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A probabilistic analysis of the trading the line 
strategy

V. ABRAMOV, M. K. KHAN, R. A. KHAN

We provide analytic models for which the appropriate statistics of the trading the line strategy,
Nh, can be derived in closed form. In particular, we provide closed form expressions
concerning the average duration of the open position, E(Nh), the variance of the open
duration, Var(Nh), the average of the stopped log price, E(SNh

), the variance of the stopped log
price, Var(SNh

), the correlation, Corr(Nh, SNh
), and the Laplace transform, E(e�sNh). These

results are obtained, in discrete time settings, for binomial and other price scenarios.
Furthermore, when analytic results are not possible, such as the case of a normal distribution
for log returns, we show by simulation that our general conclusions still hold. Using these
statistics we point out some of the subtle features of the trailing stops strategy.

Keywords: Binomial model; Cumulative sum procedure; Financial securities; Geometric
random walk; Long position; Short position; SPRT; Trailing stops strategy; Trinomial model

Introduction

When one enters into a long (short) investment position,

the expectation is that the value of the asset will rise (fall).

After making the entry decision, the most critical decision

deals with the setting of an exit position. When the

possession of exact future information is ruled out, it will

be difficult to scientifically justify the optimality of any

emotionally derived exit decision. Various trading strate-

gies, such as ‘stop loss’ and the ‘trading the line’ (also

called ‘trailing stops’) strategy, have been devised to

minimize losses (or lock in profits), if the market suddenly

moves against an open position (Markese 1990, Glynn

and Iglehart 1995, Eng 1996, Acar and Satchell 2002,

Jenks and Eckett 2002, Cofnas 2004). Although the

literature on the use of the trailing stops strategy is

voluminous, comparatively little is available in terms of

its theoretical properties and analysis. This is partly due

to the fact that the mathematical models quickly become

intractable, even in the simplest price scenarios. In

discrete time settings, among the few exceptions are the

studies of Iglehart and Stone (1983) and Glynn

and Iglehart (1995), where the trailing stops strategy

is analysed for two types of models for the underlying
security, and Shen and Wang (2001), where the stop-loss
strategy is studied.

One of the aims of this paper is to provide a
probabilistic framework by which an analytic analysis
can be performed for the trailing stops strategy under
various price dynamics. This, in part, is done by making a
connection to the cumulative sum (cusum) procedure of
quality control. Although the cusum procedure has been
studied quite extensively (Dobben de Bruy 1968, Khan
1979, 1984), its link with the trailing stops strategy has
mostly been untapped. The recent article of Khan and
Khan (2004) provides some theoretical results that can be
used to derive fundamental properties, in closed form, for
the trailing stops strategy under various price dynamics
for both long and short positions.

Glynn and Iglehart (1995) studied the trailing stops
strategy when the price process is a geometric random
walk generated by binomial or double exponential
random variables, in the discrete case, and for geometric
Brownian motion for the continuous case. In this strategy
for the long position, one sets an amount, h, by which the
log price needs to fall, compared with the past maximum,
to trigger immediate selling of the investment. Should the
price rise above the historic maximum, the new maximum
becomes the current benchmark. There are several issues



that require analysis. Among the basic issues are the
following.

. The expected trading duration, once one enters
into a short (long) position, called the expected
first passage time, or average run length of the
strategy. Symbolically, if Nh is the duration of
the short position of the trailing stop strategy,
obtain its expected duration, E(Nh).

. The variance of the trading duration of the
strategy, Var(Nh).

. The expected level of the price at the exit time,
called the stopped value, i.e. E(SNh

).
. The variance of the stopped value, Var(SNh

).
. The correlation between the stopped amount

and the duration of the trading strategy,
Corr(Nh,SNh

).
. The sensitivity of the above parameters to the

trailing stops triggering level, h.
. The sensitivity of the above parameters to the

various price dynamics.

Several criteria for the choice of the triggering
constant, h, are presented, for instance, by Glynn and
Iglehart (1995), therefore we will not consider this aspect
of the strategy in this paper. Historically, continuous time
settings have been used to study the properties of stopping
times along with the stopped processes, and the results are
often implicit in terms of the solutions of ordinary
differential equations (Darling and Siegert 1953). The
second aim of the paper is to show that discrete time
analysis, in contrast to continuous time analysis, can
provide exact and tractable closed-form solutions, at least
for certain types of price dynamics, which we specify in
the paper.

In the next section we provide an analytic analysis of
the trailing stops strategy under various price processes.
We provide an exact correlation formula between the
stopping time and the stopped amount. The formula
depends on the expected stopping time and the variance
of the stopping time. In particular, we are able to provide
the average run length and the variance of the stopping
time in closed form for some price dynamics, such as the
binomial, trinomial, geometric and exponential models
where the inter-observation duration could be chosen to
be as small as practically possible. We should also point
out that, for log normal processes, a closed-form
expression for the expected stopping time is still an
open problem. In section 3, specific price scenarios are
analysed. The last section summarizes the results.

Analysis of the trading the line strategy

Let Y1,Y2, . . . , be independent and identically distributed
random variables representing the returns of the under-
lying security. Throughout we will assume that
05Var(Y1)51. The random variables Yi can be discrete
or continuous. Let Sn¼Y1þ � � � þYn, and let Pn¼P0 e

Sn,
n� 1, be the price process, where P0 is a constant.
The trading the line strategy can be defined in several

ways. For instance, using the log of the price process, Sn,

for the long position, we may define the stopping rule

Lh :¼ inf n � 1 : max
k�n

Sk � Sn � h

� �
,

where h40 is the specified amount by which the log price

has to drop to trigger sellout. The corresponding trailing

stops strategy for the short position is

Nh :¼ inf n � 1 : Sn �min
k�n

Sk � h

� �
,

where h40 is the specified amount by which the log price

has to rise to trigger closing the position. Of course, the

triggering constant, h, need not be the same for the two

strategies.
Instead of using the log-price process, one may use the

price process itself, Pn¼P0 exp(Sn), to define another

stopping rule:

Th :¼ inf n � 1 : max
k�n

Pk � Pn � h

� �
:

Let us denote Mn¼maxk�n Sn. Then we can rewrite

max
k�n

Pk � Pn � h

as

P0 eMn � P0 eSn � h:

Divide both sides by P0 e
Mn and simplifying gives

Mn � Sn � log
P0 eMn � h

P0 eMn

� � 1
!
:

Using the fact that P0 e
Mn¼maxk�n Pk and simplifying we

finally obtain

Mn � Sn � log
maxk�n Pk

maxk�n Pk � h

� �
:

Therefore, we can rewrite the stopping time Th in the

following equivalent form:

Th :¼ inf n � 1 : max
k�n

Sk � Sn � �n

� �
;

where �n¼ log (maxk�n Pk/(maxk�n Pk� h)). Although

this form resembles Lh, since �n is random, mathemati-

cally it leads to a different and less-tractable problem. For

this reason, our main focus will be on the stopping rules

Lh and Nh, which are analytically more tractable.

Furthermore, due to the fact that the stopping rules Nh

and Lh are related, one does not need to study both

separately. Indeed, by taking Zi¼�Yi in Nh we obtain the

stopping rule Lh. Hence, throughout, our primary focus

will be on deriving results for Nh only. The corresponding

results for Lh can be deduced by the transformation

Zi¼�Yi.
For the sake of comparison, we start by considering a

trading strategy, �, that is independent of the log-price

process, fSn, n� 0}. The following result shows how the



correlation of S� and � is dependent on the basic statistics

of the stopping rule.

Proposition 2.1: Let Y1,Y2, . . . be any sequence of inde-

pendent and identically distributed random variables with

EðY 2
1Þ51. If � is any stopping rule independent of the log

return process, Y1,Y2, . . . , having positive finite variance,

and Sn¼Y1þ � � � þYn, then the correlation between � and

S� is

Corrð�;S�Þ ¼
EðY1Þ

EðY2
1Þ þ VarðY1ÞEð�Þ=Varð�Þ

q :

The proof of this and the following proposition can be

deduced by Wald’s equation or the theorem of total

expectation (Billingsley 1979). We omit the simple details.

Proposition 2.2: Let Pn, n� 1, be the price process

governed by a geometric random walk, Pn¼P0 eSn, where

Sn¼Y1þ � � � þYn, and let Y1, Y2, . . . be a sequence of

independent and identically distributed random variables

with moment generating function �(�)¼E(e�Y1). If � is any
trading strategy that is independent of the log return
process, Y1,Y2, . . . , then the mean and the variance of the

time discounted gain/loss are as follows:

EðP0 � e r�P�Þ ¼ P0ð1� Eðe ðr sÞ�ÞÞ;

VarðP0 � e r�P�Þ ¼ P2
0fEðe

ð2r �Þ�Þ � ðEðe ðr sÞ�ÞÞ
2
g;

where s¼ ln�(1), �¼ ln�(2) and r is the discounting rate.

The above two propositions show that the key statistics
are E(�), Var(�) and the Laplace transform E(e�s�). The

aim of this paper is to consider the trading strategy, Nh,

which is adapted to the filtration F n ¼ �ðY1,Y2, . . . ,YnÞ,

n� 1. In other words, the decision to stop at time n is

purely determined by the information available up to time
n, and not any information that would come in the future.

Once again, the key statistics that are needed are the

average amount of time the position will remain open,

E(Nh), the variance of the time the position will remain

open, Var(Nh), and the Laplace transform E(e�sNh), for

appropriate values of s. In order to study the properties of
the short position trailing stops, Nh, the corresponding

stopped log price, SNh
, and the time discounted gain/loss

P0� e�rNh PNh
, the following proposition explains how a

double boundary crossing stopping rule, called the SPRT,

plays an important role,

�a;h :¼ inf n � 1 : Sn 62 ða, hÞ
� 	

,

where a505h. The following result concerning �a,h is

from Khan and Khan (2004).

Proposition 2.3: The stopping rules Nh and �0,h are related
through the identity

Nh ¼ �0, h þNh, �0, h IðS�0, h � 0Þ,

where Nh, �0, h
is an identical copy of Nh that is independent

of S�0,h when �0,h is given. Here and elsewhere, I(A) is the

indicator random variable taking value 1 when A occurs and

0 otherwise.

With the help of this link we easily deduce the Laplace

transform of Nh in terms of the Laplace transform of the

SPRT. Therefore, the statistics of Nh are, in turn, linked

to the statistics of the SPRT.

Proposition 2.4: For any s40, we have

Eðe sNh Þ ¼
Eðe s�0, h Þ � Eðe s�0, h IðS�0, h � 0ÞÞ

1� Eðe s�0, h IðS�0, h � 0ÞÞ
:

The above Laplace transform of Nh and its relationship

to �0, h has been known in the quality control literature for

some time. The main stumbling block has been the

calculation of the expressions on the right-hand side. The

recent paper of Khan and Khan (2004) provides a

mechanism by which to compute the above expressions,

in a closed form, under the following assumptions.

. (A1) The moment generating function of log

returns, �(�)¼E(e�Yi), exists.
. (A2) For each small s40, there exist two values

of �, say �1(s), �2(s), so that �(�)¼ es holds for

�¼ �1(s), �2(s).
. (A3) There exist functions K(�), k(x),R(�), g(x),

so that, for �¼ 0, �1, �2,

HðxÞ :¼ Eðe�Y1IðY1 � xÞÞ ¼ Kð�ÞkðxÞ e�x, x5 0,

GðxÞ :¼ Eðe�Y1IðY1 � xÞÞ ¼ Rð�ÞgðxÞ e�x, x > 0:

Here, in the notation H(x), G(x), we suppress the

dependence on � and s.

As examples, the binomial, trinomial, two-sided geo-

metric and double exponential models for the log returns

obey the above sets of conditions. Under the above

assumptions, the following two theorems are the main

results that give the probabilistic properties of the trailing

stops strategy for the short position. Analogous results

can be obtained, by replacing Yi with �Yi, for the trailing

stops strategy in the long position; we therefore omit the

straightforward details.

Theorem 2.5 (non-degenerate case): Under the above

assumptions, when K(�), R(�) are not constant functions

(non-degenerate case), the short position trailing stops

strategy, N¼Nh, has the following Laplace transform,

mean and variance:

Eðe�sNÞ
Rð0ÞfKð�1Þ �Kð�2Þg

fKð�1Þ �Kð0ÞgRð�2Þ e
�2h�fKð�2Þ �Kð0ÞgRð�1Þ e

�1h
,

s40,

EðNÞ
1

EðYÞ
hþ

R0ð0Þ

Rð0Þ
�
K0ð0ÞfRð0Þ �Rð��Þ e�

�hg

Rð0ÞðKð0Þ �Kð��ÞÞ

� �
,

EðYÞ 6 0,

where �1(s)! 0 and �2(s)! �� as s! 0. When E(Y)¼ 0,

we obtain

EðNÞ ¼
1

VarðYÞ
h2 þ h

2R0ð0ÞK0ð0Þ � Rð0ÞK00ð0Þ

Rð0ÞK0ð0Þ

�

þ
K0ð0ÞR00ð0Þ � R0ð0ÞK00ð0Þ

Rð0ÞK0ð0Þ

�
:



Furthermore, when �01ðsÞ þ �
0
2ðsÞ ¼ 0 in the neighbourhood

of zero, and E(Y) 6¼ 0, the variance simplifies to

VarðN Þ ¼
1

ðEðYÞÞ2

(
VarðY ÞEðN Þ þ 2ðEðY ÞEðN Þ � hÞ

�
K0ð0Þ þ K0ð��Þ

Kð0Þ � Kð��Þ
þ ðEðY ÞEðN Þ � hÞ2

þ
K00ð0ÞfRð0Þ � Rð��Þ e�

�hg

Rð0ÞðKð0Þ � Kð��ÞÞ
�
R00ð0Þ

Rð0Þ

�2
K0ð��ÞR0ð0Þ � K0ð0ÞR0ð��Þ e�

�h

Rð0ÞðKð0Þ � Kð��ÞÞ

þ 4h
K0ð0ÞRð��Þ e�

�h

Rð0ÞðKð0Þ � Kð��ÞÞ

)
:

Theorem 2.6 (degenerate case): When Y is an integer
valued random variable and K(�), R(�) are constants, the
trailing stops strategy for the short position, N¼Nh, has
the following Laplace transform, mean and variance:

Eðe sNÞ ¼
e�2 � e�1

ð1� e�1 Þ e�2ðhþ1Þ � ð1� e�2Þ e�1ðhþ1Þ
, s4 0,

EðN Þ ¼
1

EðY Þ
hþ

1� e�
�h

1� e ��

� �
, EðY Þ 6¼ 0,

EðN Þ ¼
hðhþ 1Þ

VarðY Þ
, EðY Þ ¼ 0:

Furthermore, when �01ðsÞ þ �
0
2ðsÞ ¼ 0 in the neighbourhood

of zero, where �1(s)! 0 and �2(s)! �� as s! 0, and
E(Y) 6¼ 0, the variance simplifies to

VarðN Þ ¼
VarðY Þ

ðEðY ÞÞ3
hþ

1� e�
�h

1� e ��

� �

þ
fe�

�ðhþ1Þ þ 3gfe�
�h � 1g

ðEðY ÞÞ2ð1� e �� Þðe�
�
� 1Þ
þ

4h e�
�ðhþ1Þ

ðEðY ÞÞ2ð1� e�
�
Þ
:

We should point out that the last term of the expression
for Var(N) in Khan and Khan (2004) has a minor
typographical error, where 1� (2hþ 1) e��(hþ1) should be
replaced by �2h e��(hþ1). Using these results, we can
compute the exact expressions for the various statistics of
the duration of the open position, Nh, and the stopped log
price, SNh

. The following proposition gives the
correlation.

Proposition 2.7: Let Y1,Y2, . . . be any sequence of inde-
pendent and identically distributed random variables with
0 < EðY2

1Þ <1, E(Y1) 6¼ 0, and let Sn¼Y1þ � � � þYn.
If � is any stopping rule adapted to the filtration
�(Y1,Y2, . . . ,Yn), n� 1, having finite positive variance,
then

Corrð�,S�Þ ¼
VarðS�Þ þ ðEðY1ÞÞ

2 Varð�Þ � VarðY1ÞEð�Þ

2EðY1Þ Varð�ÞVarðS�Þ
p :

Proof: Let �¼E(Y1) and �
2
¼Var(Y1). Wald’s equation

applied to the martingale (Sn� n �)2� n �2 gives

Eð�S�Þ ¼
1

2�
ðEðS2

�Þ þ �
2Eð�2Þ � �2Eð�ÞÞ:

Using these results gives the desired expression for the
correlation. œ

In the next section we illustrate the above results using
several examples.

Trailing stop strategy for various price dynamics

In this section we provide some results under various price
scenarios for the log return process. Only in the first two
examples are we able to obtain Var(SNh

) when E(Y1) 6¼ 0.
Therefore, by proposition 2.7, for these two examples we
are able to find closed-form expressions for Corr(Nh,SNh

).
When �¼E(Y1)¼ 0, since S2

n � n�2 is a martingale,
we have VarðSNh

Þ ¼ EðS2
Nh
Þ ¼ �2EðNhÞ. In all the exam-

ples presented in this section, Var(SNh
) is computed

this way whenever E(Y1)¼ 0. It should be noted that
when Yi are integer valued random variables, the constant
h40 need only take positive integer values. This is
because the stopping rule does not change if the non-
integer value of h is replaced by the least integer greater
than or equal to h.

Example 3.1 (binomial model): Consider the typical
binomial model in which the log returns, Yi, can take two
possible values, �1, 1, with respective probabilities q,
p¼ 1� q. In this example we can obtain exact results. Cox
et al. (1979) used the binomial model to give a simplified
approach to pricing options. Later, Glynn and Iglehart
(1995) studied this model in the context of a long position
of the trailing stops strategy with positive drift,
E(Y)¼ p� q40. They computed E(Lh),E(SLh

) and
Var(SLh

) when Lh is the trailing stops strategy for the
long position. To compute the correlation, Corr(Nh,SNh

),
we use the results of the last section.

For a given s40, we can solve �(�)¼ es, and obtain
two solutions for �,

e�1 ¼
es � e2s � 4pð1� pÞ

p
2p

,

e�2 ¼
es þ e2s � 4pð1� pÞ

p
2p

:

Note that �01 þ �
0
2 ¼ 0. When p51/2, we see that �1! 0

and �2! ��¼ ln(q/p). The Laplace transform is obtained
from theorem 2.6:

Eð e sNh Þ ¼
e�2 � e�1

ð1� e�1Þ e�2ðhþ1Þ � ð1� e�2 Þ e�1ðhþ1Þ
, s > 0:

The Laplace transform completely characterizes the
probability distribution of the duration Nh. In principle,
the probability distribution can be obtained by the
standard inversion theory of Laplace transforms.



The moments of the trading strategy can be obtained via

differentiation. For instance,

EðNhÞ ¼ �
d

ds
Eð e sNhÞ






s¼0

:

Higher moments are obtained similarly by taking higher-

order derivatives of the Laplace transform and then

inserting s¼ 0. After omitting the simple (but a sub-

stantial amount of) algebra, the following moments of the

trading strategy can be deduced from the above Laplace

transform:

EðNhÞ
h

p� q
þ

q

ðp� qÞ2
fðq=pÞh � 1g, p 6

1

2
,

EðNhÞ hðhþ 1Þ, p
1

2
,

VarðNhÞ
4pð1� pÞ

ð2p� 1Þ3
hþ

1� ðð1� pÞ=pÞh

1� ðp=ð1� pÞÞ

( )
þ
4phðð1� pÞ=pÞhþ1

ð2p� 1Þ3

þ
pð1� pÞfðð1� pÞ=pÞhþ1 þ 3gfðð1� pÞ=pÞh � 1

ð2p� 1Þ4
,

p5
1

2
,

VarðNzhÞ
hðhþ 1Þ

3
ð2h2 þ 2h� 1Þ, p!

1

2

By Wald’s equation, we see that

EðSNh
Þ EðY1ÞEðNhÞ

h
1 p

2p 1
f1 ðð1 pÞ=pÞhg, p 6

1

2
,

EðSNh
Þ 0, p

1

2
,

VarðSNh
Þ

1 p

2p 1

(
1 ðð1 pÞ=pÞh

þ ð1 pÞ
ððð1 pÞ=pÞh 1Þ2

2p 1

)
, p 6

1

2
,

VarðSNh
Þ hðhþ 1Þ EðNhÞ, p

1

2
,

CorrðNh,SNh
Þ

VarðSNh
Þ EðNhÞVarðY1Þ þ ðEðY1ÞÞ

2 VarðNhÞ

2EðY1Þ VarðNhÞVarðSNh
Þ

p ,

CorrðNh,SNh
Þ

ð2hþ 1Þ

3
p

2hðhþ 1Þ 1
p , p!

1

2
:

The last expression shows that the correlation between Nh

and SNh
is negative when E(Y1)¼ 0, indicating that the

longer the short position remains open, the lower the log

price is going to be at the stopping time. In a short

position, the lower SNh
is, the less the loss will be. The

correlation of Nh with SNh
, as a function of the expected

duration, E(Nh), is shown in figure 1 on a semi-

logarithmic scale. The vertical scale shows only four

decimal place accuracy.
The curve going through the circled data points,

(E(Nh), Var(Nh)), of figure 2 shows that the variance

Var(Nh) seems to have a parabolic relationship with E(Nh)

regardless of the choice of p.
This turns out not to be totally correct. More

appropriately, when p is near 1/2, there is indeed a

parabolic relationship, namely

VarðNhÞ ¼
1

3
ð2ðEðNhÞÞ

2
� EðNhÞÞ, p!

1

2
:

However, for p in the neighbourhood of zero, there is

another parabolic relationship between Var(Nh) and

E(Nh),

VarðNhÞ ¼ðEðNhÞÞ
2
þ EðNhÞf1� 2hg � 3hðhþ 1Þ,

p! 0þ:

As the figure suggests, for local regions of p2 (0, 1/2), a

good parabolic relationship may be found between E(Nh)

and Var(Nh). The header of each figure gives the best

parabolic fit for that region of p.

Example 3.2 (trinomial model): Consider the trinomial

model where the log return, Y1, can take three

possible values, �1, 1, 0, with respective probabilities

q, p, 1� p� q. The trinomial model was studied by Boyle

(1986) in the context of option valuation. He used the

model to price both European and American options. The

trailing stops strategy can also be analysed analytically for

the trinomial model. For a given s40, we may solve

�(�)¼ es, and obtain two solutions for �:

e�1 ¼
ðes þ pþ q� 1Þ � ðes þ pþ q� 1Þ2 � 4pq

q
2p

e�2 ¼
ðes þ pþ q� 1Þ þ ðes þ pþ q� 1Þ2 � 4pq

q
2p

:

Note that �01 þ �
0
2 ¼ 0. When p5q, we see that �1! 0 and

�2! ��¼ ln(q/p). Since both K(�)¼ p and R(�)¼ q are

constant functions, and Y is an integer valued random

variable, theorem 2.6 gives

Eð e sNhÞ ¼
e�2 � e�1

ð1� e�1Þ e�2ðhþ1Þ � ð1� e�2 Þ e�1ðhþ1Þ
, s4 0,

EðNhÞ ¼
h

p� q
�

q

ðp� qÞ2
f1� ðq=pÞhg, p 6¼ q,

EðNhÞ ¼
hðhþ 1Þ

2p
, p ¼ q,

VarðNhÞ ¼
pð1� pÞ þ qð1� qÞ þ 2pq

ðp� qÞ3
hþ

1� ðq=pÞh

1� ðp=qÞ

( )

þ
pqfðq=pÞhþ1 þ 3gfðq=pÞh � 1g

ðp� qÞ4

þ
4phðq=pÞhþ1

ðp� qÞ3
, p5 q,

VarðNhÞ ¼
hðhþ 1Þðhðhþ 1Þ þ 1� 3pÞ

6p2
, p ¼ q:







that exact results for the trailing stops strategy

can be obtained. We omit the straightforward

details and just report the final results obtained

from theorem 2.5. The two roots of the equation,

�(�)¼ es, are

e�1 ¼
1þ q1q2� p1p2 e

s� ð1þ q1q2� p1p2 e sÞ
2
� 4q1q2

q
2q1

,

e�2 ¼
1þ q1q2� p1p2 e

sþ ð1þ q1q2� p1p2 e sÞ
2
� 4q1q2

q
2q1

:

Note that �01 þ �
0
2 ¼ 0. When q15q2 (i.e. E(Y)50)

and s! 0, we see that �1! 0 and e�2! q2/q1 ¼: e�
�

.

Therefore,

Eðe�sNh Þ
p2ðe

�1 e�2 Þð1 q1 e
�2 Þð1 q1 e

�1 Þ

p1ð e
�2ðhþ1Þð1 e�1 Þð1 q1 e

�1 Þ
2 e�1ðhþ1Þð1 e�2 Þð1 q1 e

�2 Þ
2
Þ
,

q15q2,

EðNhÞ
q2p

3
1ðq2=q1Þ

h

p2ðp1 p2Þ
2

p2ðp1hþq1Þ

p1 p2

q2p
2
1

ðp1 p2Þ
2
,

EðYÞ 6 0,

EðNhÞ
p2

2q
h2þh 1þ

4q

p

� �
þ
2ð2qþpÞq

p2

� �
,

p1 p2 p 1 q,

VarðNhÞ
1

ðEðYÞÞ2
VarðYÞEðNhÞþ2ðEðYÞEðNhÞ hÞ
�

�
q2p

2
1þq1p

2
2

p1p2ðp2 p1Þ
þ ðEðYÞEðNhÞ hÞ2:

þ
p1q2ð1þq2Þðp2 p1ðq2=q1Þ

h
Þ

p32ðp1 p2Þ

q1ð1þq1Þ

p21
2

q21p
4
2þq22p

4
1ðq2=q1Þ

h

p21p
3
2ðp1 p2Þ

þ4h
p21q2ðq2=q1Þ

h

p22ðp2 p1Þ
g, q15q2:

By Wald’s equation, applied to the martingales Sn� n

E(Y1) and (Sn� n E(Y1))
2
� n Var(Y1), we obtain

EðSNh
Þ ¼

1

p1p2

q2p
3
1ðq2=q1Þ

h

p2ðp2 � p1Þ
þ p2ðp1hþ q1Þ �

q2p
2
1

p2 � p1

( )
,

q1 6¼ q2,

EðSNh
Þ ¼ 0, q1 ¼ q2,

VarðSNh
Þ ¼

p2 VarðY1Þ

2q
h2 þ h 1þ

4q

p

� �
þ
2ð2qþ pÞq

p2

� �
,

p1 ¼ p2 ¼ p ¼ 1� q:

Figure 4 shows that Var(Nh) can again be approxi-

mated by a parabolic function of E(Nh).

Table 2. Amount of expected gain/loss when P0 1 for the trinomial model (p 0.06, q 0.10, h 1).

r 1 E(e�rNhþSNh
) Std. err. Sample size

0.05 0.0855 0.03 1168
0.04 0.0193 0.03 1188
0.03 0.0358 0.03 1171
0.02 0.1419 0.03 1219
0.01 0.2549 0.03 1242

Table 1. Comparison of the simulation results for the trinomial model and the corresponding theoretical values.

Trinomial model E(SNh
) Var(SNh

) E(Nh) Var(Nh) Sample size

p 0.06, q 0.56, h 1 8.33 96.44 16.67 261.11
Simulation 8.17 89.48 16.36 241.69 1222
Error % 1.93 7.22 1.84 7.44

p 0.12, q 0.42, h 2 13.75 263.81 45.83 1916
Simulation 13.52 266.01 44.90 1930.9 1336
Error % 1.69 0.83 2.03 0.78

Table 3. The various correlations for the trinomial model.

E(Y1) Parameters h Corr(Nh, SNh
) Sample size

0.1 p 0.3, q 0.2 1 0.77 5987
0.0 p 0.25, q 0.25 1 0.81 5028
0.1 p 0.2, q 0.3 1 0.87 4100

0.1 p 0.3, q 0.2 2 0.71 2332
0.0 p 0.25, q 0.25 2 0.81 1641
0.1 p 0.2, q 0.3 2 0.89 1105





governed by an independent V�Exp(	). The net effect

is Y¼U�V, the density of which is

fYðyÞ ¼

	�

	þ �
e �y, if y � 0,

	�

	þ �
e	y, if y5 0:

8>>><
>>>:

As pointed out in the financial literature (Campbell

et al. 1997, Tsay 2002), the log returns tend to have

heavier tails than the tails of the corresponding normal

density, which is the feature of this model. Once again,

our theoretical approach can be employed to obtain

closed-form expressions for the Laplace transform of

Nh along with its mean and variance. We once again

omit the details and just list the results. The roots of

�(�)¼ es are

�1 ¼
ð�� 	Þ � ð	þ �Þ2 � 4	� e s

q
2

,

�2 ¼
ð�� 	Þ þ ð	þ �Þ2 � 4	� e s

q
2

:

Note that �01 þ �
0
2 ¼ 0. When 	5� (i.e. E(Y)50), as

s! 0, we see that �1! 0 and �2! ��¼�� 	. We have

the following expressions for the mean, variance and

Laplace transforms of Nh:

Eð e�sNh Þ
	ð�2 � �1Þð�� �1Þð�� �2Þ

� �2 e�1hð	þ �1Þð�� �2Þ � �1 e�2hð	þ �2Þð�� �1Þ
� 	 ,

EðNhÞ
	


� 1
hþ




	
þ

� e�

�h

	
ð1� 
Þ

� �
, 


	

�
6 1,

EðNhÞ
ðh�þ 2Þ2

2
, 


	

�
1,

VarðN Þ
1

ðEðY ÞÞ2

(
VarðY ÞEðN Þ þ 2ðEðY ÞEðN Þ � hÞ

�
ð�2 þ 	2Þ

	�ð	��Þ
:þ ðEðY ÞEðN Þ � hÞ2

þ
2�ð	�� eð��	ÞhÞ

	3ð�� 	Þ
�

2

�2
� 2
ð�	4 þ�4 eð��	ÞhÞ

	3�2ð�� 	Þ

þ 4h
�2 eð��	Þh

	2ð	��Þ

)
, 	 < �:

Using Wald’s equation for the martingales Sn� n E(Y1)

and E(Sn� n E(Y1))
2
� n Var(Y1), we obtain

EðSNh
Þ ¼ hþ




	
þ

� e�

�h

	
ð1� 
Þ
, 
 ¼

	

�
6¼ 1,

EðSNh
Þ ¼ 0, 
 ¼

	

�
¼ 1,

VarðSNh
Þ ¼
ðh�þ 2Þ2 VarðY1Þ

2
¼
ðh�þ 2Þ2

�2
, 
 ¼

	

�
¼ 1:

This model was studied by Iglehart and Stone (1983)

and later by Glynn and Iglehart (1995). By direct

computations they obtained E(Lh) and E(SLh
), where Lh

is the trailing stops strategy in the long position. They

also computed Var(SLh
); however, it seems that their

expression may have an error. Figure 5 shows that

Var(Nh) can again be approximated by a parabolic

function of E(Nh).
Table 7 provides simulation results for the double

exponential model. The amount of expected gain/loss,

when P0¼ 1, is presented in table 8. Note that

E(Y1)¼�0.09, which might suggest that a short position

might be profitable. However, note that E(eY1)¼ 5.5 and

E(eY1)4er for all reasonable values of r� 0. Hence, the

short position will always be a losing proposition. The

various correlations are presented in table 9. This shows

that Corr(Nh, SNh
)50 for all E(Y1) in the neighbourhood

of zero.

Example 3.5 (log normal model): We now consider the

case when the log returns are normally distributed.

More precisely, let Y1,Y2, . . .�iidN(�, �2). Then

�(t)¼ exp(�tþ (1/2) �2 t2), and �(t)¼ es (s40) has two

solutions,

�1 ¼
��� �2 þ 2�2s

p
�2

, �2 ¼
��þ �2 þ 2�2s

p
�2

:

Once again, note that �1þ �2 is a constant making

�01 þ �
0
2 ¼ 0. However, in this case, Y1 does not obey the

conditions of theorem 2.5. Exact expressions for E(e�sNh),

E(Nh) and Var(Nh) for the trailing stops strategy are

still unknown. Various approximations are, however,

available. For instance (for the case when � 6¼ 0), Khan

and Khan (2004) give

Eð e sNhÞ �
� e�h

� coshð�hÞ þ � sinhð�hÞ
,

Table 6. The various correlations for the geometric model.

E(Y1) Parameters h Corr(Nh, SNh
) Sample size

0.83 p1 0.3, p2 0.4 1 0.54 9635
0.00 p1 0.4, p2 0.4 1 0.72 7453

0.83 p1 0.4, p2 0.3 1 0.80 6226
0.83 p1 0.3, p2 0.4 2 0.57 7229
0.00 p1 0.4, p2 0.4 2 0.74 4897
0.83 p1 0.4, p2 0.3 2 0.83 4023





where �¼��/�2 and �¼ [�2þ (2s/�2)]1/2. When �¼ 0, we

have

Eðe sNhÞ �
1

coshðhð2s=�2Þ1=2Þ
:

This Laplace transform turns out to be the exact Laplace

transform of

T :¼ inf t � 0 : WðtÞ � min
0�s�t

WðsÞ � h

� �
,

where W(t) is the Wiener process with drift parameter �
and volatility parameter �. The question concerning the

quality of the approximation of E(Nh) has been discussed

by several authors (Dobben de Bruy 1968, Reynolds 1975,

Khan 1978). Khan (1978) also provides refined approx-

imations, and empirical evidence concerning the quality

of such approximations is given in example 3 (pp. 74–75)

for normal and exponential distributions. Table 10 gives

the simulation results for this model.
The amount of expected gain/loss, when P0¼ 1, is

presented in table 11. Note that E(Y1)¼�0.485, which

might suggest that a short position might be profitable.
However, note that E(eY1)¼ e0.015 and E(eY1)4er if and
only if r50.015. Hence, the short position will be a losing
proposition when the risk-free rate is low. The various
correlations are presented in table 12. This shows that
Corr(Nh, SNh

)50 for all E(Y1) in the neighbourhood
of zero.

Conclusions

In this section we collect the salient features of this paper.

1. The sign of the correlation between S� and � is
always controlled by the factor

VarðS�Þ þ ðEðY1ÞÞ
2 Varð�Þ � VarðY1ÞEð�Þ

EðY1Þ

for any trading strategy that is adapted to the log
returns filtration, �(Y1, . . . ,Yn), n� 1. As shown
by the binomial and trinomial models, when
E(Y1)50, this amount is negative and rather

Table 10. Simulation results for the log normal model.

Normal model E(SNh
) Var(SNh

) E(Nh) Var(Nh) Sample size

� 0, � 0.5, h 1 0.02 2.41 9.97 68.81 2006
� 0, � 1.0, h 1 0.06 4.73 4.63 14.62 4318
� 0, � 2.0, h 1 0.08 12.09 3.02 5.75 6624

� 0.1, � 0.5, h 1 1.64 9.86 15.96 200.03 1253
� 0.1, � 1.0, h 1 0.50 7.06 5.48 21.18 3647
� 0.1, � 2.0, h 1 0.34 14.43 3.24 6.80 6167

� 0, � 0.5, h 2 0.14 6.02 25.63 425.12 780
� 0, � 1.0, h 2 0.09 9.38 9.80 68.20 2040
� 0, � 2.0, h 2 0.07 19.79 4.82 16.15 4144

� 0.1, � 0.5, h 2 5.73 64.83 57.93 2514.91 345
� 0.1, � 1.0, h 2 1.27 20.48 12.64 119.61 1577
� 0.1, � 2.0, h 2 0.65 24.66 5.21 19.57 3836

Table 11. Amount of expected gain/loss when P0 1 for the log normal model (� 0.485, � 1.0, h 1).

r 1 E(e�rNhþSNh
) Std. err. Sample size

0.04 0.08 0.03 3685
0.03 0.05 0.03 3729
0.02 0.003 0.04 3664
0.01 0.03 0.04 3735

Table 12. The various correlations for the log normal model.

Parameters h Corr(Nh,SNh
) Sample size

� 0.1, � 1.0 1 0.83 3604
� 0.0, � 1.0 1 0.79 4318
� 0.1, � 1.0 1 0.75 4908
� 0.1, � 1.0 2 0.86 1578
� 0.0, � 1.0 2 0.81 1990
� 0.1, � 1.0 2 0.75 2469



close to negative one for the trading the line

strategy, �¼Nh. The same conclusions seem to

hold for all the other models studied in this paper.

To show that E(SNh
) is a decreasing function of h,

when E(Y1)50, consider �2¼Nh2
, and �1¼Nh1

,

when h24h1. Now, Sn z� nE(Y1), being a

martingale,

EðS�2 � S�1 j F �1 Þ ¼EðS�2 � S�1 � ð�2 � �1ÞEðY1Þ j F �1 Þ

þ Eð�2 � �1 j F �1 ÞEðY1Þ

�0,

ð1Þ

where F �1 is the information up to time Nh1
. The

last inequality follows since �2¼Nh2
�Nh1

¼ �1 and
E(Y1)50. The inequality becomes strict if Nh2

5Nh1

with positive probability. Hence, E(SNh
) is a non-

increasing function of the triggering constant h,

whenever E(Y1)50. However, as the last item

(below) explains, this does not necessarily mean

that we will gain more with h2 versus h1, when

E(Y1)50.
2. If E(Y1)¼ 0, i.e. no drift in the log returns, then,

for any strategy, �, that is independent of the

filtration of the log returns, Corr(�, S�)¼ 0.

However, as the binomial and trinomial examples

have shown, this is not so when �¼Nh. For the

models we have presented, Corr(Nh, SNh
)50, even

when E(Y1)¼ 0. This means that the longer we wait

with the trailing stop strategy, Nh, the more we

expect to gain, when E(Y1)� 0.
3. Even when E(Y1)40 and small, the correlation of

Nh, SNh
, did not change sign in the examples for

which we were able to find a closed-form expres-

sion for Corr(Nh, SNh
) and also via simulation for

the other examples. Therefore, we may conclude

that Corr(Nh, SNh
)50 for all values of E(Y1) in the

neighbourhood of zero (and not just at zero), since

the correlation is a continuous function of E(Y1).

When E(Y1)40, by a similar argument as in (1), we

should remark that E(SNh
) becomes a non-decreas-

ing function of h.
4. As the examples of the last section suggest, the

variance of the duration that the position remains

open, Var(Nh), seems to have a parabolic relation-

ship with the expected duration, E(Nh). The

coefficients of the parabola are functions of the

trigger size h. Furthermore, the larger we pick

the triggering constant, h, the larger the expected

duration and, in turn, the more unstable the

strategy becomes.
5. The variance of SNh

also seems to have a parabolic

relation with E(SNh
). For instance, for both the

binomial and trinomial models,

VarðSNh
Þ ¼ h� EðSNh

Þ þ ðEðSNh
Þ � hÞ2:

Since E(SNh
)¼E(Y1) E(Nh), we also have

VarðSNh
Þ ¼ h� EðY1ÞEðNhÞ þ ðEðY1ÞEðNhÞ � hÞ2:

This indicates that, when E(Y1)50, one cannot
hope to find an optimal h that simultaneously
minimizes the expected stopped amount, E(SNh

),
and also minimizes the variance, Var(SNh

).
6. It seems reasonable to propose that the distribution

of a constant multiple of Nh, when E(Y)50, is
approximately a geometric random variable, at
least when assumptions (A1), (A2), and (A3) hold.
This should be compared with the known approx-
imation of Nh (Khan 1995, Khan and Khan 2004),
which states that Nh e��

� h is approximately an
exponential random variable, as h becomes large.

7. If the price dynamics are assumed to follow a
geometric random walk, even when E(Y1)50, any
trading strategy in the short position, that is
independent of the filtration �(Y1, . . . ,Yn), n� 1,
will give time discounted gains to be negative
provided E(eY1)4er, where r is the continuously
compounding discount rate. That is, for those price
dynamics in which E(Y1)50 and E(eY1)4er, there
cannot exist a trading strategy that is independent
of the log returns process, and gives positive time
discounted gains. In fact, this result remains valid
for a wide class of adaptive strategies. A similar
observation holds for the long position trading
strategies.

8. For the trailing stops strategy, Nh, adapted to the
filtration, �(Y1, . . . ,Yn), n� 1, we observe the
phenomenon of item (7) in our simulations. In
fact, for the geometric model this observation takes
even a more acute form. This is due to the fact that,
on the one hand, the geometric random variable
can take arbitrarily large values and, on the other,
the price can never go below zero, regardless of
how large in magnitude the negative value of the
double sided geometric random variable is. Since,
in a short position, by investing $1, one cannot
hope to gain more than $1; however, there is no
limit to how much one may lose. Hence, the short
position is inherently more risky than the long
position. Furthermore, an indicator of a possible
gain is the criterion E(eY1)5er, where r is the risk-
free rate, and not just that E(Y1)50.
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