­
tained three months after cessation of treatment (Table 5a; 
ie, no change from posttreatment to 3moF/U).

For the AMAT-F, we found a clinically and statistically 
significant improvement in task performance from pre- to 
posttreatment (Table 5b). Subsequently, there was addi­
tional statistically significant improvement from posttreat­
ment to 3MoFU (Table 5b; Figure 3).

For AMAT-T, we also found a statistically significant 
improvement in functional task performance from pretreat­
ment to post-treatment (Table 5c; Figure 4). Subsequently,



 
 

 
 

 
 

 

 

 
 
 
 

 
 

 
 
 
 
 
 
 

 

 
 

Figure 3a. Arm Motor Ability Test Function (AMAT-F) 
clinically and statistically significant improvement from pre­
treatment to follow-up.
^Clinically and statistically significant gain from pretreatment to follow-up. 
Minimum clinically important change for AMAT-F is 0.44 points. 
Statistically significant gain from posttreatment to follow-up.

Figure 4a. Arm Motor Ability Test Time (AMAT-T) 
statistically significant improvement from pre- to posttreatment 
and from posttreatment to follow-up.
^Statistically significant improvement (P < .05).

Figure 3b. Gain in Arm Motor Ability Test Function 
(AMAT-F).
*P < .0001. fP = .0379.1, standard error.

there was additional statistically significant improvement in 
AMAT-T from posttreatment to 3MoFU (Table 5c; Figure 4).

Correlation Analysis

FM baseline was poorly correlated with FM at 3MoFU (r = 
0.37; P = .04). FM improvement was correlated at the fair 
level58 with AMAT-T improvement (r = 0.50; P = .0041) 
and at the good level58 with AMAT-F improvement (r = 
0.68; P< .0001).

Multidomain Self-Report Measure

The SIS self-report measure showed statistically signifi­
cant improvement in both subscales of Daily Activities 
and Hand, as well as the overall SIS (P s .016; Table 6).

Figure 4b. Gain in Arm Motor Ability Test Time (AMAT-T).
*P < .0001. ;P = .0003.1, standard error.

Qualitative Data

Data on therapist observations showed that subjects made 
progress in impairment-level upper limb movements 
(Supplementary Table Sla). These were captured in the FM 
measure. Supplementary Table Sib contains examples of 
improved functional tasks and life role participation activi­
ties. These included such things as recovered self-care, 
independence in eating, home and community activities 
and return to work for 3 individuals

Discussion
First, this is a replication of results from a prior study,28 in 
which we obtained impairment and functional task improve­
ment equal to or beyond clinically significant improvements. 
In the current study, our results again showed a magnitude of 
gains beyond what has been published, to date. To our



 
 
 
 
 
 
 
 
 

 
 

 

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

Table 6. Stroke Impact Scale (SIS).

SIS_Domain Pretreatment Posttreatment Difference P

Daily activities, mean (SD) 69.7(16.2) 74.9 (17.9) 5.2(13.6) .016
Hand, mean (SD) 21.3 (25.6) 41.3 (29.3) 20 (24.7) .00015
Total SIS, mean (SD) 515.1 (96) 579.8 (107.6) 64.7 (66.1) 2.90E-05

knowledge, this study contributes a first-ever report of 2 
important points. First, over 150 hours of therapy were nec­
essary in this protocol in order to achieve statistically and 
clinically significant recovery according to the FM, at twice 
the MCID (Figure 2). Second, this recovery of coordination 
was maintained for three months after the end of therapy, 
and functional task performance continued to statistically 
improve from posttreatment to 3MoFU (Figures 3 and 4), 
suggesting further consolidation of the gains in upper limb 
coordination into improved functional task performance.

Impairment Gains From mid- to Posttreatment 
Support Benefit of Over 150 Hours of 
Treatment

The gain (FM) of 4.7 points from baseline to mid-treatment 
was clinically significant. At midpoint, there was no pla­
teau. Rather, there was subsequent additive statistically and 
clinically significant improvement in coordination (FM) 
from mid- to posttreatment (5.1 points). This is evidence 
that as long as treatment was administered, impairment 
improved even during treatment throughout weeks 6 to 12. 
After treatment cessation, though impairment gains were 
maintained, the lack of further gain in impairment suggests 
that additional neurorehabilitation would be necessary if 
further gains in joint movement coordination were to be 
realized.

Significant Additional Gains Exhibited in
Functional Task Performance for 3 Months After 
Treatment Cessation

During the treatment time (pre-/posttreatment), neuroreha­
bilitation produced statistically (AMAT-T; AMAT-F) and 
clinically significant (AMAT-F) gains in functional task 
performance (Figures 3 and 4). This is reasonable, consider­
ing coordination is foundational for functional task perfor­
mance and coordination also had improved. Notably, 
additional statistically significant gains were exhibited in 
both AMAT-T and AMAT-F from posttreatment to 3moF/U. 
That finding along with the improved coordination (Figure 
2) continuing up to the posttreatment time point, suggests 
that the improvement in joint movement coordination up to 
that posttreatment time point may have somewhat preceded 
subsequent consolidation of coordination into improved 
functional task performance during the 3 months between 
end of treatment and follow-up testing.

Magnitude of Retained Gains From
Pretreatment to 3moFIU: Comparison With 
Other Treatment Studies Reporting Retention 
Results at Follow-up

Chronic Moderate/Severe Impairment Results. In the current 
study, retained/improvement (from baseline to after 3 
months of no treatment) in coordination was 9.5 points 
(pretreatment 21.8 points and 3/moFU, 31.3 points; 
Table 4, left panel, first row, n = 31)); this is approximately 
double the MCID of 4.25 points, the benchmark for FM 
clinical significance,57 and which is greater than that 
reported by others for patients with chronic moderate/ 
severe impairment (eg, 3-5 points on the FM).59"61

Chronic Mild/Moderate Impairment Results. Additionally, 
we can compare our results to other studies of chronic 
stroke but for those with lesser and more workable mild/ 
moderate impairment. For our more impaired cohort 
(severe/moderate), our results were equal to62 or better 
than for those with lesser impairment, according to 
retained improvement.5'17’63"65 We identified one study of 
lesser impaired subjects reporting a greater retained gain 
than our more severe subjects.66

Chronic Moderate/Severe Functional Task Performance 
Results. Additionally supporting high magnitude of retained 
gains in the current study, coordination improvement was 
sufficient to produce retained gains in functional task per­
formance (AMAT-F; 0.50-point gain) which is greater than 
the benchmark for clinically important change (0.44 
points),52 and to our knowledge, not yet reported at this 
magnitude by others for those with moderate to severe base­
line impairment.

Magnitude of Pre-/Posttreatment Gain

Many studies do not present follow-up results. Therefore, 
here we include review of studies with only pre-/post-treat- 
ment data. In our cohort, we had the following severity lev­
els at baseline: severe, n = 30; moderate, n = 4; and mild 
n = 2).56

Impairment. In the current work, the mean FM score at 
baseline was 22.88 ± 9.6, which is considered severe. The 
mean pre-/posttreatment gain in the current work was 9.8 
(±5.8) points. Baseline impairment level at this severe



 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

level was comparable to our past work for which we used 
the same treatment protocol as in the current study; and the 
results of treatment are consistent with our prior study, as 
well.28'29 For this more severe level of impairment, our 
results in response to treatment are almost double that 
reported by others who studied similar impairment level 
(4.7-5.5 FM point gains, respectively).17'61 For studies of 
those with greater impairment level than ours, gains ranged 
from 1.2 to 4.01 FM points,15,22’24’67 and for studies of more 
mildly impaired subjects than ours, FM gains ranged from 2 
to 14 points.3’4'6’11’21'27'63’66-68.69

Function. Additionally supporting high magnitude of pre- to 
posttreatment gains in the current work, coordination 
improvement was sufficient to produce functional task 
gains (AMAT-F; 0.46 points), which were equal to or 
greater than the benchmark for clinically important change 
(0.44 points).52 The qualitative results provide examples of 
the meaningful nature of these improvements in function 
and life role activities (Supplementary Table Sib). Three 
participants reported a return to employment; many noted 
greater independence in everyday function and return to 
satisfying leisure activities. Furthermore, the SIS results 
indicated significantly greater activities of daily living and 
hand function. Taken together, these results can provide a 
catalyst to drive change in the way we approach rehabilita­
tion in the chronic phase of stroke.

This magnitude of improvement may have been achieved 
due to the finely incrementalized approach. For example, 
the treatment protocol targeted, in part, the coordination 
deficits that are assessed with the FM limb-movement 
items. Improved FM score indicated progression through 
the difficulty hierarchy38 shown in Table 1. Normally coor­
dinated movements are required for normal performance of 
daily tasks. For example, simple reaching forward requires 
extension at the elbow and flexion at the shoulder, which is 
considered out of synergy because one joint is extending 
while the contiguous joint is flexing. As these more coordi­
nated movements are achieved, then components of func­
tional tasks can be performed.

Association of Baseline Impairment Severity 
to Both Impairment Recovery and Recovery of 
Functional Task Performance

Relationship of FM Baseline to FM at 3MoF/U. There was 
poor correlation (?• = 0.37) between FM baseline and FM 
gain at 3moF/U. This suggests that severity of impairment 
at baseline (FM measure) is not necessarily linearly associ­
ated with ability to respond to treatment according to that 
impairment measure. This could have occurred due to either 
or both of the factors that may have been operative: weak­
ness and dyscoordination. Recovery of muscle strength was

occurring to some extent. In fact, others have studied the 
FM in the acute stage after stroke and concluded that its 
variability in assessing recovery may reflect changes in 
both strength and coordination.31 It is certainly a well- 
known fact that strength is a necessary requirement for 
coordinated joint movement. Though strength is necessary, 
it is not sufficient; that is, even in the presence of the 
required strength, coordination control is still necessary in 
order to execute coordinated upper limb movements.70 
Some participants in the current study began with very little 
active joint movement, and it was obvious that some 
strength recovery was necessary in order to even begin to 
work on isolated coordination control. But it was our obser­
vation that strength improvement alone did not result in 
ability to perform the FM test items or Junctional movement 
components. This is a common clinical finding, as well; that 
is, chronic stroke survivors can exhibit the necessary mus­
cle strength, but inability to perform the coordinated move­
ment normally executed by that same muscle. As early as 
1995, evidence was published quantifying the clinically 
known phenomenon of abnormal co-contraction of upper 
limb muscles preventing normal coordinated movement 
after stroke.71 In our study, we observed that even in the 
presence of sufficient muscle strength, further hours of 
motor practice were required in order to achieve isolated 
joint movement control (within and outside of synergy, 
without abnormal co-contractions). For that training, we 
applied the hierarchy in Table 1, and we observed incre­
mental improvement that was much slower than would be 
expected if only strength recovery were operative.

Relationship between recovery of isolated joint move­
ment coordination (FM gain) and recovery of functional 
task performance (AMAT). Improved isolated joint move­
ment control (FM) was correlated at a “fair” level58 with 
AMAT-T gain (?• = 0.50; P = .004) and more highly corre­
lated with improved AMAT-F gain (/• = 0.68; P < .0001). 
The AMAT-T is a measure of speed of task performance, 
which could potentially incorporate compensatory strate­
gies; this possibility might have resulted in a lower correla­
tion than might have occurred if all the improvement in 
AMAT-T occurred as a result of recovered coordination. In 
contrast, the AMAT-F is a measure of how close the task 
performance is to normal, coordinated movements. The 
correlation of r = 0.68 is a “good” level correlation and 
suggests that the improvement in AMAT-F task perfor­
mance of more normally coordinated movement compo­
nents is well-associated with the improvement in the FM 
impairment measures of isolated joint movement control. 
Taken together with our milestone results in Tables Sla and 
Sib, it is reasonable to consider that there is a relationship 
between the following factors: treatment targeted first to 
isolated joint movement control and then to task component 
and task practice; recovery of joint movement coordination 
during treatment; measurement of recovery of joint



 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
 
 
 
 
 
 

movement coordination (FM) and recovery of more coordi­
nated functional task performance (AMAT-F).

Dose

According to mid- and posttreatment results, the long-dose, 
high-intensity treatment was required in order to produce 
double the clinically significant impairment gains achieved, 
which were sufficiently robust to produce clinically signifi­
cant functional task performance gains, greater than previ­
ously reported for functional task practice (ie, on the 
AMAT). Our results provide evidence supporting benefit of 
longer duration, intensive intervention, for the most effica­
cious outcome.

In other published work, optimal dose for recovery of 
functional task performance has not been fully eluci­
dated.14'32 A recent meta-analysis reported a very small 
dose-response relationship for those with persistent deficits 
after stroke, receiving either 57 hours versus 24 hours of 
intervention.72 In a recent study, within 32 hours treatment, 
total repetition numbers were varied across 4 groups (3200 
repetitions, 6400, 9600, or individual maximum repetitions) 
for chronic stroke with mild to moderate upper limb impair­
ment; the reported results stated small, and not clinically 
significant change on the primary “function” measure 
(Action Research Arm Test) for 2 of 4 groups, and number 
of repetitions did not affect change.73

That study has a detailed companion manual,74 which 
provided some means to compare it with the current proto­
col. There were a number of differences between that 
study73 and the current study. First, the dose in the study by 
Lang et al73 was much smaller than the current study (32 
hours versus 300 hours in the current study). Second, the 
subjects in the study by Lang et al73 were less impaired, 
having been required to exhibit baseline ability to open the 
hand, grasp, and pick up several objects. Third, there was a 
statement of no significant change reported in the SIS, 
whereas in the current study, we showed a significant 
improvement in the SIS Hand and Daily Activities sub­
scales. Fourth, the study by Lang et aL ’ described the exer­
cises as follows: “repetitions were compound movements, 
including reaching, grasping, manipulating, and releasing.” 
In contrast, the current motor learning protocol employed 
training for single joint movements and 2-joint movements 
that were practiced in a manner to elicit practice as close to 
a normal movement as possible. Some level of mastery of 
these was required before practicing task components. 
Fifth, the progression of practice difficulty in the Lang et al 
study appears to have been based largely on the number of 
repetitions in a timed period and the subject’s perceived 
fatigue during performance.74 In contrast, the current proto­
col was based first on obtaining a practice movement that 
was as close to normal as possible, most often with some 
type of assistance in order to achieve practice of a more

coordinated movement. Only with achievement of more 
coordinated movement was speed of movement then con­
sidered in the treatment. Sixth, there is a statement in the 
Lang manual74 about progression occurring at the point of 
90% achievement at their ‘current’ level. In our protocol, 
we considered advancing to a next level of difficulty at 
about 50% of achievement (e.g., of range of motion, etc). At 
the initiation of each new motor task, it was generally not 
possible to practice a functional task movement that would 
have been productive in the sense of being as close to nor­
mal as possible. Thus, our current motor learning protocol 
may be composed of more finely incrementalized practice 
of movements and task components, rendering them more 
amenable to finely graded improvements that accumulated 
over time and translated to functional task performance 
improvement. This difference in practice paradigm could 
have resulted in the more dramatic gains in the current 
study, whereby we showed both clinically and statistically 
significant gains on the FM, first at the 150-hour dose, and 
then with continued and comparable additive clinically and 
statistically significant improvement from mid-treatment 
(after another 150 hours) to the end of treatment (300 hours 
dose).

Another study (constraint-induced movement therapy) 
reported a gain of 7.4 FM points in a mild, chronic cohort (n 
= 13), who received 265 hours of therapy (1:1 treatment 
plus constraint-worn hours).62 Taken together, that cohort 
study of mild participants plus the current work for moder­
ate/severe ly impaired, the 265 to 300 hours of therapy, 
respectively, is quite promising. And, in the current work, 
the associated functional gains from baseline to 3-month 
follow-up (eg, AMAT-F) were 0.58 which is greater than 
the 0.44 benchmark52 for clinically significant improve­
ment on the AMAT-F.

Cost/Benefit Considerations

Currently, the average annual cost of yearly rehabilitation 
for patient with chronic stroke is about $12 000.1 The ques­
tion should be about how this money should be spent. 
Perhaps, it is not wise to provide low-dose therapies every 
year that cannot achieve important functional gains. We 
need more detailed studies of cost-efficiency of poststroke 
rehabilitation to be able to properly allocate limited 
resources. In the current study, benefits are first reflected in 
improvement of activities of daily living, captured by the 
AMAT-F and SIS subscale of Daily Activities. These gains 
result in less caregiver need, reducing cost of care. Second, 
benefits are reflected in the self-reported recovery of life 
role participation activities. These gains result in more fam­
ily and community involvement, precluding the isolation 
that can cause depression and downward spiraling comor­
bidities. Third, and potentially most important, this study 
presents the discovery that such gains are actually possible



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
 
 

 
 
 

 

 

 
 

 

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 

 
 
 

 
 

 

in the chronic stage after stroke. The mechanisms underly­
ing these changes are largely still unknown. Although in 
prior work, we found a relationship between AMAT gain 
score and changes in task-related brain activation, accord­
ing to variables derived from functional magnetic resonance 
imaging signal.75 The current result justifies the additional 
work that is now needed to develop cost-efficient therapies. 
In the meantime, considering financial cost, we can note 
that therapy was provided at a 1:3 therapist to patient ratio. 
Therefore, the rough cost per patient for 300 hours of ther­
apy would be $5,000 (based on the following: $50 per hour 
for 1 therapist or $15,000 per 300 hours of therapy, divided 
by 3 patients to 1 therapist = $5000 per patient for 300 
hours of therapy (based on the average cost of occupational 
therapy; https://health.costhelper.com/occupational-ther- 
apy.html#extres2). Therefore, the cost of our intervention is 
somewhat less than other current regular healthcare expen­
ditures. Further tipping the balance are such events as return 
to employment as we observed with 3 of our participants or 
reduced need of caregiver support with daily activities, 
which we observed in a number of participants.

Summary of Likely “Active Ingredients”

Distilling the evidence presented and discussion points, it is 
reasonable to consider that the following are the probable 
“active ingredients,” producing the results of the study:

1. Accurate initial training level.
2. Awareness training of normal and abnormal move­

ment patterns, which empowers and motivates the 
patient to self-monitor and self-progress.

3. Training focused on recovery of the coordination of 
isolated joint movements and multiple joint move­
ments, with multiple treatment strategies employed 
to support practice of movement as close to normal 
as possible.

4. Accurately titrated progression of treatment.
5. Very finely incrementalized progression of treat­

ment, utilizing an array of methods to support motor 
practice as close to normal as possible, and attention 
(and celebration) to small goal achievement).

6. Clearly stated goals for each small incrementalized 
practice.

7. Incorporation of newly recovered joint movement 
coordination into task component practice.

8. Task and task component selection customized as 
much as possible to align with the interests and 
needs of each individual.

9. Engagement of as many strategies as necessary to 
obtain continued attention and high repetition prac­
tice of coordinated movements.

10. Observation and monitoring of inattention or 
fatigue, and with rest periods held in that case.

11. Weekly team meeting of clinical team in which 
obstacles to progression are described and problem 
solving is offered by team members.

12. Periodic team-treatment, whereby another therapist 
visits the treatment sessions and offers observations 
and suggestions.

Conclusions
Rather than plateauing at mid-treatment (150 hours of treat­
ment), there was subsequently, additive statistically and 
clinically significant improvement in coordination (FM) 
from mid- to immediately posttreatment, indicating the 
benefit of >150 hours of therapy. And in contrast, during 
the follow-up time of no treatment, there was no further 
change in coordination, supplying evidence that as long as 
treatment was administered, impairment improved even 
from weeks 6 to 12, and when treatment ceased after 12 
weeks, gains were maintained, but there was no longer any 
continuation of coordination improvement. Notably, clini­
cally and statistically significant gains in functional task 
performance were realized during the intervention phase 
and continued to statistically improve throughout the 
3-month follow up. Most important, participants reported 
everyday functional improvement that was meaningful to 
each of them in their individual lives.
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