
Cleveland State University
EngagedScholarship@CSU

ETD Archive

2015

How Can Business Analytics Induce Creativity:
The Performance Effects of User Interaction with
Business Analytics
Tarek Soukieh

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

Part of the Business Administration, Management, and Operations Commons
How does access to this work benefit you? Let us know!

This Dissertation is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an
authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Recommended Citation
Soukieh, Tarek, "How Can Business Analytics Induce Creativity: The Performance Effects of User Interaction with Business Analytics"
(2015). ETD Archive. 889.
https://engagedscholarship.csuohio.edu/etdarchive/889

https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F889&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F889&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F889&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F889&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/889?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F889&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu


 
 

 

 
 

HOW CAN BUSINESS ANALYTICS INDUCE CREATIVITY: THE 

PERFORMANCE EFFECTS OF USER INTERACTION WITH 

BUSINESS ANALYTICS 

 

 

 

 

TAREK SOUKIEH  
 

 

 

 

 

 

Bachelor of Business Administration 

Damascus University 

March 1996 

 

 

Master of Business Administration 

The University of Toledo 

May 1999 

 

 

 

 

 

submitted in partial fulfillment of requirements for the degree 

DOCTOR OF BUSINESS ADMINISTRATION 

at the 

CLEVELAND STATE UNIVERSITY 

DECEMBER 2015 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©COPYRIGHTBY TAREK SOUKIEH 2015 

  



 
 

We hereby approve this dissertation for 

Tarek Soukieh    

Candidate for the Doctor of Business Administration degree  

for the  

Department of Information Systems 

and CLEVELAND STATE UNIVERSITY  

College of Graduate Studies 

 

________________________________________________ 

Dissertation Committee Chairperson, Dr. Raymond Henry 

 

_____________________________ 

 Department & Date 

 

 

________________________________________________ 

Committee Member, Dr. Radha Appan 

 

_____________________________ 

 Department & Date 

 

 

________________________________________________ 

Committee Member, Dr. Amit Ghosh 

 

_____________________________ 

 Department & Date 

 

________________________________________________ 

Committee Member, Dr. Robert Whitbred 

 

_____________________________ 

 Department & Date 

 

 

_________________ 

Student’s Date of Defense 

  



 
 

DEDICATION 

To 

My parents, my wife, and my kids 

 

This Research is dedicated to my parents, my wife and my kids, who encouraged 

me and helped me do this research. Special feelings of thanks to them as they always 

pray for me and encourage me to work hard. 

 

My Parents: Thank you for your love and support throughout my life. I learned passion, 

dedication, and caring from you. I am blessed to have you as my parents. I cannot thank 

you enough nor give you back a small portion of what you have given me, I love you. 

My Wife: Thank you for believing in me, for supporting my knowledge journey, and for 

your patience throughout this project. I will encourage you and support you in your 

studies. No words can do justice, I love you. 

My kids: You inspired me to do more and go after a doctoral degree. Persistent and 

continued learning is the message I want to pass to you through this work. I love you all. 

  



 
 

ACKNOWLEDGEMENT 

 

“In The Name of Allah, The Beneficent, The Merciful. All praise is only Allah's, the 

Lord of the Worlds" (Quran, Chapter 1). I am grateful, thankful, and full of humbleness 

for Allah’s blessing me and my family with the energy to leave Damascus and come to 

Cleveland to pursue this dream. My intention is to please Allah through this work; I wish 

for His acceptance and pleasure. My aspiration was always to be following the footsteps 

of Prophet Mohammed, peace be upon him, who spent his life learning and spreading 

knowledge.  

I would like to take this opportunity to thank a number of people. Firstly, Dr. Raymond 

Henry, my supervisor, who guided and helped me throughout the project. He has spent 

much time to help me with inspiring advice. Without his patient instructions, insightful 

criticism and expert guidance, the completion of this project would not have been 

possible. 

Secondly, all information system department professors who helped me with resources 

and information required for my dissertation. 

Lastly, all doctorate students, colleagues, and friends who were there to support me 

throughout classes and dissertation work. 

Thank you everyone. 

 



vi 
 

 

HOW CAN BUSINESS ANALYTICS INDUCE CREATIVITY: THE 

PERFORMANCE EFFECTS OF USER INTERACTION WITH BUSINESS 

ANALYTICS 

 

TAREK SOUKIEH 

 

ABSTRACT 

 

Most organizations today use business analytics systems mainly for efficiency; reducing 

cost by contacting the right customer, generating revenue by reducing churn, etc. 

Nevertheless, business analytics holds promise in generating insights and in making users 

more creative in their decision making process.  

Analytics technology is becoming sophisticated with very advanced technical 

capabilities. However, behavioral aspects (i.e. user interaction) of using business 

analytics software have not reached the same level of sophistication. Very little research 

in this field discusses how to implement analytical systems and what outcomes will it 

produce.  

We are looking at conditions that can enhance user interaction with business analytics 

systems leading to certain performance outcomes. We propose that the fit between users’ 

cognitive style (intuitive vs. rational), business analytics model representations (decision 

tree vs. clustering), and task type (convergent vs. divergent) can lead to efficiency but can 

have adverse effects on creativity because that might lead to mindlessness in the decision 

making process.  

  



vii 
 

TABLE OF CONTENTS 

ABSTRACT ........................................................................................................................................ vi 

LIST OF TABLES ................................................................................................................................ ix 

LIST OF FIGURES .............................................................................................................................. xi 

CHAPTER I ........................................................................................................................................ 1 

INTRODUCTION ................................................................................................................................ 1 

CHAPTER II ....................................................................................................................................... 8 

LITERATURE REVIEW ........................................................................................................................ 8 

2.1 Business Analytics .................................................................................................................. 8 

2.2 Cognitive Fit Theory ............................................................................................................. 19 

2.3 Mindfulness Theory ............................................................................................................. 27 

2.4 Cognitive Experiential Self Theory ....................................................................................... 30 

2.5 Cognitive Style and DSS in earlier research ......................................................................... 35 

2.6 Technological Frames of Reference Theory ......................................................................... 38 

2.7 Creativity .............................................................................................................................. 40 

CHAPTER III .................................................................................................................................... 45 

RESEARCH MODEL AND HYPOTHESIS DEVELOPMENT .................................................................. 45 

3.1 Variable Definitions .............................................................................................................. 45 

3.2 Model Development ............................................................................................................ 54 

CHAPTER IV .................................................................................................................................... 63 

RESEARCH METHODOLOGY ........................................................................................................... 63 

4.1 Experiment Survey ............................................................................................................... 63 

4.2 Experiment Sample .............................................................................................................. 64 

4.3 Experiment Variables ........................................................................................................... 65 

4.4 Experiment Design ............................................................................................................... 66 

4.5 Creativity Construct ............................................................................................................. 75 

4.6 Analytics Frames of Reference Construct: ........................................................................... 80 

CHAPTER V ..................................................................................................................................... 88 

RESULTS AND DATA ANALYSIS ....................................................................................................... 88 

5.1 Cognitive Fit Model .............................................................................................................. 89 

5.2 Full Model ............................................................................................................................ 91 



viii 
 

5.3 Post Hoc Analysis ................................................................................................................. 93 

5.4 Full Model (with continuous variables) ............................................................................. 101 

5.5 Sensitivity Analysis ............................................................................................................. 103 

CHAPTER VI .................................................................................................................................. 105 

DISCUSSION AND IMPLICATIONS ................................................................................................. 105 

6.1 Discussion........................................................................................................................... 105 

6.2 Research Implications ........................................................................................................ 107 

6.3 Practical Implications ......................................................................................................... 109 

CHAPTER VII ................................................................................................................................. 113 

FUTURE RESEARCH....................................................................................................................... 113 

7.1 Contribution ....................................................................................................................... 113 

7.2 Limitations.......................................................................................................................... 115 

CHAPTER VIII ................................................................................................................................ 116 

CONCLUSION ................................................................................................................................ 116 

REFERENCES ................................................................................................................................. 118 

APPENDIX ..................................................................................................................................... 131 

Appendix-A Research Instrument ............................................................................................ 131 

 

  



ix 
 

LIST OF TABLES 

Table 1: Overview of Available Software for Statistical Analysis (Louridas & Ebert, 

2013) ................................................................................................................................. 11 

Table 2: Business Intelligence and Analytics Evolution Key Characteristics and 

Capabilities (Chen et al., 2012) ......................................................................................... 13 

Table 3: Business Intelligence and Analytics Applications: From Big Data to Big Impact 

(Chen et al., 2012) ............................................................................................................. 14 

Table 4: Business Intelligence and Analytics Research Framework: Foundational 

Technologies and Emerging Research in Analytics (Chen et al., 2012) .......................... 15 

Table 5: Differences Between Intuition and Analysis (Allinson & Hayes, 1996) ............ 35 

Table 6: Creativity construct definitions (Dean et al., 2006) ............................................ 47 

Table 7: Contrasting Mindfulness with Cognitive Fit ...................................................... 59 

Table 8: Experiment Variables ......................................................................................... 66 

Table 9: Two Way Fit Experiment Cells (Analytics Representation vs. Task) ................ 67 

Table 10: Three Way Fit Experiment Cells (Cognitive Style vs. Analytics Representation 

vs. Task) ............................................................................................................................ 67 

Table 11: Four Way Fit Experiment Cells (Analytics Frames of Reference vs. Cognitive 

Style vs. Analytics Representation vs. Task) .................................................................... 67 

Table 12: Fit Scenarios ..................................................................................................... 69 

Table 13: Inter-Rater Reliability on Sub-dimensions ....................................................... 77 

Table 14: Correlations Among Sub-dimensions ............................................................... 77 

Table 15: SEM Fit Indices ................................................................................................ 78 

Table 16: Effects in Linear Equations .............................................................................. 79 

Table 17: Covariances among Exogenous Variables ........................................................ 80 

Table 18: SEM Fit Indices for Analytics Frames of Reference ........................................ 85 

Table 19: Effects in Linear Equations for Analytics Frames of Reference ...................... 87 

Table 20: Covariance Among Exogenous Variables for Analytics Frames of Reference 87 

Table 21: Fixed Effects of Two Way Fit Model ............................................................... 90 

Table 22: Least Squares Means of Two Way Fit Model .................................................. 90 

Table 23: Fixed Effects Model Results ............................................................................. 92 

Table 24: Interaction Effects of Full Model ..................................................................... 93 

file:///C:/Users/tsoukieh/Desktop/TSoukieh%20Dissertation%2010Dec2015.docx%23_Toc437426391
file:///C:/Users/tsoukieh/Desktop/TSoukieh%20Dissertation%2010Dec2015.docx%23_Toc437426392
file:///C:/Users/tsoukieh/Desktop/TSoukieh%20Dissertation%2010Dec2015.docx%23_Toc437426398
file:///C:/Users/tsoukieh/Desktop/TSoukieh%20Dissertation%2010Dec2015.docx%23_Toc437426401


x 
 

Table 25: Significant Differences in Least Squares Means for Creativity ....................... 94 

Table 26: Fixed Effects of the Full Model (with continuous variables) ......................... 102 

Table 27: Interaction Effects of the Full Model (with continuous variables) ................. 102 

  

file:///C:/Users/tsoukieh/Desktop/TSoukieh%20Dissertation%2010Dec2015.docx%23_Toc437426403
file:///C:/Users/tsoukieh/Desktop/TSoukieh%20Dissertation%2010Dec2015.docx%23_Toc437426404
file:///C:/Users/tsoukieh/Desktop/TSoukieh%20Dissertation%2010Dec2015.docx%23_Toc437426405


xi 
 

LIST OF FIGURES 

Figure 1: Business Intelligence and Analytics Related Publication Trend from 2000 to 

2011 (Chen, Chiang, & Storey, 2012) ................................................................................ 9 

Figure 2: Tagcloud Visualization of Major Topics in the Business Intelligence and 

Analytics Literature (Chen et al., 2012)............................................................................ 17 

Figure 3: Cognitive Fit Model (Vessey, 1991) ................................................................. 20 

Figure 4: Extended Cognitive Fit Model (Shaft & Vessey, 2006) ................................... 24 

Figure 5: Extended Cognitive Fit Model (Shaft & Vessey, 2006) ................................... 25 

Figure 6: Theory of Technology Dominance (V. Arnold, 1998) ...................................... 26 

Figure 7: Conceptual Model ............................................................................................. 38 

Figure 8: Creativity Enhancing Decision Making Support Systems (Forgionne & 

Newman, 2007) ................................................................................................................. 43 

Figure 9: Relationships Among Creativity Dimensions (Dean et al., 2006) .................... 46 

Figure 10: Divergent vs Convergent Tasks ...................................................................... 54 

Figure 11: Research Model ............................................................................................... 54 

Figure 12: Mindlessness vs. Mindfulness Process ............................................................ 58 

Figure 13: Components of Fit ........................................................................................... 61 

Figure 14: Experiment Test .............................................................................................. 68 

Figure 15: Experiment Design (Split Plot Design) ........................................................... 70 

Figure 16: Gender Distribution ......................................................................................... 70 

Figure 17: Age Distribution .............................................................................................. 71 

Figure 18: Business Analytics Experience ....................................................................... 71 

Figure 19: Education Distribution .................................................................................... 72 

Figure 20: Decision Tree Experience Distribution ........................................................... 72 

Figure 21: Clustering Experience Distribution ................................................................. 72 

Figure 22: Cognitive Style Index Distribution.................................................................. 73 

Figure 23: Analytics Frames of Reference Distribution ................................................... 73 

Figure 24: Average Time Spent by Each Cognitive Style on the Two Analytics Outputs74 

Figure 25: Average Time Spent by Each Cognitive Style using Clustering Output ........ 75 

Figure 26: Average Time Spent by Each Cognitive Style using Decision Tree Output... 75 

Figure 27: Creativity Construct SEM ............................................................................... 79 

file:///C:/Users/tsoukieh/Desktop/TSoukieh%20Dissertation%2010Dec2015.docx%23_Toc437426419
file:///C:/Users/tsoukieh/Desktop/TSoukieh%20Dissertation%2010Dec2015.docx%23_Toc437426427
file:///C:/Users/tsoukieh/Desktop/TSoukieh%20Dissertation%2010Dec2015.docx%23_Toc437426430
file:///C:/Users/tsoukieh/Desktop/TSoukieh%20Dissertation%2010Dec2015.docx%23_Toc437426431
file:///C:/Users/tsoukieh/Desktop/TSoukieh%20Dissertation%2010Dec2015.docx%23_Toc437426432


xii 
 

Figure 28: Correlations Among Items .............................................................................. 85 

Figure 29: Analytics Frames of Reference Construct SEM .............................................. 86 

Figure 30: Creativity Least Squares Means Estimates for Two Way Fit Models ............ 90 

Figure 31: Creativity LSMeans for Two Way Fit ............................................................. 95 

Figure 32: Creativity LSMeans for Two Way Fit with Analytics Frames of Reference .. 96 

Figure 33: Creativity LSMeans for Three Way Fit ........................................................... 97 

Figure 34: Creativity LSMeans for Three Way Fit with Analytics Frames of Reference 98 

Figure 35: Creativity LSMeans for Fit vs. No Fit Across Four Variables ...................... 100 

Figure 36: Residuals for Creativity ................................................................................. 101 

file:///C:/Users/tsoukieh/Desktop/TSoukieh%20Dissertation%2010Dec2015.docx%23_Toc437426433
file:///C:/Users/tsoukieh/Desktop/TSoukieh%20Dissertation%2010Dec2015.docx%23_Toc437426435


1 
 

 

 

 

CHAPTER I 

INTRODUCTION 

 

Business analytics has emerged as a hot topic and is widely seen as the next big trend in 

the information system field. Business Analytics is defined by Davenport (2010) as “the 

broad use of data and quantitative analysis for decision making within organizations. It 

encompasses query and reporting, but aspires to greater levels of mathematical 

sophistication.” In a study done by The Data Warehouse Institute in 2009, “Advanced 

Analytics” was identified as having the highest growth in next generation trends.  

The research report that appeared in MIT Sloan Management Review in fall 2011 

discussed the role business analytics can play in attaining competitive advantage and the 

widening divide between companies who embraced business analytics and the ones who 

did not (Kiron, Shockley, Kruschwitz, Finch, & Haydock, 2011). One of the keys to 

business impact lies in the ability to turn analytics into insights that results in business 

action (Harriott, 2013). Davenport (2010) emphasized that analytics should help generate 

insights and design strategies that can help companies achieve competitive advantage.  

Researchers have stressed the need to turn analytics output into actionable insights 

(Fayyad & Uthurusamy, 2002), (Pearson, 2012). Nevertheless, that is not happening 
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today because of different challenges facing analytics in unlocking insights (S. E. Arnold, 

2013). Wilson (2009) notes that “turning analytics into insights is still a rarity, even in the 

US.”  

Business analytics systems sit at the top of the information systems hierarchy. 

Information systems at the lowest level of the hierarchy should help users with 

automation and efficiencies of business processes (Laudon, Laudon, & Brabston, 2012). 

Information systems at the highest level of the hierarchy should help users generate 

insights and be creative in uncovering the future and designing strategies. Research in 

this area, however, has tended to look at efficiency as the performance effect of business 

analytics and decision support systems. Therefore, it is imperative that we research 

conditions that help business analytics users generate insights and become creative in 

their decision making. 

Business analytics software is becoming sophisticated with very advanced technical 

capabilities. Nevertheless, the behavioral aspects (i.e. user interaction) of using business 

analytics software have not reached the same level of sophistication. Very little research 

in this field discusses how to implement analytical systems and what outcomes these 

systems will produce. In short, the human interaction with these new software 

technologies can have surprising and unpredictable results. 

Practitioners have pointed out to the fact that user interaction and behavioral aspects are 

the major challenges facing implementations of business analytics. Fayyad (1996) 

identified user interaction and prior knowledge as major challenges to business analytics 

deployment. They highlight the challenge of creating environments that can help users 
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achieve their goals through matching appropriate tools and techniques. They also 

recommend a focus on human-computer interaction rather than automated systems. 

Researcher has noted how analytics users are increasingly asking the question of how to 

turn discovered information into action (Kohavi, Rothleder, & Simoudis, 2002). The 

main issues reported show that current solutions are very technical and users find it 

difficult to understand the outcome and what to do with it.  

Academics have also pointed to the same challenges. “The form of output is yet another 

challenge. The inputs to advanced analytics include immense amounts of data but the 

output needs to be simple, concise, readable, and usable. Finding or designing a system 

that is able to analyze the data and return output in a way that is valuable to the end-users 

is extremely important”(R. Bose, 2009). “Since data mining usually involves extracting 

“hidden” information from a database, this understanding process can get somewhat 

complicated. Because the user does not know beforehand what the data mining process 

has discovered, it is much bigger leap to take the output of the system and translate it into 

an actionable solution to a business problem”(R. Bose, 2009). 

Coll (1991) posit that the reason for the degrading effect of DSS on decision quality in 

several cases was that DSS systems are not deployed appropriately, and that user’s feel 

implicit criticism of their human abilities working with DSS systems. This is an 

indication that there is a lack of fit between user’s and DSS systems, and that DSS 

deployment process need to incorporate different – not only technical but also behavioral 

– factors and enhance user interaction. Kriegel (2007) identified usability in business 

analytics as a major challenge and pointed to the fact that users do not understand 

analytics algorithms and patterns. Additionally, researchers posit that the reason behind 
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deployment process failure is the failure of systems to allow managers to make decisions 

their own way (De Waele, 1978). As a result many managers complain that DSS systems 

are hard to understand, learn, and use (Sprague & Carlson, 1982).  

Designers of business analytics investigate the data structure to decide on the best 

analytics methodology to use. Focusing on the data structure and not giving proper 

attention to the user’s cognitive style and the task in hand, makes designers of business 

analytics lose sight of the ultimate goal of business analytics which is to induce creativity 

and generate insight. We are proposing that designers should investigate user’s cognitive 

style and the task in hand to decide on the best analytics methodology to use. 

In a latest article of IEEE computer graphics and applications, Choo (2013)argued the 

same thing:  

“Researchers who design computational methods must realize that making 

an algorithm more interactive and interpretable in practical data analysis 

scenarios is just as important as addressing practical concerns such as the 

data’s maximum applicable size, computation time, and memory 

requirements.” 

Researchers are developing the “Business Analytics Capability Model” that guides 

organizations in enabling BA to create value for organizations. Establishing a sound 

foundation of high quality, usable, and integrated data creates an enterprise BA 

capability. Organizations should focus their attention on three dimensions: people, 

process, and technology in order to turn this data into insights that drive business 

decisions (Wixom, Yen, & Relich, 2013). Empowering users across the organization with 
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pervasive, predictive real time analytics enables the transformation of insights (Nastase & 

Stoica, 2011). 

Cognitive fit theory (CFT) provides a theoretical foundation of user interaction with 

business analytics and the interaction effect on performance. We need to understand three 

important dimensions of user’s interaction with business analytics:  task, user, and 

technology. CFT can be used to show how fit between these variables leads to efficiency 

in decision-making outcomes. The models developed show that a match between the 

technology, the user, and the task will make decision making process more efficient. A 

mental model will be constructed easily when the match exist which helps decision 

maker in finding the solution.   

Although cognitive fit research mainly addresses efficiency has not explored other 

performance effects such as creativity, the absence of cognitive fit may help us 

understand situations that will produce other outcomes.  Not having a cognitive fit might 

not necessarily be a bad thing. Mindfulness research suggests that disrupting the mental 

model of the decision maker can help in immersing the decision maker in the current 

problem and to think thoroughly of the situation (E. J. Langer & Piper, 1987). While 

mindfulness might degrade efficiency, the benefit may be to spur more creative solutions 

by the user. We integrate mindfulness theory with CFT in our research model in order to 

explore cognitive fit effects on creativity outcomes and insights generated through 

analytics. 

Cognitive fit research has focused on symbolic and spatial output across simple tasks and 

complex tasks.  Predictive analytics methodologies produce output that is different than 
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the traditional business intelligence reporting output. Therefore, we will use decision 

trees and clustering as the two business analytics outputs. Decision trees exemplify the 

symbolic type of output, and clustering exemplifies the spatial type of output. The types 

of questions addressed with analytics move beyond simple and complex tasks. The tasks 

that will be tested in our research are convergent and divergent processes. These types of 

tasks allow us to examine creativity in a more direct way. 

In order to be complete in our understanding of user interaction with business analytics 

and the performance effects, we will explore other potential causal mechanism that can 

have an influence. Cognitive experiential self-theory and technology frames of reference 

can shed light on the causal mechanism. Cognitive fit assumes that all users will 

experience fit the same way. Users differ in the approach they take to arrive at a decision. 

Several researchers stressed that individual user characteristics should play an important 

role in designing DSS systems (McKenney & Keen, 1974), (Davis & Olson, 1985). 

Vessey (1991) acknowledges that decision maker’s use different processes in different 

type of tasks, but individual decision making styles are not included as part of CFT. 

Cognitive styles are an individual’s consistent approach to organizing and processing 

information during thinking (Epstein, 2003). Cognitive experiential self-theory identifies 

two prominent approaches used by users to make a decision; experiential and rational 

(Epstein, 2003). Our research will explore how cognitive style influences cognitive fit 

effect on performance. 

Technology frames of reference describe the non-contextual factors that work in the 

background and provide facilitating and restraining effects. Cognitive fit theory examines 

context specific cognitive components of the problem that directly affect the 
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understanding of the problem; while frames of reference examines surrounding cognitive 

factors that work in the background and have both facilitating and restraining effects. 

Cognitive fit looks at the mental model of the elements in the current situation; while 

technological frames of reference look at the mental model of the situation itself.  

Research Question 

Our research is looking at conditions that would make user interaction with business 

analytics improve insights generation (creativity).  

We are investigating whether the fit between clustering output and divergent type of task, 

or between decisions trees output and convergent type of task, have a negative influence 

on creativity, and if the absence of this fit have a positive influence on creativity. We will 

also explore if cognitive style and analytics frames of reference amplify the above 

identified influences. 

The first section will include a review of relevant research and theoretical foundation and 

will identify the research gap in extant research. The second section will give a definition 

of the variables used in the model. The third section will introduce the model. The fourth 

section will discuss the methodology proposed to test the model. The fifth section will go 

through research implication and then practical implications. At the end the conclusion 

will summarize the findings. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Business Analytics 

Business analytics (BA) is a hot trend in computing and the number of books, white 

papers, webinars, and research reports indicate its importance (Watson, 2011). In late 

1980s and early 1990s data warehousing and business intelligence (BI) were hot and BI 

was the umbrella term for technologies, processes, and applications that support decision 

making; nowadays, analytics is the umbrella term (Watson, 2011).  

Big data is also hot and is changing the scope of BA. Organizations are trying to tap into 

structured and unstructured data sets coming from new sources like social networks, 

documents, emails, call centers, and websites. Software vendors are creating new 

generation business analytics that can be used with big data to deliver insights. Figure 1 

below shows the rise in business analytics and big data in related research publications 

between the years 2000 to 2011. 
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Figure 1: Business Intelligence and Analytics 

Related Publication Trend from 2000 to 2011 (Chen, Chiang, & Storey, 2012) 

“Business analytics systems encompass the people, processes, and technologies involved 

in the gathering, analysis, and transformation of data used to support managerial decision 

making” (Cosic, Shanks, & Maynard, 2012). BA systems were defined by Negash (2004) 

by the use of advanced statistical analysis tools to discover patterns, predict trends, and 

optimize business processes. 

“Business analytics allows organizations to face forward, bringing insight to 

transformative decisions” (Nastase & Stoica, 2011). It benefits all aspects of an 

organization’s value chain, including: inbound logistics, operations, outbound logistics, 

marketing and sales, and service” (Nastase & Stoica, 2011). 

The following are categories of analytics (Watson 2011):   
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- Optimization analytics: mathematical programming like linear and integer 

programming, and simulation. 

- Predictive analytics: decision trees, CART, generic algorithms, and neural 

networks.  

- Descriptive analytics: data visualizations, dashboards and scorecards, drillable 

OLAP reports, published reports, SQL queries. 

Another interesting categorization of business analytics that is used by practitioners is: 

Data analysis and Traditional BI, and advanced analytics. 

- Data Analysis and Traditional BI: “BI systems combine data gathering, data 

storage, and knowledge management with analytical tools to present complex 

internal and competitive information top planners and decision makers.” (Negash, 

2004). Traditional BI uses reports, dashboards, and visualizations to look at 

historical events which can inform decision making process. 

- Advanced Analytics: “The overall process of turning low-level data – database, 

textual, and Web – into high-level knowledge by extracting patterns or models 

from observed data. The mining of data in these three forms uncovers patterns in 

them using predictive techniques” (R. Bose, 2009). 
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A number of analytics software’s are available in the market today. Louridas and Ebert 

(2013) provided a list of the most popular statistical analysis shown in table 1. Their list 

shows how these software tools differ in terms of statistical sophistication required from 

their users, ease of use, and whether they are primarily stand-alone software packages or 

programming languages with statistical capabilities.   

Table 1: Overview of Available Software for Statistical Analysis (Louridas & Ebert, 2013) 

Watson (2011) notes that “analytics has a longer history than most people think” Over the 

years terminology has evolved to describe similar underlying tools and principles to 

decision support systems (DSS) (Watson, 2011). DSS is defined by Zwass (1998) as “an 

information system which is designed to support decision makers by applying decision 
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models to large collections of data.” This definition closely aligns with views of Business 

Analytics. While keeping a focus on Business Analytics; decades of DSS academic 

research to help frame our understanding of analytics. With limited prior academic 

research on business analytics, DSS research helps address the behavioral aspect of 

implementations (i.e. user interaction) with the technical features of systems.  

Business analytics is evolving and research opportunities are emerging as well (Chen et 

al., 2012). Analytics in the beginning was all about structured data that gets cleaned and 

transferred into an analytics data warehouse where the data is used for statistical 

modeling and then presented through interactive dashboards to users. Later, BA grew into 

social media and unstructured data sets, where text mining and social network analysis 

became paramount. The latest step in the evolution of BA is mobile visualizations and 

analysis. Analytics went from a focus on BI technologies in 1.0 into a focus on big data, 

and now 3.0 focuses is embedding analytics into products and offerings (T. H. 

Davenport, 2013). Analytics 3.0 according to Davenport (2013): 

“Analytics 3.0 is a new resolve to apply powerful data-gathering and 

analysis methods not just to a company’s operations but also to its 

offerings—to embed data smartness into the products and services 

customers buy.” 
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Table 2: Business Intelligence and Analytics Evolution 

Key Characteristics and Capabilities (Chen et al., 2012) 

 

Analytics is penetrating a lot of disciplines and its applications are becoming widespread. 

Researchers are promoting the use of predictive analytics in information systems research 

where it can help in building theories and in creating useful practical models (Shmueli & 

Koppius, 2011). Society for learning analytics (SOLAR) is also promoting the use of 

analytics in learning and training and promoting an analytics culture inside educational 

institutions (Siemens, 2013). Table 3 shows the different applications of BA in e-

commerce, e-government, science, health, and security (Chen et al., 2012). 



14 
 

 

Table 3: Business Intelligence and Analytics Applications:  

From Big Data to Big Impact (Chen et al., 2012) 
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“Business Analytics Capability Model” focuses on three dimensions people, process, and 

technology that turn data into insights that drive business decisions (Wixom et al., 2013). 

Delivering value from BA technologies is a challenge that needs to be carefully managed. 

The market is advancing BA with progressive technologies and that is putting pressure on 

researchers to create research that uncover the potential of BA. The following table 4 by 

Chen (2012) shows a list of foundational technologies and emerging research in BA. 

 

Table 4: Business Intelligence and Analytics Research Framework: Foundational Technologies and 

Emerging Research in Analytics (Chen et al., 2012) 
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BA is more than “nice-to-have” and is now a requirement for competing in the 

marketplace (Watson, 2011). Numerous case studies on business analytics have shown it 

can provide benefits to organizations by enabling improvement of business processes, 

firm performance, and creating competitive advantage (Kohavi et al., 2002). BA systems 

are essential for enterprises and companies’ failing to adopt BA systems have a big gap 

with their competitors (Kiron et al., 2011). 

In “Competing on Analytics” book, Davenport gives numerous examples of very 

successful companies achieving competitive advantage through BA. Harrah’s 

Entertainment became an industry leader with a high profile analytics in areas such as 

customer profitability, expected lifetime value, campaign design and development, and 

customer segmentations. The following tag cloud shown in figure 2 shows competitive 

advantage as a topic discussed heavily in BA related tags. This tag cloud was generated 

from a list of publications from 2000-2011, these keywords were then ranked based on 

their frequency, and the top 30 keywords displayed using the tag cloud visualization. 

More important keywords are highlighted with larger fonts as shown in figure 2 (Chen et 

al., 2012). 
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Figure 2:Tagcloud Visualization of Major Topics in the Business Intelligence and Analytics 

Literature (Chen et al., 2012) 

 

In the information systems hierarchy, a DSS system is a system layer that sits on top of 

the transactional processing systems (TPS)(Laudon et al., 2012). TPS manages and stores 

transactions and provides standardized reporting which helps in making short term 

decisions. TPS goal is to give managers the ability to audit operational processes and 

provide feedback so that these operational decisions can be made faster with fewer errors.  

DSS systems have a different goal. DSS produce advanced analytics and predictions so 

that top level managers can be innovative in their thinking process and can be creative in 

designing strategies. Knowing this, when DSS researchers addressed performance, they 

used efficiency as the outcome. In practice we see the majority of analytics software 

industry focusing mainly on using analytics to make faster decisions. While efficiency is 

an important performance outcome, creativity is another important performance outcome 

that has largely been overlooked.  

Business analytics should help organizations unlock insights (Fayyad & Uthurusamy, 

2002), (Pearson, 2012). However, many companies are facing challenges in turning 

analytics into actionable insights and many organizations are failing in the deployment of 
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analytics(S. E. Arnold, 2013), (Wilson, 2009). BA software vendors are successful in 

creating a new generation of BA systems that brings lots of capabilities and advanced 

algorithms to the market. Behavioral research on these new analytics technologies have 

not picked up in momentum yet (Montibeller & Durbach, 2013). User interaction with 

BA systems is a challenge and lots of research is needed (Fayyad & Uthurusamy, 2002). 

Research on user characteristics and the interaction with DSS was dominant in the 1980s, 

but it has winded down a lot after Huber (1983) criticism of the challenges to 

customizing DSS according to user’s cognitive style. The new theories in cognitive style, 

the new advances in the science about intuition and brain functions, and the new 

advances in BA technologies put pressure on researchers to advance the behavioral 

studies on user interactions with DSS.  

Several studies show the benefits of BA to organizations, but they fail to offer theoretical 

explanations of the reasons these benefits occur (Cosic et al., 2012). Extant research on 

decision support systems’ (DSS) effectiveness produced contradicting results. Many 

researchers have demonstrated the positive effect DSS can have on decision quality 

(Sharda, Barr, & McDonnell, 1988), (Eckel, 1983), (McIntyre, 1982). At the same time, 

several researchers have shown that DSS use results in lower quality decisions (Coll et 

al., 1991), (Aldag & Power, 1986), (Goslar, Green, & Hughes, 1986), (King & 

Rodriguez, 1978), (Joyner & Tunstall, 1970). User interaction can provide benefits to 

understanding the way DSS generate benefits (Coll et al., 1991).  

There are many challenges facing BA in the usability and user interaction discipline 

(Kriegel et al., 2007),(Fayyad & Uthurusamy, 1996). Turning BA results into actionable 
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insights is a major challenge and users do not understand BA output or what to do with it 

(Kohavi et al., 2002).  

IBM recognized the need to focus on integrating analytics with human cognition to 

generate insights. IBM next big thing after Watson is “Cognitive Systems”. According to 

IBM Research (http://www.research.ibm.com/cognitive-computing), Cognitive Systems 

are categories of technologies that uses machine learning to enable people and machines 

to interact more naturally to extend and magnify human expertise and cognition. 

Cognitive systems will extend our cognition and free us to think more creatively and 

speed innovation. IBM held the first Cognitive System Colloquium in October 2013. 

2.2 Cognitive Fit Theory 

Cognitive fit theory was introduced by Vessey (1991); the theory proposes that the 

correspondence between task and information representation formats leads to superior 

task performance for individual users. Shaft and Vessey (2006) extended the cognitive fit 

theory and split information representation into internal representation and external 

representation of the problem domain. 

How information is presented and the task characteristics affect how information is 

processed in working memory and the decision processes used to arrive at a decision 

outcome (Vessey, 1991). The theory suggests that efficiency and effectiveness of the 

problem solution depends on a fit between the problem representation and the problem 

solving task. Cognitive fit occurs when the decision processes required by the task match 

the decision processes supported by the problem representation. When cognitive fit 

occurs, a consistent and accurate mental representation of the problem results. This, in 

http://www.research.ibm.com/cognitive-computing
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turn Leads to more effective and efficient task performance. When the problem 

representation does not match the task, cognitive fit will not happen because similar 

decision processes cannot be used on both the problem representation and the task. As a 

result, the problem solver must exert additional cognitive load to solve the problem which 

will increase task time (Vessey, 1991),(Vessey & Galletta, 1991). 

 

Figure 3: Cognitive Fit Model (Vessey, 1991) 

 

According to Vessey (1991) the cognitive process of interest goes as follows: 1) when 

information representation, internally and externally, and task both assert similar types of 

knowledge, 2) this will lead the problem solver to formulate a consistent memory 

representation, and there will be no need for any mental representation transformation, 3) 

which will lead to a more effective and efficient problem-solving performance.  

Internal representation is what the decision maker brings to the task based on prior 

knowledge and experience. External representation is the way the task is presented. 

Mental representation is represented in working memory and determines the decision 
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processes and strategies used during problem solving for task solution. Problem solving 

performance is usually captured in terms of accuracy or effectiveness.  

Graphs are spatial problem representations, since they emphasize and provide 

visualizations of the relationships among the data and allow the user to view the data as 

an integrated unit. While tables are symbolic problem representations, since they present 

discrete data values (Vessey, 1991),(Vessey & Galletta, 1991). External representation 

used in cognitive fit papers has evolved through the years from graphs vs. tables into 

maps and multimedia. Tasks have been extended from spatial vs. symbolic to simple vs. 

complicated to estimations and projections.  

Upon reviewing cognitive fit literature used in the information systems discipline, you 

can recognize the following observations relevant to our study phenomenon. First, 

creativity as a dependent variable was not discussed nor tested in the literature. Most of 

the studies used efficiency and effectiveness to measure the outcome of cognitive fit. 

Second, there is not enough research on the absence of cognitive fit and how that can 

affect different outcomes. It might be as interesting to research different outcomes when 

cognitive fit does not happen. Third, external representations variable in cognitive fit 

theory has moved beyond the traditional graph vs. table literature and has incorporated 

many different kinds of representation formats. Maps, lists, and spreadsheets are some 

examples. Fourth, task variable has also been tested in other than spatial and symbolic 

types. For example, analytics vs. holistic was used, and simple vs. complex. Fifth, IS 

researchers have extended cognitive fit theory by adding other variables to the original 

model and by incorporating cognitive fit theory as the base for other theories 



22 
 

development as in the technology dominance theory. In the following paragraphs, we will 

expand on the above observations in relevance to our study. 

Information systems studies that used cognitive fit, measured the dependent variable in 

terms of efficiency in most cases. The dependent variable was measured using time and 

accuracy in majority of studies(Vessey & Galletta, 1991), (Dennis & Carte, 1998), 

(Mennecke, Crossland, & Killingsworth, 2000), (Speier, Vessey, & Valacich, 2003), 

(Speier, 2006), (Hock, Goswami, & Hee-Woong Kim, 2012), (Shen, Carswell, 

Santhanam, & Bailey, 2012). There are some IS studies that used other dependent 

variables. Adipat, Zhang, and Zhou (2011) used perceived ease of use and perceived 

usefulness as additional dependent variables. Intention to purchase and intention to return 

was used by (Kamis, ArnoldKoufaris,MariosStern, Tziporah, 2008). Up to our 

knowledge and upon a comprehensive investigation of research databases of all research 

papers that used cognitive fit theory– up to December of 2013 – we did not find any 

study which discussed or used creativity as the dependent variable or the outcome of 

cognitive fit variables. 

The empirical research on cognitive fit used the absence of cognitive fit as the null 

hypothesis in the research model test, and the existence of cognitive fit as the alternative 

hypothesis of interest. This practice gives significant analysis and explanations of 

cognitive fit outcome, but does not provide sufficient analysis and explanations of the 

absence of cognitive fit. The null hypothesis is potentially rejected or disproved on the 

basis of the data that is significantly under its assumption, but the null hypothesis is never 

accepted or proved. Using absence of a relationship in the model allows the researcher to 

explore the causal mechanism that exists in the absence of this relationship and it allows 
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researchers to find subsequent results of this relationship. Accordingly, the absence of 

relationship becomes the alternative hypothesis and can then be tested and proved.  

This is a research gap we found while investigating cognitive fit literature, therefore, we 

will research and explore the absence of cognitive fit as a phenomenon by itself. Our 

research will study and investigate the existence of cognitive fit in the first alternative 

hypothesis, and will research and test the absence of cognitive fit in the second 

alternative hypothesis. This will permit exploration of other interesting results such as 

creativity. 

External representations in the earlier cognitive fit literature have moved beyond the 

graph and table formats. Some researchers used maps (Smelcer & Carmel, 1997), 

(Dennis & Carte, 1998), (Mennecke et al., 2000). Other researchers have used lists vs. 

matrix and spreadsheets (Hong, Thong, & Kar, 2004), (Goswami, Suparna Hock Chuan 

Chan Hee Woong Kim, 2008). Some have also used programming languages and 

modeling tools as the external representations (Sinha & Vessey, 1992), (Agarwal, Sinha, 

& Tanniru, 1996). Although many research studies used external representations other 

than table and graph; none of them used business analytics outputs – decision trees or 

clustering for example – in earlier studies.  

In a similar way task has also been extended from spatial and symbolic in Vessey’s 

original research to many other task types. Some studies used searching vs. browsing 

tasks (Hong et al., 2004), others have used simple vs. complex (Speier et al., 2003), and 

analytics vs. holistic (Tuttle & Kershaw, 1998). Convergent vs. divergent task types are 

more pertinent to business analytics systems and the scenario researched in our study. 
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Shaft and Vessey(2006) used cognitive fit to understand software comprehension and 

modifications. They extended the model by distinguishing between the external and 

internal representations. Both representations and the interaction between them influence 

the mental representation for the task solution. Thus, cognitive fit depends on 

characteristics of internal problem representation, characteristic of the task, and 

presentation format.  

 

Figure 4: Extended Cognitive Fit Model (Shaft & Vessey, 2006) 

 

Mennecke(2000) also extended cognitive fit theory to incorporate additional variables – 

decision maker characteristics – to the original theory variables. The study investigated 

how the use of spatial decision support systems influenced the accuracy and efficiency of 

different type of problem solvers – professional’s vs. students – completing problems of 

varied complexities (Mennecke et al., 2000). Their study posits that individual 

characteristics, such as the different type of knowledge the decision maker has, should be 

part of cognitive fit. Subject characteristics were found to have significant effect on 
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performance. Similarly, our study will extend cognitive fit theory by adding cognitive 

style variable to the original model.   

 

Figure 5: Extended Cognitive Fit Model (Shaft & Vessey, 2006) 

 

Cognitive fit theory has been used in developing other theories in information systems.   

Arnold (1998) developed the theory of technology dominance; where cognitive fit theory 

was one of the base theories they used in developing this theory. Theory of technology 

dominance says that a decision maker may become reliant on a decision aid when 

decision maker’s task experience is low or when decision maker’s task experience, task 

complexity, decision aid familiarity, and cognitive fit are all high. One of the developed 

propositions of this theory says that “when task experience and perceived task complexity 
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are high, there is a positive relationship between cognitive fit and reliance on the decision 

aid.” 

 

 

Figure 6: Theory of Technology Dominance (V. Arnold, 1998) 

An interesting concept we found during the review of cognitive fit is that decision 

performance might be more effective when mixing presentation formats on users. Kelton, 

Pennington, and Tuttle (2010) reviewed cognitive fit using accounting information 

systems and extended cognitive fit using feedback loops to learn repeated use of the 
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system. The authors pointed out that future research should check using a combination of 

external problem representations.  

Cognitive fit gives a framework of the benefits for having a match between the variables 

which can help in digesting the problem and reaching a solution. The proposed match by 

this theory can enhance the time it takes to reach a solution and will require fewer 

resources to reach a solution. Nevertheless, cognitive fit did not measure other outcome 

indicators such as creativity. Cognitive fit can potentially have adverse effects on 

creativity since the user will depend on familiar mental models and might not pay 

attention to the distinctness of the situation. Integrating mindfulness theory can fill in this 

gap in cognitive fit theory and allow us understand causal mechanisms with the absence 

of cognitive fit.  

2.3 Mindfulness Theory 

Integrating theories will allow us to have a holistic view on the phenomenon. Using one 

theory to explain a phenomenon is rarely enough to present all contradictions and causal 

mechanisms. According to Robey and Boudreau (1999), “theories that use a logic of 

opposition, when coupled with appropriate research methodology, can make better sense 

of observed contradictions in empirical studies than theories that use deterministic logic” 

(Robey & Boudreau, 1999). 

We will integrate cognitive fit theory with mindfulness theory as this represents an 

opportunity to uncover causal mechanisms working in this phenomenon. The 

juxtaposition of conflicting results forces researchers into a more creative, frame-
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breaking mode of thinking than they might otherwise be able to achieve (Eisenhardt, 

1989). 

We wish to explore the different performance effect of user interaction with business 

analytics. Cognitive fit research shows performance in terms of efficiency and 

effectiveness, but does not show performance in terms of creativity. When we investigate 

creativity as a performance, the absence of cognitive fit becomes an interesting situation. 

The theory that can provide the causal mechanism behind cognitive fit and the absence of 

cognitive fit is mindfulness theory. Mindfulness research examines the phenomenon of 

not having an appropriate mental model for the task, and shows a degrading effect on 

efficiency but an enhancing effect on creativity. 

Mindfulness theory is about paying attention to the information being presented in the 

moment, getting involved, and thinking thoroughly through the issue. Mindlessness is 

when the information is familiar with something that was experienced in the past, based 

on that the individual reaches a preconceived commitment to the conclusion (E. J. Langer 

& Piper, 1987). 

Langer & Piper (1987) introduced mindlessness as well which posits that the repetition of 

routine situations would increase the chance of individuals making premature 

commitment to decisions. The perception of certainty introduced by familiar tasks 

hinders the attention of individuals to change. Individuals rely on the past and use 

categorizations schema to reach solutions. The advantage of mindlessness is that it 

improves efficiency and allows individuals to be faster in making decisions. The 
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disadvantage of mindlessness is the premature commitment to solutions which lowers the 

adaptability and competence of individuals in dynamic situations. 

Mindfulness happens when individuals are presented with unfamiliar situations, they get 

motivated to think thoughtfully through the problem. The distinct nature of the problem 

invokes contextual thinking of individuals which would lead to innovative solutions. 

Individuals get immersed in the present and can look at the distinct nature of the problem 

at hand. The advantage of mindfulness is that individuals are able to reach reliable 

creative solutions. The disadvantage of mindfulness is that it is less efficient in terms of 

speed in comparison with mindlessness. 

According to mindfulness theory, introducing similar situations to users over and over 

would lead to a lower level of mindfulness which would impede creativity. Butler and 

Gray (2006) talked about the negative effects of cognitive fit on creativity in the 

information systems context.  

In solving problems, people try to find orderly routines they used in the past, and apply it 

to the current problem; hence, people tend to ignore surrounding information (Weick, 

Sutcliffe, & Obstfeld, 1999). The brain evaluates the problem and will try to apply 

familiar historical processes. Doing this will enhance efficiency since users can solve 

problems with less time. Minor variations between the current problem and the historical 

processes will become hard to detect.  

If the brain is able to make a distinction between historical processes and current problem 

(distinction making), the brain realizes it cannot use the same historical processes to solve 

the current problem. The brain will involve locally in these distinctions made and will 
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scan the environment for more clue (environment scanning), until the brain finds a new 

process that can solve the problem. This newly created process is not totally new; it is 

based on a combination of some old processes and newly created processes.  

2.4 Cognitive Experiential Self Theory 

Vessey (1991) called for extending cognitive fit and for exploring other variables effect. 

An underlying assumption in cognitive fit is that all users will behave the same way in 

the fit phenomenon. Although Vessey mentioned the different thinking styles of users in 

her research, she did not include it in the model nor test for it, but she recommended 

extending cognitive fit later with more variables.  

User interaction with business analytics should include three important dimensions in the 

study; the task, the technology, and the user. Designing successful DSS systems requires 

that developers pay attention to incorporating individual user characteristics (McKenney 

& Keen, 1974), (Davis & Olson, 1985). Adding user’s cognitive style to cognitive fit will 

add an important element to the current phenomenon studied.  

We will intersect the cognitive fit theory with the cognitive experiential self-theory 

(CEST) in order to measure the “internal representation” of the problem domain 

construct. CEST posits that individual’s process information internally through two 

distinct information processing systems, experiential and rational. The two information 

processing systems are independent and operate by different rules (Epstein, 2003). 

Integrating this theory with cognitive fit can help in operationalizing the internal 

representation of the problem and it can give rigor to the analysis.  
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In the theoretical support of the theory, Vessey (1991) discussed two alternative 

information processing approaches identified in earlier literature. The first is a judgment 

holistic approach and the other is a choice attribute based information processing 

approach. The way people process information defined by Vessey and the way CEST 

theory defines the two alternative information processing approaches is in line. 

Intuition is receiving a lot of attention in recent years. Klein(2003) explored the critical 

abilities of intuition and its effect on decision making. And a growing number of 

publications, i.e. (Hodgkinson & Clarke, 2007), studied intuition effect on organizational 

decision making and promoted ways to train managers on developing their intuition. An 

area of interest within this discipline is identifying the dominant cognitive style of 

managers. Allinson and Hayes (1996) developed psychometric measurement tools, 

cognitive style index (CSI), for identifying the dominant human cognitive style, intuitive 

vs. analytical. 

Several measures have been developed to find the cognitive style of individuals. Some of 

these measures are: Myers-Briggs Type Indicator (Myers, 1962), Human Information 

Processing (W. M. Taggart & Torrance, 1984), and Personal Style Inventory (W. M. 

Taggart, Taggart-Hausladen, Taggart, & Taggart-Hausladen, 1991). The main issue with 

most of these measures is that they are cumbersome to be applied in organizational 

studies (Allinson & Hayes, 1996).  

Allinson and Hayes (1996) designed the Cognitive Style Index to be used in 

organizational settings. While many cognitive style tools exist, we will adopt the 

Cognitive Style Index developed by Allinson and Hayes as our psychometric 
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measurement tool because of its simplicity, ease of use, and application in organizational 

settings. 

Individuals have a rather permanent stylistic orientation to the use of one hemisphere 

(Allinson & Hayes, 1996). Epstein (1996) assert with evidence that rational and 

experiential processing are independent. They posit that “behavior and conscious thought 

are a joint function of two systems. The systems normally engage in seamless, integrated 

interaction, but they sometimes conflict, experienced as a struggle between feelings and 

thoughts. Other evidence of the existence of two modes of processing is that people are 

aware of two different ways of thinking.” 

Hodgkinson and Clarke (2007) demonstrated the individual differences in information 

processing. The authors theoretically show that individuals think about decision problems 

and evaluate possible responses according to two processes. The first is a largely 

automated pre-conscious process, involving the development and deployment of 

heuristics and intuition. The second is a deeper, more effortful process, which entails the 

use of analytics. These two processes work in parallel to each other, and individuals have 

a preference toward one of these processes. 

Cognitive style has been defined by Messick (1976) as “consistent individual differences 

in preferred ways of organizing and processing information and experience”. Intuition 

and Analysis are the terms used to describe the right brain and left brain thinking. 

According to Allinson and Hayes (1996), “Intuition, characteristic of the right brain 

orientation, refers to immediate judgment based on feeling and the adoption of global 
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perspective. Analysis, characteristic of the left brain orientation, refers to judgment based 

on mental reasoning and a focus on detail.”  
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INTUITION ANALYSIS 

Non-conscious.  

Learners are unaware that they are acquiring 

and using knowledge 

Conscious 

Learners are aware that they are acquiring 

and using knowledge 

Automatic 

Because learning and problem solving is a 

non-conscious process it happens 

automatically and without any deliberate 

effort or attention. 

Intentional/deliberate 

Learning involves a deliberate and conscious 

effort to achieve understanding. 

 Non-selective 

Intuition is non-selective because it draws on 

all available data and does not involve any 

conscious attempt to filter out any elements 

that appear to be irrelevant. 

Selective 

Analysis is selective because it involves 

attending to and thoroughly assessing only 

those elements of a situation that are 

perceived to be relevant  

Unconstrained 

Intuition is unconstrained because it includes 

the processing of non-salient associations 

between elements. These associations are so 

Constrained Rule based/rational 

Analysis is constrained because it is 

restricted to the processing of salient 

associations between elements.  Because 
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Table 5: Differences Between Intuition and Analysis (Allinson & Hayes, 1996) 

 

 

2.5 Cognitive Style and DSS in earlier research 

Several decision support systems researchers have found that individual user 

characteristics should play an important role in the design and development of DSS 

systems (McKenney & Keen, 1974), (Davis & Olson, 1985). Other researchers exerted 

weak that they are below the threshold for 

conscious awareness and therefore they are 

inaccessible to conscious control and logical 

manipulation. 

learners are consciously aware of these 

associations, the processing of information 

tends to be much more rational and open to 

conscious manipulation. 

Holistic (big picture),  

Intuition is holistic in the sense that it 

focuses on the big picture and considers all 

elements of a situation simultaneously. 

Segmented (focus on parts) 

Analysis is a fragmented process in the sense 

that it involves considering all the separate 

parts of a situation in turn. 

Synthesis and recognition of patterns 

Intuition involves synthesizing data and 

recognizing connections that build to 

provide a non-conscious understanding of 

the rules and principles that govern a 

situation.  

Logical search for connections 

Analysis involves a search for connections 

that entails a conscious step-by-step 

application of rules or other systematic 

procedures and/or the formulation and 

testing of hypotheses. 
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evidence that task characteristics, structured versus unstructured, are the important factors 

that should influence DSS use and design (Chervany & Dickson, 1978), (Huber, 1983), 

(Webby & O'Connor, 1994). We examined the role of both, user characteristics and tasks, 

in enabling better DSS outcome through the lenses of cognitive fit theory.  

Chakraborty, Hu, and Cui (2008) found that user cognitive style has a significant direct 

effect on technology acceptance constructs: ease of use, usefulness, and subjective norms. 

User cognitive style has been proven important in understanding intentions to use a 

technology. We are extending these studies which looked at user cognitive style effects, 

by looking at how cognitive style can also affect DSS outcome. 

Extant research has shown that managers will not use DSS systems which do not allow 

them to make decisions according to their style (De Waele, 1978), (Sprague & Carlson, 

1982). Whereas, Huber (1983) argued that cognitive style influence on DSS design is 

exaggerated. His argument was that cognitive style has not been developed well enough 

to be used in system design and is lacking a foundational theory to support it. And he said 

that systems will become very flexible in the future which can fit the different cognitive 

styles of users. Going forward in history, many researchers have developed several 

instruments that can identify the cognitive style of individuals, and cognitive-experiential 

self-theory of personality was developed. Additionally, research is still showing that DSS 

is still predominantly supporting the analytical cognitive style, but is still lagging in 

incorporating the intuitive cognitive style. This undermines Huber’s call for stopping 

research on cognitive style and DSS design (Huber, 1983). 
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Lu, Yu, and Lu (2001) investigated cognitive style effect on DSS acceptance. Although 

Lu’s research is studying the same overall phenomenon as our research paper, this 

research paper is different in many ways. First, our research focuses on the cognitive fit 

theory studying the characteristics of fit and its subsequent effects. Lu looked at how 

cognitive style, not cognitive fit, can affect DSS intention to use. Second, we looked at 

how user cognitive fit affects decision quality. While Lu examined how cognitive style of 

users would affect their perceived ease of use and perceived usefulness of a DSS. Third, 

our research is using the latest business analytics models, specifically the latest data 

mining models, in our experiment. Lu used traditional statistical models such as fuzzy 

weighted-sum model, analytic hierarchy process, and linear weighted-sum model.  

Epstein (2003) developed the cognitive-experiential self-theory of personality, and many 

researchers have developed several instruments that can identify the cognitive style of 

individuals. Additionally, research is still showing that DSS is still predominantly 

supporting the analytical cognitive style, but is still lagging in incorporating the intuitive 

cognitive style (Robey & Taggart, 1982), (Sauter, 1999), (Kuo, 1998). This again 

undermines Huber (1983) call for stopping the research on cognitive style and DSS 

design. 
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Figure 7: Conceptual Model 

 

2.6 Technological Frames of Reference Theory 

When people use business analytics, they come at it with assumptions, expectations, and 

knowledge about it. User’s interpretations of business analytics shape their attitude 

towards it. “Understanding of people’s interpretations of a technology is critical to 

understanding their interaction with it” (Orlikowski & Gash, 1994). User’s perceptions of 

business analytics impose a cognitive structure that is used to solve the problem. 

On the one hand, as Gioia (1986) [p. 346] notes, frames are helpful when they structure 

organizational experience, allow interpretation of ambiguous situations, reduce 

uncertainty in conditions of complexity and change, and provide a basis for taking action. 

An individual’s frame of reference has been described as “a built-up repertoire of tacit 

knowledge that is used to impose structure upon, and impart meaning to, otherwise 
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ambiguous social and situational information to facilitate understanding” (Gioia, 1986)[p. 

56]. “Frames are likely to be both time- and context-dependent, and are always more 

valid when examined in situation rather than assumed ahead of time” (Orlikowski & 

Gash, 1994). 

Orlikowski and Gash (1994) defined technology frames as the understanding of particular 

technological artifacts, and they include not only knowledge about the particular 

technology but also local understanding of specific uses in a given setting. 

Endsley (2000)said that the sources of information for Situation Awareness SA come 

from system knowledge, interface knowledge, and the real world. Technological frames 

of reference create mental model of the described situation and form a “situation model”. 

External cues from the situation being evaluated, goals of the user, past experience with 

technology, expectations on the role of technology activate these situation models. 

For example, some users think that computers are dumb processing machines and 

computer decision making is not helpful. Those are very cautious in taking any 

recommendation from an analytics system and they will depend on their own abilities to 

interpret the results and make a decision. Other users think that computers have superior 

abilities and can augment the gaps in human intelligence; hence they rely on the 

analytical system recommendation more than others. 

Davidson did two research studies using technology frames of reference theory. In the 

first study, she investigated how technology frames of reference and shifts of these 

frames influence sense making during requirement determination. The study used 

qualitative measures to measure technology frames of reference (E. J. Davidson, 2002).In 
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her second study; Davidson (2006) discussed the need for further development in the 

theoretical framework. The study calls for development by focusing analysis on frame 

structure, investigating framing as a dynamic interpretive process, and examining cultural 

and institutional basis of organizational frames (E. Davidson, 2006). 

We need to integrate cognitive fit theory with technological frames of reference in order 

to get a complete understanding of user’s interaction with business analytics. Cognitive 

fit theory examines context specific cognitive components of the problem that directly 

affect the understanding of the problem; while frames of reference examines surrounding 

cognitive factors that work in the background and have both facilitating and restraining 

effects. Cognitive fit looks at the mental model of the elements in the current situation; 

while technological frames of reference look at the mental model of the situation itself.  

 

2.7 Creativity 

Creativity can be defined as the ability to discern new relationships, examine subjects 

from new perspectives and to form new concepts from existing notions (Couger, 1995). 

Researchers have found that creativity can be enhanced and developed through cognitive 

variables, environmental variables, and personality variables. Creativity may not so much 

be the result of genius as being in an idea-nurturing work environment (Turban, Aronson, 

& Liang, 2005). In fact, it has been proven that decision support systems are tools that 

can potentially enhance creativity in the decision making process (Elam & Mead, March 

1990), (Forgionne & Newman, 2007). “Creativity often originates from the sudden 
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recognition of a similarity between disparate entities, experienced as a perceptual flip that 

changes one’s interpretation of a given situation” (Ford & Gioia, 2000). 

The topic of creativity is under researched in the information systems discipline (Müller-

Wienbergen, Müller, Seidel, & Becker, 2011). “IS researchers have been predominantly 

employing a rather limited number of research designs aiming at a rather limited number 

of creativity related topics” (Müller-Wienbergen et al., 2011). Future research should 

give creativity enough focus and attention. Our study is investigating creativity which 

complies with calls for future research on creativity, but that adds to our challenge in 

break new grounds with an empirical study on creativity with advanced analytics. 

Extant research investigated variables that can enhance creativity; these variables include 

cognitive variables (intelligence, knowledge …), environmental variables (cultural and 

socioeconomic factors), and personality variables (motivation, confidence …) (Forgionne 

& Newman, 2007). This research investigated cognitive variables (cognitive style, 

cognitive fit), environmental variables (technology frames of reference), and will treat 

personality variables (creativity traits) as control covariate variables. 

“A distinction can be made between two major definitions and conceptions of creativity; 

creativity as a trait and creativity as an achievement” (Wierenga & Van Bruggen, 1998). 

Creativity as a trait is a characteristic of a person, while creativity as achievement means 

the creative product and the output of a process. In our study we are investigating the 

creativity of the output; therefore, we are theorizing creativity and adding it as a 

dependent variable. Creativity as a trait will be used as a control variable as stated earlier. 
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Most studies measure creativity as the number of ideas generated in the process of 

solving a problem (Wierenga & Van Bruggen, 1998).  

Creativity can assist in the problem design and it can assist in identifying relevant 

alternatives for a problem (Forgionne & Newman, 2007). Our focus in this paper will be 

on creativity that can assist users in finding relevant useful alternatives for a given 

problem, assisting the choice phase of decision making. 

DSS design features have been heavily influenced by Simon’s intelligence-design-choice 

model of decision making. Models for creative process are very similar to the models of 

decision making (Elam & Mead, March 1990). The task presentation can aid users in 

becoming creative in finding alternatives for a given problem. Therefore, creativity 

enhancing DSS can be designed to provide aid to users in becoming creative in each step 

of the decision making process (Elam & Mead, March 1990). 

“The domain specific knowledge base that an individual possesses is critical to creative 

performance. A higher level of relevant knowledge should facilitate higher levels of 

creativity” (Elam & Mead, March 1990). Therefore, domain experience will be one of the 

control variables we will use in this study. 

Limited number of research papers investigated decision support systems impact on 

creativity. Forgionne and Newman (Forgionne & Newman, 2007) conducted an 

experiment to find empirical evidence that creativity-enhanced decision making support 

systems improve decision making. The study investigated in an experiment how 

creativity DSS enhanced the time to take a decision and the quantity of ideas generated. 
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Creativity enhancing decision making support systems will have the conceptual 

architecture shown below. 

Figure 8: Creativity Enhancing Decision Making Support Systems (Forgionne & Newman, 2007) 
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Another empirical study that looked at the link between DSS and creativity investigated 

how the process and the software helped users in their decision making (Marakas & 

Elam, 1997). The study results found that the capability of DSS to provide directed 

guidance in the application of a process combined with user knowledge of the underlying 

process model improves creativity enhancement over use of the either the DSS or the 

process alone (Marakas & Elam, 1997). 
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CHAPTER III 

RESEARCH MODEL AND HYPOTHESIS DEVELOPMENT 

3.1 Variable Definitions 

Creativity: 

Extant research used numerous ways to measure decision quality as a dependent variable 

of DSS effectiveness. Keen and Morton (1978) categorized the effects of DSS on 

decision quality into two categories: efficiency which measure speed or reliability, and 

effectiveness which measure quality or accuracy. Coll (1991) posit that DSS useful 

outcome is measured by the degree users believe it to be. 

Creativity is the dependent variable in our model. We will measure the creativity of 

convergent and divergent tasks by examining the number of recommendations developed 

by the user and the quality of these recommendations. These recommendations will be 

assessed by two independent raters and will score each recommendation based on general 

creativity quality criteria. Based on a comprehensive empirical study of creativity quality 

criteria used in research, the study found the following four dimensions to be 

comprehensive creativity quality measures: Novelty, workability, relevance, and 
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specificity (Dean, Hender, Rodgers, & Santanen, 2006). The items used in these 

measures will be used to evaluate recommendations. The following provides a definition 

of how the four dimensions will be measured (Dean et al., 2006): 

• Novelty: an idea is most novel if nobody has expressed it before. 

• Workability: an idea is workable if it does not violate known constraints or if it 

can be easily implemented. 

• Relevance: an idea is relevant if it satisfies the goals set by the problem solver. 

• Specificity: an idea is thorough if it is worked out in detail. 

 

 

Figure 9: Relationships Among Creativity Dimensions (Dean et al., 2006) 

 

In order for the two raters to be able to evaluate answers based on similar assumptions, 

we will use the creativity scales definitions developed by (Dean et al., 2006) to score the 

answers (shown in table 6 below). 
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Table 6: Creativity construct definitions (Dean et al., 2006) 

 

Analytics Frames of Reference: 

Users with rich analytics frames of reference have a good understanding of business 

analytics technologies capabilities and have experience with it; they have high regards to 

the role of business analytics in decision making process; and they know how business 

analytics technology can be used in the current situation to solve the problem.    
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Orlikowski and Gash (1994) used three domains to characterize technology frames of 

reference: 

1- Nature of Technology—refers to people’s images of the technology and their 

understanding of its capabilities and functionality. 

2- Technology Strategy—refers to people’s views of why their organization acquired 

and implemented the technology. It includes their understanding of the motivation 

or vision behind the adoption decision and its likely value to the organization. 

3- Technology in Use—refers to people’s understanding of how the technology will 

be used on a day-to-day basis and the likely or actual conditions and 

consequences associated with such use. 

Internal Representation: 

Internal representation in memory identified in the cognitive fit model refers to the 

knowledge and problem solving skills of the individual. We will focus in this study on 

the cognitive style of the user to represent the problem solving skills of the user. 

We will use the cognitive style index discussed earlier in the theoretical foundation. We 

will use only two cognitive styles in our experiment for the goals of simplicity and 

measurement, even though we acknowledge the fact that cognitive style is a range and 

the two styles are at two ends of a continuum. 

Although “mental representation” for task solution construct is in the extended cognitive 

fit model, researchers typically measured the dependent variable in their models through 

the quality and accuracy of the solution (Kelton et al., 2010). Decision support systems 
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performance effect is measured in terms of decision quality (Sharda et al., 1988), (Keen 

& Scott Morton, 1978).  

External Representation (Decision Tree and Clustering): 

Our second construct, “external representation” or “analytics representation” in our case, 

is the way we measure the external problem representation construct. External 

representation is measured based on a two ends of a continuum: at one end the 

representation is graphical and at another end the representation is symbolic. 

Vessey(1991) examined external problem representation – spatial versus symbolic – with 

graphs at one end and tables at the other end. These two problem representations conform 

to the information processing style of the user. According to Vessey, rational users prefer 

symbolic representations while intuitive users prefer spatial representations. We are 

extending the problem representations to match the new representations used by business 

analytics systems.  

Decision trees or classification trees are a well-known predictive analytics model used 

heavily in organizations. Decision trees maps observations about an item to conclusions 

about the item's target value. Decision tree is a classification technique; it involves a 

process of attribute selection and splitting based on the most discriminate attribute, and 

this process is continued until each terminal node represents a different class (I. Bose & 

Mahapatra, 2001). It’s a way of representing the data visually which helps decision 

makers in classifying subjects. Each leave in the tree uses numbers to represent the 

chances of each class label. Therefore, decision trees fall under the symbolic 

representation type. 
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Clustering is another business analytics model used to separate objects based on how 

close they are based on a number of dimensions. Clustering output uses a number of 

graphs, each graph shows how each of the identified clusters compare to each other. 

Therefore, clustering falls under the spatial representation type. 

There are three main reasons we chose clustering and decision tree for analytics 

representation in our research model. First, these two analytics algorithms representations 

are the two representations in line with the spatial and symbolic representations in the 

cognitive fit theory. Additionally, certain cognitive styles match one of those two 

representations but not the other. Second, clustering and decision tree represent two 

contrasting analytics representations. Third, decision trees and clustering output represent 

an analytics specific output that is different from the traditional BI output.  

Clustering matches intuitive cognitive style users and divergent type of tasks. Clustering 

describes the population and does not have an objective, this matches the way intuitive 

cognitive style users think. Clustering puts subjects (i.e. customers) into buckets to show 

which subjects are close to each other in their behavior and which subjects are distant 

from others in their behavior. Clustering users are not constrained to an objective schema 

of the model and can think about the problem in a much more comprehensive manner 

allowing seemingly irrelevant information to exist. This matches the way intuitive 

cognitive style users think; “Intuition is non-selective because it draws on all available 

data and does not involve any conscious attempt to filter out any elements that appear to 

be irrelevant” (Allinson & Hayes, 1996). In divergent tasks, people are not limited to 

relevant knowledge, they would do scanning and browsing to search for potentially 

relevant knowledge (Müller-Wienbergen, Müller, Seidel, & Becker, 2011). Clustering is 
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an unsupervised learning technique since it tries to find hidden patterns and structures in 

data and there is no reward signal to evaluate a potential solution. This distinguishes 

clustering from supervised learning techniques like decision tree since clustering does not 

result in a specific set of rules to be used in decision making, but rather leaves room for 

the user to use his/her evaluation and judgment (I. Bose & Mahapatra, 2001). Therefore, 

we posit that clustering match the judgment holistic approach that Vessey (1991) 

discussed in her theory development.  

Clustering output is represented through graphs showing the population separated into 

groups. Clustering graphs will show a comparison of how each one of the clusters ranks 

on each of the important attributes. These clustering graphs match the spatial 

representation Vessey (1991) used in the theory development of cognitive fit. Decision 

tree output is represented through hierarchical nodes, and each node has numerical values 

of the target variable percentage, resembling a hierarchical table. Decision tree output 

matches the symbolic representation Vessey (1991) used in the theory development. 

Decision tree describe the subjects based on a preconceived objective. Decision tree 

would rank variables based on their importance in predicting the target variable. Then it 

creates a split based on these variables results. Then subjects would fall into each one of 

these tree buckets. Decision tree only keeps information relevant to the target variable. 

Users can only think about the problem in terms of the stated objective of the decision 

tree algorithm. Rational cognitive style users use a selective process similar to the 

decision tree output; “Analysis is selective because it involves attending to and 

thoroughly assessing only those elements of a situation that are perceived to be relevant” 

(Allinson & Hayes, 1996). Decision tree is classified as a supervised learning technique 
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since it is selective in its data mining. Decision tree results in a set of rules that can guide 

future decision making. Therefore, decision tree would match the choice and selective 

approach that Vessey (1991) discussed in her cognitive fit theory development.  

Among all analytics algorithms, clustering and decision trees represent two ends of a 

continuum. First, as discussed earlier, decision trees algorithm needs a target variable to 

develop the output, while clustering algorithm does not use a target variable to develop 

the output. Second, clustering is classified as one of the descriptive analytics, since it 

only helps users understand their population of importance. While decision trees are 

classified as a predictive analytics where it attempts to predict an outcome or a propensity 

to respond. Third, clustering falls under unsupervised learning which tries to find patterns 

among unlabeled data. While decision tree falls under supervised learning which uses 

input to predict an outcome. A decision tree is a rules induction technique, in which a set 

of rules are extracted that can be used in specifying the right decision (I. Bose & 

Mahapatra, 2001). 

Business analytics produces presentation output that is specific to business analytics and 

different in type from business intelligence presentation output, an example would be 

decision trees and clustering. Decision tress and clustering each represent a different type 

of analytics. Decision trees represent the predictive (behavioral forecasting) type of 

analytics, while clustering represent the descriptive (correlations, spatial, relationships) 

type of analytics. Cluster analysis is an unsupervised learning technique while decision 

tree is a supervised learning technique. 
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Task Type: 

We will use convergent and divergent thinking type of tasks to represent the task type in 

our model since convergent/divergent types are very relevant to the creativity context of 

our paper. “Convergent thinking refers to the mode of human cognition that strives for 

the deductive generation of a single, concrete, accurate, and effective solution”(Guilford, 

1967). “Divergent thinking requires imagination, provocation, unstructured syntheses, 

serendipitous discovery, and answers that break with conformity. This mode of cognition 

focuses on the synthetic generation of multiple desperate answers to a given problem” 

(Amabile, 1998). “The convergent process in the context of creative work differs from 

the usual goal of information retrieval: that is, achieving an accurate match between a 

query and retrieved items. When acting creatively, people do not seek “known” 

knowledge as they do in a well-defined search; rather, they search for something 

potentially relevant through a process called scanning or browsing” (Müller-Wienbergen, 

Müller, Seidel, & Becker, 2011). On the other hand, stimulating mental associations is 

the divergent process. “The sudden recognition of a similarity between disparate entities 

experienced as a perceptual flip that changes one’s interpretation of a given situation 

(Ford & Gioia, 2000).    
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   Figure 10: Divergent vs Convergent Tasks 

 

 

3.2Model Development 

 

 

Figure 11: Research Model 
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People tend to ignore surrounding information once they find a fit to their problem. They 

find it simpler to apply historical routines and preconceived judgment to the problem in 

hand than to try to understand it locally (Weick et al., 1999). Finding orderly routines is 

good for reducing time spent on task but that might not be helpful for increasing creative 

decision making. 

Cognitive fit theory does not address creativity; the dependent variable in cognitive fit 

studies is usually efficiency and performance. A rivalry theory is needed to complement 

the power of cognitive fit theory. Mindfulness theory can play this role. Mindfulness 

theory is about paying attention to the information being presented in the moment, getting 

involved, and thinking thoroughly through the issue. Mindlessness is when the 

information is familiar with something that was experienced in the past, based on that the 

individual reaches a preconceived commitment to the conclusion.  

Vessey shows how graphical plus tabular representations gave equivalent results to the 

representation format which matches task type. While varying the representation format 

has an equivalent effect on performance, we show that it can have a positive effect on 

creativity. If output representation is always matched with task type, then this might lead 

to mindlessness where the situation becomes familiar to the user and he/she reach 

decisions fast but without getting involved in the problem mindfully. This can be 

explained by the mindfulness theory which shows how individuals can be more creative 

once they face unfamiliar situations. When the problem becomes a routine problem and 

the user becomes familiar with its components, the user will pay reduced amount of 

attention to the present problem and will try to rely more on established mental models. 

Creativity comes from outside the habitual idea generation (Müller-Wienbergen et al., 
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2011). While when the user is presented with an unfamiliar problem, the user will pay 

more attention to the context and the situated challenge. This will force the user to come 

up with new ways to adapt to the problem and bring new perspectives to the solution. 

When cognitive fit happens, the user’s ability to recognize and pay attention to cues in 

the problem is degraded, actually that is why users are faster in their decision making 

process. Creativity is degraded as well since creativity comes from the ability to identify 

cues in the problem: “the search for ideas in associative memory model, proposed by 

(Nijstad & Stroebe, 2006), this model assumes that knowledge is cue dependent”.  

Cognitive fit reinforces internal idea generation loop using the habitual idea generation 

method; therefore, reducing user’s ability to recognize external stimuli which hinders 

creativity. “External stimuli constitute search cues that can enhance an individual’s 

creative performance if they reflect a category of ideas outside the reinforcing internal 

idea generation loop” (Diehl, Munkes, & Ziegler, 2002). 

Once the user breaks out of using the same perceptions and processes to reach a solution, 

the potential for a more creative solution is higher. “Becoming conscious of the existence 

of different perceptions of a given task helps scrutinizing one’s personal strategy for 

striving for a creative solution” (Shekerjian, 1990). 

Weick (1999) provides deep explanation of Mindfulness that can help us understand this 

causal relationship. The mind will be evaluating all processes involved in solving the 

problem and will try to rely on history and familiar components in solving some or all of 

the components of the problem processes. Small deviations are hard to detect, but if the 

brain recognizes the distinction, “Distinction Making” process according to Weick, then 
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the mind starts scanning the environment in a process Weick calls “Environmental 

Scanning”.  

Once this reliance on familiar or historical components is interrupted, there will be a 

void, and the brain will find that experience is not valid, the brain will then start scanning 

for more context and new cues in an iterative fashion, new cues and context will be 

evaluated against experience in an attempt to relate these processes together, until the 

brain finds a way in which these diverse processes interrelate. And that is creativity. 

Although mindfulness started when experience was not valid, it ended using some 

components from history and experience to find new relative combinations between 

current problem and experience. According to Dartnall (2007) creativity is the novel 

combinations of old ideas where surprise caused by a creative idea is due to the 

improbability of the combination. (E. J. Langer & Moldoveanu, 2000) also talked about 

mindfulness effect on creativity since it increases the perception of control and increases 

user’s attachment to the local task. 
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Figure 12: Mindlessness vs. Mindfulness Process 
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Table 7 summarizes the paradox between cognitive fit and creativity. Within cognitive 

fit, cognitive load is less, the brain finds previous associations and judgments made in 

similar situations, follows those to a preconceived commitment to a decision. In 

creativity, users need to defy the logic, escape the comfort zone which might lead to 

discomfort, in order to find new associations and judgments, this will take longer time 

and will affect efficiency of the user but it will positively affect the creativity of the 

solution. 

Table 7: Contrasting Mindfulness with Cognitive Fit 

 

Keeping in mind that creativity is not an outcome of divergent processes only; both 

convergent and divergent processes can lead to creativity. “Creative work includes both 

the convergent process of identifying relevant, existing things, such as factual knowledge, 

and the divergent process of putting these together in novel ways (Guilford, 1967), 

(Runco, 2007), (Weisberg, 1999).We are proposing that cognitive fit helps us understand 

when convergent or divergent processes can lead to creativity. 

Hypothesis 1: Lack of fit between analytics representation and task type increases 

decision making creativity 
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DSS has been described by many as an aid that organizes and analyzes different factors 

for users (Coll et al., 1991). If one of the goals of a DSS is to organize information for 

users, then organizing information according to the user cognitive style would help 

comprehension. Additionally, Vessey (1991) posits that problem representation, which 

uses mental representation processes that match those required for task solution, will 

produce significant performance effects. Another way to consider this issue is that 

humans try to simplify problems to a point where they are manageable (Keen, 1981); we 

posit that matching business analytics task and model representation to user’s cognitive 

style will simplify problems to users and will reduce complexity. Once the problem is 

understood easily, cognitive efforts will be directed toward finding the best solution 

rather than on spending effort on the problem itself. At that point the DSS system will 

help solve the problem with efficiency.  

Cognitive fit did not test user’s different thinking styles effect on the outcome. Although 

Vessey mentioned the different thinking styles of users in her research, she did not 

include it in the model nor test for it, but she mentioned the importance of thinking style 

in her study. Users are an important dimension in our study of the interaction with 

business analytics (McKenney & Keen, 1974), (Davis & Olson, 1985); therefore, user’s 

internal approach in making decisions is tested. 

Vessey (1991) identified and proved the first fit between holistic thinking style (intuitive 

cognitive style in our research), spatial representation (clustering analytics in our 

research), and judgment processing (divergent process in our research). The second fit 

was between a choice attribute style (analytical cognitive style in our research), symbolic 
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representation (decision tree in our research) and selective information processing 

approach (convergent process in our research). 

 

Figure 13: Components of Fit 

 

Task type, analytics representation, and cognitive style align across three important 

dimensions: unsupervised, holistic, and unrestricted. In a clustering representation, there 

is no specific objective or target variable set in advance (unsupervised), clustering is 

holistic in the sense that it gives an overall overview of how data points reside based on 

multiple variables, and clustering incorporates all variables even the ones that are 

irrelevant. Divergent task and intuitive thinking style users align well with the clustering 

representation. On the other hand, a decision tree has a specific objective (supervised), 

decision tree produces rules and specific choices to a problem, and decision tree is 

restricted since it only includes variables that are relevant and important in predicting the 

outcome target variable. 
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Hypothesis 2: Lack of fit between analytics representation, task type, and cognitive style 

increases decision making creativity 

Analytics frames of reference variable works in the background facilitating the effects of 

fit on decision making process. The effect becomes clear when we take into account the 

surrounding effect to the context specific effects of cognitive fit. 

Orlikowski original work on the technology frames of reference showed empirical 

evidence of its effect on how users interact and work with systems. Users approach 

technology usage contexts with a set of assumptions and expectations which shape the 

way users interpret the problem and arrive at a solution. Therefore, analytics frames of 

reference will play a facilitating role in the way cognitive fit will impact creativity and 

efficiency. Analytics frames of reference will impose a set of assumptions and conditions 

on the problem being solved which will affect the actionable outcome. Understanding 

this social cognition around business analytics can potentially give us great explanatory 

power to the way users interact with business analytics. 

When there is no cognitive fit, the situation becomes more challenging. Users with rich 

technology frames can develop inferences by using an already established cognitive 

process of the situation, which can make the situation less challenging to them and help 

drive cognitive fit. This can ultimately have adverse effects on creativity.  

Hypothesis 3: Lack of fit between analytics representation, task type, cognitive style, and 

analytics frames of reference increases decision making creativity 
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CHAPTER IV 

RESEARCH METHODOLOGY 

We will test the proposed model by conducting an experiment. The experiment will test 

the different interactions between the research model antecedents (analytics 

representation, task type, cognitive style, and analytics frames of reference) and the 

dependent variables (creativity).  

4.1 Experiment Survey 

The experiment was conducted in a form of a survey that had four main sections. The 

first section asked some basic demographics questions around age, education, experience 

and some basic requirements for the survey around business analytics experience and 

decision tree and clustering experience. The second section of the survey has the 

cognitive style index items and the third section has the analytics frames of reference 

items. The last section of the survey has the two case studies. One case study used the 

decision tree output and two open ended questions that will be used to measure the 

creativity of the response, and the other case study used clustering output with two open 

ended questions. The two case studies were randomized, some users will get the decision 

tree case study first then the clustering case study, and others will get the clustering case 
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study first then the decision tree case study. We did not want all subjects to be getting the 

decision tree first all the time and then the clustering case study second since this will 

eliminate the effect of learning from the first case study on the analysis. Subjects will go 

through the case study, and then will be asked to recommend solutions based on their 

understanding of the model and the task given. The survey is exhibited in Appendix A. 

The two case studies were reviewed by four analytics managing consultants who have 

more than ten years of experience in analytics. Clustering and decision tree output were 

reviewed by experts in these tools and they provided valuable recommendations on what 

numbers to present, the way the output should read, and suggestions for data issues. 

Qualtrics Panel consultants reviewed the survey and asked for minor changes in the 

survey to ensure receiving high percent of complete and valid responses. Changes were 

mainly forcing responses to all questions in the survey and enforcing a minimum 

character limit on the last four open ended questions.    

 Our survey followed design adequacy in the questions asked and appropriate consent and 

privacy measures were taken. The Institutional Review Board (IRB) for human subjects 

in research at Cleveland State University approved our survey. Documentation of the 

approval is available at Cleveland State University business school doctoral dissertation 

library.  

4.2 Experiment Sample 

Our sample represents business analytics professionals. Respondents recruited will be 

real world managers with at least a couple of years of experience in analytics. We used 

Qualtrics Panel to recruit business analytics professionals.  
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We received 150 responses from business analytics professionals after deploying the 

survey for about a month. Upon investigating responses, we found: 69 complete and valid 

responses; 50 responses were invalid responses because their answer to the case studies 

question was not meaningful; 31 responses were not complete answers.  

4.3 Experiment Variables 

‘Analytics Representation’ categorical variable will be tested as a fixed effect variable in 

the experiment since it is represented by a clustering output as the first value and decision 

tree output as the second value. Every subject will be exposed to both outputs, every 

subject will answer questions on the decision tree output and on the clustering output; 

therefore, this is a within subject effect. 

‘Task Type’ categorical variable will be tested as a fixed effect variable. One of the open 

ended questions on each case study will be a convergent task and the other question will 

be a divergent task. Every subject will answer both convergent and divergent type tasks; 

therefore, this is a within subject effect. 

‘Cognitive Style’ categorical variable will be tested as a fixed effect variable. Subjects 

will answer items that will determine if they have a dominant ‘Analyst’ cognitive style or 

a dominant ‘Intuitive’ style. Subjects will either have the analyst or the intuitive style, 

therefore, this variable is a between subject effect. We used the cutoff score that was 

provided to us by the authors of CSI to identify analysts from intuitive subjects. 

‘Analytics Frames of Reference’ categorical variable will be tested as a fixed effect 

variable. This variable will take two values, low frames or high frames. Subjects will 
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either have a low or high frames, therefore, this variable is a between subject effect. We 

used the median as the cutoff between low and high frames. 

 

Table 8: Experiment Variables 

 

4.4 Experiment Design 

The experiment design will follow the split plot design since we have a mixed design 

involving two between subject variables and two within subject variables. All subjects 

have been exposed to decision tree and clustering, and will answer convergent and 

divergent type question on each analytic representation. Each subject will either have an 

analyst cognitive style or an intuitive cognitive style and will either have a low or high 

analytics frames of reference. Table 9 below show the two way fit with the original two 

variables that were used by Vessey in the original cognitive fit theory. The table shows 

the two fit scenarios that we will be comparing to the no fit scenarios.  

  
Convergent Divergent 

 Decision Tree  Fit No Fit 

Clustering No Fit Fit 
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Table 9: Two Way Fit Experiment Cells  

(Analytics Representation vs. Task) 

 

Three-way fit is presented in table 10. There are still only two complete fit scenarios that 

we will be comparing to the two complete no fit scenarios. Since there are eight scenarios 

because of the three variables, we have four partial fit scenarios in this. We are mainly 

interested in fit and no fit scenarios.  

 

  

Decision Tree Clustering 

  

Convergent Divergent Convergent Divergent 

S
u
b
je

ct
s 

Analyst   Fit Partial Fit Partial Fit  No Fit 

Intuitive  No Fit Partial Fit Partial Fit    Fit 
Table 10: Three Way Fit Experiment Cells  

(Cognitive Style vs. Analytics Representation vs. Task) 

 

And table 11 has all four variables in the four way fit. There are still two complete fit 

scenarios and two complete no fit scenarios which we are mainly interested in.  

 

 

 

 

Decision Tree Clustering 

 

 

 

Convergent Divergent Convergent Divergent 

S
u

b
je

ct
s High 

Frames Analyst Fit Partial Fit Partial Fit Partial Fit 
High 

Frames Intuitive Partial Fit Partial Fit Partial Fit Fit 

 
Low 

Frames Analyst Partial Fit Partial Fit Partial Fit No Fit 

 
Low 

Frames Intuitive No Fit Partial Fit Partial Fit Partial Fit 
Table 11: Four Way Fit Experiment Cells  

(Analytics Frames of Reference vs. Cognitive Style vs. Analytics Representation vs. Task) 
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Subject is nested within ‘Cognitive Style’, subject is crossed with ‘Analytics 

Representation’, subject is crossed with ‘Task Type’,’ Task Type’ is crossed with 

‘Analytics Representation’, ‘Task Type’ is nested within ‘Cognitive Style’; and 

‘Analytics Representation’ is nested within ‘Cognitive Style’. Subject is nested within 

‘Analytics Frames of Reference’, and ‘Analytics Frames of Reference’ is nested within 

‘Cognitive Style’ and within ‘Task. 

 

 

 

Figure 14: Experiment Test 
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The following table exhibits the different fit scenarios: 

High Fit High Frames Analyst Convergent Decision Tree 

High Frames Intuitive Divergent  Clustering 

Moderate Fit 

 

 

 

 

 

 

 

 

Low Frames Analyst Convergent Decision Tree 

Low Frames Intuitive Divergent  Clustering 

Low Frames Analyst Convergent Clustering 

Low Frames Analyst Divergent Decision Tree 

Low Frames Intuitive Divergent Decision Tree 

Low Frames Intuitive Convergent Clustering 

High Frames Analyst Convergent Clustering 

High Frames Analyst Divergent Decision Tree 

High Frames Intuitive Divergent Decision Tree 

High Frames Intuitive Convergent Clustering 

High Frames Analyst Divergent Clustering 

High Frames Intuitive Convergent Decision Tree 

No Fit Low Frames Analyst Divergent Clustering 

Low Frames Intuitive Convergent Decision Tree 

 

Table 12: Fit Scenarios 
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    Figure 15: Experiment Design (Split Plot Design) 

 

Preliminary Analysis 

We started by looking at the demographics variables. Gender and age distributions are 

presented in the following two figures. 

 

Figure 16: Gender Distribution 

Task Type 
Analytics 

Representation 

Subjects 

Cognitive Style 

C 

N 
N 

N 
C 

N 

Analytics Frames 
of Reference 

C 

N N 

N 
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Figure 17: Age Distribution 

 

Experience in business analytics is a prerequisite of taking the survey. Investigating the 

business analytics experience variable distribution shows that majority of subjects had 

five or more years of experience in business analytics according to figure 18 below. 

 

Figure 18: Business Analytics Experience 

 

And looking at the education variable we find that the majority of subjects, 63 out of 69, 

had a four-year degree or higher. 
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Figure 19: Education Distribution 

 

Another prerequisite to the survey is having prior exposure to decision tree and analytics 

output. Reviewing subjects experience with both outputs shows that the majority had lots 

of experience with these outputs.  

 

Figure 20: Decision Tree Experience Distribution 

 

 

Figure 21: Clustering Experience Distribution 
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And figure 22 presents the distribution of analyst vs intuitive users. We used the median 

as the split between analysts and intuitive users since our sample represents the analytics 

consultant population.  

 

 

And there was a good distribution pattern for the analytics frames of references.  

 

Figure 23: Analytics Frames of Reference Distribution 

 

As a simple validation that the two anlaytics representations depict the two output styles 

in the original cognitive fit theory of numercial vs spatial types, and that the two 

cognitive styles have an effect on efficiency when there is a fit, we examined the time 

spent by each cognitive style on each case study when there was a fit or not fit. As 

noticed in the following three figures, intuitive subjects took less time with clustering 

output (fit) than with the decision tree output (no fit); and intuitive subjects took less time 

with the clustering output (fit) than the analysts (no fit). Analyst subjects took less time 

with the decision tree output (fit) than the clustering output (no fit); and analysts took less 

time with the decision tree output (fit) than the intuitive subjects did (no fit). 

Figure 22: Cognitive Style Index Distribution 
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Thisconforms to the expectation of cognitive fit theory that says that fit has positive 

effects on efficiency. 

 

Figure 24: Average Time Spent by Each Cognitive Style on the Two Analytics Outputs 
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4.5 Creativity Construct 

To evaluate the creativity of the answers we used the following procedure: 

1- We used the comprehensive creativity measure that included all consistent nine 

sub dimensions used by earlier researchers and developed by (Dean et al., 2006). 

2- Two raters with Master level degree and experience in marketing and analysis 

have been trained on the nine sub dimensions.  

3- Training included going through each sub dimensions definition and trying to 

understand it from different angles. Then we went through the examples given in 

the two case studies provided by the creativity measure authors (Dean et al., 

2006).  

Figure 26: Average Time Spent by 

Each Cognitive Style using 

Decision Tree Output 

Figure 25: Average Time Spent 

by Each Cognitive Style using 

Clustering Output 
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4- Raters were asked to rate each sub dimension separately in each session accroding 

to the recommendations of (Dean et al., 2006). That way they can understand the 

sub dimension very well and their mind can be focused on that measure and the 

response rating would not be affected by their rating of another sub dimension. 

We also met briefly with the raters before they started rating on each sub 

dimension to discuss it and remove any ambiguity.  

5- The two raters assigned ratings to the last four questions of the survey for all 69 

responses on each of the nine creativity sub dimensions. 

6- It took each rater about 60 hours to finish rating all questions across all sub 

dimensions. After they were done with the ratings, we had several meetings where 

we discussed the major discrepencies in the ratings. We would read the response, 

each would present their thoughts, then we made sure everyone was clear on the 

response and the sub dimension. Then raters in some cases had to redo the rating 

of the whole sub dimension after the ambiguity was cleared and they had seen 

where exactly they were off.  

7- After that there were still some minor descrepancies between the two raters. At 

the most, we would find three responses with a difference of three scores between 

the two raters in each sub dimension. These responses were again reviewed in 

another session with the two raters and they had a chance to modify their rating. 

After about 20 hours of several meetings and discussions of the sub dimensions 

and the difficult responses, each rater had a chance to reevaluate their rating and 

adjust it.  
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Originality

Paradigm 

Relatedness Acceptability Implementability Applicability Effectiveness

Implicational 

Explicitness Completeness

Paradigm Relatedness 0.6076***

Acceptability 0.07661 0.03532

Implementability 0.1187** 0.04428 0.23831***

Applicability 0.30053*** 0.35989*** 0.22412*** 0.38707***

Effectiveness 0.29329*** 0.28856*** 0.21135*** 0.36038*** 0.53853***

Implicational Explicitness 0.5338*** 0.60459*** 0.04532 0.17096** 0.44017*** 0.36744***

Completeness 0.5794*** 0.60587*** 0.00908 0.18532** 0.43187*** 0.4109*** 0.75309***

Clarity 0.37975*** 0.39944*** 0.05042 0.21647*** 0.32922*** 0.3631*** 0.53682*** 0.50635***

Construct Overall Q17 (Decision Tree - Convergent) Q18 (Decision Tree- Divergent) Q14 (Clustering - Convergent) Q15 (Clustering - Divergent)

Originality 0.83 0.85 0.83 0.84 0.84

Paradigm Relatedness 0.81 0.77 0.84 0.76 0.85

Acceptability 0.78 0.75 0.80 0.74 0.80

Implementability 0.84 0.69 0.88 0.74 0.89

Applicability 0.85 0.75 0.90 0.74 0.90

Effectiveness 0.80 0.67 0.85 0.81 0.82

Implicational Explicitness 0.86 0.89 0.89 0.82 0.83

Completeness 0.80 0.84 0.84 0.79 0.75

Clarity 0.82 0.77 0.87 0.78 0.84

We tested the sub-dimensions composing each factor for reliability and construct validity. 

First, we tested inter-rater reliability using Cronbach Alpha (Dean et al., 2006).Table 13 

shows that inter-rater reliability analysis resulted in good reliability between raters on 

each sub-dimension. 

 

Second, we present correlation matrices for the eight items in Table 14. We highlighted 

correlations between two items for each construct. Acceptability did not correlate highly 

with Implementability. For the remaining eight items—two for each construct—all 

correlations between items that measure the same construct are higher than all 

correlations between items that measure different constructs. 

 

*** p = 0.001; ** p = 0.01; * p = 0.05 

 

We completed a confirmatory factor analysis of the model using structural equation 

modeling (SEM) performed using SAS. The structural model contains all the sub-

Table 13: Inter-Rater Reliability on Sub-dimensions 

Table 14: Correlations Among Sub-dimensions 
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dimensions; it contains the eight observed variables and four latent variables. Table 15 

presents variety of fit measures to determine the appropriateness of the model.  

The results indicate strong support for the integrity of the model. RMSEA (Root Mean 

Squared Error Approximation) fit statistic is 0.017 which is well below the 0.10 accepted 

level, thus this indicates good model fit(Hooper, Coughlan, & Mullen, 2008).  AGFI 

(Adjusted Goodness of Fit) is 0.962 which is larger than 0.9, and this provides additional 

support that the model is a good fit. Chi square divided by degree of freedom gives 25.75 

which is well above the 5.00 acceptable range (Hooper et al., 2008). 

 

 

Table 15: SEM Fit Indices 

 

 

 

 

 

 

  

Fit Function Value

Goodness of Fit Index (GFI) 0.9823

GFI Adjusted for Degrees of Freedom (AGFI) 0.9622

Chi-Square 927.94

Chi-Square DF 36

Pr > Chi-Square < 0.0001

Probability of Close Fit 0.9109

RMSEA Estimate 0.0177

RMSEA Lower 90% Confidence Limit 0.0000

RMSEA Upper 90% Confidence Limit 0.0553
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All estimates in the linear equation of the structural equation model were significant as 

show in Table 16. And the covariance’s among exogenous variables were all significant 

except for the first two variables. 

 

Table 16: Effects in Linear Equations 

Variable Predictor Parameter Estimate Standard Error t Value Pr > |t|

Org_Avg F1 LV1F1 0.63455 0.04829 13.1396 <.0001

Par_Avg F1 LV2F1 0.66729 0.04546 14.6773 <.0001

Acc_Avg F2 LV3F2 0.25627 0.05204 4.9241 <.0001

Imp_Avg F2 LV4F2 0.51029 0.07771 6.5666 <.0001

App_Avg F3 LV5F3 0.62186 0.04896 12.7002 <.0001

Eff_Avg F3 LV6F3 0.5401 0.04639 11.6436 <.0001

Comp_Avg F4 LV7F4 0.53 0.03054 17.3552 <.0001

Exp_Avg F4 LV8F4 0.5306 0.03103 17.0994 <.0001

Clar_Avg F4 LV9F4 0.40692 0.03862 10.5371 <.0001

Novelty 

Workability 

Relevance 

Specificity 

Originality 

Paradigm Relat. 

Acceptability 

Implementability 

Applicability 

Effectiveness 

Imp. Explicitness 

Completeness 

Clarity 

Figure 27: Creativity Construct SEM 
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Table 17: Covariances among Exogenous Variables 

 

4.6 Analytics Frames of Reference Construct: 

Our research focus is on analytics technology; therefore, we used analytics as the 

technology in the frames of reference construct used in this research. We took the 

technology frames of reference and adopted it to analytics systems. The following are the 

analytics frames of reference items that were created of the definition developed by the 

original authors. We ran these items by the original author of the theory and she did not 

have any issues with them. 

 

Analytics Frames of Reference (All Items) 

a. Nature of Technology: 

1- I know what business analytics represents 

2- I understand well business analytics capabilities 

3- I am aware of the different business analytics functionalities 

4- I know nothing about business analytics 

5- I know what business analytics is 

Var1 Var2 Parameter Estimate Standard Error t Value Pr > |t|

F1 F2 CF1F2 0.15163 0.10087 1.5033 0.1328

F1 F3 CF1F3 0.54366 0.06672 8.1486 <.0001

F1 F4 CF1F4 0.85492 0.03508 24.3731 <.0001

F2 F3 CF2F3 0.78913 0.1093 7.2201 <.0001

F2 F4 CF2F4 0.29499 0.09462 3.1175 0.0018

F3 F4 CF3F4 0.65982 0.05375 12.2768 <.0001
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6- I am aware of the nature of business analytics 

7- I am not clear about what business analytics is 

8- Business analytics is rich in capabilities 

b. Technology Strategy: 

1- I understand why organizations adopt business analytics 

2- I know the value business analytics add to the organization  

3- I am aware of the motivation behind adopting business analytics 

4- I am skeptical of the contributions of business analytics in organizations 

5- Business analytics is likely to make positive impact in organizations 

6- Business analytics helps companies achieve their strategies 

7- Business analytics is effective in making what organizations do better 

8- Business analytics has the potential to transform the way we do business 

9- Business analytics always bring positive consequences 

10- Implementing business analytics will help organizations do things better 

11- I believe in business analytics benefits 

12- I highly value business analytics  

c. Technology in Use: 

1- I have used business analytics in a business project 

2- I know how business analytics is used in organizations 

3- I am aware of the conditions associated with business analytics use 

4- I am aware of the consequences associated with business analytics use 
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5- It is unclear how business analytics can be useful 

6- I understand how business analytics will be used to benefit organizations 

7- I know how business analytics is used up to a granular level 

8- I have concerns around business analytics use in companies 

9- I am afraid of using business analytics in organizations 

10- There is something about business analytics use that makes it inefficient 

11- Business analytics is used to help support day to day operational decisions 

12- Business analytics helps managerial decision making 

Pre-test Technology Frames of Reference: 

We used Q-sort methodology to do a pre-test and evaluate all the items created for the 

three dimensions of analytics frames of reference. Q-sort methodology has been used as a 

quality check research tool in many disciplines. The methodology is useful when 

researchers wish to understand and describe the variety subjective viewpoints on an issue.  

We did the pre-test with six doctorate students at a northwestern university. The pre-test 

was successful in pointing out a couple of issues in the items we presented to them. 

One of the important findings of the pre-test is that students were arguing a lot about four 

items. These four items were talking about the benefits and outcomes of technology use. 

Students struggled with these items and could not find a spot for these four questions in 

one of the construct dimensions, we realized that these four items were geared more 

toward the benefits of analytics and fall outside the boundaries of analytics frames of 

reference and they should be excluded from the list of items.  
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Most of the items mapping matched our research original mapping to the construct 

dimensions. There were three items that were not in concordance with the research 

original mapping. We changed these three items according to what the students thought 

they belong to.  

There was one item that a student felt was a leading item (I highly value business 

analytics). We ended up dropping this item as well.  

Here are the changes made to the above list of analytics frames of reference items. We 

dropped items b.4, b.9, b.11, and c.6 because they are related to analytics benefits. We 

dropped item b.12 because it is a leading question. We moved item a.3 to c group and 

moved item c.12 to b group according to student’s sort order. 

Then we went through an exercise to consolidate the items that are more pertinent to each 

dimension and ended up with the following items: 

Analytics Frames of Reference (Final Items) 

a. Nature of Analytics: 

1- I know what business analytics represents 

2- I understand business analytics capabilities 

3- I know nothing about business analytics 

4- I am aware of the nature of business analytics 

5- Business analytics is rich in capabilities 

b. Analytics Strategy: 
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1- I understand why organizations adopt business analytics 

2- I am aware of the motivation behind adopting business analytics 

3- Business analytics helps companies achieve their strategies 

4- Business analytics has the potential to transform the way we do business 

5- Business analytics helps managerial decision making 

c. Analytics in Use: 

1- I know how business analytics is used in organizations 

2- I am aware of the conditions associated with business analytics use 

3- I know how business analytics is used down to a granular level 

4- Business analytics is used to help support day to day operational decisions 

5- I am aware of the different business analytics functionalities 

To examine the scale reliability, we tested the results that came out for this construct and 

found that the Cronbach Alpha for these items was 0.89 which tells us that the internal 

consistency for these items was at a high level. 

Then we ran the correlation matrices for all items in figure 26. All items that measure the 

same construct had higher correlations between them than the items that are measuring 

different construct. Only item a.3 has insignificant correlations with three items (a.2, a.4, 

a.5) and one significant correlation with a.1. We decided to leave item a.3 since the 

results of the structural equation model, that we are presenting next, shows some value in 

this item. 
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Tfr1 Tfr2 Tfr3 Tfr4 Tfr5 Tfr6 Tfr7 Tfr8 Tfr9 Tfr10 Tfr11 Tfr12 Tfr13 Tfr14 Tfr15

0.76765 1

<.0001

-0.22598 -0.18318 1

0.0619 0.1319

0.69107 0.71114 -0.08853 1

<.0001 <.0001 0.4695

0.44137 0.51724 -0.10999 0.48848 1

0.0001 <.0001 0.3683 <.0001

0.57549 0.52858 -0.40073 0.44342 0.48782 1

<.0001 <.0001 0.0006 0.0001 <.0001

0.57549 0.49462 -0.1181 0.47298 0.3362 0.63298 1

<.0001 <.0001 0.3338 <.0001 0.0047 <.0001

0.47078 0.48254 -0.09017 0.53549 0.71948 0.5143 0.40349 1

<.0001 <.0001 0.4612 <.0001 <.0001 <.0001 0.0006

0.60349 0.4444 -0.23582 0.34576 0.56852 0.60929 0.52343 0.60013 1

<.0001 0.0001 0.0511 0.0036 <.0001 <.0001 <.0001 <.0001

0.52156 0.53922 -0.26216 0.42982 0.4691 0.72972 0.63555 0.62942 0.74141 1

<.0001 <.0001 0.0295 0.0002 <.0001 <.0001 <.0001 <.0001 <.0001

0.57467 0.63718 -0.19827 0.67285 0.39973 0.48525 0.5855 0.46934 0.42369 0.58651 1

<.0001 <.0001 0.1024 <.0001 0.0007 <.0001 <.0001 <.0001 0.0003 <.0001

0.46396 0.57412 -0.13121 0.59229 0.29351 0.35288 0.27117 0.44779 0.265 0.39499 0.65119 1

<.0001 <.0001 0.2825 <.0001 0.0144 0.0029 0.0242 0.0001 0.0278 0.0008 <.0001

0.47294 0.55552 -0.25354 0.4311 0.116 0.28779 0.30563 0.3589 0.18872 0.24614 0.47459 0.62974 1

<.0001 <.0001 0.0356 0.0002 0.3425 0.0165 0.0107 0.0025 0.1204 0.0415 <.0001 <.0001

0.36661 0.46152 -0.19197 0.28001 0.08274 0.20406 0.24751 0.16329 0.18121 0.37895 0.32942 0.18858 0.37932 1

0.0019 <.0001 0.114 0.0198 0.4991 0.0926 0.0403 0.18 0.1362 0.0013 0.0057 0.1207 0.0013

0.37182 0.49691 -0.10072 0.48674 0.11896 0.28307 0.40393 0.27764 0.11664 0.34548 0.56647 0.47575 0.60439 0.64834 1

0.0017 <.0001 0.4103 <.0001 0.3303 0.0184 0.0006 0.0209 0.3398 0.0036 <.0001 <.0001 <.0001 <.0001

Tfr11

Tfr12

Tfr13

Tfr14

Tfr15

Tfr5

Tfr6

Tfr7

Tfr8

Tfr9

Tfr10

Pearson Correlation Coefficients, N = 69

Prob > |r| under H0: Rho=0

Tfr2

Tfr3

Tfr4

Fit Function Value

Goodness of Fit Index (GFI) 0.7338

GFI Adjusted for Degrees of Freedom (AGFI) 0.6328

Chi-Square 225.98

Pr > Chi-Square < 0.0001

Probability of Close Fit < 0.0001

RMSEA Estimate 0.1533

RMSEA Lower 90% Confidence Limit 0.1289

RMSEA Upper 90% Confidence Limit 0.1779

Then we ran a confirmatory factor analysis of the analytics frames of reference using 

structural equation modeling (SEM) using SAS. The structural model includes all three 

sub-dimensions and all the items. The model results are presented in table 18. 

 

 

 

 

  Table 18: SEM Fit Indices for Analytics Frames of Reference 

 

Figure 28: Correlations Among Items 
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Fit indices provide support for this model. Probability of close fit (less than 0.0001), 

which compares the hypothesized model to the null model, is highly significant and 

provides strong support to this model. RMSEA estimate is at 0.15 which is higher than 

acceptable level but still low enough to give some support to the fit of the model(Hooper 

et al., 2008). Chi square divided by degrees of freedom gives a 6.25 which is above the 

5.00 acceptable level (Hooper et al., 2008).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Analytics Frames of Reference Construct SEM 

 

All items estimate in the linear equation of the structural equation model were significant 

Nature of 
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Item a.1 

Item a.2 

Item a.3 
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Item a.5 

Item b.1 

Item b.2 

Item b.3 

Item b.4 

Item b.5 

Item c.1 

Item c.2 

Item c.3 

Item c.4 

Item c.5 

Analytics 

Strategy 

Analytics in 

Use 
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as shown in table 19. And the covariance’s among exogenous variables were all 

significant for the three sub-dimensions as shown in table 20. 

 

Table 19: Effects in Linear Equations for Analytics Frames of Reference 

 

 

 

 

 

 

 

 

 

 

Variable Predictor Parameter Estimate Standard Error t Value Pr > |t|

Tfr1 F1 LV1F1 0.57308 0.06776 8.4578 <.0001

Tfr2 F1 LV2F1 0.61244 0.06623 9.2467 <.0001

Tfr3 F1 LV3F1 -0.34068 0.18454 -1.8461 0.0649

Tfr4 F1 LV4F1 0.63406 0.0807 7.8566 <.0001

Tfr5 F1 LV5F1 0.43546 0.08828 4.9328 <.0001

Tfr6 F2 LV6F2 0.51103 0.06514 7.8456 <.0001

Tfr7 F2 LV7F2 0.45079 0.06871 6.5611 <.0001

Tfr8 F2 LV8F2 0.58393 0.09175 6.3645 <.0001

Tfr9 F2 LV9F2 0.64577 0.08414 7.6752 <.0001

Tfr10 F2 LV10F2 0.66532 0.07165 9.2862 <.0001

Tfr11 F3 LV11F3 0.56169 0.07313 7.6806 <.0001

Tfr12 F3 LV12F3 0.64327 0.09243 6.9596 <.0001

Tfr13 F3 LV13F3 0.92828 0.14412 6.4409 <.0001

Tfr14 F3 LV14F3 0.53657 0.12867 4.17 <.0001

Tfr15 F3 LV15F3 0.69178 0.10601 6.5259 <.0001

Var1 Var2 Parameter Estimate Standard Error t Value Pr > |t|

F1 F2 CF1F2 0.73926 0.06902 10.711 <.0001

F1 F3 CF1F3 0.82809 0.05823 14.222 <.0001

F2 F3 CF2F3 0.61525 0.09307 6.6104 <.0001

Table 20: Covariance Among Exogenous Variables for Analytics Frames of 

Reference 
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CHAPTER V 

RESULTS AND DATA ANALYSIS 

Our analysis investigated the effect of simple two way fit between analytics 

representations and task type on creativity, then the effect of three way fit between 

analytics representations, task type, and cognitive style on creativity, and finally the 

effect of four way fit between analytics representations, task type, cognitive style, and 

analytics frames of reference on creativity. Our hypothesis focus on fit and lack of fit 

conditions, therefore, our analysis will focus on fit and no fit scenarios. We will not 

analyze partial fit since we did not hypothesize on partial fit, although we will show some 

partial fit contrasts toward the end.  

By examining creativity distribution, we found three responses that had very low score on 

all creativity dimensions and found that these responses were not valid. These three 

responses were outliers and we removed them from the analysis, so we ended up with 

sixty-six responses.  

The experiment design is split plot as discussed earlier in the research methodology 

section. We examined this experiment design using SAS Proc Mixed procedure as 
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suggested by the literature(Wolfinger & Chang, 1999). The mixed procedure in SAS uses 

maximum likelihood estimates and is recommended for three reasons. First, it computes 

LSMEANS which is averaged across repeated measures and whose standard error 

reflects the appropriate covariance structure (Yarandi, 2011). Second, we have unequal 

sample size between analysts and intuitive cognitive style subject, and mixed procedure 

is the appropriate model. Third, it allows variety of within variable covariance structure. 

Fourth, we can use continuous variables in the within-subject effects (Yarandi, 2011). 

We will accept 10% alpha level error rate as we have a limited sample size and the 

experiment design has multiple variables (Cohen, 1988). 

5.1 Cognitive Fit Model 

 

Our first test of hypothesis one is intended to validate the theoretical foundation of this 

research, which is based on cognitive fit with creativity as a dependent variable. We ran 

the two-way interaction model to test the original form of fit theory (task and analytics 

representation) and its effect on creativity. In this basic model, we used creativity as a 

dependent variable and a variable representing the two way fit as independent variable in 

a repeated measure mixed model.  

The model was statistically significant and the fit variable has a p value of 0.0735 which 

is statistically significant. Table 21 and 22 below show the results of this model. AIC for 

this model is 1,429. 
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Hypothesis 1: Lack of fit between analytics representation and task type increases 

decision making creativity 

 

 

 

Table 21: Fixed Effects of Two Way Fit Model 

 

 

 

 

Table 22: Least Squares Means of Two Way Fit Model 

 

 

 

 

 

 

 

 

 

Figure 30: Creativity Least Squares Means Estimates 

for Two Way Fit Models 
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Lack of fit has higher creativity estimate than fit as shown in figure 28. When we look at 

the least squares means difference we find that the results are significant and in the right 

direction. These results provide strong support to our first hypothesis.  

We checked the same model after splitting fit variable into two separate variables (task 

and analytics representation) and we got the same statistical significance and the same 

results.  

5.2 Full Model 

 

To test hypothesis two and three, we ran a full model for all our research variables of 

interest. This model included all direct effects and interaction effects.  

Direct Effects:  

Task, Analytics Representation, Cognitive Style, Analytics Frames of Reference 

Interactions:  

Task * Analytics Representation 

Task * Analytics Representation * Cognitive Style 

Task * Analytics Representation * Analytics Frames of Reference 

Task * Analytics Representation * Cognitive Style * Analytics Frames of Reference 

 

This model has an AIC of 1,390 which is smaller than the earlier model and therefore 

better. We notice that the interaction (Task * Analytics Representation) has a p value of 

0.012 which is also better than the earlier model. This provides additional support for 

our H1. Three-way interaction (Task * Analytics Representation * Cognitive Style) is not 

statistically significant which means our H2 is not supported. Three-way interaction 
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(Task * Analytics Representation * Analytics Frames of Reference) is statistically 

significant with a p value of 0.084 which provides support to H3. Four-way interaction 

(Task * Analytics Representation * Cognitive Style * Analytics Frames of Reference) was 

not statistically significant.  

Hypothesis 2: Lack of fit between analytics representation, task type, and cognitive style 

increases decision making creativity 

Hypothesis 3: Lack of fit between analytics representation, task type, cognitive style, and 

analytics frames of reference increases decision making creativity 

 

Table 23: Fixed Effects Model Results 
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Table 24: Interaction Effects of Full Model 

 

5.3 Post Hoc Analysis 

 

Then we ran post hoc analysis to investigate if there were any specific scenarios that were 

statistically significant. Upon examining the LSMeans for the interaction effects, we 

listed the differences that are significant close to the 10% alpha level.  

Post hoc analysis results provide enough support for our hypothesis. In all types of 

interactions and in lots of scenarios, whenever there is a lack of fit, even partially, 

creativity estimate was higher than the existence of fit.  

For two-way interaction in the full model, we found that no fit (convergent with 

clustering) has higher creativity mean than fit (convergent with decision tree) as shown in 

table 25. This gives additional support to H1. 

LSMeans for three-way interaction differences show support to H2 and H3. Table 24 

shows that the first set fit (Intuitive, Clustering, Divergent) has lower creativity estimate 
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Effect Task

Analytic 

Representation

Cognitive 

Style TFR Task

Analytic 

Representation

Cognitive 

Style TFR Estimate

Standard 

Error t Value Pr > |t|

Hypothesis 

Supported

Two Way Fit Convergent Clustering Convergent Decision Tree 1.1055 0.7196 1.54 0.066 H1

Three Way Fit Convergent Clustering Intuitive Convergent Decision Tree Analyst 1.8131 1.0176 1.78 0.041 H2

Three Way Fit Convergent Clustering High Frames Convergent Decision Tree Low Frames 1.525 1.0176 1.5 0.070 H2

Three Way Fit Convergent Clustering High Frames Divergent Clustering Low Frames 1.47 1.0276 1.43 0.080 H2

Three Way Fit Convergent Decision Tree High Frames Divergent Decision Tree Low Frames -1.4705 1.0282 -1.43 0.080 H3

Three Way Fit Convergent Decision Tree Low Frames Divergent Decision Tree Low Frames -1.6251 0.8684 -1.87 0.034 H3

Three Way Fit Divergent Clustering Low Frames Divergent Decision Tree Low Frames -1.5702 0.8801 -1.78 0.040 H3

Three Way Fit Divergent Decision Tree High Frames Divergent Decision Tree Low Frames -2.0406 1.0872 -1.88 0.033 H3

Four Way Fit Convergent Clustering Analyst Low Frames Divergent Decision Tree Intuitive Low Frames -1.574 1.2302 -1.28 0.103 H3

Four Way Fit Convergent Clustering Intuitive High Frames Convergent Decision Tree Analyst High Frames 2.2222 1.6363 1.36 0.090 H3

Four Way Fit Convergent Clustering Intuitive High Frames Convergent Decision Tree Analyst Low Frames 2.3158 1.6978 1.36 0.089 H3

Four Way Fit Convergent Clustering Intuitive High Frames Divergent Clustering Intuitive Low Frames 2.5 1.7216 1.45 0.077 H3

Four Way Fit Convergent Clustering Intuitive High Frames Divergent Decision Tree Intuitive High Frames 3.3 2.1953 1.5 0.070 H3

Four Way Fit Convergent Clustering Intuitive Low Frames Divergent Clustering Intuitive Low Frames 1.5882 1.2435 1.28 0.104 H3

Four Way Fit Convergent Clustering Intuitive Low Frames Divergent Decision Tree Intuitive High Frames 2.3882 1.8444 1.29 0.101 H3

Four Way Fit Convergent Decision Tree Analyst High Frames Divergent Decision Tree Intuitive Low Frames -2.191 1.1438 -1.92 0.031 H3

Four Way Fit Convergent Decision Tree Analyst Low Frames Divergent Decision Tree Intuitive Low Frames -2.2845 1.2302 -1.86 0.035 H3

Four Way Fit Divergent Clustering Intuitive Low Frames Divergent Decision Tree Analyst Low Frames -1.5833 1.2261 -1.29 0.101 H3

Four Way Fit Divergent Clustering Intuitive Low Frames Divergent Decision Tree Intuitive Low Frames -2.4687 1.2628 -1.95 0.028 H3

Four Way Fit Divergent Decision Tree Analyst Low Frames Divergent Decision Tree Intuitive High Frames 2.3833 1.8328 1.3 0.100 H3

Four Way Fit Divergent Decision Tree Intuitive High Frames Divergent Decision Tree Intuitive Low Frames -3.2688 1.8575 -1.76 0.042 H3

than partial fit (Intuitive, Clustering, Convergent) and fit (Intuitive, Clustering, 

Divergent) has lower creativity estimate than no fit (Analyst, Clustering, Divergent), 

which gives some support to H2. And four way interactions with low analytics frames of 

reference has higher creativity estimate than high analytics frames of reference. For 

example, the last difference in table 25 shows that (Intuitive, Decision Tree, Divergent, 

High Frames) has lower creativity estimate than (Intuitive, Decision Tree, Divergent, 

Low Frames) which gives some support to H3. 

 

The graphical presentation of creativity LSMeans estimate from the model shows support 

to H1. Figure 31 shows that no fit (Clustering, Convergent) has higher creativity estimate 

than fit (Clustering, Divergent) and that no fit (Decision Tree, Divergent) has higher 

creativity estimate than fit (Decision Tree, Convergent). 

 

Table 25: Significant Differences in Least Squares Means for Creativity 
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Figure 31: Creativity LSMeans for Two Way Fit 
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The plot of three variables: analytic frames of reference, task, and analytics 

representation in figure 32 shows that the relationship between creativity and fit still 

holds for both low and high frames of reference, but we notice that for low frames of 

reference there is larger difference between decision tree, divergent and decision tree, 

convergent than with high frames of reference.  

 

Figure 32: Creativity LSMeans for Two Way Fit with Analytics Frames of Reference 
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The plot of three variables: cognitive style, analytics representation, and task in figure 33 

show that the fit as in analyst, decision tree, convergent has the lowest creativity estimate 

while the no fit as in analyst, clustering, divergent has the highest creativity estimate 

which support H3. But this is not true for the second set of fit. Intuitive, clustering, 

divergent has the lowest creativity estimate while intuitive, decision tree, convergent is 

not the highest as we expected in H2. 

 

Figure 33: Creativity LSMeans for Three Way Fit 
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And the plot of all four variables: analytics frames of reference, cognitive style, analytics 

representation, and task as in figure 34 show that no fit relationship flips between low and 

high frames of reference. The second thing we notice is that the difference in creativity 

estimate is larger with low frames than with high frames.  

 

Figure 34: Creativity LSMeans for Three Way Fit with Analytics Frames of Reference 

 

When an analytics frame of reference is low, the difference in creativity between fit and 

no fit scenarios becomes higher than when an analytics frame of reference is high. The 
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lack of fit between cognitive style and task is stronger than the lack of fit between 

cognitive style and analytics representation. For example, analyst, decision tree, divergent 

has stronger effect on creativity than analyst, clustering, convergent; and intuitive, 

clustering; convergent has stronger effect on creativity than intuitive, decision tree, 

convergent. 

And when we look at the fit scenarios and compare them to the no fit scenarios we find 

that our hypothesis holds up well in all scenarios except for one (High Frames, Intuitive, 

Clustering, Divergent). No fit scenarios were always higher than the fit scenarios across 

all four variables, except one where (High Frames, Intuitive, Clustering, Divergent) fit 

was higher than no fit. The reason for that one exception might have been that we did not 

have enough Intuitive subjects in our study. 
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Figure 35: Creativity LSMeans for Fit vs. No Fit Across Four Variables 
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Figure 36: Residuals for Creativity 

 

There were no concerns when we examined residuals (shown in figure 35). The results 

show that residuals of the full model are normally distributed which validates our model 

assumptions. 

5.4 Full Model (with continuous variables) 

 

Finally, we ran the same model but we replaced: cognitive style categorical variable with 

the full scale continuous variable, and analytics frames of reference categorical variable 

with the full scale continuous variable. The model shows strong support to the four-way 

interaction effect (Task * Analytics Representation * CSI * Analytics Frames of 

Reference). AIC for this model was 1,493. This model gives support to H2 and H3.  
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Cognitive style and analytics frames of reference direct effects became highly significant 

as shown in table 26. And the four-way interaction was the only interaction that was 

highly significant which provide support to H2 and H3. 

We were not able to perform ad hoc analysis using contrast and estimate procedures since 

there are two continuous variables in the model. 

 

 

 

 

 

 

 

 

 

 

 

  

Table 26: Fixed Effects of the Full Model (with continuous variables) 

Table 27: Interaction Effects of the Full Model (with continuous variables) 
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5.5 Sensitivity Analysis 

 

We ran sensitivity analysis on the model using analytics frames of reference and 

cognitive style.  

The full model became insignificant when we removed ‘Adaptive’ cognitive style users 

from the model. Adaptive cognitive style users are defined as having a cognitive style 

score of between 39 and 45. There were 19 respondents with an ‘Adaptive’ cognitive 

style, which represents a large number of respondents, hence, the results became 

insignificant. The fact that we did not get large number of respondents at the two ends of 

the cognitive style might be one reason we did not get highly significant results for 

cognitive style variable. 

When we excluded ‘Intuitive’ cognitive style subjects and kept only ‘Analyst’, the 

statistical significance improved and p value became 0.05. When we excluded ‘Analyst’ 

cognitive style subjects and kept only ‘Intuitive’, statistical significance degraded and p 

value became 0.11. We had ‘Analyst’ twice as much as ‘Intuitive’, therefore, that might 

be the reason why ‘Intuitive’ users did not show the results we expected and did not have 

statistical significance. 

The full model became highly significant when we excluded ‘High Frames’ values and 

kept only ‘Low Frames’ values from the analytics frames of reference variable. ‘Low 

Frames’ caused the two-way interaction p value to go down from 0.07 to 0.03. When we 

excluded ‘Low Frames’ and kept only ‘High Frames’ values, the model became 

insignificant and the p value of the two-way interaction went up from 0.07 to 0.83. 
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When we examined the three dimensions of analytics frames of reference, we found that 

the construct had more statistical power than any of the separate dimensions. ‘Analytics 

Nature’ dimension of analytics frames of reference was highly significant with a p value 

of 0.0061, ‘Analytics Use’ dimension was significant with a p value of 0.0427, while 

‘Analytics Strategy’ dimension was not significant with a p value of 0.3440.  
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CHAPTER VI 

DISCUSSION AND IMPLICATIONS 

6.1 Discussion 

Our research investigated the relationship between task, analytics representation, 

cognitive style, and analytics frames of reference and the effect of this relationship on 

creativity. Our results support the notion that fit in its core definition (task, analytics 

representation) or in its extended definition (task, analytics representation, cognitive 

style, analytics frames of reference) have adverse effect on creativity and that no fit or the 

mismatch between these variables of interest have better effect on creativity. 

When we investigated the match between task and analytics representation, there was 

enough support to show that it had the lowest creativity estimate compared to the 

scenario when we had a mismatch between task and analytics representation. The match 

between task and analytics representation has positive effect on efficiency as 

demonstrated by Vessey, but we showed that it had negative effects on creativity. This 

match makes it easier to form a mental representation and allow faster comprehension 

and resolution of the problem at hand, but we showed that it puts the user in a comfort 
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zone and makes it harder to pay attention to cues, therefore users become pre-committed 

to a decision.  

Further examination of the factors influencing fit and its relationship with creativity 

revealed differences in creativity among the different conditions. The model became 

stronger with better statistical support when we added the other factors (cognitive style 

and analytics frames of reference). Results strongly support the fact that analytics frames 

of reference play a role in moderating the relationship between creativity and fit; and 

results moderately support the fact that cognitive style has a role in this relationship too.  

Analytics frames of reference changes the relationship between fit and creativity. When 

there is no fit, analytics frame of reference reverses the relationship between no fit and 

creativity. Analytics frames of reference makes fit more mature; when users have high 

disposition toward analytics and have high exposure and experience in analytics, fit 

becomes more mature and its effect on creativity becomes more visible. With low 

analytics frames of reference, the difference between fit and no fit scenarios becomes 

higher than when an analytics frame of reference is high. It might be that analytics frames 

of reference is tapping into the mental representation and helping us reveal some of the 

factors that influence it. 

Cognitive style played a role in the relationship between fit and creativity. The results 

clearly show that analysts had much higher impact on creativity when they had no fit 

conditions. We also found that the no fit between cognitive style and task has stronger 

effect on creativity than the no fit between cognitive style and analytics representation. 

For example, analyst, decision, divergent has higher creativity estimate in comparison to 
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analyst, clustering, convergent; and intuitive, clustering, convergent has higher creativity 

estimate in comparison to intuitive, decision tree, convergent.  

And as expected, partial fit scenarios had creativity estimates in between no fit and fit 

conditions. This was true for all eight partial fit scenarios except for the one where 

intuitive, decision tree, divergent has higher creativity estimate than intuitive, decision 

tree, convergent.  

Cognitive style helped us shed some light on this relationship. We did not have enough 

‘Intuitive’ cognitive style subjects and that might be the reason why this variable was not 

highly supported in our analysis. 

 

6.2 Research Implications 

We are examining conditions in which users’ interaction with analytics can promote 

creativity in decision making. Our research examines how manipulating the analytics 

outcome can get to better insights. And training users can help create supportive analytics 

frames of reference. 

In the short term cognitive fit can be introduced to enhance adoption of the analytics 

software, and in the long term it might be beneficial to disrupt cognitive fit to enhance the 

innovative thinking process. Management should exert efforts in creating an environment 

in which decision making is facilitated. Some of these efforts should be directed toward 

identifying human-task fit problems. Management deploying business analytics systems 

should move away from narrowly focusing on the technical capabilities of the software or 
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on the task characteristics. Attention to the style differences among users can potentially 

create effective synergies which would enable better decision making quality. 

The deployment process, which can find the right fit between decision models and user’s 

abilities, is the enabler of business analytics benefits. We gave insights that can 

potentially create synergies in the implementations of business analytics, which can 

increase the decision quality and reduce user’s reluctance. And we identified guidelines 

on how to create a better match between the business analytics software and user 

cognitive style in different tasks. Using our experiment, we potentially could provide 

evidence of the importance of the proposed match.  

Business analytics software should be flexible enough to give companies the ability to 

match different capabilities with users and tasks. Designers of business analytics software 

should be aware of our research model. Our proposed model can potentially help them 

design software based on cognitive and task factors. And BA software developers should 

be cognizant of the different performance effects of their software and how to design 

their software in a way to support a particular outcome.  

Our study has extended the cognitive fit theory. First, we have used CEST theory and 

literature support to shed light on internal representation of problem domain construct in 

the cognitive fit theory. Our focus on this construct have identified a theoretically 

founded empirically tested psychometric measurement tool: the cognitive style of users 

can help future studies in empirically testing the internal representation construct in the 

cognitive fit theory. Second, although cognitive fit theory has been used in many 
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information systems contexts, our study is still unique in extending the cognitive fit 

theory into the business analytics deployment domain.  

Extant research which addressed this phenomenon was mainly in the eighties of last 

century and could not use the relatively new psychometric tools used in our study. 

Moreover, our study applies cognitive fit to business analytics systems and investigates 

how cognitive fit can affect decision quality. 

 

6.3 Practical Implications 

Efficiency or Creativity 

Business analytics is mainly used today to allocate resources efficiently. An example is 

reducing the cost of contacting all customers by contacting customers who are more 

likely to respond. Another example is allocating bank loans to customers who are less 

likely to default on loans. Nevertheless, business analytics critical role is in helping 

management become more innovative by generating insights and becoming creative in 

their decision making. That is what this research is all about, pointing to the most 

valuable goal of business analytics by uncovering the conditions that help lead to it.  

Companies should be aware of situations in which they need efficiency and situations in 

which they need creativity. Companies starting to deploy business analytics should exert 

efforts in finding the best fit, especially at the beginning of the deployment process, in 

order to ensure better decision making results and overcome deployment hurdles. 

However, cognitive fit should be disrupted in the long run in order to enhance creativity 
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in the decision making process. Challenge habitual assumptions and apply a different set 

of components to how you think about problems.  

 

Personalization 

Designers of business analytics investigate the data structure to decide on the best 

analytics methodology to use. Focusing on the data structure and not giving proper 

attention to the user’s cognitive style and the task in hand, makes designers of business 

analytics lose sight of the ultimate goal of business analytics which is to induce creativity 

and generate insight. We are proposing that designers should investigate user’s cognitive 

style and the task in hand to decide on the best analytics methodology to use. With 

today’s analytics tools, changing an analytics representation or the analytics methodology 

has become very easy and accessible. 

Companies can use this research to take personalization to an advanced level. Instead of 

using simple personalization like letting users change the color of a dashboard, we are 

making personalization more effective by letting users know the best business analytics 

model and presentation design that fits the way they think and that speaks their language. 

This research helps in delivering an analytics system that is more effective by attending 

to users’ specific needs. Instead of shooting in the dark and trying different presentation 

designs, now we are more informed of user’s mental needs and can be more effective in 

achieving specific outcome. 
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If personalization to each user is difficult, designers can find the cognitive style of the 

user’s majority (i.e. 80% analytical and 20% intuitive) then design for the majority while 

giving other users alternative options.  

 

Adoption or Abandonment 

This research can shed light on business analytics system adoption and user resistance. 

Future research can extend our study to check the different settings that influence user’s 

decision to use or abandon business analytics. 

Langer (2000) talked about mindfulness effect on creativity since it increases the 

perception of control and increases user’s enjoyment of the task. 

 

Choosing the best predictive methodology 

Predictive modeling developers get accustomed to one methodology and use that 

methodology heavily for almost all of their analytics modeling projects. I work as an 

analytics consultant and have seen this in real world. My colleagues at work are very 

proficient with logistic regression and have been using it for years. I have asked one of 

the consultants on the reason they all use the same method over and over and his response 

was that Logistic has proven very successful with the type of problems they face and the 

data structure they have; decision tree can do the same thing with similar level of 

precision and accuracy so why bother! This is risky; first, it proves that developers do not 

consider the different presentation output coming out of different algorithms. Designers 
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of analytics make their analytics modeling choice based on the data structure and the 

dependent variable type, without consideration to user’s interaction with the analytics 

output and how that affects insight generation. Second, when designers use the same 

modeling algorithm there is a hidden risk in using the same presentation output to users. 

If we want users to be creative and find new insights then users need to break out of the 

conventional design space, cognitive science has developed to tell us about cognitive fit, 

mindfulness, and performance. 

 

  



113 
 

 

 

 

CHAPTER VII 

FUTURE RESEARCH 

7.1 Contribution 

This research paper is unique in many aspects. First, our main focus is on business 

analytics and creativity. Our research builds on the theory of cognitive fit to examine the 

role it can play in enabling user understanding and processing of different DSS models 

and tasks. Extant research looked at user’s cognitive style effect -- and not cognitive fit 

effect -- on perception and intention to use DSS systems (Chakraborty et al., 2008), (Hsi-

Peng Lu et al., 2001). Second, extant research looked at technology acceptance and 

system use as the dependent variable (Chakraborty et al., 2008), (Hsi-Peng Lu et al., 

2001), while we will look at creativity and decision quality as the ultimate effect of 

cognitive fit.  

Third, our research will extend the cognitive fit theory by crystallizing internal 

representation with the cognitive styles of individuals. We build on the new advances in 

cognitive science and use Allinson and Hayes relatively new psychometric tool 

developed for organizations (Allinson & Hayes, 1996). The role of cognitive styles has 
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not been explored by cognitive fit theory. Fourth, this research will address the new 

business analytics models and tasks rather than the traditional decision sciences models 

and tasks. Our research context is business analytics and the latest data mining models 

and applications which represent an important trend in information systems. Up to our 

knowledge, no one has explored the effect of cognitive fit on decision quality in the 

context of DSS or business analytics. 

 

Creating an Environment for Business Analytics Success 

This research aims at finding better ways to implement business analytics. We posit that 

creating an environment which promotes synergy between user abilities and needs along 

with business analytics capabilities is the key to successful deployment of business 

analytics. If model representations match user cognitive style, then this will enhance 

user’s understanding of the problem. A greater portion of user cognition efforts will be 

directed toward solving the problem rather than struggling to understand it. When the 

match does not happen, that can also be beneficial since it can enhance the creativity of 

users in solving problems. Additionally, promoting the role of business analytics among 

users can enhance cognitive fit influence on performance. This research will complete the 

analytics process by finding techniques which can allow users to augment the technical 

outputs with their human abilities and expertise. When users’ have exposure to business 

analytics and are educated on the role of business analytics, then that will enhance 

performance effects. 
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7.2 Limitations 

The first limitation of this study was around sample size. Although we had good sample 

size (69 subjects with valid responses), we might have had better statistical significance 

with larger sample size. Mainly because we had four interacting variables and need 

enough subjects in each cell of the conditions we had. We did not get good number of 

subjects that are ‘Intuitive’ cognitive style, nor enough subjects with ‘High Frames’ of 

the analytics frames of reference. Maybe if we had enough, these two variables would 

have had higher statistical significance across all scenarios of fit. We worked with 

Qualtrics Panel to get analytics consultant to do the experiment and out of 150 responses 

we were only able to use 69. 

The second limitation would be around the repeated measures on each subject. It would 

be interesting to check the effect of these different fit conditions using one task per 

subject. But this would need a much larger sample size to be able to get enough subjects 

in each experiment cell.  

Another limitation is that we only investigated decision tree and clustering from the 

variety of analytics representations that could have been investigated. These two were 

chosen because they represent two contrasting modes of representations one with a clear 

spatial component (clustering) and the other with a numerical component (decision tree). 

Future studies could empirically test the studied relationships using other analytics 

representations like regression trends. 
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CHAPTER VIII 

CONCLUSION 

We examined enhancing insight generation and creativity through the different 

interaction settings. We acknowledge the fact that technical specifications of the problem 

might limit the wide selection of model representations. However, after the problem 

passes the technical specification limits, users have a choice in selecting an appropriate 

model representation. And we promote that the behavioral specifications provided in this 

study should guide this selection. 

DeWaele (1978) argued that matching DSS with manager’s cognitive style might 

reinforce previous biases and create blind spots in making decisions. However, DeWaele 

was aware that managers are not likely to use tools that are inconsistent with the way in 

which they think. Sprague and Carlson(1982) and Brightman, Elrod, and Ramakrishna 

(1988) posit that change should be evolutionary not revolutionary. Thus, we conclude 

that managers should be trained on tools that support their cognitive style first. Once 

managers absorb this tool and the deployment project is successful, then managers should 

be trained on tools that support their opposite cognitive style to help boost creativity. For 

example, finance managers are characterized by an analytical dominant style (Allinson & 
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Hayes, 1996), deploying analytics to them should start with analytical models to ensure 

adoption, once the process is successful then other models can be introduced 

appropriately to ensure creativity. 

While business analytics software has reached advanced technical levels, the deployment 

process is still at its infancy. There is much research needed in the area of business 

analytics deployment. A deployment process which promotes a whole brain approach of 

users and can take advantage of all our cognitive abilities as decision makers. 

Several strides are needed in the future in order to bridge the gap between business 

analytics software and users. 
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