
Cleveland State University
EngagedScholarship@CSU

Mathematics Faculty Publications Mathematics Department

11-15-2015

Closed Range Composition Operators on Hilbert
Function Spaces
Pratibha Ghatage
Cleveland State University, p.ghatage@csuohio.edu

Maria Tjani
University of Arkansas

Follow this and additional works at: https://engagedscholarship.csuohio.edu/scimath_facpub

Part of the Mathematics Commons
How does access to this work benefit you? Let us know!

This Article is brought to you for free and open access by the Mathematics Department at EngagedScholarship@CSU. It has been accepted for
inclusion in Mathematics Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact
library.es@csuohio.edu.

Repository Citation
Ghatage, Pratibha and Tjani, Maria, "Closed Range Composition Operators on Hilbert Function Spaces" (2015). Mathematics Faculty
Publications. 285.
https://engagedscholarship.csuohio.edu/scimath_facpub/285

https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fscimath_facpub%2F285&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/scimath_facpub?utm_source=engagedscholarship.csuohio.edu%2Fscimath_facpub%2F285&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/scimath?utm_source=engagedscholarship.csuohio.edu%2Fscimath_facpub%2F285&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/scimath_facpub?utm_source=engagedscholarship.csuohio.edu%2Fscimath_facpub%2F285&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=engagedscholarship.csuohio.edu%2Fscimath_facpub%2F285&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/scimath_facpub/285?utm_source=engagedscholarship.csuohio.edu%2Fscimath_facpub%2F285&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu


Closed range composition operators on Hilbert function spaces

Pratibha Ghatage, Maria Tjani

for any function f that is analytic on D. Littlewood in 1925 proved a subordination principle, which in 
operator theory language, says that composition operators are bounded in the Hardy space H2, the Hilbert 
space of analytic functions on D with square summable power series coefficients. This is the first setting by 
which many properties of the composition operator such as boundedness, compactness, and closed range 
have been studied. It is natural to study these properties on other function spaces.

Let H be a Hilbert space of analytic functions on D with inner product {· , ·}. We say that H is a Hilbert 
function space if all point evaluations are bounded linear functionals. By the Riesz representation theorem, 
for each z ∈ D, there exists a unique element Kz of H. called the reproducing kernel at z, such that for each 
f∈H, f(z) = (f, Kz). For each z ∈ D we have

(1)

1. Introduction

Let φ be an analytic self-map of the unit disk D. The composition operator with symbol φ is defined by



(2)

where ∣∣ ∙ ∣∣ denotes the norm in H. In particular for each z, w ∈ D we have

Cima, Thomson and Wogen in [9] were the first to study closed range composition operators in H2. Their 
results were in terms of the boundary behavior of φ. Next, Zorboska in [27] studied closed range composition 
operators in H2 and in the weighted Hilbert Bergman space in terms of properties of φ inside D. Since then 
several authors studied this problem in different Banach spaces of analytic functions, see for example [14, 
2-4,18,25].

In this paper we continue the study of closed range composition operators on the Bergman space A2, the 
Hardy space H2 and the Dirichlet space D. We will define and discuss properties of these spaces as well 
as other preliminary work in Section 2. In Section 3 we develop general machinery that can be useful in 
studying closed range composition operators in any Hilbert function space Ή with reproducing kernel Kz. 
Given ε > 0, let

and Gε = Gε(H) = φ(Λε). In Section 3 we give a necessary condition for Gε to intersect each pseudohyper- 
bolic disk in D, see Proposition 3.2. It is useful in our results in Section 4 and in Section 6.

In Section 4 we build on known results about closed range composition operators on A2 provided in [2] 
and 25]. It is well known that μ is a Carleson measure on D if and only if the Berezin symbol of μ is 
bounded; our first main result in Section 4 is an analog of this for Carleson measures that satisfy the reverse 
Carleson condition, see Theorem 4.1. We use this to provide necessary and sufficient conditions for the 
pull-back measure of area measure on D to satisfy the reverse Carleson condition, see Theorems 4.2 and 4.3.

Akeroyd and Ghatage in [2] showed that Cφ is closed range in H = A2 if and only if for some ε > 0 the 
set Gε above satisfies the reverse Carleson condition. This means that Gε intersects every pseudohyperbolic 
disk, of some fixed radius r ∈ (0,1), in a set that has area comparable to the area of each pseudohyperbolic 
disk. In Theorem 4.4 we show that in fact this is equivalent to Gε merely having non-empty intersection 
with each pseudohyperbolic disk. Moreover we provide an analog of [9, Theorem 2] in A2 in terms of the 
pull-back measure of normalized area measure on D; we also show that Cφ is closed range on A2 if and only 
if for all w ∈ D, ∣∣Cφ Kw∣∣ ≍ ∣∣Kw∣∣. Lastly we provide a condition that makes it easy to check whether Cφ 
is closed range on A2, see (e) of Theorem 4.4.

In Section 5 we revisit closed range composition operators on H2. The first main result of this section is 
not new. It is a combination of [25, Theorem 5.4] and a result in Luery’s thesis [18, Theorem 5.2.1]. Our new 
short proof uses pseudohyperbolic disks. Zorboska proved in [27] that for univalent symbols, Cφ is closed 
range on .A2 if and only if it is closed range on H2. We extend Zorboska’s result to include all symbols 
φ ∈ D. Akeroyd and Ghatage show in 2] that the only univalent symbols that give rise to a closed range Cφ

For each w ∈ D, the normalized reproducing kernel in H is

If Cφ is a bounded operator on H, then by Theorem 1.4 in [11] we have

(3)

(4)

(5)

and hence



on A2 are given by conformal automorphisms. We provide an example of a closed range Cφ on H2 and on A2 
where the symbol φ is an outer function. Note that all other known such examples involve inner functions.

In Section 6 we apply our techniques to the Dirichlet space. Nevanlinna type counting functions in A2 
and in H2 were instrumental in determining closed range. In comparison Luecking showed in [17] that 
the Dirichlet space analog does not determine closed range. We provide a new Nevanlinna type counting 
function in D and introduce three Carleson measures and study their properties, see Propositions 6.1 and 
6.2 and Corollary 6.1. We end the paper with a conjecture about closed range composition operators in D.

Throughout this paper C denotes a positive and finite constant which may change from one occurrence 
to the next but will not depend on the functions involved. Given two quantities A = A(z) and B = B(z), 
z ∈ D, we say that A is equivalent to B and write A ≍ B if, C A < B ≤ C A.

2. Preliminaries

For each p ∈ D let αp denote the Mobius transformation exchanging 0 and p,

(6)

and Aut(D) denote the set of all Mobius transformations of D. The pseudo-hyperbolic distance p between 
two points w, z in D defined by

(7)

is Mobius invariant, that is for all z, w ∈ D and γ ∈ Aut(D),

and satisfies a strong form of the triangle inequality; given z, w, ζ ∈ D,

(8)

Moreover it has the following important property:

(9)

The pseudo-hyperbolic disk D(z,r) centered at z with radius r ∈ (0,1) is

(10)

As mentioned in [12, page 39], the function f(x,y) =  x+y/1+xy attains a maximum value in the rectangle
[0,r] × [0,s] at the point (r, s). It now follows by (8) that if z ∈ D(ζ,r) and w ∈ D(ζ, s) then

(11)

Let A denote area measure on D normalized by the condition A(D) = 1. By [26, Proposition 4.5] if r ∈ (0,1) 
is fixed and z ∈ D(z0,r) then

(12)



and

(13)

The Bergman space A2 is the Hilbert space of analytic functions f on D that are square-integrable with 
respect to the area measure A that is,

(14)

By [26, Theorem 4.28] an equivalent norm on A2 is given by

(15)

As was mentioned in the Introduction, the Hardy space H2 is the Hilbert space of analytic functions on D 
with square summable power series coefficients. Moreover if f = ∑anzn ∈ H2 then ∣∣f∣∣2H2 = ∑ ∣an∣2  and 
by the Littlewood-Paley identity an equivalent norm in H2 is given by

(16)

The Dirichlet space D is the space of analytic functions on D such that

By [1, Proposition 2.18] the reproducing kernel in the Bergman space A2 is

(17)

similarly the reproducing kernel in the Hardy space H2 is

(18)

the reproducing kernel of D0 = {f ∈ D : f(0) = 0} is

(19)

and the reproducing kernel of D is

(20)

3. On Hilbert function spaces

Let H be a Hilbert function space with reproducing kernels Kw, w ∈ D. For ε > 0, let

(21)



and

(22)

By (17) if H = A2,

(23)

and by (18) if H = H2 then Λε (H2) = Λε2 (A2). The sets Gε(A2) were used in [2,3] and in [25] to study 
closed range composition operators on the Bergman space. Moreover by (19) if H = D0 , then

(24)

Definition 3.1. We say that H ⊆ D is hyperbolically dense if there exists r ∈ (0,1) such that every point 
of D is within pseudo-hyperbolic distance r of H.

For r ∈ (0,1) and w ∈ D we define

(25)

Then for ε > 0, the set Gε, defined in (22), is hyperbolically dense if and only if there exists r ∈ (0,1) such 
that for each w ∈ D, ∆w(r) ∩ Λε ≠ ∅.

Definition 3.2. We say that the reproducing kernels satisfy the nearness property if for each r ∈ (0,1) there 
exist δ > 0 and cr > 0 such that for each w, ζ∈D with ∣w∣ ≥ cr, ∣ζ∣ ≥ cr and ρ(ζ,w) ≤ r, we have that ∣<Kζ,Kw > ∣ ≥ δ ∣∣Kw∣∣.∣∣Kζ∣∣ and

(26)

Next we show that nearness property is quite common.

Proposition 3.1. The reproducing kernel functions for the Hardy space H2, the Bergman space A2, the 
Dirichlet space D and of D0 satisfy the nearness property.

Proof. By (9), given r ∈ (0,1), p(z,∙w) ≤ r if and only if

(27)

Therefore by (17) and (18) it is immediate that the reproducing kernels of A2 and H2 satisfy the nearness 
property.

Next, by taking logarithms of both sides of (27) and using the inequality of arithmetic and geometric 
means we see that, given r ∈ (0,1), if p(z, w) < r then

and letting Kz denote the reproducing kernel in D0 we obtain

(28)



By (19), if ∣w∣ > √(e- l)∕e then ∣∣Kw∣∣ > 1 and by (28) we may find δ > 0 and cr > 0 such that if ∣z∣ > cr 
and ∣w∣ > cr then

(29)

and the reproducing kernels for D0 and hence of D satisfy the nearness property as well. □

The proof above can be easily modified to show that the reproducing kernel functions in all weighted 
Bergman spaces satisfy the nearness property.

In the remainder of this section we will assume that H contains all constant functions, therefore by (1), 
for all z ∈ D we have ∣∣Kz∣∣ > 0. Moreover we will assume that Ή satisfies the following property.

(S) The map z ↦ Kz is continuous on D.
It is easy to see that property (S) is valid on H2, .A2, D0 and D Below we provide a necessary condition 

for Gε to be hyperbolically dense.

Proposition 3.2. Let H be a Hilbert function space satisfying condition (S) and containing all constant 
functions. Suppose that Cφ is a bounded operator on H and that the reproducing kernels of H satisfy the 
nearness property. If there exists ε > 0 such that Gε is hyperbolically dense, then for every w ∈ D,

(31)

By (5) and (21), ∣∣Kzw∣∣ ≍ ∣∣Kφ(z,w)∣. Therefore by (31), the nearness property of the reproducing kernels 
of H and since Cφ is a bounded operator, there exists cr > 0 such that if ∣w∣ > cr then

(32)

Moreover by (31) and (32), if ∣w∣ ≥ cr

(33)

and (30) is valid if ∣w∣ ≥ cr.
Next suppose that there exists a sequence (wn) ∈ D with ∣wn∣ ≤ cr such that

(34)

Proof. Fix ε > 0 such that Gε is hyperbolically dense. Then there exists r ∈ (0,1) such that given w ∈ D, 
we may choose zw ∈ Λε such that p(w,φ(zw)) ≤ r < 1. By the Cauchy-Schwarz inequality and (4) we 
obtain



Without loss of generality we may assume that there exists ∣w0∣ < cr such that wn ↦ w0. By assumption 
Ή satisfies condition (S). Then ∣∣Kwn∣∣ ↦ ∣∣Kw0∣∣ and ∣∣CφKwn ∣∣ ↦ ∣∣CφKwn∣∣. By (34) we conclude that, 
Cφκw0 = 0 and so Kwo = 0. This is a contradiction, therefore if ∣w∣ ≤ cr the first set of inequalities in (30) 
follows. Lastly, suppose that there exists a sequence (un) ∈ D with ∣un∣ ≤ cr such that

(35)

As before, without loss of generality we may assume that there exists ∣u∣ < cr such that un ↦ u and by (35) 
we have that for all z ∈ D, CφKu(z) = 0 and so Ku = 0. This is a contradiction, therefore if ∣w∣ ≤ cr the 
second set of inequalities in (30) follows as well. □

Remark 3.1. A close examination of the proof of Proposition 3.2 above reveals that under its hypotheses, 
there exists r ∈ (0,1) such that if w ∈ D is outside a certain compact neighborhood of 0, then for each 
z ∈ ∆w(r) ∩ Λε

(36)

4. On Bergman spaces

Carleson measures play an important role in determining when a composition operator Cφ is bounded 
or compact in several Banach spaces of analytic functions. We shall see that they are also important in 
determining when Cφ is closed range.

Definition 4.1. Let μ be a finite positive Borei measure on D. We say that μ is a (Bergman space) Carleson 
measure on D if there exists c > 0 such that for all f ∈ A2

By [26, Theorem 7.4], given 0 < r < 1, μ is a Carleson measure if and only if there exists cr > 0 such 
that for all w ∈ D,

(37)

By (17), the normalized reproducing kernel in A2

Let 0<r<l,w∈D. Then by making a change of variables



We conclude that

(38)

In fact below we show that this is valid for any positive Carleson measure. We provide a more general 
version that is crucial in the proof of Theorem 5.1.

Proposition 4.1. Let μ be a positive Carleson measure on D, and a, β be such that a + β = 2. Then

(39)

Proof. For a fixed 0 < ρ < 1 we can cover D with pseudohyperbolic disks of radius ρ that do not intersect 
too often. In fact as shown in [6, Lemma 3.5] there exist (sn) ⊂ D, and a positive integer M that depends 
only on p, such that D = ∪∞n=1D(sn, p) and each ζ ∈ D is in at most M of the pseudohyperbolic disks 
D(an, (p + 1)∕2), n∈N.

Fix r ∈ (0,1) and w ∈ D. Similarly to the above, with ρ = 1∕2, there exist (wn) ⊂ D such that

(40)

Moreover similarly to the argument in [6, Lemma 3.5], for each n,m ∈ N and each ζ ∈D

We conclude that there exists a positive integer M, independent of r ∈ (0,1) and w ∈ D, such that each 
ζ ∈ D\ D(w, r) is in at most M of the pseudohyperbolic disks D(wn, 3/4), n ∈ N.

For each w ∈ D let

(41)

Then by [6, Lemma 3.4], or [26, Proposition 4.13], applied to the function 1-∣w∣2/(1-wz)2 and by (12), there is a 
constant C such that

(42)

Let

By (40) and (41) and since μ is a Carleson measure



Next, by (12) and (42)

(43)

Lastly, as shown above, each ζ ∈ D ∖ D(w,r) is in at most M of the pseudohyperbolic disks D(wn,3∕4), 
n ∈ N. Therefore

for each 0 < r < 1 and w ∈ D. By (38) the result now is clear. □

Definition 4.2. Let μ be a finite positive Carleson measure on D. We say that μ satisfies the reverse Carleson 
condition if there exists r ∈ (0,1) such that for all w ∈ D,

(44)

We say that a set G C D satisfies the reverse Carleson condition if the Carleson measure xg(z) dA(z) 
satisfies the reverse Carleson condition; Luecking in [15] showed that this is equivalent to

(45)

for all f ∈ A2. Moreover he showed that Carleson type squares can be used in place of the pseudohyperbolic 
disks. But proofs are easier using pseudohyperbolic disks.

Let μ be a finite positive measure. The Berezin symbol of μ is

(46)

It has played an important role in determining properties of Toeplitz operators and composition operators 
such as boundedness and compactness, see for example [7]. We shall see below that it is important in 
questions of closed range of composition operators as well.

It is well known that μ is a Carleson measure if and only if the Berezin symbol of μ is bounded above, 
see for example [26, Theorem 7.5]. Below we show that the reverse Carleson measure analog of this holds 
as well.



Theorem 4.1. A Carleson measure μ satisfies the reverse Carleson condition if and only if μ is bounded 
above and below on D.

Proof. First assume that the Carleson measure μ satisfies the reverse Carleson condition. By (12) and (13), 
there exists r ∈ (0,1), for each w∈D we obtain,

(47)

and therefore μ is bounded above and below on D.
Next assume that μ is bounded above and below on D. By Proposition 4.1

(48)

We conclude, by (12) and (13), that there exists δ > 0 such that if r > 1 — δ and w ∈ D,

(49)

and the conclusion follows. □

The pull-back measure of normalized area measure in D under the map φ is defined on Borei subsets of D 
by

(50)

The Berezin symbol of μφ is,

(51)

Therefore since Cp is a bounded operator on A2 (see for example [24, Section 1.4, Exercise 5]),

(52)

We conclude that μφ is a bounded function on D, and μφ is a Carleson measure on D.



Proposition 4.2. The following are equivalent:
(a) The Carleson measure μφ satisfies the reverse Carleson condition.
(b) There exists 0 < r < 1 such that for all w ∈ D,

(53)

(c) There exists 0 < r < 1 such that for all w ∈ D,

(54)

Proof. By (9) and for any w ∈ D, the absolute value of the normalized reproducing kernel in A2 is

(55)

and by (12), if z ∈ D(w,r) then

(56)

Therefore by (12) and (25), if n = 1,2 then μφ satisfies the reverse Carleson condition if and only if there 
exists 0 < r < 1 such that for w ∈ D,

(57)

and the result follows. □

The result below is an immediate corollary of Theorem 4.1 applied to the Carleson measure μφ.

Theorem 4.2. The Carleson measure μφ satisfies the reverse Carleson condition if and only if μφ is hounded 
above and below on D. Equivalently, for all w ∈ D,

(58)

In the theorem below we provide another equivalent condition for μφ to satisfy the reverse Carleson 
condition that is essential in the proof of our main result of this section. We single it out so that later we 
can make clear the analogy between μφ and the pull-back measure of Lebesgue measure on the unit circle T 
used in [9].

Theorem 4.3. The Carleson measure μφ satisfies the reverse Carleson condition if and only if there exists 
C > 0 such that for all w ∈ D,

(59)



Proof. First assume that μφ satisfies the reverse Carleson condition. By Proposition 4.2 there exist 0 < r < 1 
and C > 0 such that for all w ∈ D

(60)

We claim that there exist ε > 0 and C' > 0 such that for all w ∈ D

(61)

Suppose that (61) is not valid. Then there exists a sequence wn ∈ D such that

(62)

Moreover by Theorem 4.2, (12) and (4), for each n ∈ N,

and

(63)

Therefore (62) and (63) together contradict (60) and we conclude that (61) is valid. Then by (12) and since 
μφ satisfies the reverse Carleson condition,



(64)

Next, if (59) holds then by the Cauchy-Schwarz inequality,

and the conclusion follows by Theorem 4.2. □

The Nevanlinna counting function for φ is defined for w ∈ D by

where it is understood that if w is not a value of φ then Nφ(w) = 0. By Littlewood’s inequality [24, page 187], 
it is easy to see that Nφ(w)/1-∣w∣2 dA(w) is a Carleson measure.

Proposition 4.3. Let φ be a non-constant analytic self-map of D. Then for each ε > 0, φ is boundedly valent 
on Λε ∩ {∣z∣ > 1/2}.

Proof. Fix ε > 0 and recall that Λε = {z ∈ D : 1 — ∣z∣2 > ε (1 — ∣φ(z)∣2)}. By [24, Section 10.4] it is easy 
to see that if w = φ(z) with z ∈ Λε and ∖z∖ > 1/2 then

(65)

where ηφ,ε (w) denotes the cardinality of φ-1 (w) ∩ Λε counting multiplicities. Thus φ is boundedly valent 
on Λε ∩ {∣z∣ > 1/2} and the result is proved. □

The Neυanlinna counting function for A2 is defined for w ∈ D by

(66)

where it is understood that if w is not a value of φ then N2,φ(w) = 0. By [23, Section 6.3], it is easy to see 
that N2,φ(w)/1-∣w2∣2 dA(w) is a Carleson measure.

The authors of [9, Theorem 2] launched the study of closed range composition operators on H2 by using 
the pull-back measure of Lebesgue measure on T. Below is the main result of this section. We provide an 
analog of their result, on A2, where we use the pull-back measure of normalized area measure on D. Not all 
equivalences below are new. In particular, (f) ⇔ (g) was proved in [2, Theorem 2.4] and (a) ⇔ (g) is the 
case for p = 2 and a = 2 in [25, Theorem 5.4]. Notice that while condition (f) requires Gε to intersect each 
D(w,r) at an area that is comparable to the area of D(w,r), by condition (b) this is equivalent to each 
D(w,r) merely intersecting Gε. Moreover notice that condition (e) makes it easy to check whether Cφ is 
closed range on A2.

Remark 4.1. By Lemma 2.1 and Lemma 2.2 in [2], to prove that Cφ is closed range on A2 we may assume that 
φ(0) = 0 and show that Cφ is closed range on the invariant subspace of A2 of functions vanishing at the ori
gin. This will be useful in the proof of (d) ⇒ (f) below, where we use the equivalent norm of A2 given in (15).



Theorem 4.4. The following statements are equivalent.
(a) The Carleson measure N2,φ(ζ)/1-∣ζ∣2)2 dA(ζ) satisfies the reverse Carleson condition.
(b) There exists ε > 0 such that Gε is hyperbolically dense.
(c) The Carleson measure μφ satisfies the reverse Carleson condition.
(d) For all w ∈ D, ∣∣CφKw∣∣ ≍ ∣∣Kw∣∣.
(e) There exists C > 0 such that for all w ∈ D

(f) There exists ε > 0 such that Gε = {φ(z) : (1 — ∣z∣2) > ε (1 — ∣φ(z)∣2)} satisfies the reverse Carleson 
condition.

(g) Cφ is closed range on A2.

Proof. We will show that (a) ⇒ (b) ⇒ (c) <⇔ (e) ⇔ (d) ⇒ (f) <⇔ (g) <⇔ (a).
We start by showing (a) ⇒ (b). By assumption we may choose 0 < r < 1 such that

(67)

Fix w ∈ D, recall (25) and let

By (67) and sinceNφ(ζ)/1-∣ζ∣2dA(ζ) is a Carleson measure it is easy to see that

It follows that there exists an ε > 0 such that if w ∈ D then δw(r) ≥ ε. We conclude that there exists 
0 < r < 1 such that for all w ∈ D, there exists zw ∈ ∆w(r) ∩ Λε or equivalently that Gε is hyperbolically 
dense and (b) holds.

Next we show that (b) ⇒ (c). This is an immediate consequence of Proposition 3.2 and Theorem 4.2. 
But we will provide below another proof that may be of independent interest. By our assumption we may 
choose ε > 0 such that Gε is hyperbolically dense. It follows that there exists 0 < r < 1 with the property 
that given w ∈ D there exists zw ∈ ∆w(r) satisfying

(68)

We claim that

(69)

Indeed if p(z,zw) < 1/2 then by the Invariant Schwarz Lemma, see [24, page 60], φ(z) ∈ D(φ(zw), 1/2). 
Moreover since zw ∈ ∆w(r), we have that w ∈ D(φ(zw),r). Therefore by (11) we obtain



and (69) holds. Thus by (12) and (68), for every w ∈ D and since zw ∈ ∆w(r') we obtain

(70)

We conclude that μφ satisfies the reverse Carleson condition and (c) holds. 
By Theorem 4.2 and Theorem 4.3, (c), (d) and (e) are equivalent.
Next we show that (d) ⇒ (f). If r ∈ (0,1) and w ∈ D let

Then by the Schwarz-Pick lemma,

By Theorem 4.2 our hypothesis (d) is equivalent to μφ being bounded above and below on D. Then by the 
proof of Theorem 4.1 we see that (48) is valid. We conclude that

or equivalently that

(71)

Therefore there exists r ∈ (0,1) such that for all w ∈ D



(72)

where (15) and (51) were used in the second line of the display above and the hypothesis (d), which is 
equivalent to μφ being bounded below on D, was used in the third line of the display above.

Next, if r ∈ (0,1), ε > 0 and w ∈ D, let J(w,r, ε) denote the expression

Then,

and by making a non-univalent change of variables as in [24, 10.3] we obtain

By (12), (13) and 24, 10.4] and for all w ∈ D we obtain

(73)

Therefore, by (72) and (73), there exist r ∈ (0,1) and ε > 0, such that if w ∈ D and J(w,r, ε) denotes the 
expression

then

(74)

Therefore by making once again a non-univalent change of variables as in [24, 10.3] and by [23, 6.3] we 
conclude that if w ∈ D then

(75)



and by (12), (13)

By Theorem 1 in [2], (f) and (g) are equivalent. Lastly by Theorem 5.4 in [25] (a) and (g) are equivalent. 
This completes the proof of the theorem. □

Remark 4.2. The Bloch space B. is the Banach space of analytic functions on D such that

For ε > 0, let

and Fε = φ(Λε). By [13] and [8] or [3], Cφ is closed range on the Bloch space if and only if there exists 
and ε > 0 such that Fε is hyperbolically dense (this is condition (iii) in [3, Theorem 2.2]). Moreover in 
[3, Corollary 2.3] it was shown to be equivalent to ∣∣Cφ (αp)∣∣B ≍ 1, for p∈D. The similarity of this with 
our results on closed range operators on A2 is interesting.

5. On Hardy spaces

Let φ be an analytic self-map of D and recall from Section 4 that the Nevanlinna counting function, 
Nφ(ζ), for H2 is

(76)

Let f ∈ H2. Then by (16) and by making a non-univalent change of variables as done in [24, page 186] we 
can easily see that

Therefore recalling that the reproducing kernel for H2 is

we obtain for w ∈ D that

(77)

Below is the first main theorem of this section. The result is not new. In particular the equivalence (a) ∙⇔ (b) 
follows by [25, Theorem 5.4]. Moreover Luery in her thesis [18] proved that (b) ⇔ (c) using the Aleksandrov- 
Clark measures. Our new short proof below uses pseudohyperbolic disks. We may assume below that



φ(0) = 0, and prove the result for the invariant subspace of H2 of functions vanishing at the origin, 
see for example Remark 3.1 in [25].

Theorem 5.1. Let φ be an analytic self-map of D. The following statements are equivalent.
(a) The Carleson measure Nφ(ζ)/1-∣ζ∣2 dA(ζ) satisfies the reverse Carleson condition.
(b) Cφ is closed range on H2.
(c) For all w ∈ D, ∣∣CφKw∣∣ ≍ ∣∣Kw∣∣.

Proof. By [25, Theorem 5.4] we have (a) ⇔ (b). The implication (b) ⇒ (c) is trivial. 
Lastly we need to show that (c) ⇒ (a). Assume that (c) holds. Then by (77)

or

By Proposition 4.1, for the Carleson measure Nφ(ζ)/1-∣ζ∣2 dA(ζ) with a = β = 1, we obtain

(78)

Therefore, if ε = (1/2) infw∈D γw > 0, there exists δ > 0 such that if r > 1 - δ, and w∈D,

By (12) and (13) we conclude that if w ∈ D then

(79)

This shows that Nφ(ζ)/1-∣ζ∣2 dA(ζ) satisfies the reverse Carleson condition and (a) is proved. □



It is a consequence of the Schwarz-Pick Lemma that, for all z ∈ D, 1 — z∣2 ≤ C (1 — ∣φ(z)∣2). Recalling 
the definitions of the Nevanlinna counting functions for .A2 and H2 given in (66) and (76), if ζ ∈ D then

Now the following is an immediate corollary of Theorems 4.4 and 5.1. It was first proved by Zorboska in 
[27, Corollary 4.2].

Corollary 5.1. If Cφ is closed range on A2 then it is closed range on H2.

By [27, Corollary 4.3] the converse of the above holds, if φ is univalent. We next provide a more general 
condition that guarantees this. Recall that ηφ(w) denotes the cardinality of φ-1(w) counting multiplicities.

Corollary 5.2. Suppose that ηφ(ζ) dA(ζ) is a Carleson measure. Then Cφ is closed range on H2 if and only 
if Cφ is closed range on A2.

Proof. First, assume that Cφ is closed range on H2. By Theorem 5.1, dA(ζ) satisfies the reverse
Carleson condition. Therefore we may choose 0 < r < 1 such that for each w ∈ D,

(80)

Given w ∈ D, recall (25) and let

By (80) and since by assumption ηφ(ζ) dA(ζ) is a Carleson measure, we obtain

(81)

and therefore, there exists ε > 0 such that for all w ∈ D, dw(r) ≥ ε. We conclude that Gε is hyperbolically 
dense and, by Theorem 4.4, Cφ is closed range on .A2. The other direction follows by Corollary 5.1. □

An analytic function f on D is said to belong to the Hardy space H1 if

Let φ be an analytic self-map of D. The pull-back measure of the Lebesgue measure m on the unit circle T 
under the map φ is defined on E, a Borei subset of T, by



By [22, page 50] (or [20]), mφ is a measure that is absolutely continuous with respect to Lebesgue measure m 
on T and its Radon-Nikodym derivative is bounded. Moreover if E is a Borei subset of T then

Proposition 5.1. Suppose φ is a non-constant analytic self-map of D such that T ⊆ φ(T). If φ'∈ H1, then 
Cφ is closed range on H2.

Proof. By hypothesis T ⊆ φ(T), hence if F is a measurable subset of T, then F = φ(E) where E = φ-1(F). 
Now if En is a sequence of measurable subsets of T such that m(En) ↦ 0 as n ↦ ∞ and since φ' ∈ H1,

Equivalently if mφ(φ(En)) ↦ 0 then m(φ(En)) ↦ 0. Therefore the Lebesque measure m is absolutely 
continuous with respect to mφ. By [9, Theorem 2] Cφ is closed range on H2. □

By [2, Theorem 2.5], the only univalent self-maps of D that induce a closed range composition operator Cφ 
on A2 and, by [27, Corollary 4.2], on H2 are the conformal automorphisms of D. Two examples of non-inner 
functions that give rise to closed range composition operators on H2 are given in [9, page 218]. Moreover all 
known examples of closed range composition operators on A2 involve inner functions. So it is natural to ask 
if there are any such examples with non-inner functions. Next we provide an example of a boundedly valent 
outer function φ such that Cφ is closed range on H2 and on A2. The main idea regarding its construction 
was developed in a conversation with J. Akeroyd. We are grateful to him for allowing us to include it here.

If an analytic function f maps D conformally onto a bounded domain G then by Caratheodory’s theorem 
(see [21, Theorem 2.6]) f has a continuous injective extension to D. Moreover by [21, Proposition 6.2, 
Theorem 6.8] if f(T) is a rectifiable curve then f' ∈ H1.

Let G denote the half annulus defined by

F the Riemann mapping of D onto G and φ = F3. Then φ is three-valent, φ(T) ⊆ T and by the discussion 
above it is easy to see that F' ∈ H1 and therefore φ' ∈ H1. Moreover since ∣φ(z)∣ >1/2 for all z ∈ D, φ is 
an outer function, see for example [10, Remark 3.2.5]. By Proposition 5.1 Cφ is closed range on H2 which, 
by Corollary 5.2 is equivalent to Cφ being closed range on A2.

6. On Dirichlet spaces

In this section we will assume that Cφ is a bounded operator on D. It is well known that this is equivalent 
to the measure ηφ(w) dA(w) being a Carleson measure on D, see for example [5,19,14]. Moreover if φ is an 
analytic self-map of D with φ(0) = 0, then Cφ is closed range on D if and only if Cφ is closed range on 
D0 = {f ∈ D : f(0) = 0}. If φ(0) ≠ 0, letting ψ = αφ(0) o φ, then Cφ is closed range on P if and only if 
Cψ is closed range on D0. Therefore in this section we shall assume that φ(0) = 0 and consider Cφ on D0. 
Moreover, for a non-constant symbol φ the composition operator Cφ is injective; therefore it is closed range 
if and only if it is bounded below.



Recall the notation introduced in Section 3, where for ε > 0 we let

(82)

and Gε = φ(Λe).
Define the Neυanlinna type counting function Nφ(ζ) for ζ ∈ D by

(83)

where it is understood that if ζ is not in then Nφ(ζ) = 0. By Schwarz’s Lemma if z, ζ ∈ D are such
that φ(z) = ζ then

and therefore

(84)

Since ηφ(ζ) dA(ζ) is a Carleson measure it is clear that the measure log 1\1-∣ζ∣2 Nφ(ζ) dA(ζ) is also a Carleson 
measure.

If g is a non-negative measurable function on D then by making a non-univalent change of variables 
similar to [23, page 398] we obtain

(85)

Proposition 6.1. The following three statements are equivalent:
(a) The measure log 1\1-∣ζ∣2 Nφ(ζ) dA(ζ)satisfies the reverse Carleson condition.
(b) There exists an ε > 0 such that the measure XG∈(ζ) log 1\1-∣ζ∣2 Nφ(ζ) dA(ζ) satisfies the reverse

Carleson condition.
(c) There exists an ε > 0 such that the measure XG∈ (ζ)ηφ(ζ)dA(ζ) satisfies the reverse Carleson condition.

Proof. First, we assume (a). We may then choose r ∈ (0,1) so that for each w∈D,

(86)

Moreover for each ε>0, w∈D, (84) and since ηφ(ζ) dA(ζ) is a Carleson measure,



therefore by (86) we may choose ε > 0 small enough such that

and (b) follows. By (84), it is immediate that (b) ⇒ (c).
Lastly assume that (c) holds, and let r ∈ (0,1) be such that for all w ∈ D,

Then, by (25) and (85), for each w ∈ D

and (a) follows. □

The following is an immediate corollary of Theorem 4.1.

Corollary 6.1. Each of the following three statements is equivalent to (a), (b), (c) of the proposition above.

(1)

(2) There exists ε > 0 such that

(3) There exists ε > 0 such that

Proposition 6.2. The following three statements are equivalent:
(A) For all f ∈P,



(B) There exists ε > 0 such that for all f ∈ D,

(C) There exists ε > 0 such that for all f ∈D,

Proof. First assume that (A) holds. If (B) is not valid then we can find a sequence fn ∈ D with fn(0) = 0 
and ∣∣fn∣∣D = 1 for all n, and

(87)

Note that by (82) and (85)

(88)

By (87) and (88) we conclude that

and thusly (A) is not valid. We have shown that (A) ⇒ (B). By (84), the implication (B) ⇒ (C) is clear. 
Finally, if (C) holds, then by (87) and (88) and for each f∈P,

and (A) follows. □

Proposition 3.2 is an essential ingredient of the following corollary.



Corollary 6.2. Assume that the measure log 1/1-∣ζ∣2 Nφ(ζ)dA(ζ) satisfies the reverse Carleson condition. Then 
the following hold.

(a) There exists an ε > 0 such that Gε is hyperbolically dense.
(b) There exists r ∈ (0,1) such that for all w ∈ D,

(c) For every w ∈ D, ∣∣CφKw∣∣D ≍ ∣∣Kw∣∣D.

Proof. For each w ∈ D and r ∈ (0,1) we define

By our assumption and since ηφ(ζ)dA(ζ) is a Carleson measure, there exists r ∈ (0,1) such that for all 
w ∈D,

(89)

and dw(r) ≥ C. This is equivalent to Gε being hyperbolically dense for some ε > 0 and (a) follows.
Next, by (a) we know that Gε is hyperbolically dense. Therefore there exists r ∈ (0,1) such that for all

w ∈ D there exists zw ∈ ∆w(r) ∩ Λε. By (69) and (82) we obtain

and (b) follows.
Lastly, (c) is an immediate consequence of (a) and Proposition 3.2. □

Let (a), (b), (c), (A), (B), (C) be the statements in Proposition 6.1 and in Proposition 6.2. Moreover recall 
the three statements in Corollary 6.1 which are equivalent to (a), (b) and (c). An immediate consequence 
of [16, Theorem 4.3] is that (A) ⇒ (a), (B) ⇒ (b) and (C) ⇒ (c).

Consider the following three statements:
(e) There exists an ε > 0 such that Gε is hyperbolically dense.
(E) For all w ∈ D, ∣∣CφKw∣∣D ≍ ∣∣Kw∣∣D.
(CR) The operator Cφ is closed range on D.



With the diagram below we summarize the results in this section.

Jovovic and MacCluer showed in [14] that if Cφ is closed range in D then ηφ(ζ) dA(ζ)satisfies the reverse 
Carleson condition. Moreover, Luecking showed in [17] that the converse is false. Therefore by Theorem 4.1 
the condition

is a necessary but not a sufficient condition for Cφ to be closed range on D.
It is clear that each of (A), (B), (C) imply (CR) and that (CR) implies (E). We conjecture the following.

Conjecture. Cφ is closed range in D if and only if there exists ε > 0 such that the measure XGe(ζ)ηφ(ζ) dA(ζ) 
satisfies the reverse Carleson condition, equivalently

that is (CR) ⇔ (c).
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