
Cleveland State University
EngagedScholarship@CSU
Electrical Engineering & Computer Science Faculty
Publications

Electrical Engineering & Computer Science
Department

11-15-2011

Towards Trustworthy Coordination for Web
Services Business Activities
Hua Chai
Cleveland State University

Hongle Zhang
Cleveland State University

Wenbing Zhao
Cleveland State University, w.zhao1@csuohio.edu

P. M. Melliar-Smith
University of California

L. E. Moser
University of CaliforniaFollow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub

Part of the Electrical and Computer Engineering Commons
How does access to this work benefit you? Let us know!
Publisher's Statement
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

This Article is brought to you for free and open access by the Electrical Engineering & Computer Science Department at EngagedScholarship@CSU. It
has been accepted for inclusion in Electrical Engineering & Computer Science Faculty Publications by an authorized administrator of
EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Repository Citation
Chai, Hua; Zhang, Hongle; Zhao, Wenbing; Melliar-Smith, P. M.; and Moser, L. E., "Towards Trustworthy Coordination for Web
Services Business Activities" (2011). Electrical Engineering & Computer Science Faculty Publications. 265.
https://engagedscholarship.csuohio.edu/enece_facpub/265

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EngagedScholarship @ Cleveland State University

https://core.ac.uk/display/301552792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F265&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F265&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F265&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F265&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F265&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F265&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F265&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/enece_facpub/265?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F265&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu


Toward Trustworthy Coordination of
Web Services Business Activities

Hua Chai, Honglei Zhang, Wenbing Zhao, Member, IEEE,

P. Michael Melliar-Smith, Member, IEEE, and Louise E. Moser, Member, IEEE

Abstract—We present a lightweight Byzantine fault tolerance (BFT) algorithm, which can be used to render the coordination of web

services business activities (WS-BA) more trustworthy. The lightweight design of the BFT algorithm is the result of a comprehensive

study of the threats to the WS-BA coordination services and a careful analysis of the state model of WS-BA. The lightweight BFT

algorithm uses source ordering, rather than total ordering, of incoming requests to achieve Byzantine fault tolerant, state-machine

replication of the WS-BA coordination services. We have implemented the lightweight BFT algorithm, and incorporated it into the open-

source Kandula framework, which implements the WS-BA specification with the WS-BA-I extension. Performance evaluation results

obtained from the prototype implementation confirm the efficiency and effectiveness of our lightweight BFT algorithm, compared to

traditional BFT techniques.

Index Terms—Business activity, Byzantine fault tolerance, distributed transaction, service-oriented computing, trustworthy computing,

web services

Ç

1 INTRODUCTION

SERVICE-ORIENTED computing and web services are trans-
forming the World Wide Web from a publishing

platform into a distributed computing platform, resulting
in more and more business activities being conducted
online. Such business activities, offered in the open
environment of the Internet, often involve financial,
healthcare and other web services that their users require
to be trustworthy.

The web services business activity (WS-BA) specification
[14], developed by OASIS, standardizes the activation,
registration, and coordinator services of web service busi-
ness activities. A business activity consists of an initiator, a
coordinator, and one or more participants, as shown in
Fig. 1. A business activity is started and terminated by the
initiator. The initiator propagates the business activity to the
participants using a coordination context in the requests.
The outcome of the business activity is determined by the
initiator according to the business logic.

In this paper, we use a travel reservation application,
shown in Fig. 2, as a running example, to illustrate the
problem we address and our proposed solution. The travel
reservation application is a composite web service with
which the clients interact directly. Behind the scenes, the
application consists of an initiator and two web services, an
airline reservation web service and a hotel reservation web

service. These two web services are typically provided by
third-party service providers, independent of the owner of
the travel reservation composite web service.

When a client invokes the composite web service, the
initiator creates a web service business activity, in which it
communicates with the airline reservation web service to
make an airline reservation and the hotel reservation web
service to reserve a hotel room. The coordinator component
ensures that the business activity is properly propagated to
the airline reservation and hotel reservation web services,
and is properly terminated according to a predefined
policy. The coordinator component provides the activation,
registration, and coordinator services. More details on the
travel reservation application are provided in Section 2.3.

As can be seen from the previous example, the
trustworthiness of the coordination service is crucial to
the business activities involved. It is very desirable to have
the coordinator replicated for Byzantine fault tolerance
(BFT). Unfortunately, the WS-BA specification does not
specify a standard way for an initiator of a business activity
to communicate with the coordinator of the business
activity. This design choice makes it easy for vendors to
integrate WS-BA coordination functionalities into their
business process engines (e.g., the travel reservation
application could integrate the initiator and the coordinator
into the same process), but makes it difficult to ensure
interoperability among the initiators and coordinators of
different vendors [12]. Such interoperability is needed
because of the benefits of separating the initiator and the
coordinator, in particular

. A small company might create a composite web
service (such as a travel reservation service) for its
customers. However, it might be difficult for them to
implement and host robust coordination services.
Even if some of them do offer coordination services,
other web services providers (such as those for the

. H. Chai, H. Zhang, and W. Zhao are with the Department of Electrical and
Computer Engineering, Cleveland State University, 2121 Euclid Ave.
SH332, Cleveland, OH 44115. E-mail: chai.hua2008@gmail.com,
honglei_zhang2000@hotmail.com, wenbing@ieee.org.

. P.M. Melliar-Smith and L.E. Moser are with the Department of Electrical
and Computer Engineering, University of California, Santa Barbara, Santa
Barbara, CA 93106. E-mail: {moser, pmms}@ece.ucsb.edu.



airline reservation and hotel reservation web ser-
vices) might not trust them.

. On the other hand, a large company, such as
Amazon or Google, might offer competing coordina-
tion services as part of their cloud services. To avoid
vendor lockin, customers of such coordination
services would naturally need a standard interface,
to ensure interoperability.

To address the interoperability issue, Erven et al. [12]
proposed an extension to the WS-BA specification, referred
to as the web services-business activity-initiator (WS-BA-I)
protocol. The WS-BA-I protocol separates the coordination
functionality and the business logic, and standardizes the
interactions between the initiator and the coordinator. With
the WS-BA-I extension to WS-BA, it becomes possible for a
third party to offer coordination services to enterprises that
want to conduct WS-BA with minimum modifications to
their workflow engines. However, for such coordination
services to be widely adopted, they must be trustworthy for
their users.

Several groups of researchers have investigated the issue
of trust in the Internet and the Web; useful summaries of
that research are provided in [16] and [17]. Our use of the
term trustworthiness in this paper is closest to that of
Grandison and Sloman [17], who define trust as “the firm
belief in the competence of an entity to act dependably,
securely, and reliably within a specified context.” In this
paper, we are particularly concerned with high availability
and high integrity of the WS-BA coordination services.

The web services community has developed a number of
specifications toward increasing the trustworthiness of web
services, namely,

. WS-ReliableMessaging [8] and WS-Reliability [18].
These two specifications focus on reliable message
exchange between two web services, despite tran-
sient transport-level and process failures, by defin-
ing application-level acknowledgments and
sequence numbers. These two specifications are
generally regarded as competing standards, but it
appears that WS-ReliableMessaging has more wide-
spread support.

. WS-Security [28]. This specification defines the basic
mechanisms for providing secure messaging be-
tween different web services.

. WS-Trust [29]. This specification defines primitives
and extensions for security token exchange so that
web services of different trust domains can create
and disseminate credentials.

The objective of our research is to push further toward
trustworthy web services in the scope of WS-BA coordina-
tion beyond what has been addressed by the above
specifications. It focuses on the high-availability and high-
integrity aspects of WS-BA coordination. To see why high
availability and high integrity of WS-BA coordination are
needed, consider the travel reservation example:

. If the coordination services are not highly available,
the airline reservation and hotel reservation web
services might not be able to register for the WS-BA.
Moreover, the coordination services might not be
able to complete and close the WS-BA (more details
are provided in Section 2).

. If the integrity of the coordination services are
compromised, the WS-BA might have inconsistent
outcomes (and other undesirable results) for the
airline reservation and hotel reservation web ser-
vices, as explained in more detail in Section 3.

The solution we present in this paper is complementary
to, rather than competing against, the above specifications.
In fact, our solution relies on the use of WS-Security for
secure messaging. Moreover, it is possible to integrate WS-
ReliableMessaging and WS-Trust into our prototype,
should that be desired.

To achieve high availability and high integrity, we
replicate the coordination services of the business activity.
Due to the untrusted operating environment of the

Fig. 2. A sequence diagram showing the steps of the travel reservation
application using the WS-BA standard with the WS-BA-I extension.

Fig. 1. WS-BA components.



Internet, it is necessary to employ a Byzantine fault model.
A Byzantine fault is an arbitrary fault that might be a
random fault caused by faulty hardware, or a malicious
fault caused by an intrusion into the system. BFT refers to
the ability of a system to tolerate Byzantine faults. BFT
based on replication requires 3f þ 1 replicas, where at most
f replicas are faulty [21]. BFT can be achieved by ensuring
that all server replicas reach agreement on the inputs
despite Byzantine faulty replicas and clients. Such agree-
ment is referred to as Byzantine agreement. Our solution is
based on BFT techniques.

In this paper, first we analyze the threats to the WS-BA
coordination services, and explore strategies to mitigate
such threats. Due to its high cost, we avoid the use of a
traditional BFT algorithm designed for general-purpose
stateful server replication. Instead, we present a lightweight
BFT algorithm that exploits the state model defined in the
WS-BA specification. Our lightweight BFT algorithm does
not guarantee that messages are delivered in total order at
nonfaulty replicas, as that is not needed in this case. Rather,
it ensures that messages are delivered in source order
(i.e., the order in which the sender sent them) at nonfaulty
replicas, despite the presence of Byzantine faulty replicas
and clients. We have implemented our lightweight BFT
algorithm and associated mechanisms, and have incorpo-
rated them into the open-source Kandula framework [2]
that implements the WS-BA standard with the WS-BA-I
extension. Our performance evaluation of the prototype
implementation confirms the efficiency and effectiveness of
the lightweight BFT algorithm and mechanisms, compared
to traditional BFT techniques.

2 WEB SERVICES BUSINESS ACTIVITIES

In this section, we briefly describe the WS-BA specification
and the WS-BA-I extension with a focus on normal
operation. We also present more details on the travel
reservation application that we introduced previously and
refer to throughout the paper.

2.1 WS-BA Specification

The WS-BA specification [14] describes how to coordinate
long running business activities where the atomic transac-
tion model is not appropriate. It defines a participant-side
service and a set of coordinator-side services. The
coordinator-side services include activation, registration,
and coordinator services, which run in the same address
space of the coordinator.

The initiator of a business activity requests the activation
service to generate a coordination context for the business
activity and to create a coordinator object for the business
activity. The coordinator object provides the registration and
coordinator services, within the scope of the business
activity. When the business activity is propagated to it, a
web service registers with the registration service by
providing an endpoint reference to its participant service.
The registration service replies with an endpoint reference to
the coordinator service. The coordinator service interacts
with the participants via the business-agreement-with-
coordinator-completion (BAwCC) or business-agreement-
with-participant-completion (BAwPC) protocol (discussed

below), and it interacts with the initiator via the WS-BA-I
protocol (discussed in Section 2.2). For convenience, we refer
to these services collectively as the coordinator.

WS-BA is built on top of the WS-coordination framework
[13]. It specifies two coordination types: atomic-outcome
and mixed-outcome. Moreover, it specifies two coordina-
tion protocols that operate between the coordinator and a
participant: BAwPC and BAwCC. Either coordination type
can be used with either coordination protocol.

If the atomic-outcome coordination type is used, all
participants must reach agreement on the outcome of the
business activity (i.e., close or compensate). If the mixed-
outcome coordination type is used, some participants are
directed to close while others are directed to compensate.

A participant registers one of the two coordination
protocols (BAwPC or BAwCC) with the coordinator of
the business activity. We briefly describe the two
coordination protocols below. For detailed state transition
diagrams of the coordination protocols, please see the
WS-BA specification [14].

For the BAwPC protocol, when a participant has finished
its work for a business activity, the participant informs the
coordinator by sending a completed message. The coordi-
nator replies with either a close message or a compensate
message, depending on the circumstances. If the business
activity has completed successfully, the participant receives
a close message. Otherwise, the participant receives a
compensate message, and it must undo the completed
work and restore the data it recorded at the outset of the
business activity.

A participant might encounter a problem or fail during
the processing of the business activity. If an error occurred
when the participant was trying to complete its normal
activity, it generates a fail message and sends that
message to the coordinator, possibly on recovery from a
transient fault. Similarly, if an error occurred when the
participant was trying to cancel or compensate an activity,
it generates a cancelcomplete message and sends that
message to the coordinator.

For the BAwCC protocol, the completion notification
comes from the coordinator. The coordinator sends a
complete message to the participants, informing them that
they will not receive any new requests within the current
business activity and that they should complete their
processing. If a participant has successfully finished its
work, it replies by sending a completed message. Other
interactions between the coordinator and the participants
are similar to those of the BAwPC protocol.

2.2 WS-BA-I Extension

The WS-BA-I protocol [12] is an extension of the WS-BA
specification. WS-BA-I describes how the initiator should
interact with the coordinator, which is lacking in the WS-BA
specification. The WS-BA-I protocol is analogous to the
completion protocol defined in the web services atomic
transaction specification [22]. To facilitate the WS-BA-I
protocol, the coordinator exposes a number of additional
operations for the initiator, including one to query the state
of the business activity and one to create invitation tickets.
(An invitation ticket is used by the initiator to propagate the
business activity to a remote web service. The remote web



service then registers with the coordinator using the
invitation ticket.) In addition, they include operations that
enable the initiator to pass instructions to the coordinator to
complete (for the BAwCC protocol), close, cancel, or
compensate the business activity.

The WS-BA-I protocol uses the pull model on the initiator
side, so that the initiator can operate behind a firewall or a
NAT box. To obtain the latest state of a business activity, the
initiator periodically polls the coordinator.

2.3 Travel Reservation Example

Fig. 2 shows the normal execution steps of the travel
reservation application using the WS-BA specification and
the WS-BA-I extension, adapted from [2]. In this example,
we use the atomic-outcome coordination type and the
BAwCC protocol. The travel reservation application in-
cludes the airline reservation and hotel reservation web
services. The airline reservation web service comprises an
airline service and a participant service, and the hotel
reservation service comprises a hotel service and a
participant service.

The initiator creates a business activity coordination
context using the activation service (1 and 2), and then
registers with the registration service (3 and 4). Next, the
initiator searches the airline reservation web service for an
offer, from which it receives a reply (5 and 6), and then it
searches the hotel reservation web service for an offer, from
which it receives a reply (7 and 8). Next, it invokes the
coordinator service to create tickets for the participants (9
and 10). Using the invitation tickets, it books an airline
reservation (11 and 14), and a hotel room (15 and 18). On
receiving a reservation request from the initiator, the airline
reservation web service registers with the registration
service (12 and 13); similarly, the hotel reservation web
service registers with the registration service (16 and 17).

The initiator sends a CompleteParticipants message to the
coordinator service (19). The coordinator sends an acknowl-
edgment to the initiator (20) as soon as it has sent a complete
message to the participant services of the airline reservation
and hotel reservation web services (21 and 22) without
waiting to receive their completed messages (23 and 24). As
such, to know the participants’ state, the initiator must query
the coordinator service (25 and 26). When all of the
participants are in the correct state, the initiator sends a
CloseParticipants message (27) to the coordinator service.
Similar to the handling of the CompleteParticipants request,
the coordinator sends an acknowledgment (28) immediately
after it has transmitted a close message to the participant
services of the airline reservation and hotel reservation web
services (29 and 30), without waiting to receive their
completed messages (31 and 32).

3 THREAT ANALYSIS

In this section, we analyze threats that can compromise the
integrity of the coordination services of WS-BA. We do not
consider general threats, such as distributed denial of
service attacks, that target any online service. Moreover,
we do not consider entities that refuse to participate in the
protocols, hoping to reduce the availability of the
coordination services.

3.1 Threats from a Faulty Coordinator

First, we consider threats from a faulty coordinator to the
activation service, the registration service and the coordi-
nator service.

Threats to the activation service. At the start of a business
activity, the initiator requests the activation service to
generate a coordination context for the business activity.
The activation service also creates a coordinator object to
handle the business activity. The coordination context is
included in all requests sent in the scope of the business
activity. The coordination context contains two main
components: a coordination identifier and an endpoint
reference for the registration service. The coordination
identifier, which must be unique to the business activity,
is used to associate the participants in the same business
activity. The endpoint reference for the registration service
is used by a web service to register its participant service.

A faulty coordinator could:

1. reuse an old coordination identifier, which could
potentially lead to a replay attack, i.e., an adversary
could register as a participant for a business activity
to which it does not belong, and subsequently replay
other messages in the scope of the business activity;

2. use a coordination identifier that can be easily
predicted; or

3. use a coordination identifier that belongs to a
different business activity (which is equivalent to
reusing the coordinator object created for another
business activity).

Case 1 can be easily mitigated by transport-level security
mechanisms such as the use of a nonce or timestamp,
without resorting to replication. Case 2 could open the
door for an adversary to register with the business activity
without being invited. Doing so does not pose a real threat
to the business activity, because the outcome of the
business activity is determined by the initiator. The
initiator can spot and subsequently exclude the unsolicited
adversary from the business activity. Case 3 could lead to
serious consequences if it is not mitigated, because two
unrelated business activities would appear to be the same
business activity, which might confuse the initiator and the
participants. The lightweight BFT algorithm described in
Section 4.3 mitigates such threats. Note that it is quite
common for multiple participants to register for the same
business activity (e.g., the airline reservation and hotel
reservation web services register themselves as participants
for the same business activity) and, hence, the registration
service cannot detect the reuse of the coordination
identifier without additional mechanisms.

Threats to the registration service. A web service registers
with the registration service by providing an endpoint
reference to its participant service, as soon as the business
activity is propagated to it. The registration request must
contain a valid coordination identifier, with a matchcode
(introduced in WS-BA-I) to authenticate the participant. The
reply to the registration request contains an endpoint
reference to the coordinator service.

A faulty coordinator could:

1. accept a registration request with an illegitimate
credential. For example, a faulty coordinator could



collude with a nonreputable hotel reservation
company and take over the business from a
reputable hotel reservation company with which
the travel reservation company has contracted;

2. accept a correct registration request but assign the
participant to a faulty coordinator. For example, a
faulty coordinator could ensure that the airline
reservation or hotel reservation web service remains
under its control (or another faulty coordinator’s
control) regarding the termination of the business
activity; or

3. return an invalid endpoint reference. For example, a
faulty coordinator could return an invalid endpoint
reference to the airline reservation or hotel reserva-
tion web service to deny its participation in the
business activity.

These threats cannot be easily mitigated using transport-
level security mechanisms. BFT replication and, in parti-
cular, the lightweight BFT algorithm described in Section 4.3
is the most appropriate form of control.

Threats to the coordinator service. The coordinator service
interacts with the participants via the BAwCC or BAwPC
protocol, and it interacts with the initiator via the WS-BA-I
protocol. On the coordinator side, the BAwCC protocol
notifies the participants about the completion of a business
activity, acknowledges the reports sent by them, and
informs them of the final decisions regarding the tasks that
they completed. The coordinator also receives notifications
from the participants.

A faulty coordinator could:

1. send a notification, such as a complete, close, or
compensate message, to a participant, without the
authorization of the initiator;

2. ignore reports from the participants, in particular,
the fail and CannotComplete messages; or

3. make arbitrary state transitions without receiving
reports from the participants.

Case 1 can be addressed by requiring all notifications
(including the original signed authorization for the action
from the initiator) to carry a security certificate [33]. Case 2
or 3 would lead to a state at the coordinator that is
inconsistent with that of the participants, which might
ultimately affect the initiator’s decision on the outcome of
the business activity. The lightweight BFT algorithm,
described in Section 4.3, can effectively handle such threats.

The BAwPC protocol is similar to the BAwCC protocol,
except that the coordinator is no longer responsible for
notifying the participants of the completion of the business
activity. Instead, the coordinator collects completed mes-
sages from the participants. Consequently, the threats that a
faulty coordinator poses to the coordinator service in the
BAwPC protocol are similar to those in the BAwCC
protocol, and can be handled in a similar manner.

In the WS-BA-I protocol, the coordinator creates an
invitation ticket on request from the initiator. The invitation
ticket is an extended coordination context, containing an
additional identifier (called the matchcode) used to invite
the participant to join the business activity. The coordinator
also takes requests from the initiator to obtain the latest

status of each participant, and to complete (if the BAwCC
protocol is used), close, or compensate the business activity.

A faulty coordinator could:

1. return an invalid invitation ticket to the initiator,
such as an old invitation ticket, an invitation ticket
that belongs to another participant, or an invitation
ticket that is easy-to-predict;

2. present an incorrect state to the initiator, which
might confuse the initiator; or

3. alter the instructions issued by the initiator to
complete, close, or compensate the business activity.

The possible replay attack caused by Case 1 can be
mitigated by transport-level security mechanisms, as men-
tioned previously. For the other threats in Cases 1-3, the
lightweight BFT algorithm, described in Section 4.3, is an
effective control.

3.2 Threats from a Faulty Participant

Now, we consider threats from a faulty participant to the
coordinator and the initiator.

Threats to the coordinator. A faulty participant could:

1. lie about its execution status and send reports, that
are inconsistent with its internal state, to the
coordinator; or

2. send conflicting reports to different coordinator
replicas.

Case 1 can be prevented by replicating each participant
using BFT replication techniques and by collecting match-
ing requests from f þ 1 distinct replicas before accepting
them (assuming at most f replicas are faulty). However,
imposing such a strong requirement on the participants is
not practical. Therefore, this type of threat is best addressed
by using digital signatures on the messages exchanged
between the participants and the coordinator, and by
logging messages to/from the participants at the coordi-
nator. Case 2 can be addressed by the lightweight BFT
algorithm described in Section 4.3.

Threats to the initiator. A faulty participant could attack
the initiator in a similar way to the attacks on the
coordinator, as described above.

Again, these types of threats are best addressed by using
digital signatures on messages exchanged between the
participants and the initiator, and by the initiator’s logging
messages to/from the participants. The initiator might also
give preference to participants that offer a higher quality of
service to minimize such threats.

3.3 Threats from a Faulty Initiator

Because a business activity is initiated, and its progress and
outcome are controlled, by the initiator, the integrity of a
business activity that originates at a Byzantine faulty
initiator cannot be guaranteed. As in the case of a faulty
participant, we can address these threats by replicating the
initiator and employing BFT techniques. However, based on
similar concerns as above, we do not wish to impose such a
strong requirement on the initiator. Instead, a more
practical approach is for the participants and the coordi-
nator to employ non-repudiation and logging techniques to
hold a faulty initiator accountable.



With a replicated coordinator, a new threat might
occur, i.e., a faulty initiator might send conflicting requests
to different coordinator replicas. Such a threat can be
readily addressed by the lightweight BFT algorithm
described in Section 4.3.

4 BFT COORDINATION SERVICES

In this section, we present the lightweight BFT algorithm
and associated mechanisms for achieving trustworthy
coordination of WS-BA. An important objective is to enable
an independent third party to launch trustworthy coordina-
tion services for WS-BA that span multiple enterprises. The
practicality of the BFT solution is essential for real-world
use, which means that it must be lightweight with moderate
runtime overhead and good scalability.

Traditional BFT state-machine replication mechanisms [5]
can be used to mitigate the threats to the WS-BA coordina-
tion services. However, it is not wise to use them naively.
Such mechanisms are designed to protect general-purpose
stateful servers from Byzantine faults. They impose a total
order on incoming requests and, thus, are very heavyweight
and incur significant runtime overhead, due to the multiple
rounds of message exchange that are required.

In our lightweight BFT algorithm, we exploit knowledge
of the state model of the WS-BA coordination services,
described below, and use a solution that is customized to
this specific application. In short, the lightweight BFT
algorithm requires only source ordering, instead of total
ordering, of incoming requests, which eliminates inter-
replica message exchange and hence significantly reduces
the communication steps and processing overhead, com-
pared with traditional BFT algorithms.

4.1 State Model Analysis

In WS-BA, requests within different business activities are
handled independently, i.e., their relative ordering does
not affect the state transitions. This independence is
obvious for the registration and coordinator requests,
because they are handled by different coordinator objects.
Even though all activation requests are handled by the
same process, their relative ordering does not affect how
the coordinator objects are created. However, the genera-
tion of coordination identifiers can be a concern for replica
consistency. We handle this particular replica nondeter-
minism issue without resorting to inter-replica coordina-
tion (as described in Section 4.4), which obviates the need
to run an expensive Byzantine agreement algorithm among
the coordinator replicas.

Next, we consider requests within the same business
activity. The activation and registration requests are
causally related, i.e., the activation request must precede
the registration request. This relative ordering of requests is
programmed directly into the BFT framework without
resorting to inter-replica coordination. It is straightforward
to ensure source ordering of requests from a participant in
the BAwCC or BAwPC protocol (e.g., by using a sequence
number). Likewise, it is straightforward to ensure source
ordering of requests from the initiator.

The change of one part of the coordinator state
associated with one participant has no direct effect on

another part of the coordinator state associated with a
different participant, as shown in Fig. 3. The coordinator
object uses each part to keep track of the state for each
participant according to the BAwCC or BAwPC protocol.
Requests sent by different participants to the same
coordinator object modify only their respective parts of
the state. (Duplicate requests from the same participant do
not change the coordinator state, although they might
trigger the resending of messages.) Therefore, it is
unnecessary to order requests from different participants.

The only remaining issue is whether or not to order the
requests from the initiator relative to those from the
participants within the same business activity. The answer
is no. The requests from the initiator can be categorized into
three types, according to the WS-BA-I specification, as
discussed below.

The first type of request creates invitation tickets for the
participants, one at a time. This type of request can be
interleaved with the requests from the participants within
the business activity, because they are handled by
different objects.

The second type of request queries the state of the
business activity, which is read-only. Even though these
requests do not change the coordinator state, different
replicas might report different states to the initiator if the
query requests are not ordered with respect to the
participants’ requests. This difference in the states is not a
concern because the initiator can repeatedly query the
coordinator replicas until their states converge, as guaran-
teed by the lightweight BFT algorithm (see the proof of
Theorem 3 in Section 4.5).

The third type of request directs the coordinator to
terminate (close, cancel, or compensate) the business
activity. If these requests are not ordered with respect to
the messages from the participants, when such a request
arrives, some replicas might have evolved into different
states since the initiator last queried them. This difference
in states is not a concern because, according to the WS-BA-I
protocol, the state of the coordinator object might be
inconsistent with that of the initiator even without replica-
tion. Consider the following scenario. The initiator sends a
cancel message to the coordinator for a participant when
the last seen state for that participant is completing.
However, when the cancel message is delivered, the
completed message from the participant might have
arrived, in which case the coordinator should send a
compensate message to the participant instead of a cancel

Fig. 3. The state model for WS-BA with the WS-BA-I extension. The
participants’ states in the coordinator object are completely separate.



message. This mechanism is already built into the standard
WS-BA coordination framework.

Thus, there is no need to ensure total ordering of the
messages involved in a business activity at the coordi-
nator replicas.

4.2 Assumptions and Requirements

We assume that the WS-BA operate in the asynchronous
distributed environment of the Internet. We assume that
network communication is reliable. In particular, if a
nonfaulty participant/initiator sends a message to a
nonfaulty coordinator replica, the replica will eventually
receive the message. The same is true for messages
exchanged between nonfaulty coordinator replicas. This
reliable communication assumption is easily satisfied by
using TCP communication and the mechanisms defined in
the WS-ReliableMessaging specification [8].

We assume that there are 3f þ 1 coordinator replicas, of
which at most f are faulty. Each coordinator replica is
assigned a unique identifier k, where k ranges from 0 to 3f .
All of the coordinator replicas play an equal role; in
particular, no coordinator replica acts as the primary
because total ordering is not needed (i.e., the sequence
numbers are assigned by the client, rather than by a
primary coordinator replica). The initiator and the partici-
pants are not replicated (our BFT algorithm can be trivially
modified if these entities are in fact replicated). As pointed
out earlier, only a subset of faulty behaviors of the initiator
and the participants are tolerated by replicating the
coordinator. Other types of faults are handled by using
non-repudiation and logging techniques.

The high degree of redundancy (four coordinator
replicas to tolerate one faulty coordinator replica) required
to achieve BFT [21] might be a concern for practitioners.
However, with the widespread adoption of virtualization
technology, the need for extra physical hardware is
minimized because the four coordinator replicas can be
deployed on different physical nodes (for fault isolation),
which are running other services concurrently.

All WS-BA messages, i.e., the messages exchanged
between the coordinator and the initiator and between the
coordinator and the participants, carry monotonically
increasing sequence numbers. The sequence number is
unique only within the respective connection between the
coordinator and its client (i.e., the initiator or a participant),
but each connection is uniquely identified. For each
connection, the first request is assigned sequence number
0 and, for each subsequent request, the sequence number is
incremented. The reply, if any, carries a sequence number
that matches that of the corresponding request. The same
holds true for requests sent from the coordinator to the
participants in the BAwCC or BAwPC protocol. Note that
all messages defined in the BAwCC or BAwPC protocol are
one-way messages.

All messages between the coordinator and the partici-
pants are timestamped (to prevent replay attacks) and are
digitally signed (to ensure accountability and to prevent
spoofing). The initiator, each coordinator replica and each
participant has a public/private key pair. The public key
is known to all of them, whereas the private key is kept
secret by its owner. We assume that the adversaries have

limited computing power and, thus, are unable to break
the digital signatures.

Our lightweight BFT algorithm for trustworthy coordi-
nation of WS-BA, described below, satisfies the following
three properties:

P1. If a Byzantine faulty sender sends conflicting
requests (different requests with the same sequence
number) to different nonfaulty coordinator replicas,
at most one of those requests is delivered at all
nonfaulty coordinator replicas.

P2. If a request is delivered at a nonfaulty coordinator
replica, it is eventually delivered at all nonfaulty
coordinator replicas in the sender’s source order.

P3. The states of the nonfaulty coordinator replicas will
eventually converge, and the initiator will eventually
receive a response to a query regarding the state of
the business activity, that is consistent with the
converged state of the coordinator replicas.

The proofs of correctness, demonstrating that the light-
weight BFT algorithm satisfies these properties, are given
in Section 4.5.

4.3 The Lightweight BFT Algorithm

Based on the previous state model analysis, we have
developed the lightweight BFT algorithm described below.
The normal operation of the algorithm is shown in Fig. 4
for f ¼ 1.

A client (i.e., the initiator or a participant) sends a request
to all coordinator replicas. The request has the form
<REQUEST; s; o; c>�c , where s is the sequence number of
the request message, o is the operation to be invoked
(including the coordination context, if needed), c is the
client identifier, and �c is the digital signature of the request
message signed by the client c.

On receiving a request, a coordinator replica validates
the signature, and checks the validity of the requested
operation and whether the sequence number in the request
matches its next expected sequence number. If the request
passes this validation test, a coordinator replica multicasts a
commit message to all of the other coordinator replicas. The
commit message has the form <COMMIT; s; d; k>�k , where
s is the sequence number of the request message, d is
the digest of the request message, k is the replica identifier,
and �k is the signature of the commit message signed by the
replica k.

If a coordinator replica receives a request and matching
commit messages corresponding to that request from 2f
other coordinator replicas, it delivers the request and makes

Fig. 4. Normal operation of the lightweight BFT algorithm for f ¼ 1.



the state transition. The reply, if any, has the form
<REPLY; s; r; k>�k , where s is the sequence number of
the reply message, r is the response, k is the replica
identifier, and �k is the signature of the reply message
signed by the replica k.

If a coordinator replica receives a commit message before
it receives the referenced request, it requests a retransmis-
sion of the request from the coordinator replica that sent the
commit message. If a coordinator replica receives a
retransmission request from another coordinator replica, it
retransmits the request.

If a coordinator replica receives a request and matching
commit messages from f þ 1 distinct coordinator replicas,
but the digest in a commit message does not correspond
to the request, it requests a retransmission of the request
from the f þ 1 distinct coordinator replicas, logs the event
that the digest in the commit message does not correspond
to the original request, and abandons the original request.

If the client (i.e., the initiator or a participant) that issued
a request expects a reply from the coordinator replicas, it
collects matching replies from f þ 1 distinct coordinator
replicas before it delivers the reply. The same mechanism is
used for the participants to handle (nested) requests sent by
the coordinator replicas. Because at most f coordinator
replicas are faulty and all of the replies match, at least one
of the replies is sent by a nonfaulty coordinator replica.

Note that some operations might trigger the sending of
nested requests to the participants (e.g., the complete/close
message from the initiator to a participant will cause a
nonfaulty coordinator replica to send the same command to
that participant). Such nested requests are sent directly to
the participants. A nonfaulty participant accepts a nested
request when it has collected matching requests from f þ 1
distinct coordinator replicas. However, the nested reply
must be treated as a new request, i.e., an additional
communication step is needed before the nested reply is
delivered at the coordinator replica because the nested
reply might trigger a state change.

4.4 Additional Mechanisms

In a typical implementation of the WS-BA standard, the
coordination identifier is generated by the activation
service (e.g., by using a UUID). When the activation
service is replicated, generating the coordination identifier
in this way causes replica nondeterminism. Even though
such nondeterminism could be controlled by using the
mechanism described in [32], it is unnecessary in light of
the threat analysis given in Section 3. A more efficient
method to handle this nondeterminism is to piggyback the
UUID onto the activation request sent by the initiator. One
implication of this strategy is that the coordinator replicas
must now keep a record of the UUIDs used and verify the
uniqueness of a newly proposed UUID against that record.

Another mechanism used by our lightweight BFT
solution is the security certificate mentioned in Section 3.
A security certificate is piggybacked onto each message sent
by the coordinator to a participant in the BAwCC or
BAwPC protocol. The security certificate consists of the
original signed authorization for the action from the
initiator, which includes not only the specific command
but also the coordination identifier and timestamp to
prevent a replay attack. On receiving such a command, a

participant verifies that the command is consistent with that
in the security certificate. If a participant detects a
mismatch, it ignores the command.

4.5 Proofs of Correctness

Now we provide (informal) proofs of correctness for the
lightweight BFT algorithm in terms of the three properties
given in Section 4.2. The proofs are based on source ordering
of requests, and address the threats identified in Section 3.

Theorem 1. If a Byzantine faulty sender sends conflicting
requests (different requests with the same sequence number) to
different nonfaulty coordinator replicas, at most one of those
requests is delivered at all nonfaulty coordinator replicas.

Proof. The proof is by contradiction. Assume that a request
messageM is delivered at a nonfaulty coordinator replica
R and that a different request message M 0 with the same
sequence number from the same sender is delivered at
another nonfaulty coordinator replica R0. It must be the
case that a set S containing 2f þ 1 coordinator replicas
have accepted M and sent a commit message for M and
that a set S0 containing 2f þ 1 coordinator replicas have
accepted M 0 and sent a commit message for M 0. Because
there are 3f þ 1 coordinator replicas, S and S0 must
intersect in f þ 1 or more coordinator replicas. Because at
most f coordinator replicas are faulty, at least one
coordinator replica in the intersection must be nonfaulty.
This is a contradiction, because our BFT algorithm does
not allow a nonfaulty coordinator replica to accept two
different requests with the same sequence number from
the same sender. tu

Theorem 2. If a request is delivered at a nonfaulty coordinator
replica, it is eventually delivered at all nonfaulty coordinator
replicas in the sender’s source order.

Proof. First, we assume that the sender of the request is not
Byzantine faulty. By the assumption of reliable commu-
nication in Section 4.2, the sender establishes a connec-
tion with each nonfaulty coordinator replica and reliably
sends the request in source order to that nonfaulty
coordinator replica. Consequently, nonfaulty coordinator
replicas receive the request, exchange commit messages,
and deliver the request. tu

If the sender is Byzantine faulty, it might 1) send the
same request to only some of the nonfaulty coordinator
replicas, or 2) send conflicting requests (different requests
with the same sequence number) to different nonfaulty
coordinator replicas.

In Case 1, by the hypothesis of the theorem, a request
is delivered at a nonfaulty coordinator replica R. That
replica R must have received commit messages for the
request from 2f other coordinator replicas, of which at
most f are nonfaulty. If a nonfaulty coordinator replica R0

did not receive the request, it will eventually receive the
commit messages from f þ 1 other nonfaulty coordinator
replicas (including replica R), which will prompt it to
request a retransmission of the request. By the reliable
communication assumption, eventually R0 will receive the
request from one of those nonfaulty coordinator replicas.
Consequently, all nonfaulty coordinator replicas will



eventually receive the request, exchange commit mes-
sages, and deliver the request.

In Case 2, by the hypothesis of the theorem, a request is
delivered at a nonfaulty coordinator replica R. That replica
R must have received commit messages for the same request
from 2f other coordinator replicas, of which at most f are
nonfaulty. If a nonfaulty coordinator replica R0 receives a
request that conflicts with matching commit messages that
it received from f þ 1 coordinator replicas, it requests
retransmission of the request. At least one of those
coordinator replicas must be nonfaulty and will retransmit
the request. By the reliable communication assumption,
eventually R0 will receive the request from one of those
nonfaulty coordinator replicas. Consequently, all nonfaulty
coordinator replicas will eventually receive the request,
exchange commit messages, and deliver the request.

Theorem 3. The states of the nonfaulty coordinator replicas will
eventually converge, and the initiator will eventually receive a
response to a query regarding the state of the business
activity, that is consistent with the converged state of the
coordinator replicas.

Proof. By Theorem 2, if a request is delivered at a nonfaulty
coordinator replica, it is eventually delivered at all
nonfaulty coordinator replicas. Therefore, all nonfaulty
coordinator replicas will eventually deliver the same set
of requests, at which point the states of the nonfaulty
coordinator replicas will converge. tu

Our BFT algorithm requires the initiator to collect
matching responses for a query from f þ 1 distinct
coordinator replicas before accepting the response. At least
one of those matching responses is sent by a nonfaulty
coordinator replica. Consequently, the initiator will even-
tually receive a response to a query regarding the state of
the business activity, that is consistent with the converged
state of the coordinator replicas.

5 IMPLEMENTATION AND PERFORMANCE

We have implemented the lightweight BFT algorithm and
associated mechanisms, and incorporated them into the
Kandula framework [2], which is a Java-based, open-source
implementation of the WS-BA specification with the WS-
BA-I extension. Besides Kandula, the extended framework
is based on several other Apache web services technologies,
including Apache Axis [1] and WSS4J [3], which is an
implementation of the WS-Security standard [28]. Most of
the mechanisms are implemented using Axis handlers that
are plugged into the framework without affecting other
components. Some of the Kandula code is modified to
enable control of its internal state and BFT delivery of
requests at the initiator, the coordinator, and the partici-
pants. All messages have timestamped digital signatures.

To demonstrate the benefits of our lightweight BFT
algorithm over traditional BFT algorithms, we implemented
an adapted version of the practical Byzantine fault tolerance
(PBFT) algorithm [5] for comparison. In this implementa-
tion, we chose to use digital signatures for all messages
exchanged (instead of the message authentication code). We
launched one instance of the PBFT algorithm for each

coordinator, i.e., we allow concurrent total ordering of

messages belonging to different business activities for fair

comparison with our lightweight BFT algorithm. Otherwise,

the throughput for concurrent business activities would be

very low for PBFT, because it would not enjoy concurrent

processing as our lightweight BFT algorithm does.
We have evaluated the performance of our lightweight

BFT algorithm both in a local-area network (LAN) testbed

and in a wide-area network (WAN) testbed (i.e., Planet-

Lab). The LAN testbed consists of 14-HP BL460c blade

servers connected by a Cisco 3020 Gigabit switch. Each

blade server is equipped with two Xeon E5405 (2 GHz)

processors and 5-GB RAM, and runs the 64-bit Ubuntu

Linux operating system. The hardware specifications of the

PlanetLab nodes vary significantly. The nodes we chose to

use are generally equipped with Intel Core 2 Duo CPUs

(2 to 2.6 GHz). Note that the nodes in PlanetLab are shared

among many users, and we have no control over the actual

load on the CPUs and the available physical memory.
The test application is the travel reservation application

described in Sections 1 and 2.3, and shown in Fig. 2, with

a slight modification on how the coordinator handles

CompleteParticipants and CloseParticipants requests from

the initiator. Instead of sending a response for each request

as soon as the nested request has been sent to all of the

participants, a coordinator replica waits until it has

collected the responses from all of the participants. That

is, in Fig. 2, message 20 is sent after the coordinator has

received message 24, and message 28 is sent after the

coordinator has received message 32. This modification

(that the initiator does not need to query the coordinator

repeatedly to see whether all of the participants have

responded) is purely for the sake of benchmarking, so that

the benchmarking results are more consistent across

different runs. The coordinator is replicated on 3f þ 1 ¼ 4

processors to tolerate f ¼ 1 Byzantine faulty replica. The

initiator and the participants each run on a distinct

processor. The initiator launches and terminates business

activities repeatedly within a loop without any think time.
The end-to-end latency of each business activity is

measured at the initiator. The throughput of the coordina-

tion framework is measured at one of the coordinator

replicas. In each run, we obtained 1,000 samples and

calculated the median latency and the median throughput.

We chose to use the median instead of the mean, because

the results obtained in PlanetLab vary significantly across

different runs.

5.1 Performance Evaluation in a LAN

The end-to-end latency results in a LAN are shown in Fig. 5.

These results are obtained for four different configurations:

1. The test application is used as is without any
modification (labeled “Unmodified Application” in
the figure).

2. The test application is modified such that all
messages exchanged within each business activity
are protected by digital signatures (labeled “With
Digital Signatures” in the figure).



3. The test application is protected by our lightweight
BFT algorithm with replication of the coordinator
(labeled “With Lightweight BFT” in the figure).

4. The test application is protected by the traditional
BFT algorithm with replication of the coordinator
(labeled “With Traditional BFT” in the figure).

In all four configurations, the end-to-end latency is
measured in the presence of a single business activity
(i.e., neither the coordinator nor the various web services
are shared with other business activities).

As shown in Fig. 5, the end-to-end latency of our
lightweight BFT algorithm is significantly larger than that of
the unmodified application. However, this increase is due
mainly to the use of digital signatures, as revealed by the
high end-to-end latency when only digital signatures are
used. In our LAN testbed, the cost of digitally signing a
message is about 5 ms, and the cost of verifying a digital
signature is about 2 ms. In our test application, a single
business activity with only one participant involves
22 digital signatures and 22 validation operations during
the critical path (eight extra digital signatures and eight
extra validation operations are needed for each additional
participant). The large number of such operations inevitably
increases the end-to-end latency. Nevertheless, it is our
conviction that the use of digital signatures is justified
(indeed essential) in practice because of the need for non-
repudiation in any serious business activity. Thus, we use
this configuration as the baseline for comparison.

The overhead of our lightweight BFT algorithm is due
primarily to two factors for each committed message: 1) one
extra communication step, and 2) one extra digital signature
(for the multicast message) and two validation operations
(for the received message). For a business activity with a
single participant, nine messages must be committed (three
extra messages for each additional participant). These
two factors result in a nonnegligible overhead, with about
40-50 percent larger end-to-end latency compared with that
of the digital-signatures-only configuration.

As expected, the end-to-end latency with the traditional
BFT algorithm is much larger, as shown in Fig. 5. Compared
to our lightweight BFT algorithm, the traditional BFT
algorithm incurs the following additional overhead for each
message delivered at the coordinator during normal
operation: 1) two communication steps, 2) two digital
signatures, and 3) five validation operations. Therefore, the
end-to-end latency with the traditional BFT algorithm is
about 130-170 percent higher than that of the baseline
configuration (more than three times the overhead com-
pared to our lightweight BFT algorithm). Note that this
experiment did not consider the cases when some replicas
fail. In the traditional BFT algorithm, when the primary
replica fails, one or more view changes will be needed,
which could result in even larger and more unpredictable
latency. Because our lightweight BFT algorithm does not
depend on any one replica serving as the primary, the
negative impact on the performance is negligible when a
replica fails, similar to the impact when a backup replica
fails in the traditional BFT algorithm.

The throughput results (in terms of number of business
activities per minute) are shown in Figs. 6a, 6b, and 6c for
business activities with 2, 5, and 9 participants in a LAN.
The throughput experiments are carried out with the same
set of configurations as those used in the end-to-end latency
study, i.e., the unmodified application, the application with
digital signatures, the application protected by our light-
weight BFT algorithm, and the application protected by a
traditional BFT algorithm. The load on the coordinator and
the set of participants is driven by one or more initiators,
launching business activities consecutively. As such, the
throughput measurements are performed for various
numbers of concurrent business activities.

As can be seen in Figs. 6a, 6b, and 6c, compared to the
baseline configuration, the throughput reduction with our
lightweight BFT algorithm is only about 30 percent. This

Fig. 5. End-to-end latency in a LAN for business activities with different
numbers of participants under normal operation.

Fig. 6. Throughput of the coordination services in a LAN with different numbers of concurrent business activities.



reduction is expected because of the increased processing
time at the coordinator (for message signatures and
validation). Again, not surprisingly, the throughput re-
duction with the traditional BFT algorithm is about
50 percent, much more significant than that for the
lightweight BFT algorithm.

5.2 Performance Evaluation in a WAN

The end-to-end latency results in a WAN are summarized
in Fig. 7. As can been seen in the figure, the relative
overhead, over the baseline configuration, of the light-
weight BFT algorithm remains similar to that in the LAN
(about 40-50 percent), and the same is true for the
configuration using the traditional BFT algorithm. How-
ever, it is interesting to note that, due to the large
communication delay inevitable in the WAN, the relative
cost of digital signatures and validation operations is
reduced. Consequently, the overhead of our lightweight
BFT algorithm, compared with that of the unmodified
application, drops significantly (from about 250 percent to
about 100 percent).

The throughput results in the WAN are shown in Fig. 8.
The throughput for all configurations in the WAN is a lot
less than that in the LAN primarily for three reasons:

1. In general, the nodes in PlanetLab for the WAN
experiment are equipped with less capable CPUs
compared to our LAN testbed (e.g., Core 2 Duo
E6550 versus Xeon E5405). The passmark for the
Core 2 Duo E6550 is 1,448, whereas the passmark for
the Xeon E5405 is 2,895.1

2. The nodes in PlanetLab are shared among many
concurrent users and, hence, our application might
not be able to exploit the multiple cores available,
while the nodes in our LAN testbed are exclusively
used for our experiment.

3. The available network bandwidth between different
nodes in PlanetLab is presumably a lot less than that
in our LAN testbed, which is connected by a Gigabit
Ethernet. As a result, the message transmission time
is a lot more for the WAN experiment, which also
adversely affects the throughput. For example, if the

total size of messages sent and received by the
coordinator is 30 KB and if the data rate in PlanetLab
is 10 Mbps, then the transmission time in the
PlanetLab testbed would be 24 ms whereas, in our
LAN testbed, the transmission time would be a
negligible 0.24 ms.

Due to the greater message transmission time, the
throughput reduction for both the lightweight BFT algo-
rithm and the traditional BFT algorithm is reduced
compared to that of the unmodified application. These
results suggest that it might be more appropriate to adopt
the BFT approach in the WAN, where WS-BA are typically
deployed, rather than in the LAN. In both the WAN and
the LAN, the lightweight BFT algorithm significantly
outperforms the traditional BFT algorithm, as demon-
strated in our experiments.

6 RELATED WORK

The trustworthiness of Internet and web applications has
become increasingly important in recent years [16], [17],
[29], particularly with the advent of WS-BA that involve
interactions between multiple enterprises. The WS-Trust
specification [29] focuses on the use of security tokens and
credentials within the context of web services, whereas, in
this paper, we focus on the high-availability and high-
integrity aspects of trustworthy coordination of web service
business activities.

BFT has been of great research interest for the last several
decades. The seminal research in this field is that of
Lamport et al. [21], who demonstrated that four replicas
are required to tolerate one Byzantine faulty replica (three
replicas do not suffice) and, more generally, that 3f þ 1
replicas are required to tolerate f Byzantine faulty replicas.
Other significant contributions to Byzantine agreement/
consensus about the same time were made by Dolev et al.
(see, e.g., [4], [7], [9], [10], [11]).

Subsequently, several groups of researchers developed
Byzantine fault-tolerant group communication systems [6],
[19], [23], [26], [27], [31] for generic distributed applications.
All of those systems deliver messages in total order at the
destinations. In contrast, our lightweight BFT algorithm for
trustworthy coordination of WS-BA delivers messages in
source order, i.e., the order in which the sender sent them,
rather than in total order at the destinations. It does so by
exploiting the state model of the WS-BA specification.

The PBFT agreement algorithm [5] of Castro and Liskov
designates one of the replicas as the primary and the other
replicas as the backups. The PBFT algorithm involves three
phases to order a request (the pre-prepare phase, the
prepare phase, and the commit phase). It also includes a
view change algorithm that determines a new primary, if
the current primary is deemed to be faulty. Kihlstrom et al.
[20] described a BFT consensus algorithm. Their BFT
algorithm for achieving consensus operates in three rounds,
and uses a coordinator to choose the consensus value and
Byzantine fault detectors to detect faults in the coordinator
and other processes.

The application of BFT techniques to transactional
systems was first reported by Mohan et al. [25]. They
enhance the two-phase commit protocol by performing

Fig. 7. End-to-end latency in a WAN for business activities with different
numbers of participants under normal operation.

1. A passmark is the benchmark score of a computer using the software
developed by Passmark Software. The passmark scores were obtained from
http://www.cpubenchmark.net/.



Byzantine agreement on the outcome of an atomic transac-
tion among all of the nodes in a root cluster. Recently, we
revisited this problem and proposed a more efficient
solution [33] for atomic transactions by restricting the
Byzantine agreement to only the coordinator replicas.
Garcia-Molina et al. [15] have applied Byzantine agreement
to distributed database systems, in particular, for distribut-
ing transactions to processing nodes.

Even though coordination of atomic transactions bears
some similarity to coordination of business activities, there
are a number of significant differences. In atomic transac-
tions, the coordinator and the participants are tightly
coupled. Any participant can unilaterally abort a transaction.
Furthermore, the coordinator can decide on the outcome of
the transaction, based on the votes collected in the two-phase
commit protocol. However, in business activities, the out-
come is decided solely by the initiator according to the
business logic and, at best, a faulty participant might be able
to exert some influence on, but not decide on, the outcome of
the business activity. These characteristics necessitate the use
of a lightweight BFT solution for the trustworthy coordina-
tion of WS-BA, as described in this paper.

The application of BFT techniques to web services has
been reported in [24], [30], and [34]. Even though the
solutions proposed could be used to protect the coordina-
tion services of WS-BA against Byzantine faults, they are
unnecessarily expensive. By considering the state model of
the WS-BA coordination services, our lightweight BFT
algorithm introduces only one additional round of message
exchange for each invocation on the coordinator instead
of two or more additional rounds of message exchange
needed in [24], [30], and [34], and thus, it performs
significantly better.

7 CONCLUSIONS

We have presented a comprehensive study of the threats to
the coordination services of WS-BA. We have carefully
analyzed the state model of the WS-BA coordination
services, and have argued that it is unnecessary to perform
total ordering of requests at the coordinator replicas, to
achieve trustworthy coordination of WS-BA. Rather, it
suffices to ensure that messages are delivered in source
order, i.e., the order in which the sender sent them.

This analysis has enabled us to develop a lightweight BFT
algorithm that mitigates the threats and avoids the runtime

overhead associated with traditional BFT algorithms. We
have implemented the lightweight BFT algorithm and
associated mechanisms, and have incorporated them into
the open-source Kandula framework that implements the
WS-BA specification and the WS-BA-I extension. The
performance evaluation results obtained using the proto-
type implementation show moderate overhead, especially in
a wide-area network, where WS-BA are typically deployed.

The research that we have described in this paper fits in
well with the recent trend of cloud computing. Many large
companies, such as Amazon, Google, Microsoft, and Apple,
are now offering cloud services. Some of them might
provide coordination services for web services in the cloud.
Such coordination services could enable smaller companies
to offer composite web services to provide value-added
services to their customers without having to invest heavily
in computing infrastructures. The coordination service
providers might find our lightweight BFT algorithm
attractive because of its relatively low overhead. For the
best fault isolation, it is desirable to deploy the coordinator
replicas across geographically separated data centers,
which are readily available for the large companies.

ACKNOWLEDGMENTS

This work was supported in part by the US National
Science Foundation (NSF) grants CNS 08-21319 and CNS
10-16193 and by a Cleveland State University Scholarship
Initiative grant. An earlier version of this work was
presented at the 2008 IEEE International Conference on
Services Computing [35].

REFERENCES

[1] Apache Axis, http://ws.apache.org/axis/, 2013.
[2] Apache Kandula, http://ws.apache.org/kandula/, 2013.
[3] Apache WSS4J, http://ws.apache.org/wss4j/, 2013.
[4] C. Attiya, D. Dolev, and J. Gil, “Asynchronous Byzantine

Consensus,” Proc. ACM Symp. Principles of Distributed Computing,
pp. 119-133, 1984.

[5] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance and
Proactive Recovery,” ACM Trans. Computer Systems, vol. 20, no. 4,
pp. 398-461, Nov. 2002.

[6] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin,
and T. Riche, “UpRight Cluster Services,” Proc. 22nd ACM Symp.
Operating Systems Principles, Oct. 2009.

[7] F. Cristian, H. Aghili, R. Strong, and D. Dolev, “Atomic Broadcast:
From Simple Message Diffusion to Byzantine Agreement,”
Information and Computation, vol. 118, no. 1, pp. 158-179, 1995.

Fig. 8. Throughput of the coordination services in a WAN with different numbers of concurrent business activities.



[8] D. Davis, A. Karmarkar, G. Pilz, S. Winkler, and U. Yalcinalp, Web
Services Reliable Messaging (WS-ReliableMessaging) Version 1.1,
OASIS Standard, Jan. 2008.

[9] D. Dolev, “The Byzantine Generals Strike Again,” J. Algorithms,
vol. 3, no. 1, pp. 14-30, 1982.

[10] D. Dolev, “An Efficient Algorithm for Byzantine Agreement
without Authentication,” Information and Control, vol. 52, no. 3,
pp. 257-274, Mar. 1982.

[11] D. Dolev and H.R. Strong, “Authenticated Algorithms for
Byzantine Agreement,” SIAM J. Computing, vol. 12, pp. 656-
666, 1983.

[12] H. Erven, H. Hicker, C. Huemer, and M. Zapletal, “The Web
Services-BusinessActivity-Initiator (WS-BA-I) Protocol: An Exten-
sion to the Web Services-BusinessActivity Specification,” Proc.
IEEE Int’l Conf. Web Services, pp. 216-224, July 2007.

[13] M. Feingold and R. Jeyaraman, Web Services Coordination,
Version 1.1, OASIS Standard, July 2007.

[14] T. Freund and M. Little, Web Services Business Activity, Version 1.1,
OASIS Standard, Apr. 2007.

[15] H. Garcia-Molina, F. Pittelli, and S. Davidson, “Applications of
Byzantine Agreement in Database Systems,” ACM Trans. Database
Systems, vol. 11, no. 1, pp. 27-47, 1986.

[16] Y. Gil and D. Artz, “A Survey of Trust in Computer Science and
the Semantic Web,” J. Web Semantics, vol. 5, pp. 58-71, 2007.

[17] T. Grandison and M. Sloman, “A Survey of Trust in Internet
Applications,” IEEE Comm. Survey Tutorials, vol. 4, no. 4, pp. 2-16,
Oct.-Dec. 2000.

[18] K. Iwasa, J. Durand, T. Rutt, M. Peel, S. Kunisetty, and D. Bunting,
WS-Reliability 1.1, OASIS Standard, Nov. 2004.

[19] K.P. Kihlstrom, L.E. Moser, and P.M. Melliar-Smith, “The
SecureRing Group Communication System,” ACM Trans. Informa-
tion and System Security, vol. 4, no. 4, pp. 371-406, Nov. 2001.

[20] K.P. Kihlstrom, L.E. Moser, and P.M. Melliar-Smith, “Byzantine
Fault Detectors for Solving Consensus,” Computer J., vol. 46, no. 1,
pp. 16-35, 2003.

[21] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals
Problem,” ACM Trans. Programming Languages and Systems, vol. 4,
no. 3, pp. 382-401, July 1982.

[22] M. Little and A. Wilkinson, Web Services Atomic Transactions,
Version 1.1, OASIS Standard, Apr. 2007.

[23] D. Malkhi and M. Reiter, “Secure and Scalable Replication in
Phalanx,” Proc. IEEE 17th Symp. Reliable Distributed Systems,
pp. 51-58, 1998.

[24] M. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rouvellou, and
P. Narasimhan, “Thema: Byzantine-Fault-Tolerant Middleware
for Web Services Applications,” Proc. IEEE 24th Symp. Reliable
Distributed Systems, pp. 131-142, Oct. 2005.

[25] C. Mohan, R. Strong, and S. Finkelstein, “Method for Distributed
Transaction Commit and Recovery Using Byzantine Agreement
within Clusters of Processors,” Proc. ACM Symp. Principles of
Distributed Computing, pp. 89-103, 1983.

[26] L.E. Moser and P.M. Melliar-Smith, “Byzantine-Resistant Total
Ordering Algorithms,” J. Information and Computation, vol. 150,
pp. 75-111, 1999.

[27] L.E. Moser, P.M. Melliar-Smith, and N. Narasimhan, “The
SecureGroup Group Communication System,“ Proc. IEEE Informa-
tion Survivability Conf., vol. 2, pp. 256-279, Jan. 2000.

[28] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker, Web
Services Security: SOAP Message Security 1.1, OASIS Standard, Nov.
2006.

[29] A. Nadalin, M. Goodner, M. Gudgin, A. Barbir, and H. Grangvist,
WS-Trust 1.4, OASIS Standard, Feb. 2009.

[30] S.L. Pallemulle, H.D. Thorvaldsson, and K.J. Goldman, “Byzantine
Fault-Tolerant Web Services for N-Tier and Service Oriented
Architectures,” Proc. IEEE 28th Int’l Conf. Distributed Computing
Systems, pp. 260-268, June 2008.

[31] M. Reiter, “The Rampart Toolkit for Building High-Integrity
Services,” Proc. Int’l Conf. Theory and Practice in Distributed Systems,
pp. 99-110, 1995.

[32] W. Zhao, “Byzantine Fault Tolerance for Non-Deterministic
Applications,” Proc. IEEE Int’l Symp. Dependable, Autonomous and
Secure Computing, pp. 108-115, Sept. 2007.

[33] W. Zhao, “A Byzantine Fault Tolerant Distributed Commit
Protocol,” Proc. IEEE Int’l Symp. Dependable, Autonomous and
Secure Computing, pp. 37-44, Sept. 2007.

[34] W. Zhao, “BFT-WS: A Byzantine Fault Tolerant Framework for
Web Services,” Proc. Middleware for Web Services Workshop, Oct.
2007.

[35] W. Zhao and H. Zhang, “Byzantine Fault Tolerant Coordination
for Web Services Business Activities,” Proc. IEEE Int’l Conf.
Services Computing, pp. 407-414, July 2008.

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2015

libuser
Typewritten Text


	Cleveland State University
	EngagedScholarship@CSU
	11-15-2011

	Towards Trustworthy Coordination for Web Services Business Activities
	Hua Chai
	Hongle Zhang
	Wenbing Zhao
	P. M. Melliar-Smith
	L. E. Moser
	Publisher's Statement
	Repository Citation


	untitled

