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1 Introduction

Collective motion in active biological systems has been of significant recent interest 
from flocking birds to collective swimming of microorganisms (e.g., Ariel et al. 2014; 
Ryan et al. 2011, 2013a, b; Shklarsh et al. 2011; Sumpter et al. 2012). Though this 
emergent behavior has been extensively studied, it has yet to be fully understood. Col
lective motion offers many advantages over individual motion to a given population of 
organisms including improved mixing, increased diffusion, faster transport, and new 
effective properties. The main focus of works over the past few decades has been the 
study of bacterial suspensions with fewer focusing on insect swarming. This emphasis 
on collective swimming of microorganisms is mostly due to the extensive amount of 
available experimental data (for a review see Bonabeau et al. 1997). However, social 
behavior in insects is the first form of collective motion one encounters in early child
hood. For example, the migration of butterflies and moths during season changes, 
swarming bees, and trail formation by ants while foraging for food referred to as raid
ing. The main feature common to all active biological systems, in contrast to classical 
passive systems, is the presence of self-propelled motion. For a thorough review of 
past works on general animal populations, see Vicsek and Zafeiris (2012), and for a 
review of recent works on active biosuspensions, see Aranson (2013), Saintillan and 
Shelley (2013).

We now briefly provide a review of the general behavior of ants extracted from the 
detailed experimental observations in Gotwald (1995), Holldobler and Wilson (1990), 
Schneirla (1940, 1971). Raiding is common to all ants such as fire ants Soienopsis 
invicta (Tschinkel 2006), but we focus specifically on army ants of the genus Eciton 
(e.g., Eciton hamatum or Eciton burchellt) (Schneirla 1971). A single army ant colony 
can consist of up to 200,000 ants and transport up to 3000 food items per hour up to 
100m (Couzin and Franks 2003). The general cycle of life for a particular colony con
sists of bivouac formation (nest composed of living ant bodies), raiding, and migration. 
A typical ant raid is carried out during the daylight hours to avoid predators and to 
allow for time in the evening for the colony to relocate the nest or bivouac under the 
cover of darkness (Couzin and Franks 2003; Schneirla 1940). Therefore, an efficient 
raiding process is crucial for the development and maintenance of a colony (a similar 
need for efficiency was investigated in the case of honeybees via a mathematical model 
introduced in Schmickl et al. 2010).

Raiding itself can have two forms; (i) column raids where ants form narrow bands 
of chemical pheromone trails to and from a food source and (ii) swarm raids where 
ants hunt as a large mass and move as essentially a single body (Bates 1863). This 
work focuses on the column raids where, in the absence of direct communication, 
ants rely on the detection of pheromone trails laid by others to both find known food 
sources or to return to the nest once food has been found. The ant raiding process 
consists of three main steps;

(i) Initially some ants, referred to as foragers, leave the nest to perform essentially 
a random walk in search of food.



 

 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

(ii) Once food is found ants lay a special chemical to mark the food location and 
continue to lay the chemical along the trail back to the nest to attract others.

(iii) When an ant returns with food it, along with other foragers, begins to follow the 
newly created chemical concentration gradient back to the food.

This chemical gradient is composed of pheromones and has many additional pur
poses such as transmitting messages about predators or identifying one colony from 
another (Sumpter and Beekman 2003). This cycle continues thereby keeping the trail 
pheromones from dissipating until the food source has been depleted.

This marking procedure leads to fascinating collective phenomenon including the 
formation of “super highways’’ consisting of ants traveling back and forth forming 
lanes for increased mobility as recently observed experimentally in Couzin and Franks 
(2003), Dussutour et al. (2009), Franks (1985). This lane formation is similar to a group 
of people in a crowded crosswalk at a busy intersection. To ensure everyone makes 
it to where they are going as efficiently as possible, unconsciously individuals form 
lanes for increased mobility.

While pheromones play a crucial role in raiding, other local interactions are also 
important in the dynamics such as collisions. To truly understand the raiding behavior 
one must develop a model capable of investigating the effects of the relevant physical 
parameters such as ants size, chemical concentration, receptiveness to pheromone, 
and noise in foraging on the emergence of a collective state. While there are countless 
biological studies on ant behavior, only recently has mathematics been used to further 
understanding. Various recent mathematical approaches to modeling and simulation 
have been capable of capturing remarkable results such as lane formation (Couzin 
and Franks 2003), pheromone trails resulting from collective behavior (Boissard et al. 
2013), and the emergence and depletion of trails based on the concentration of a food 
source (Amorim 2014) among others (e.g„ Johnson and Rossi 2006; Schweitzer et al. 
1997; Watmough and Edelstein-Keshet 1995a, b). Specihcally, the efficiency in which 
ants form and follow trails as well as the self-organization of a colony into a collective 
state has been examined experimentally in Gamier et al. (2009, 2013), Perna et al. 
(2012) and with an individual based model in Vittori et al. (2006).

A recent continuum model presented in Amorim (2014) provides interesting results 
on ant foraging exhibiting spontaneous trail formation and efficient food removal. 
While continuum approaches offer the advantage in general of being computationally 
efficient, they lack the ability to study interactions at the microscopic level and their 
effect on the resulting macrostate as well as only offering results “on average”. Other 
previous models seeking to capture trail formation, such as Couzin and Franks (2003), 
impose an artificial pheromone gradient or a directional preference in the ants from 
the onset without allowing for it to be produced by the system itself.

In contrast, this work seeks to improve on past models and provide additional insight 
through the development of a new first principles coupled PDE/ODE model for the 
pheromone concentration and ant dynamics respectively using basic principles learned 
over time from the immense works on modeling bacterial suspensions (including our 
own Ryan et al. 2011, 2013a, b). As in the study of bacterial suspensions we seek 
to strip the model of inessential features and leave only those, which truly account 
for collective behavior. Our model allows for the direct investigation of individual



 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

 

 
 
 
 
 

 

 
 
 
 
 

interactions at the microscopic level and their contribution to both the onset of col
lective behavior as well as local traffic lane formation. This work will show that lane 
formation naturally results from each ant’s desire to avoid collisions, which impede 
their motion. Also, a posteriori we observe the model has a further advantage in that 
it allows one to show a continuous kinetic phase transition with respect to certain 
physical parameters and investigate the critical behavior in the population of foragers 
near the transition.

Though previous approaches have been developed to study the ant raiding cycle 
based on a continuum PDE (Amorim 2014; Johnson and Rossi 2006; Watmough and 
Edelstein-Keshet 1995a), to the author’s knowledge this is the first coupled PDE/ODE 
model for the entire raiding cycle, which focuses on the movement of individuals rather 
than the density of ants. The main benefit of developing this sound mathematical theory 
is that experiments have limitations such as observation time and a lack of control over 
some parameters (e.g„ diffusivity of pheromone or amount of pheromone deposited). 
Analysis of the model will also lead to a better understanding of ant behavior, which 
will have many ecological impacts in both conservation and pest termination. This 
paper adds to the current knowledge on the way to understanding even more complex 
biological systems such as birds, fish, and potentially even humans. The purpose of 
this work is to introduce a new model for ant raiding and show two main results (i) the 
transition to the collective state and (ii) the formation of lanes for efficient transport 
of food back to the nest. Both are investigated in the case of one and multiple food 
sources.

What separates this work from most others is that our model accounts for the entire 
raiding process starting from foraging for food, forming a trail, and the resulting tran
sition to the collective raiding state. In addition, the model presented herein will deal 
with the depletion of food and the resulting transition back to individual behavior. In 
Sect. 2, the main assumptions governing ant raiding are introduced and the coupled 
PDE/ODE model for ant dynamics and pheromone concentration are developed. Sep
arate equations of motion are introduced for ant foragers and those returning to the 
nest with food. In Sect. 3, results are presented showing a clear phase transition to col
lective motion through the course of raiding and a transition back to individual motion 
when the food is depleted. Also, evidence of lane formation along the pheromone 
trail is presented illustrating the macroscopic traffic-like dynamics formed from the 
local microscopic interactions matching prior experiment (Couzin and Franks 2003). 
The model is then used to investigate collective dynamics in the case of multiple food 
sources revealing some differences than in the single raid case. In Sect. 4, continu
ous kinetic phase transitions in the order parameter are shown and the corresponding 
critical exponents are found. This illustrates the behavior of the system near the tran
sition to collective motion as a function of relevant biological parameters such as the 
strength of noise in the system, the rate of pheromone diffusion, and the amount of 
pheromone deposited. Also, a connection is made to classical thermodynamic systems 
with similar critical behavior. Finally in Sect. 5, the results are discussed and related 
to current biological knowledge as well as outlining potential future additions to make 
the model even more robust.



 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

Fig. 1 Left ant represented by a point particle with an excluded volume determined by the truncated 
repulsive potential U. Right truncated Lennard-Jones type potential is radially symmetric with r = |x|

2 Model

The key idea behind the model developed herein is to divide the ants into two classes: 
foragers and returners each with different equations of motion, because each is moti
vated by different environmental and social cues (Beckers et al. 1992; Wilson 1962). 
The similarity between the two classes is that both are self-propelled and want to avoid 
collisions with one another, yet they differ in their attraction to the chemical gradient 
or lack thereof.

We represent each individual ant as a point with an excluded volume, see Fig. 1. 
The center of mass and velocity for an individual ant are governed by ODEs describ
ing the evolution of each in time. We suppress the details of the ant body so that the 
simulation of such a model is made simpler, yet still captures the desired results. To 
account for the correct behavior, it is crucial to model the pheromone diffusion care
fully (Boissard et al. 2013). Thus, a critical component in the equations of motion for 
each ant is the contribution from the pheromone gradient, denoted Vc(x, f), where the 
pheromone concentration c(x, t) satisfies a parabolic reaction-diffusion PDE intro
duced in Sect. 2.2.

2.1 Assumptions

Ants in the foraging phase leave the nest location in search of food. Until a food source 
is found no pheromone gradient exists and motion is dominated by a random walk 
(Amorim 2014; Boissard et al. 2013; Schweitzer et al. 1997). After a food source 
is identified and marked by pheromone, then other foragers, which encounter the 
pheromone gradient, follow it. After reaching the food source each ant becomes a 
returner and follows a direct path back towards the nest ignoring the pheromone 
concentration gradient. When a returner reaches the nest or bivouac it transitions back 
to being a forager and the cycle repeats.

It is assumed throughout this work that returners know where their home is and take 
the most direct path toward it. The fact that the path back is direct has been observed 
experimentally in Buehlmann et al. (2014), Muller and Wehner (1988), Narendra et al. 
(2013), Wehner (2003) where even detouring ants by imposing barriers after the food 
source is found does not dissuade them from following the most direct path. In these 
works it is noted that ants can follow landmark routes and recognize locations to navi-



 
 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

gate. Their evidence suggests that ants can use path integration and their knowledge of 
complex outbound routes to return home along a straight path. Ants do not use com
plicated path integration in the same way as a human, but rather use an approximation 
accounting for navigational errors (Muller and Wehner 1988).

We assume the colony of ants are self-propelled particles represented by a set of 
points {xj, i = 1,..., A. Each point can be thought of as the location of the center
of mass for an individual ant. The velocities of each ant {v, = x/}, z = 1........N are
tracked as well as their orientation «' := v'/|v' |. Even though an ant is modeled as 
a point, in reality, the centers of mass for two ants cannot become arbitrarily close 
due to the presence of the body. Instead of having to resolve the details of finite size 
body interactions, which can be computationally expensive, we introduce a truncated 
repulsive Lennard-Jones (LJ) type potential C/(|x|) as a function of the interparticle 
distance r = |x|

U(r) = (1)

where e represents the strength of repulsion. The effective size of an ant is defined by 
the length € = 21/6er where the repulsive forces between two ants balance to zero. In 
principle each ant i can interact with any other j, but these interactions are local in 
nature. This force from the y th ant on the z th ant is defined as F(x, —x; ) := — Vx[/(x,- 
Xj) depending only on the relative distance r = |x,- - x,■ |. By introducing the potential 
(1), the collisions between individual ants are modeled as a soft excluded volume 
interaction. The truncated potential has also been successfully used in our recent work 
on bacteria to impose an effective size on a point particle (Ryan et al. 2011, 2013a, b). 
Now one must account for an ant’s response to the local pheromone concentration.

Remark 1 Ants have elongated bodies and its possible to incorporate this shape 
through a truncated elliptical potential (e.g„ a modified Gay-Berne potential Qi et al. 
2012), but is not needed to achieve the desired results and introduces a greater compu
tational expense since the resulting force has an added dependence on the orientation 
of each ant.

2.2 Pheromone concentration

When a foraging ant detects the chemical signature of the pheromone it will use 
its antennae to analyze the local concentration and decide which direction to travel 
(Boissard et al. 2013; Calenbuhr and Deneubourg 1992; Couzin and Franks 2003). For 
an extensive review of the background of chemotaxis in ants and its implications for 
their movement consult (Amorim 2014) and references therein. Pheromone deposition 
and trail laying are well modeled by a two-dimensional reaction-diffusion process for 
the chemical concentration cfx, Z)

Xy</».

cfx, 0) = £<x).

x e R2, I > 0
(2)



 
 
 

 
 
 

 
 
 
 

 
 

 
 

 
 
 

 
 
 
 
 
 

 

 
 

Here Xf is the location of the food with initially M food items, a is the diffusion 
coefficient controlling the rate at which the pheromone spreads, and y is the evap
oration coefficient that ensures an exponential decay of the pheromone in time. The 
coefficient 1 represents the amount of pheromone deposited at time t and
decays as a returning ant moves away from the food source. This decrease is needed 
to ensure that the proper gradient forms due to the competition with diffusion. The 
function g(x) represents the initial distribution of chemical, which is taken as uniform, 
g(x) = const, or zero so there is no pre-defined directional preference.

The coefficient y plays an important role in raiding, because trails that no longer 
lead to viable food sources should be removed quickly for maximum efficiency. The 
trail is defined as the line segment connecting the food source Xf to the nest denoted by 
location xc. In this work we can see the trail naturally form by studying the transition 
to the collective state and the deviation of individuals from the trail center.

Equation (2) captures the exponential decay of the concentration as well as the 
diffusion to the surrounding environment. The coupling of the PDE for pheromone 
concentration (2) to the ODEs governing ant dynamics introduced in Sect. 2.3 is 
analogous to PDEs for chemotaxis (such as Keller and Segel 1970, 1971) which have 
been used prominently in models for swimming microorganisms (Lushi et al. 2012; 
Xue 2015).

2.3 Equations of motion

We now derive the equations of motion for the evolution of the particle centers of 
mass {x, from a balance of forces. The two distinct dynamic models for foraging 
and returning ants respectively are composed of the different forces associated to each 
group’s behavior.

2.3.1 Foraging ants

Before the food source is identified, foraging ants perform a random walk, propel 
themselves in the direction they are currently oriented and try to avoid collisions 
with other ants. Once a food source has been discovered the location, Xf, is marked 
and pheromone starts to diffuse into the surrounding environment. As previously 
discussed the collisions will be modeled via a short-range repelling potential described 
in Sect. 2.1 and the pheromone gradient will be induced by a solution to the reaction- 
diffusion equation (2) presented in Sect. 2.2.

To make the physical description complete we now introduce the ODE model for 
the dynamics of foraging ants

' x/ = v,-
^ = vVi^2-|v,2|)-^22.^Vxt/(|x,-X7|)+rfVxc(X,f) + DWf (3)

where U is a repulsive potential (1). The force of self-propulsion is proportional to the 
velocity via the coefficient v (§2 - |v2|). Observe that the term (§2 - |v?|) ensures 
exponential growth or decay to the isolated translational speed



 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

The pheromone concentration, c(x, f), enters with relative strength d > 0 repre
senting the sensitivity of the ants to the chemical gradient when present. The random 
walk is controlled through the strength of the noise D and a Gaussian white noise 
process W, with mean zero and variance one. This white noise process has two pur
poses: (i) to enforce the foraging behavior as a random walk and (ii) it can represent 
a level of misinformation in detecting the chemical trail or a lack of receptivity to the 
chemical stimulus. A similar approach incorporating stochastic terms has been used 
recently in Burger et al. (2013) for studying general aggregation of individuals and 
Erban and Haskovec (2012), Escudero et al. (2010) for the behavior of locusts. These 
dynamic equations are coupled to the PDE (2) introduced in Sect. 2.2.

These equations contain three competing factors controlling individual ant dynam
ics: (i) self-propulsion, vv,- (§2 - |v2|), (ii) excluded volume/collisions, -VX[Z, and 
(iii) pheromone concentration gradient, d^xc. The interplay between these three forces 
leads to the transition from individual to collective behavior.

Remark 2 The truncation and vertical translation of the original Lennard-Jones 6-12 
potential (see Fig. 1) was imposed so that the force F = -V[Z would be Lipschitz 
continuous. This will prove important if one wants to show the longtime existence 
for the ODE particle equations of motion (previously done for bacteria in Ryan et al. 
2013a).

2.3.2 Returning ants

Once a foraging ant comes into contact with a food source it becomes a returning ant. 
After acquiring food, the ant proceeds to take the minimal path back to the nest, which 
is assumed to be a straight line ignoring environmental effects such as elevation or 
obstacles. As an ant journeys home it still propels itself in the direction it is oriented 
and tries to avoid collisions with others. To make the physical description complete 
we now introduce the ODE model for the dynamics of returning ants

if = v,
Vf = vv; (|2 - |v,2|) - 1 -x/D + 0-

-xL
r

(4)

where (x,- -xc)/ r is the unit vector direc ted to the nes t with r = |x -xc |. The coefficient 
ft governs the relative strength of an ant’s desire to return to the nest. As in the dynamic 
equations for foraging ants, the self-propulsion is represented by vv, (§2 - | v21) and 
the truncated repulsive potential is U.

The equations of motion (3)—(4) have a similar form to those developed in Car
illo et al. (2009) and Carillo et al. (2010) and are reminiscent of D'Orsogna et 
al. D’Orsogna et al. (2006) who considered the stability of collective structures 
and milling of particles with a similar individual based model (IBM). The coupled 
PDE/ODE model developed in this work provides a more realistic description of the 
movement, trail laying, and interaction at the microscopic level as compared to pre
vious ODE models for ants restricted to a lattice (e.g., Sole et al. 2000). For the 
non-dimensionalization of the system and values for the relevant biological parame



 
 

 

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

 
 
 
 
 

ters see Appendix 1. Before providing the details of the numerical implementation of 
the model, we introduce the order parameter used to measure the correlated behavior 
of the system.

2.4 Order parameter

In order to quantify how correlated the particles are in the system, we introduce a 
reasonable order parameter referred to as the//ew, F,

I
N

F =
N

f=l
(5)

where N is the number of ants under consideration and <w = -A e S1 represents each 
ants orientation. If each individual ant moves in an arbitrary direction, the velocity 
vectors will effectively cancel each other giving a flow of F = 0 representing a 
disordered phase. If all the ants move in the same direction (i.e., toward a food source 
or the nest), then F * 1 representing an ordered phase.

With this order parameter we can investigate the phase transition that occurs during 
the course of an ant raid, but some care must be taken in how to apply this definition. 
For instance, during the course of the raid the ants will form trails of incoming and 
outgoing ants moving in opposite directions. In terms of the order parameter, F, these 
two groups would effectively cancel each other’s contributions resulting in a net flow 
near zero.

Since we naturally consider two types of ants, foragers and returners, each governed 
by different dynamic equations, we must consider their flows separately. Thus, the 
entire system will be described by two order parameters: Ffor and Fret using definition 
(5), but only summing over the relevant ants. Even though the ants change from one 
group to another numerous times through the course of a raid we will observe that 
each population still exhibits collective behavior when considered separately. This 
particular choice of order parameter for systems of self-propelled particles was first 
utilized to the author’s knowledge by Vicsek et al. in Vicsek et al. (1995) and applied 
more recently to ants in Couzin and Franks (2003). Throughout Sect. 3 this order 
parameter will be used to investigate the effects of biophysical parameters present in 
the model on the collective state and in Sect. 4 it will allow one to show a continuous 
kinetic phase transition as a function of the those parameters.

2.5 Numerical implementation

Numerical implementation of the coupled PDE/ODE model (2)—(4) is rather straight
forward due to its simple nature. Here we merely highlight a few of the more interesting 
points that need to be considered when carrying out the simulations. One of the advan
tages of this model is the fact that we can write down an explicit solution to (2). 
Assuming an initial uniform distribution g(x) = j-vyj. we have the following expres
sion for the pheromone concentration and its gradient
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c(x. t) := e Y‘

9c
9-Vj

= qe~Y' z/
J_| J‘dix

„yn

4jra(t — s)

167ra-(/ — .v)-
ds

The i th component of the returning ant at time t, xj (t), is denoted x- (Z). This solution 
can be derived by using the fundamental solution to the heat equation

4TS7exp(-|r)’ x e R2, Z > Z^ 

0, x e R2, t < tdis

and the relation m(x, Z) = eYtc(x, t) where z/(x, t) solves the heat equation if and only if 
c(x, Z) solves (2) (resulting in the so-called Bessel potential). Thus, no finite difference 
approximation in space is needed when simulating the system. We only need to impose 
a numerical integration technique such as a composite trapezoid rule to evaluate the 
time integral in (6). This is the most time consuming part of the simulations, because 
it must be computed for each foraging ant.

To evolve the system in time a standard Forward Euler method is used

x,(Z + At) = x,(Z) + v,(r + At)At 
Vi(t + At) = Vilt)

+ At i’v, - |v?|) - VxU(|x, — xy I) — zZ Vxr(x,)+ DWi

The random walk implemented in the equations of motion is modeled via a discrete 
Gaussian white noise process W?„+1 = Wt„ + x/z/f^+t where £,• is an i.i.d. Gaussian 
distributed random variable with mean zero and variance 1.

The basic computational domain can be arbitrary, but for the results presented it 
consists of a two-dimensional rectangle of non-dimensional length 100 x 50 allowing 
for trails around 200 times the size of an individual ant. Reflecting boundary conditions 
are imposed so that the concentration of ants is conserved. There are three cases of ants 
possibly hitting walls: (i) An ant hits the top/bottom wall, then v = (vx, vv) is replaced 
by = (uA, — vy), (ii) An ant hits the left/right wall, then v„ew = (—vx, uy), (iii) 
An ant hits two or more walls (e.g., a corner), then v„ew = (—vx, — uv). However, 
once the trail begins to form and the collective state is reached the ants rarely reach 
the boundaries of the computational domain.

The typical time step for the simulations in dimensional form is dt = .02s repre
senting the temporal resolution of ants from experimental data (Couzin and Franks 
2003). Typical simulations run for between 700,000 to 1,200,000 time steps, which 
translates to a typical ant raid of 4-7 h consistent with observations of ants in nature 
from Schneirla (1940, 1971). In this time between 2000 and 3500 food items are



 
 
 

 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Table 1 Values used in simulation for each of the dimensionless biological parameters

Parameter Value Physical description

V 1.0 Strength of self-propulsion
£ .0001 Strength of repulsion potential
O .5 Effective ant length
d 10.0 Pheromone receptivity strength
a 10.0 Pheromone diffusion coefficient

y .001 Pheromone degradation coefficient
D 1.0 Strength of noise in random walk

P 1.0 Strength of stimulus to return to nest

9 1.0 Amount of pheromone deposited

See Appendix 1 for biological values from prior experiments

returned to the nest from the food source before it is depleted. The simulations were 
run with random initial conditions and the results are averaged over numerous simu
lations. The typical values of the non-dimensional parameters used in the simulations 
are given in Table 1 and for the relevant biological quantities see Appendix 1.

3 Results

In this section, we use numerical simulations as evidence that the model captures 
the swarming behavior found in army ant raids. The two main results, which are 
evident from the Online Resources and Figs. 2, 3, and 4 are (i) the transition of the 
system to collective behavior over time and (ii) the formation of lanes along the trail. 
Specihcally, one can see in Fig. 2a) that the ants start in a disordered state where 
each individual is randomly foraging for food until one ant finds a food source at 
time t = tdis (see Fig. 2b). The circular initial configuration is similar to that of a 
bivouac (Schneirla 1940, 1971). Once the food source is marked with pheromone the 
ants who have reached it begin returning to the nest (blue) while laying pheromone 
as nearby foragers begin to detect the increased chemical concentration (see Fig. 2c)). 
Shortly after single lanes of ants begin to form. This collective state is observed until 
food depletion at time t = tdep when random foraging resumes (see Fig. 2d). A typical 
concentration profile for the pheromone once the trail has formed can be seen in Fig. 3. 
For additional results starting from a centrally located nest see Appendix 3.

3.1 Transition to a collective state

By introducing an order parameter (5) in Sect. 2.4 that measures the coordinated 
behavior of each group we can study the transition to the collective state in time. 
Figure 3 shows a sharp transition to collective behavior after the time of food discovery 
f > tdis- We notice that there is a time delay in the formation of a collective state of 
foragers due to the time elapsed from marking the food with pheromone and that 
pheromone diffusing out into the environment to be detected by others. This time 
delay is due to the interplay between the diffusion term, a Ac, and the term governing



 
 
 
 
 
 
 

 

 
 
 
 
 

 
 
 
 

Fig. 2 Sample ant raiding simulations with foragers {purple) and returners {blue) where N = 400. Each 
arrow represents an individual ant’s orientation (t>t. The black circles denote the nest, xc = (20, 0), and food 
source, xy = (80, 0). a Initially ants are placed near the nest in non-overlapping positions with random 
orientation representing radial expansion outward from the nest, h One of the foragers discovers the food 
source and marks it with pheromone, becoming a returner. As the pheromone diffuses more and more 
foragers detect the scent and begin to follow the trail to the food source, c The trail forms displaying lanes 
of unidirectional flow, d Once the food source is depleted the trail quickly disappears and the ants return to 
random foraging. See Online Resource 1 (color figure online)

collective phase. The time period of a raid is indicated in blue beginning at Zj, the time of food discovery, 
and ending at t^ep, the time of food depletion. Error bars represent one standard deviation. The letters 
a-d correspond to the snapshots of the raid in Fig. 2 for a typical simulation. Right typical profile for the 
phermone concentration c(x, t) once the trail has been established and the collecitve state has been reached. 
The peak in c occurs at the location of the food source and exponentially decays away from the trail. See 
Online Resource 2 for the evolution of the chemical concentration in time (color figure online)

the exponential decay, yc in (2). Figure 2b illustrates that locally near the food source 
where the pheromone has begun to diffuse the ants become attracted to the location of 
the food. As the pheromone diffuses out to the whole domain and the trail is laid more 
and more foragers become attracted. This can be seen by the steady increase of the 
order parameter F for the foragers. While some may argue the returning ants reach a



 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

Fig- 4 Formation of lanes along the pheromone trail for foragers and returners. Distances normalized by 
ant size £ = jcq (characteristic length), a The trail is broken into three distinct segments with different 
distributions of ants, b The average ant distribution over the entire trail shows bi-modal peaks occur at a 
distance between .5£ — l.5£ from the center indicating two outside lanes of foragers (black) with returners 
(red) in the middle. The distribution of ants in each of the colored zones over time is found for c foragers 
and d returners. Error bars represent one standard deviation (color figure online)

collective state in a trivial way due to the fact that the go directly to the nest, this does 
not account for the lane formation that will be discussed further in Sect. 3.2.

The raiding trail is considered to be formed when the order parameter for both the 
returners and the foragers is near one as illustrated in Fig. 3. Once the food is depleted 
at t = tdeP we observe a rapid decrease of the order parameter. This is due to the 
fact that ants no longer lay chemical at that location and the pheromone evaporates 
exponentially fast. Since the chemical gradient has no bearing on the returning ants, 
the foragers deviate from collective behavior first. Those returning still must deliver 
the food they have to the nest along the home-bound vector before going on to other 
functions. After this time all the ants are foragers and in the absence of a chemical 
gradient or detection of a new food source all ants merely perform random walks 
returning to a disorder state.

3.2 Lane formation

In addition to a transition to and from the collective state, we can also consider the 
local behavior along the trail. In particular, a histogram of the position of each ant with 
respect to its distance from the trail center is used to form an ant distribution function 
in the neighborhood of the trail. As can be seen in Fig. 4, the foragers and returners 
naturally self-organize into lanes like cars on a highway or people in a crosswalk. 
Specihcally, foragers who are driven by the chemical gradient occur between .5 and
1.5 ant lengths from either side of the trail with the highest probabilities forming a bi
modal distribution (see Fig. 4b). Whereas, returners who are driven by their desire to 
return to the nest as quickly as possible occur at the trail center with highest probability. 
We conclude, for the majority of the time along the trail, one lane of returners forms 
in the trail center and two lanes of foragers Hank each side with equal probability.



 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

The formation of three lanes is consistent along the whole trail, but which class of 
ant is in the middle varies. By employing a microscopic model, unlike a continuum 
model, we can study different regions of the trail and focus on the local behavior (see 
Fig. 4b). Near the nest returning ants are in the center and foraging ants leave on either 
side with equal probability (Zone 1, red). In the central region (Zone 2, green) there 
is a crossover event where the populations switch lanes and foragers move toward the 
middle as they get closer to the food source. Here even 5 or 7 lanes of alternating classes 
of ants can be observed if the density of ants is large compared to the trail length. Near 
the food source (Zone 3, blue) the chemical gradient is strong and returners have equal 
probability of leaving with food on either side of the trail. Figures 4c, d focus on how 
the ant distribution changes between each zone.

How can ants form bi-directional traffic lanes? The model suggest it is the result of 
the excluded volume constraint and the break in symmetry between the social cues for 
the foragers and returners. In addition, the lane size introduces an effective length scale, 
which is dictated by the particle size manifested in the truncated repulsive potential 
U defined in (1).

This global traffic behavior is consistent with the previous theory and/or experiment 
in Couzin and Franks (2003), Dussutour et al. (2009), Franks (1985), where ants self- 
organize into lanes for optimal transport of food back to the nest. In addition, such 
traffic dynamics have also been recently observed in bacteria (Ariel et al. 2013). Unlike 
the model presented in Couzin and Franks (2003), we do not impose a directional 
preference for half the ants, which may artificially contribute to the formation of the bi
modal distribution in that work. Also, in Couzin and Franks (2003) a turning parameter 
is used where outbound foragers have a higher avoidance rate, which essentially forces 
them to the outside of the trail. Instead, in this work, the excluded volume forces alone 
arising from first principles naturally sort the ants. Both models agree on the conclusion 
that lanes form due to the asymmetry in interactions between foragers and returners.

The second natural question posed concerns the formation of three lanes as opposed 
to two. One explanation deduced from experimental observation in Couzin and Franks 
(2003) is that a two lane flow would introduce a left-right asymmetry in the trail pattern 
not naturally present and thus limiting its efficiency. There may be another explanation. 
Our model suggests that the desire to return directly home with food outweighs the 
exponential decay of the chemical gradient away from the food source. In nature, when 
ant is encumbered with food it wants to return to the colony as quickly as possible 
(verified experimentally in Muller and Wehner 1988; Wehner 2003). When a foraging 
ant encounters a returning ant along a trail it is easier for the ant carrying nothing to 
move out of the way. This can also be seen in Fig. 4 by noting that the trail width is 
approximately the size of one ant. Alternatively, the first lane to appear and form is 
the central one for returners, which forms naturally in the middle to minimize the path 
back to the nest. Once foragers detect the pheromone the returning lane has already 
formed and they have no choice but to step away from the middle to avoid collisions 
until they get very close to the food source. When an ant returns to the nest with 
food and becomes a forager it has no bias to which side of the pheromone trail it will 
traverse. This leads to the bi-modal distribution of foraging ants along side the main 
trail. Similarly, when a returning ant leaves the food source it can be on either side of 
the trail explaining Fig. 4d.



 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 
 
 
 

and unequal distances from the nest. Food depleted in 4—6h consistent with duration of raids from the 
experimental observations in Schneirla (1940. 1971)

3.3 Trail disappearance

Once the food source is exhausted the trail ceases to exist because the foraging ants no 
longer are attracted to it. This behavior is captured by imposing a count on the quantity 
of food items (e.g., 2000-3500). Once the food source is depleted no foragers can 
become returners and eventually the whole colony is composed of foragers looking 
for their next cache of resources. For some insight into how the food is efficiently 
broken down and returned to the nest see Fig. 5a for the quantity of food particles 
as a function of time. Since this function has essentially a constant decreasing slope 
after the trail forms, one could argue the system has reached the maximally efficient 
state and remains there until the food is gone. This provides further evidence for lane 
formation. If lanes did not form one would expect regions of little decrease in Fig. 5a 
representing congestion along the trail.

After the trail disappears, t > tdep- the simulations show that the ant distribution 
around the trail center for foragers becomes uniform and the lanes cease to exist (see 
Fig. 2d). Also, after the food has been depleted and the disordered state commences, 
one may notice local areas of milling behavior similar to D’Orsogna et al. (2006). 
However, it is not well pronounced due to the presence of the random walk term in 
the dynamic equations. Now we wish to extend our study to make predictions about 
the behavior with multiple food sources.

3.4 Multiple food sources

In this section, the transition to the collective state and local lane formation in the 
presence of multiple food sources is investigated. Two main cases should be consid
ered; namely, (i) two equidistant and (ii) two non-equidistant food sources. In principle 
different foragers can find each food source near the same time. Each will begin to 
deposit pheromone and return to the nest. Naturally, foragers begin to detect whichever 
pheromone is closer to their current location and follow the trail to that food source 
leading to the formation of two distinct trails. If the two food sources are at an equal



 
 
 
 
 

 
 

 

 

 
 
 

 

 
 
 

 
 
 
 
 
 

distance from the nest one would expect the emergence of two near equivalent trails 
forming through the course of the raid. In contrast, if one food source is significantly 
closer, one would expect most foragers to detect that pheromone sooner and the vast 
majority would complete the raid on the first food source before moving to the sec
ond. Multiple foraging locations as well as the study of a trail network have also been 
considered in Amorim (2014), Sumpter and Beekman (2003).

Both cases can be understood by analyzing the PDE for the pheromone concentra
tion (7). Since this equal is linear, multiple food sources can easily be considered by 
changing the righthand side to

M\ M2

- x/f)) + - xp(0).
7=1 p=i

If one food source is visited more frequently, then more terms in (8) will direct ants 
toward that food site. We use simulations to study the distinct behavior among the two 
cases: (i) equidistant food sources (e.g., see Fig. 6 and Online Resource 3) and (ii) 
food sources at different distances (e.g., see Fig. 7 and Online Resource 4).

In the former case, the foraging ants are equally probable to find either food source 
while completing the random walk. We observe in simulations that both sites are 
visited initially, but the site that has more visitors eventually lures all the foraging ants 
due to the larger pheromone concentration. The typical three lane local dynamics of 
foragers and returners can be observed on each trail (see Fig. 9). In the case of food 
sources at unequal distances, the foraging ants find the closer food source first as they

Fig. 6 Sample ant raiding simulations with foragers {purple} and returners (blue) where N = 400 and 
the food sources are equi-distant to the nest. Each arrow represents an individual ant’s orientation The 
black circles denote the nest, xc = (20, 0), and food sources, xyj = (80, 20) and xy^ = (80, —20). a 
Initially ants are placed near the nest in non-overlapping positions with random orientation, b The first food 
source is found and a trail develops similar to the case of only one food source, c Once that food source is 
depleted random foraging commences once again until the other food source is found, d A trail forms at 
the second food source. See Online Resource 3 (color figure online)



 
 
 
 
 
 

 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

Fig. 7 Sample ant raiding simulations with foragers (purple) and returners (blue) where N = 400 and 
the food sources are equi-distant to the nest. Each arrow represents an individual ant’s orientation . The 
black circles denote the nest, xc = (20, 0), and food sources, xyj = (60, 20) and xy^ = (80, —10). a 
Initially ants are placed near the nest in non-overlapping positions with random orientation, b The first food 
source is found and a trail develops similar to the case of only one food source, c Once that food source is 
depleted random foraging commences once again until the other food source is found, d A trail forms at 
the second food source. See Online Resource 4 (color figure online)

sweep across the computational domain. Once a food source is found in either case 
almost all foragers are attracted to this site, which exhibits behavior similar to the one 
food source case (see Figs. 6, 7). There is a period of random foraging again until the 
second food source is found.

Next, the model can be used to study the effect of two food sources on the transition 
to and duration of the collective state. The main question is whether the system will 
form two coexisting collective states or one collective raid at the first food source and 
then another at the second. We use the order parameter (5) for each class of ant to 
study the current state of the system. Figure 8, shows that there is still a clear transition 
to the collective state in both cases; however there are a few subtle differences than in 
the case of one food source.

In both the cases of equidistant and non-equidistant food sources, a collective state 
is reached essentially in the same amount of time as the single food source case (see 
Fig. 8). This is due to the fact that once foragers find a food source they immediately 
lay pheromone attracting all other foragers nearby. The result is single food source 
behavior until depletion where the foragers carry out a random walk again. This can 
be seen explicitly in Fig. 8 during the time period that the foragers leave the collective 
phase. This occurs because there was only a trace amount of chemical, if any, deposited 
at the second food source. While the first food source was being raided this amount 
dissipated exponentially fast since foragers no longer visited.

Finally, we investigate the effect of multiple food sources on the lane formation. 
Figure 9 show that the model captures the local traffic dynamics along each trail with 
the formation of the three lanes, two outside lanes for foragers and one internal lane 
for ants returning with resources. This is consistent with the results observed in the



 
 
 

 
 
 
 

 
 

 
 

 
 

 

 

 
 
 
 
 
 
 
 

collective state. Left two equally spaced food sources. Letters correspond to Fig. 6a-d. Right two no
equidistant food sources. Letters correspond to Fig. 7a-d. Error bars represent one standard deviation. 
Observe in the case of equally spaced food sources the raids last roughly the same amount of time indiciating 
a maximally efficient state has been reached and raid time only depends on the trail length

Fig- 9 Formation of lanes along 
the pheromone trail for foragers 
(green, blue) and returners (red). 
Distances normalized by ant size 
£. = xq (characteristic length). 
Bi-modal peaks occur at a 
distance between ,5£ — 1.5£ 
from the center indicating two 
outside lanes of foragers with 
returners in the middle. Error 
bars represent one standard 
deviation (color figure online)

case of one food source in Fig. 4b and is independent of the locations of the food 
sources.

4 Kinetic phase transition

The model can also be used to study the behavior of the system near the transition to 
collective motion. While we have loosely called this a “phase transition’’ throughout 
this work, we must distinguish the definition used here from the classic one from ther
modynamics. The kinetic phase transition occurs when the order parameter exhibits 
behavior similar to that of a continuous phase transition in an equilibrium system 
(Czirok et al. 1999; Vicsek et al. 1995). The system under consideration here is far 
from equilibrium, yet still is capable of demonstrating phase transition type behavior. 
For a rigorous treatment of phase transitions in systems of self-propelled particles 
consult (Degond et al. 2015).



 
 
 

 
 
 

Fig. 10 The avergage value of the order parameter over the course of the raid, (Ffor), exhibits a continuous 
kinetic phase transition as a function of the system parameters for a the noise strength D, c the rate 
of diffusion a, and e the phermone deposition amount q. The critical exponents are extracted from the 
corresponding log-log plots of (Ffor)

In this work, we will follow the approach presented in Czirok et al. (1999), Vicsek 
et al. (1995) where the kinetic phase transition from no transport (e.g., order parameter 
F = 0) to finite net transport as a function of system parameters was first studied. 
If one can find a critical exponent f such that F ~ ()?<? — v)^, then the system is



 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

said to posses a continuous kinetic phase transition. Here z? is the system parameter 
under investigation (e.g., strength of noise or density as in Czirok et al. (1999), Vicsek 
et al. 1995) and rjc is the critical value of this parameter near the transition. The 
behavior near the transition is referred to as seif-organized critical behavior because 
it spontaneously arises in dissipative systems due to the dynamics of interacting units 
(Jensen 1998; Winkler et al. 2015). By deriving a power law the system is considered 
to be “scale-free” and is therefore universal (Newman 2005). This held combines self
organization and critical behavior to provide greater understanding of the complexity 
of a given system of interacting units (Jensen 1998).

Specifically, in this work, we study the average value of the order parameter for 
foragers, (Ffor}, during the raiding time period as the noise strength in the random 
walk D. the diffusion coefficient a, and the maximum amount of pheromone deposited 
q vary. Figure 10a, c, e show (Ffor} as a function of these system parameters. In 
each variable we estimate the point where self-organization begins (e.g., Dc = 2.45, 
ac = .4, and q = .04). Using a log-log plot the data is fit to a power law where the 
slope gives the critical exponent (see Fig. 10b, d, f)

Ffor ~(DC- D/', Ffor ~ (a - , Ffor ~ (q - qcf2.

From the data we find critical exponents ~ 2/3, <5i % 1/4, and Si ~ 1/4. These 
critical exponents can also be observed in thermodynamic systems found in nature. For 
example, the magnetization in a spin system is proportional to the applied Held, m or hs 
where S & .25 (Ma 1976). In addition, a critical exponent near 2/3 is observed when 
considering the density of a superfluid (He) versus temperature, ps or (Tc — T)P for 
ft .667 (Stanley 1971). For comparison ft = 1/2 is the mean-field critical exponent 
for the order parameter as a function of temperature in an Ising-like model from 
classical thermodynamics (Stanley 1971). The fact that the derived critical exponents 
match some classic thermodynamics systems speaks to the universality of the model 
and explains why this behavior is referred to as a phase transition. These plots are 
sensitive to the choice of critical value and, therefore, these exponents can only be 
taken as approximations. However, the exact determination of the critical exponents 
is beyond the scope of the present work and Fig. 10 was presented only illustrate that 
the system does exhibit a continuous kinetic phase transition.

5 Discussion

5.1 Limitations and future work

While the model uses microscopic interactions to accurately capture the macroscopic 
state, it still has some limitations. One limitation is the numerical approximation of the 
time integral in (6). One could overcome this with a pure diffusion model as outlined 
in Appendix 2, but this is only sufficient on short trails. In Boissard et al. (2013), 
the deposition of pheromones along a trail is incorporated via a kinetic model and 
the simulations are carried out by solving this PDE directly, but the entire ant raiding 
cycle (e.g., foraging and returning to the nest) has not yet been studied.



 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

 

 
 
 
 
 

 
 
 
 
 
 
 

Another simplification used in this work is a homogeneous environment where 
essentially there are no obstacles or variance in elevation. Some progress has been made 
toward this in Colorni et al. (1991), but much more is still needed for full understanding. 
It would be interesting to include environmental effects and study how the onset 
of collective dynamics and lane formation would change. One could add a spatial 
dependence to § = £(x) in the self-propulsion term to model the frictional component 
from Rayleigh’s Law as suggested in Carillo et al. (2010). If the environment is rough 
and movement is hindered (§ is small) or if the environment is flat and homogeneous 
with little friction, then § is closer to the isolated translational speed of an ant. Since 
the model accounts for interactions between ants in one colony, it is natural to ask 
what would happen if this model was used for ant communities competing for food 
resources (Martelloni et al. 2015; Powell and Clark 2004) or if the effect of predators 
was investigated (Kaspari and O’Donnell 2003; Wrege et al. 2005).

The clear next step is to derive the corresponding kinetic theory for the coupled 
system (2)—(4) for comparison with the various current continuum PDE models for 
the ant density. There the limit is taken as the number of particles and volume go to 
infinity, but the concentration N/1 Vl I is held fixed. Then it may be possible to establish 
existence and uniqueness results through mathematical analysis using techniques from 
ODE and PDE theory (e.g., similar to what has been done for bacterial suspensions 
(Ryan et al. 2013a) and locusts Erban and Haskovec 2012; Escudero et al. 2010).

Finally, the implementation of the elliptical truncated Gay-Berne potential in place 
of the isotropic truncated Lennard-Jones potential (1) would allow one to study the 
effect of ant shape as discussed in Remark 1. Since ants are elongated with aspect 
ratios between 3 and 6, the shape may play some role in the near-field collisional 
interactions affecting how the lanes form and their intrinsic size.

5.2 Conclusions

This work introduced a new coupled PDE/ODE model for pheromone concentration 
and ant dynamics. Through analysis of the model, one can study the physical para
meters governing the transition to and from a collective state that occurs during the 
course of a raid. While experiments have limitations including observation time and 
lack of control over the individuals, the mathematical model introduced allows for 
a deep study of the dynamics of the raid for long periods of time. The model has 
been verified to match the qualitative behavior observed in the experimental results of 
Couzin and Franks (2003), Schneirla (1940, 1971).

The main result of this work is the introduction of a new model capable of capturing 
the emergence and dissipation of an ordered state as well as the self-organization of 
individuals into traffic lanes for efficient transport of resources. The simulations of the 
model show indeed a sharp transition from individual to collective behavior in both 
foragers and returners with an explicit time delay accounting for the reaction of the 
foragers to the chemical gradient. Also, the model reveals that the lanes form due to 
the presence of an excluded volume constraint and collisions. The case of multiple 
food sources was investigated revealing distinct behavior depending on the locations



 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

 
 

of the food sources. Also, the critical exponents found herein describe the behavior of 
the system as a function of system parameters.

Through analysis of the model, we acquire further knowledge of social insect behav
ior. Even in the absence of direct communication, the model shows that ants can still 
self-organize into efficient transport pathways. This is the result of a complex network 
of chemical signaling through pheromone detection and deposition as well as local 
near-Held collision avoidance. While ants are one example of social insects, the non
verbal cues are present in other species. In absence of verbal communication humans 
at a crosswalk unconsciously form lanes for efficient travel. This can be explained 
using insight from the analysis of the model for ants in that an individual takes up a 
certain amount of space and to avoid a path being inhibited individuals of like orienta
tion naturally follow one another. As in ants, the global patterns are not known at the 
local level, yet still emerge in time. The main difference between humans and ants is 
that typically humans behave in a ways that are best for the individual while ants only 
exist for the good of the colony (Couzin and Franks 2003).

At present this work only considers a small number of ants to verify the model. 
This allows for figures and simulations where the particles can be distinguished to 
illustrate individual behavior at the microscopic level. Even with this restriction in 
mind, this simple model is still able to capture the transition to the collective state 
and lane formation. Most other works focus on one aspect of the raiding cycle such as 
laying a chemical trail. However, our model, like the recent PDE model in Amorim 
(2014), allows for simulation of the entire ant raiding cycle from random foraging, 
to the identification of a food source, and food depletion. Once the food is gone the 
model naturally accounts for the degradation of the trail with the disappearance of the 
pheromone chemical gradient exponentially fast and the transformation of all ants to 
foragers.

Overall, the model introduced in this work provides novel insight into the raiding 
behavior of ants while laying the foundation for investigating future questions such as 
elevation effects, competing colonies, and predators. The simple nature of the model 
only keeps the necessary biological parameters needed to reach the ordered state 
reducing the study of a complex phenomena to a system of interacting points governed 
by a balance of forces. This work highlights the interplay between two communities of 
ants within the same colony in order to achieve an efficient state of resource transport 
fundamental to daily life.
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Appendix 1: Non-dimensionalization

In order to form a dimensionless problem for the purpose of numerical computations, 
we must now introduce characteristic scales. A characteristic scale will be denoted by 
a subscript zero (e.g., xq) and a non-dimensional quantity will be denoted with a hat.



 
 
 
 
 

 

 

 
 
 

 
 

 

 

 
 

For example
X = X()X, t = tot

where the characteristic size of an ant xo = 1 cm and one option for the characteristic 
time fo = 101s is based on the half-life of a food source taken from Amorim (2014). 
The characteristic diffusion coefficient for pheromone is a0 = x2/fo = -01cm2/s 
and the characteristic concentration of pheromone deposited on a 2D surface is <?o = 
1.1 x 10_4g cm-2 (both match experimental values from Calenbuhr and Deneubourg 
1992; Couzin and Franks 2003).

First, the homogeneous version of the PDE for pheromone concentration (2) 
becomes

Ac + ycoc = 0, xeR2,t e (0, oo) 

coc(x, 0) = cog (x), x e R2

By multiplying through the first equation by to/co and the second by 1/co we find 
a non-dimensional equation for the concentration with non-dimensional parameters 
a, y, and q. Once done, we replace the source term responsible for the exponential 
decay of the pheromone along the trail in dimensionless form

djC - a Ac + yc = VjL, ll2^ (x _ x7(f)), x e R2, t e (0, oo)

c(x, 0) = g(x), x e R2.

where y = yto (y has units of 1/sec, y l/300x in Couzin and Franks 2003). The 
maximal dimensionless concentration of pheromone deposited is q = q/co- Next, we 
proceed to the equations for the foraging ants without the white noise term

vv,- (J2 - |v, I2) - w (In - x71) + r/coVxC (x, t)

By multiplying through the first equation by to/xo and the second by fg/xo we find a 
non-dimensional equation and add in the dimensionless Gaussian white noise

Xj = v,-
Vi = H (p - Iv,-12) - £ vxc (In - X71) + d^c (x, /) + DWf.

where U is defined in (1) with dimensionless relative distance r and the dimensionless 
depth of the potential well e = sot^/x^. Also, v = vxo/to and d = dcot2}/x2}. 
Similarly for returning ants we find

Xj = Vfcl,
VI = VV, (F - |v,I2) - | Z7?t, (In - x7|) +



 
 
 
 

 
 
 
 
 

 

 
 
 
 

 

 
 
 
 
 

 
 

where ji = and r = |x,- — xf|. Even though the model (3)—(4) was formulated
with dimensional constants, from the dimensional analysis presented in this appen
dix we recover the necessary dimensions of each of the original quantities if desired. 
Throughout this work the hats are dropped and all variables are understood as dimen
sionless.

Appendix 2: Pure pheromone diffusion model

As mentioned in Sect. 5, one can consider a pure diffusion model for the pheromone 
concentration coupled with the same equations (3)—(4) governing ant dynamics. In 
this setting the ants only lay pheromone at the food source the moment they become 
returners. The chemical gradient is formed by diffusion of pheromone in the absence 
of trail laying. We now introduce the following modified PDE for the pheromone 
concentration c(x, t)

dtC — aAc + yc = 8(x — xt)S(t — t,), x e R2, t > 0; ^,=1 ' (7)
c(x, 0) = g(x), xeR2.

Here M is the total number of visits before a food source is depleted, g(x) is a constant 
uniform initial distribution of pheromone, and tj is the time that the jth quantity of 
food is discovered by a forager. This equation models each foraging ant depositing 
pheromone at the time of each visit. Once the food source is depleted the pheromone 
concentration naturally decays to zero resulting in the trail disappearing.

This modification results in a small change in the numerical implementation. We 
now have an explicit analytical solution to the PDE and need to replace (6) with

M
z

7 = 1

•=f(x. /):=f Xj
,, M ,,

= e~Y> XT 'llL
a.n £ axi ‘ (8)

where

Xj :=
eylJ „ i

4.-ruU-»,)
0,

I > tj, 
t <tj

+

By changing how the ants emit the chemical signal, we achieve an the added advantage 
of not requiring the computation of a time integral for each foraging ant. One can see 
from Fig. 11, that the behavior of the ants is the same as in the prior case. The greatest 
disadvantage is that this approximation to the main model presented is only valid for 
very short trails where diffusion of pheromone would be sufficient to attract all ants 
without trail laying.

The main difference in the dynamics from the main model presented (2) is seen 
when two food sources are present. While locally the motion of each ant may appear 
similar in each case, the depletion rate of each food source is different. In the case of



 
 
 
 
 
 

 
 

 
 
 
 

Fig. 11 Sample ant raiding simulations with foragers (purple) and returners (blue) where N = 200. Each 
arrow represents an individual ant’s orientation <yz. The black circles denote the nest, xc = (2,0), and food 
source, x, = (40, 0). a Initially ants are placed near the nest in non-overlapping positions with random 
orientation, b Foragers begin to discover the food source and mark it with pheromone, becoming returners, 
c As the pheromone diffuses more and more foragers detect the scent and begin to follow the trail to the 
food source, d Once the food source is depleted the trail quickly disappears and the ants return to random 
foraging. See Online Resource 5 (color figure online)

Fig. 12 Removal of food over the course of time for a one food source or b two food sources at equal 
and unequal distances from the nest. Food depleted in 4—6h consistent with duration of raids from the 
experimental observations in Schneirla (1940. 1971)

equidistant food sources, initially both food sources are decreasing at about the same 
rate, but then the depletion rate of the second food source becomes lower and eventually 
it is no longer visited as seen by the horizontal portion of the food count function in 
Fig. 12b. In (2) the ants tended to all raid at the food source which was discovered 
first and display hardly any trail formation at the second food source until the first



 
 
 

 
 
 
 
 
 

 
 
 
 
 

 

 
 

 

 

 

 

 

was depleted. For food sources at different distances the behavior of both models is 
similar, the closest food source is essentially depleted first and then the second food 
source is visited. Thus, ants will use all available foragers to completely deplete the 
closer quantity of food before moving on. This may provide further evidence of the 
efficiency in which the ants seek to carry out the raiding process.

Appendix 3: Central nest location

Some additional results are presented where the nest is located at the center of the 
domain. The purpose of these images is to show that the dynamics and trail formation 
are essentially the same as in the scenarios presented throughout this work where the 
nest was closer to one edge of the domain. Figure 13 illustrates the trail formation in 
time. The only difference is that with the nest in the center it takes longer to attract 
all the foragers, because some are now farther from any portion of the trail than the 
previous case. To see the full raid please consult Online Resource 6.

Fig. 13 Trail formation with nest in the center. Foragers {purple) and returners {blue) where N = 400. 
Each arrow represents an individual ant’s orientation . The black circles denote the nest, xc = (50, 0), 
and food source, xy = (90, 0). a Once the food source is discovered and phermone is laid along the trail, it 
takes a greater amount of time for it to diffuse to the ants on the opposite end of the domain, b Eventually 
all ants join in the raid resulting in a trail with the same form as in Fig. 2. See Online Resource 6 (color 
figure online)
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