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A C-SYMPLECTIC FREE S 1-MANIFOLD 
WITH CONTRACTIBLE ORBITS AND CAT = ! DIM 

CHRISTOPHER ALLDAY AND JOHN OPREA 

(Communicated by Ronald A. Fintushel) 

ABSTRACT. An interesting question in symplect ic geometry concerns whether 
or not a closed symplectic manifold can have a free symplectic circle action 
with orbits contractible in t he manifold. Here we present a c-symplectic ex­
ample, thus showing that the problem is truly geometric as opposed to topo­
logical. Furthermore, we see that our example is the only known example of 
a c-symplectic manifold having non-trivial fundamental group and Lusternik­
Schnirelmann category precisely half its dimension. 

1. INTRODUCTION 

A question that has arisen in symplectic geometry (see [MS, p. 156]) is whether 
a closed symplectic manifold can support a free symplectic action of the circle such 
that each orbit is contractible in the manifold. In this paper, we will present an 
example showing that this problem is essentially geometric, not topological. Specif­
ically, we shall give a cohomologically symplectic manifold with a free circle action 
having orbits contractible in the manifold. Furthermore, we shall show that this 
manifold provides an example (perhaps the first known) of a c-symplectic mani­
fold with non-trivial fundamental group having Lusternik-Schnirelmann category 
exactly half the dimension of the manifold. 

2. B ASICS ON CATEGORY AND C - SYMPLECTICNESS 

A space X has category n, denoted cat( X) = n, if and only if n is the least integer 
such that there is an open covering of X, U1 , ... , Un+i, with each Ui contractible to 
a point in the space X. A 2n-manifold M 2n is c-symplectic if it has a cohomology 
class w E H2 (M; Q) such that wn =j: 0. Of course, the point of the latter definition is 
to extract relevant homotopy properties from the definition of a symplectic manifold 
and, in this way, delineate the boundary between geometry and topology. This is 
then a theme of the paper. 

Properties 2.1. The basic properties which we shall use are the following (see 
[CLOT]) . 

(1) Category is a homotopy-type invariant. 
(2) The cup length of a space X is the largest integer k such that there exists 

a product x1 · · · Xk =I= 0, with Xi E .H*{X; A). Here the coefficient ring A may 



vary, and the cup length may be considered for any coefficients. The fundamental 
relation between cup length and category is cup(X) $ cat(X) . 

(3) An upper bound for category is given by cat(X) $ dim(X) (where, for spaces 
more general than manifolds, dim(X) denotes the covering dimension of X ). If X 
is (r - !)-connected, then cat(X) $ dim(X)/r. For instance, by (2) and the fact 
that (Cpk is simply connected , we see that cat(CPk) = k. 

(4) We have the following characterization of category for 3-manifolds. 

Theorem 2.2 (See [GoGo] or [OR]). Let M 3 be a closed 3-dimensional manifold. 
Then 

{

1 if 1r1(M)={l}, 
cat(M) = 2 if 1r1(M) is free and non-trivial, 

3 otherwise. 

(5) We have the following inequality when the inclusion of a fibre is null. 

Theorem 2.3 (See [CLOT] for instance). Suppose F ~ E .E.. B is a fibration and 
i ~ *· Then cat(E) $ cat(B). 

(6) If a c-symplectic manifold is simply connected, then we have cat(M) ~ 
cup(M) ~ n and cat(M) $ dim(M)/2 = n. Hence, cat(M) = n = dim(M)/2 . 
Non-simply connected c-symplectic manifolds of dimension 2n may have category 
between n and 2n. For instance, 

We say that M is c-symplectically aspherical if w E H 2 (M; Q) ,:,< 

Hom(H2(M), Q) vanishes on the image of the Hurewicz map 1r2(M) --+ H2(M). 
A c-symplectically aspherical manifold (M,w) has cat(M) = dim(M) . (See [RO].) 

3. THE CONTRACTIBLE ORBIT P ROBLEM 

Problem 3.1 (Contractible Orbit Problem [MS]) . Is it possible to have a free 
symplectic circle action on a closed symplectic man if old with orbits contractible in 
the man if old? 

Problem 3.2 (The Cohomological Contractible Orbit Problem) . Is it possible to 
have a free circle action on a closed c-symplectic man if old with orbits contractible 
in the manifold? 

Recall that an action is symplectic if each element of the group, thought of as 
a diffeomorphism of the manifold, preserves the symplectic form. (Also recall that 
Hamiltonian circle actions have fixed points, so they can never be free.) Note 
that the Cohomological Contractible Orbit P roblem removes the requirement that 
the action be somehow compatible with a type of geometry. Indeed, since S1 is 
connected, every element preserves the c-symplectic cohomology class. Also note 
that a positive solution for the Contractible Orbit Problem automatically provides 
a positive solution for the Cohomological Contractible Orbit Problem. Of course, 
it is also true that if the Cohomological Contractible Orbit Problem has a negative 
solution for a class of symplectic manifolds, then the Contractible Orbit Problem 
also has a negative solution for this class. This paper only concerns the more general 
Cohomological Contractible Orbit P roblem. 



Now, a free 8 1-action with contractible orbits would give a principal bundle to 
which Theorem 2.3 may be applied. (See !OW] for more general results on actions 
with contractible orbits.) Thus we obtain 

Proposition 3.3. The cohomological contractible orbit problem has a negative so­
lution for ( M, w) a c-symplectically aspherical manifold. 

Proof. Let 8 1 ~ M .E.. B be a principal bundle corresponding to a free circle action 
on A1. Because the orbits are contractible in M, we have i c:= *· By Theorem 2.3, 
cat(M) ~ cat(B). But this contradicts cat(M) = dim(M) > dim(B) ;:: cat(B). 
Hence, no such action exists. D 

A c-symplectic manifold ( M, w) is said to have the weak Lefschetz property if the 
cup product with wn-l gives an isomorphism H 1 (M; Q) -+ H 2

n -
1 (M; Q). From 

results of [A] and [LO], we have 

Proposit ion 3.4. The cohomological contractible orbit problem has a negative so­
lution for a c-symplectic manifold that has the weak Lefschetz property. 

Proof. As before, let 8 1 ~ M .E.. B be the principal bundle. Because the action 
is free , p is classified by a map B -+ B81 . Since wn =f. 0, but dim(B) = 2n - 1, 
w ~ Im(p*) . Hence, in the Leray-Serre spectral sequence for B -+ B81, d2(w) =I- 0. 
Let d2 ( w) = t ® u , where t E H 2 ( B 8 1; Q) is the polynomial generator, and u E 

H 1(M;Q). 
By Poincare duality and the weak Lefschetz property, there is v E H 1(M;Q) 

such that wn- 1uv = wn. Now, by considering d2 (wnv), which must be zero for 
degree reasons, it follows that d2 (v) =f. 0. In particular, p*: H 1 (B; Q) -+ H 1(M; Q) 
is not surjective. So, in the homotopy long exact sequence for p, it follows that 
1r1 (81) -+ 1r1 ( M) is not trivial. D 

Now let us look at the c-symplectic example which is our main focus. 

4. THE EXAMPLE 

Let X = 8 1 x 8 3 with S1 acting trivially on the first factor and by left multi­
plication on the second. By the slice theorem, there is an equivariant tube around 
each orbit; let C be one such tube in S3 and define B = [B,µ] x CCX, where [B,µJ 
is a closed interval in S1 . 

Now let A = X - Int(B) and note that 8A = 8B. Let M = A UaA A be the 
double of A along 8A. M is then a closed 4-manifold with free circle action. (A 
similar construction in [Ko] leads to 4-manifolds with zero minimal volume.) 

Consider 8A = 8B = {B} x CU{µ} x CUIB, µ] xT, where Tis the boundary torus 
of the tube C. So 8A consists of two solid tori whose boundaries are joined by line 
segments between corresponding points. In particular, restricted to corresponding 
meridians in the upper and lower solid tori, we have a cylinder (with top and 
bottom). To see the homotopy type of this boundary, crush the meridians of the 
upper and lower solid tori. This creates two-spheres from the cylinders and gives 
8A c:= 8 1 x 8 2 . We also see from this that Z ~ 1r1(8A) ~ 1r1(8B) ~ 1r1(B). 
Finally note that, since C is contained in the simply-connected S3-factor of X 



and 1r1(C) ~ 1r1(B) via the inclusion, we have 1r1(B) ~ 1r1(X). Now, since X = 
A Uc>A B , Van Kampen's theorem gives a pushout diagram: 

Z = 1r1 (8A) ~ 1r1 (A) 

~! ! 
Z == rr1(B) ~ 1r1(X) 

The top horizontal homomorphism is zero by the definition of the amalgamated 
product and the isomorphism 1r1(X) ~ 1r1(A) *1ri(8A) 1r1(B). Specifically, any el­
ement in 1r1 (A) *,,. 1 (8A) 1r1 ( B) can be written as a1 £ 1 b1 ri ... ak (k bk rk, where ai E 

1r1(A), bi E 1r1(B) and all exponents are ±1. Because 1r1(8A)--+ 1r1(B) is an iso­
morphism, the b's are all identified with elements of 1r1 (A) via the homomorphism 
1r1(8A) --+ 1r1(A). But 1r1(B) --+ 1r1 (X) is the zero homomorphism, so all the b's 
are the identity. T his means that 1r1(8A)--+ 1r1(A) is also the zero homomorphism. 
But then we have 

We also have 

1r1(orbit) ~ 1r1(C) ~ 1r1(B) ~ 1r1(8A) ~ 1r1(A). 

Since any orbit of the action on M lies in one of the two A's, we see that 1r1 (orbit) --+ 

1r1 (M) is zero as well. Since any orbit is a circle, we see that orbits are contractible 
inM. 

We can also compute the fundamental group of M = A UaA A by Van Kampen's 
theorem: 

1r1(8A) ~ 1r1(A) 

0 ! ! 
1r1(A) - 1r1(M) 

Because 1r1 (aA) ~ 1r1 (A), we obtain 1r1 (M) ~ 1r1 (A) *7ri (A) ~ Z*Z, the free group 
on two generators. 

This immediately implies that H1(M;Z) = Z EB Z = H 1 (M;Z). By Poincare 
duality, we have H 3 (M; Z) = Z EB Z. Of course H 4 (M; Z) = Z since Mis orientable. 
To determine H2 (M; Z), note that the existence of a free circle action on M implies 
that the Euler characteristic vanishes: x(M) = 0. Hence, 

0 = 1 + 2-b2 - 2+1 = b2 - 2 

which implies that b2 = 2 and H2(M; Z) =ZEB Z (since H3(M; Z) is torsion free) . 
Therefore, H 2 

( M; Z) = Z EB z. 
Finally, we claim that M is also c-symplectic. Let x and y denote two basis 

elements of H 2 (M; Q) = Q EB Q. If x2 ,j= 0 or y2 ,j= 0, then we are done, so 
suppose x2 = 0 = y2. Then (x + y) 2 = x2 + 2xy + y2 = 2xy. If xy = 0, then all 
products H 2 ® H2 --+ H4 are zero, and this violates Poincare duality. Thus, xy -/= 0 
and (x + y)2 -/= 0, providing a c-symplectic class. We summarize the preceding 
discussion in the following theorem. 

Theorem 4.1. There exists a 4-dimensional closed c-symplectic manifold and a free 
circle action on it with orbits contractible in the manifold. Thus, the co homological 
contractible orbit problem has an affirmative solution. 



5. L. S. CATEGORY OF THE EXAMPLE 

From Properties 2.1 , we see that symplectic or c-symplectic manifolds split into 
two types depending on whether they have a trivial or non-trivial fundamental 
group. If M 2n is c-symplectic and 1r1 ( M) = 0, then cat( M) = n. If 1r1 ( M ) =/= 0, 
then n::; cat(M) ::; 2n = dim(M). In fact, however, for the non-simply-connected 
case, it appears that not one single example of the lower bound being attained was 
known before the following 

Theorem 5.1. The manifold M 4 of Theorem 4.1 has cat(M) = 2. 

Proof. The free circle action gives a principal S 1-bundle 

S1
-+ M-+ M / S 1

, 

where M / S 1 is a closed 3-manifold. Because orbits of the S 1-action are contractible 
in M, the fibre inclusion S 1 -+ M is null-homotopic. By Properties 2.1, we know 
cat(M) ::; cat(M/S1). But, by the long exact sequence in homotopy, we also 
know that 1r1(M) = Z*Z = 1r1(M/81) and, again by Properties 2.1, we see that 
cat(M / S 1

) = 2. Since we know that cup( M) ;?: 2, we obtain 

2::; cup(M)::; cat(M)::; cat(M/81
) = 2. 

Hence cat( M) = 2. 0 

So we see that M is the first-known example of a c-symplectic manifold with non­
trivial fundamental group whose category is that of a simply-connected c-symplectic 
manifold of the same dimension. 

6. AFTERTHOUGHTS 

The manifold X = 8 1 x 83 is complex, so we can ask how much of this structure 
is inherited by M. We know that, even though M has the homology of 82 x T 2

, it 
cannot be Kahler because no compact Kahler manifold can have 11"1 = Z * Z (see 
[ABCKT]) . Moreover, by [ABCKT, Chapter 1, section 3], this also means that M 
cannot have a complex structure. 

Can M have an almost-complex structure then? Wu's criterion guarantees the 
existence of an almost-complex structure on a 4-manifold M if there is an integral 
class c E H 2 (M;Z) which reduces mod 2 to the second Stiefel-Whitney class W2 

and which satisfies c2([M ]) = 3a + 2x, where a is the signature of M and X is the 
Euler characteristic. Now, it can be seen that H2(M; Z) is generated by a pair of 
embedded 2-spheres each of which has self-intersection z.ero. (One S2 comes from 
the 8 1 x 8 2 where the gluing takes place, and a transverse 2-sphere is constructed 
from disks bounded by the Hopf circles.) This corresponds to the situation where 
H2 ( M; Z) is generated by x and y with x2 = 0 = y2 . This immediately implies that 
a = 0. Of course, as we noted above, x = 0 because M possesses a free circle action. 
Now (since M is orientable), w2 is characteriz.ed by the equation w2 u b = b U b 
for all b E H 2(M; Z/ 2). But then we have w2 U x = 0 = w2 U fj (where x and fj 
are the mod 2 reductions of the generators x and y), and we thus see that w2 = 0. 
Therefore, if we choose c = 0, ·wu's criterion provides an almost-complex structure 
onM. 

Finally, we can ask if Mis symplectic. Using Seiberg-Witten invariants, it can be 
shown that symplectic 4-manifolds with bt > 1 cannot contain symplectic spheres 
of non-negative square. In particular, they cannot contain symplectic spheres of 
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square zero. (More specifically, in [Ta], Tau bes showed that symplectic manifolds 
have non-zero Seiberg-Witten invariants while in [FS] and [Ko2] it was shown that 
these vanish in the presence of 2-spheres of non-negative square.) Although M itself 
has b! = 1, because 1r1 (M) = Z * Z, there are finite covers of M with arbitrarily 
large b! for which the embedded 2-spheres mentioned above lift. Therefore, these 
finite covers cannot be symplectic, and this implies that M is not symplectic as 
well. 

All of these questions ( and their answers!) point out the real difficulties in moving 
from the world of topology to that of geometry in proving or constructing coun­
terexamples to Problem 3.1 and in proving a symplectic analogue of Theorem 5.1. 
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