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and lakes (Carey and Migliaccio, 2009; Jarvie et al., 2006; OEPA,
1999). The Greater Cleveland-Akron metropolis as one of the larg-
est population centers along the southern costal of Lake Erie, with a
population of about 2 millions, generates about 300 Mg/yr of efflu-
ent TP from over a dozen WWTPs which accounts for over 15% of
the total municipal loading to the lake. Because a large fraction
of the municipal wastewater (including combined sewer over-
flows) is released directly into the Cuyahoga River and its tributar-
ies (OEPA, 2003), the municipal P loading may have already posed
a disproportionately greater threat to ecological health of Lake Erie.
Since the early work by Schroeder and Collier (1966), the Cuyahoga
River has been the subject of many water quality studies, e.g.,
stream water chemistry (Lo and Shong, 1976; Schroeder and Col-
lier, 1966), diatom assemblages (Brown and Olive, 1995), fecal bac-
teria (Myers et al., 1998), aquatic macrophyte diversity (Balanson
et al., 2005), and short-term response to dam removal (Rumschlag
and Peck, 2007; Tuckerman and Zawiski, 2007). But considerably
less detail is known about the loading and transport of P in this
effluent-affected urban stream.

Here we report results of SRP and TP as measured on water
samples collected from the Cuyahoga River from July 2007 to
May 2008. The results were used to indicate changes in the load-
ings of SRP and TP along the Cuyahoga River and its main tributary
(Tinkers Creek) under three different flow conditions. We com-
pared the riverine P loadings with the effluent inputs and con-
ducted mass-balance analyses for two river sections in the lower
Cuyahoga River. Lastly, the existing long-term P loading data from
the Ohio tributary monitoring program (NCWQR, 2010) were used
to evaluate the role of stream flow regimes in regulating the P load-
ing and transport in the Cuyahoga River. The main purpose of this
work is to gain useful insights into the loading and transport of P
across the Cuyahoga River for better management practices in
the basin.

2. Study area

The Cuyahoga River originates in its headwaters area in Geauga
County (Ohio) with two branches: East Branch and West Branch
(Fig. 1). The two branches join together at the southern end of El-
don Russell Park, Troy Township, Ohio. The river flows southwest-
ward in a narrow valley toward Akron for about 70 km, turns
abruptly northward near Cuyahoga Fall, traverses a wide, deep pre-
glacial valley in the Cuyahoga Valley National Park, and merges
with Tinkers Creek before reaching Lake Erie.

The Cuyahoga River is readily divided into an upper basin of
1000 km2 above Old Portage and a lower basin of 1100 km2 above
Lake Erie (NWIS, 2011). Grassland, pasture, forest and agriculture
are the dominant land uses in the upper Cuyahoga River, whereas
urban and residential land uses dominates in the lower Cuyahoga
River and Tinkers Creek (OEPA, 2003). There are three reservoirs
(East Branch Reservoir, LaDue Reservoir, and Lake Rockwell) in
the upper Cuyahoga watershed (Fig. 1). Based on daily discharge
records from the National Water Information System (NWIS,
2011) in the period of 2001–2007, the average discharge of the riv-
er increases substantially from 6.4 m3/s at Hiram Rapids to
15.6 m3/s at Old Portage to 30.8 m3/s at Independence (Table 1).
The average precipitation is around 95 cm/yr and the average flow
yield is around 35 cm/yr (or 0.01 m3/s km�2) across the watershed,
based on daily duration curves derived from daily stream flow
readings at four USGS gaging stations between 1978 and 2008
(Fig. 2a). We used the cumulative time percentage (%) as shown
in Fig. 2a to categorize three flow regimes, namely storm flow
(<5%), intermediate flow (5–60%) and low flow (>60%). This may
better reflect the fact that the probability distribution of daily
stream flow is usually skewed instead of bell-shaped,

The Cuyahoga River receives P from a variety of point and non-
point sources. Major sources include municipal effluents, com-
bined sewer overflows (CSO), and to a lesser extent agricultural
and natural runoffs (OEPA, 1999). There are about sixteen WWTPs
and industrial dischargers in the upper Cuyahoga watershed and
nine WWTPs in the lower Cuyahoga watershed (seven of them in
the Tinkers Creek watershed) (Table 2; OEPA, 2003). Most of these
WWTPs are relatively small and release effluent at a flow rate of
below 0.22 m3/s. The Akron Water Pollution Control Station
(AWPCS) serves a population of 330,000 in the city of Akron and
its neighboring communities and releases effluent into the lower
Cuyahoga River within reach A at an average discharge rate of
3.42 m3/s (Fig. 1). The Cleveland Southerly Wastewater Treatment
Plant (CSWTP) serves a population of 601,000 in the Greater Cleve-
land area and emits effluent into the river within reach B with an
average rate of 5.48 m3/s.

The stream water chemistry changes greatly in the Cuyahoga
River from the headwaters downstream. Ca2+, Na+, and HCO�3 dom-
inate in water of the upper Cuyahoga River while Na+, Cl� and
HCO�3 dominate in water of the lower Cuyahoga River (Table 1).
The concentration of total dissolved solids (TDS) of the river in-
creases significantly from 255 mg/l at Hiram Rapids to 609 mg/l
at Independence though the discharge of stream flow increases
fourfold. As a result, the average TDS loading of river water in-
creases over tenfold from 51.5 � 103 Mg/yr at Hiram Rapids to
592 � 103 Mg/yr at Independence. The major ion chemistry of Tin-
kers Creek at Bedford is similar to that of the lower Cuyahoga River
at Independence (Table 1).

3. Materials and methods

3.1. Data acquisition

Consideration for selection of sampling sites includes site acces-
sibility, spatial coverage, and availability of real-time daily stream-
flow data. Among a dozen of water sampling sites selected, nine
were along the main stem of the Cuyahoga River and three along
Tinkers Creek (Fig. 1). Four sites are close to existing USGS gaging
stations (Hiram Rapids, Old Portage, Bedford, and Independence).
Five water sampling campaigns were carried out between 2007
and 2008 under three different flow regimes (Fig. 2a). A total of 6
water samples were taken on July 29, 2007, 12 samples on Septem-
ber 3, 2007, and 12 samples on October 30, 2007 under low flow
conditions, 12 samples on May 23, 2008 under intermediate flow
conditions, and 12 samples on March 15, 2008 under storm flow
conditions across the watershed (Fig. 2b).

Water samples were collected by hand-dipping along the river
shore at a water depth of 10–15 cm where flowing water was pres-
ent, using 500 ml high-density polyethylene (HDPE) wide-mouth
round bottles. Prior to sampling, HDPE bottles were treated with
1.2 M HCl solution, washed with tap and deionized water at least
three times, and re-washed three times in situ using river water.
Water samples were frozen and shipped to the National Center
for Water Quality Research (NCWQR) at Heidelberg University in
Ohio. Analyses of SRP and TP were carried out at the NCWQR by
semi-automated colorimetry (version II) in accordance with the
U.S. EPA SW-846 Solid Waste method procedures. The method
detection limits (MDL) of TP and SRP were determined as 2.3 and
0.8 lg/l, respectively.

Additionally, existing data of stream and effluent flows were
gathered from different agencies. Daily stream discharge data of
the Cuyahoga River at the four USGS gaging stations (Hiram Rapids,
Old Portage, Bedford, and Independence) were downloaded from
the National Water Information System (NWIS, 2011). Daily efflu-
ent discharge data were provided by the two major WWTPs (i.e.,



AWPCS and CSWTP). Lastly, we retrieved long-term TP and SRP re-
cords of the Cuyahoga River at Independence from the Ohio tribu-
tary monitoring program (NCWQR, 2010).

3.2. Loading calculations

In theory, the instantaneous loading (Li, in g/s) of the river at a
specific monitoring station is a function of time (t, in s) and equals
to the product of the instantaneous concentration (C, in mg/l) and
river discharge (Q, in m3/s), as expressed by

Li ¼ f ðtÞ ¼ CðtÞQðtÞ ð1Þ

where C(t) and Q(t) are the instantaneous concentration and river
discharge at time t. Since the instantaneous P loading is quite vari-
able, it is always desirable to know the average flux (or loading) of P
traveling through a monitoring station in a specific time interval
(Dt = t2 � t1). The average loading ðLÞ of the river at a given monitor-
ing station in a time interval of Dt can be estimated by

L ¼
R t2

t1
f ðtÞdt

t2 � t1
ð2Þ

Fig. 1. (a) Map showing locations of the Cuyahoga River and Lake Erie. (b) Watershed map showing locations of twelve sampling sites along the main stem of the Cuyahoga
River and its main tributary of Tinkers Creek. The 12 sampling sites are West Branch (WB), East Branch (EB), Hiram Rapids (HR), Mantua (M), Kent Bridge (K), Old Portage (OP),
Peninsula (P), Independence (I), Harvard Avenue (H), Twinsburg (T), Glenwillow (G), and Bedford (B). The two major effluent emitters are indicated by filled black triangles
namely the Akron Water Pollution Control Station (AWPCS) in reach A and Cleveland Southerly Wastewater Treatment Plants (CSWTP) in reach B.

Table 1
Mean flow and major ion concentrations of surface waters in the Cuyahoga River and Tinkers Creek between 2001 and 2007.a

Gaging station Flow pH Ca Mg Na K HCO3 SO4 Cl TDS
(m3/s) (S.U.) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l)

Cuyahoga River
Hiram Rapids 6.4 7.9 34 7.8 28 2.2 104 28 43 255
Old Portage 15.6 8.0 59 14 58 4.0 149 56 103 451
Independence 30.8 8.0 67 15 111 5.2 153 72 178 609

Tinkers Creek
Bedford 4.3 7.9 56 13 117 6.8 140 61 194 596

a Original flow data were taken from USGS National Water Information System (NWIS) and water quality data from USEPA STORET.



In reality, the yearly loading (La, in metric tons or Mg/yr) of SRP
or TP in a river can be estimated as follows (Baker, 2005).

La ¼ c
RtjCjQ j

Rtj
ð3Þ

where Qj is the average river discharge in the sampling interval (in
m3/s), Cj is the concentration of SRP or TP in the composite water
sample collected during the sampling interval (in mg/l), tj is the

time interval (in days) of the composite sample, and c = 31.536, is
a g/s to Mg/yr unit conversion coefficient.

Alternatively, the average loading ðLÞ can be approximated by
the arithmetic mean of the instantaneous loadings (Li).

L ¼ RLi

n
¼ RCiQ i

n
¼ C Q ð4Þ

where n is the number of the instantaneous loadings measured, C is
the flow-weighted average concentration, and Q is the average dis-
charge of the river in a given time period. L may be estimated at

Fig. 2. (a) Flow duration curves of the Cuyahoga River at Hiram Rapids, Old Portage, and Independence, and of Tinkers Creek at Bedford. (b) Stream hydrograph of the
Cuyahoga River at Independence from July 2007 to May 2008. Three flow regimes are determined by % time indicated discharge (Q) was equaled or exceeded: storm flow
(<5%), intermediate flow (5–60%), and low flow (>60%). The five filled circles represent discharge of the Cuyahoga River at Independence on the day when water samples were
taken. M – March15, 2008; M5 – May 23, 2008; J – July 29, 2007; S – September 3, 2007; O – October 30, 2007.

Table 2
Estimated P loading from known point sources in Cuyahoga watersheds.a

Facility name Average discharge TP TP load

MGDb (m3/s) (km3/yr) (mg/l) (Mg/yr)

Cuyahoga River near Kent, Ohio
Twin Lakes WWTP 0.5 0.02 0.001 1.0 0.7
Akron WTP 1.6 0.07 0.002 1.0 2.2
Ravenna WWTP 2.8 0.12 0.004 1.0 3.9
Franklin Hills WWTP 2.0 0.09 0.003 1.0 2.8
Kent WWTP 5.0 0.22 0.007 1.0 6.9
Fish Creek WWTP 5.0 0.22 0.007 1.0 6.9

Akron Water Pollution Control Station (AWPCS) 78.6 3.44 0.109 0.7 73.8
Tinkers Creek area

Aurora Westerly Plant 1.4 0.06 0.002 1.0 1.9
Bedford WWTP 3.2 0.14 0.004 1.0 4.4
Bedford Heights WWTP 7.5 0.33 0.010 1.0 10.4
Streetsboro WWTP 4.0 0.18 0.006 1.0 5.5
Solon WWTP 5.8 0.25 0.008 1.0 8.0
Twinsburg WWTP 3.4 0.15 0.005 1.0 4.7

Southerly Wastewater Treatment Plant (CSWTP) 125 5.48 0.173 0.5 86.3

Total 245.8 10.8 0.340 218.4

a The average dischages from small wastewater treatment plants near Kent and Tinkers Creek areas are the EPA-permitted flow rates (OEPA, 2003). Their TP concentrations
are assumed to be 1.0 mg/L.

b MGD: Million gallon per day.



three different time scales, namely daily, monthly, and yearly. The
yearly average loading equals to the product of the monthly flow-
weighted average concentration and discharge while the monthly
average loading equals to the product of the daily flow-weighted
average concentration and discharge.

3.3. Mass balances

The mass balance is an application of the law of mass conserva-
tion to the analysis of flow and P loading for a river section.
Changes in storage (DS) of a river section in a time interval (Dt)
is given by

DS
Dt
¼ Q u þ RQk � Qd ð5Þ

where Qu, Qk, and Qd are the streamflow discharge in upstream, trib-
utaries, and downstream. Accordingly, changes in the P loading (DL)
of a given river section may be expressed as

DL ¼ Lu þ RLk � Ld ð6Þ

where Lu, Lk, and Ld are the P loading of a given river section in up-
stream, tributaries, and downstream.

4. Results

4.1. Riverine phosphorus loadings

Concentrations of TP and SRP as measured on water samples
collected from the river exhibit considerable variations, with val-
ues ranging from 0.030 to 0.287 mg/l in TP and from 0.004 to
0.175 mg/l in SRP (Fig. 3a and b). There is a clear distinction in
the pattern of variations between the upper and lower Cuyahoga
River. In the upper basin, TP and SRP were relatively low except
some anomalies in the East Branch during low and intermediate
flow conditions. In the lower basin (including the Tinkers Creek),
however, TP and SRP increased substantially from the upstream
downward under the three different flow conditions. Additionally,

the ratio of SRP/TP increased substantially from �0.2 in the upper
Cuyahoga River to �0.7 in the lower Cuyahoga River. Under the
storm flow conditions, however, the ratio of SRP/TP was reduced
to �0.1 throughout the river basin.

The loading of TP was fairly low in the upper basin and in-
creased rapidly in the lower basin from the upstream downward
(Fig. 4a). Under the storm flow conditions, the loading of TP was
extraordinarily high, which increased from 0.6 g/s at Hiram Rapids
to 4.4 g/s at Old Portage to 36.8 g/s at Harvard Avenue. The loading
of SRP was also low (<0.1 g/s) in the upper basin and increased rap-
idly in the lower basin under different flow conditions (Fig. 4b).
The TP and SRP loadings of Tinkers Creek at Bedford were similar
to those of the Cuyahoga River at Old Portage.

4.2. Effluent phosphorus inputs

Over a dozen WWTPs continuously discharge municipal efflu-
ents into the river at an average rate of 10.8 m3/s (Table 2),
accounting for on average 30% of stream flow as gaged at Indepen-
dence. Concentrations of the effluent TP from the AWPCS and
CSWTP from 2006 to 2008 were 0.7 and 0.5 mg/l, respectively (Ta-
ble 3). But there were great daily variations in discharge, TP con-
centration, and TP loading of effluents from the AWPCS and
CSWTP. For example, values of the maximal TP loading were one
order of magnitude greater than those of the minimal TP loading.
In contrast, variations in monthly-averaged discharge, TP concen-
tration, and TP loading of effluents from the two WWTPs were sig-
nificantly reduced. Moreover, the year-to-year changes in the TP
loading of municipal effluents appeared to be minimal. For in-
stance, the difference between maximum and minimum of
yearly-averaged TP loading at the CSWTP was only 0.013 Mg/d or
5% of the mean TP loading (Table 3).

4.3. Comparison of riverine and effluent phosphorus loadings

Values of the effluent TP loading from the AWPCS and CSWTP
were comparable to those of the riverine TP loading downstream
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Fig. 3. Concentrations of TP (a) and SRP (b) along the Cuyahoga River and its major tributary of Tinkers Creek under the three different flow regimes, namely the low-flow
regime (blue), the intermediate flow regime (green), and the storm flow regime (red). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)



under the low and intermediate flow conditions (Fig. 4a). As noted
above, values of the riverine TP loading under the storm flow con-
ditions were extremely high and far exceeded those of the effluent
TP loading upstream. On the other hand, values of the effluent SRP
loading from the two WWTPs were overall larger than those of the
riverine SRP loading downstream (Fig. 4b).

Comparison of the monthly-averaged TP loading from the
AWPCS with the riverine SRP loading at Independence during a
period of 2006–2008 reveals some interesting features (Fig. 5).
First, the average value of the effluent TP loading was 0.20 Mg/d,
much larger than that of the riverine SRP loading as gaged at Inde-
pendence (0.12 Mg/d). Second, there was a great deal of similarity
between the two records, indicating a great influence of effluent P
inputs. Third, there existed some important discrepancies. For
example, the moderate TP loading from the AWPCS in December
2007 was apparently inconsistent with the greatest value of the
monthly-averaged SRP loading observed at Independence. The
effluent TP loading was near or above the average from March to

July 2007, whereas the concurrent riverine SRP loading at Indepen-
dence was far below the average.

4.4. Mass balance analyses of phosphorus loading

Two river reaches (A and B) were selected for mass balances.
Reach A stretches from Old Portage to Independence, with a river
length of 43.5 km (Fig. 1). It receives effluent from the AWPCS
and stream water upstream gaged at Old Portage, and tributary
flow from Tinkers Creek gaged at Bedford and many other ungag-
ged small creeks. The ungagged flow ranged from 14% of the
stream flow gaged at Independence under the low flow conditions
to 48% under the storm flow conditions (Table 4). Although a fair
amount of stream flow was ungaged and excluded for the mass-
balance analysis, the loading of SRP observed at Independence

Table 3
Summary of discharge, TP, and TP loading from two major wastewater treatment plants.a

Discharge (MGD) TP (mg/l) TP loading (Mg/d)

Mean Max Min Mean Max Min Mean Max Min

Akron water polution control station
Daily 78.2 232.4 49.2 0.698 1.920 0.220 0.202 0.928 0.062
Monthly 77.8 134.5 55.8 0.701 0.915 0.330 0.201 0.283 0.114
Yearly 77.8 80.3 74.9 0.701 0.764 0.738 0.201 0.223 0.167

Cleveland southerly wastewater treatment plant
Daily 125.5 380.5 69.4 0.533 1.200 0.060 0.237 0.817 0.029
Monthly 125.8 218.9 80.7 0.514 0.772 0.203 0.237 0.320 0.115
Yearly 125.8 128.4 124.0 0.514 0.523 0.499 0.237 0.245 0.232

a Derived from daily monitoring data during the 3-year period (2006–2008) at the two WWTPs.
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Fig. 4. Loadings of TP (a) and SRP (b) at selected stations and the two major effluent
emitters under the three different flow regimes, namely the low-flow regime (blue),
the intermediate flow regime (green), and the storm flow regime (red). HR – Hiram
Rapids; OP – Old Portage; I – Independence; B – Bedford. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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was 44% lower than the total inputs of SRP from the three known
sources (upstream at Old Portage, AWPCS, and Tinkers Creek at
Bedford) under the three different flow conditions. There were
varying degrees (27–77%) of loss in the SRP loading in this reach.
On the other hand, the riverine loading of TP observed at Indepen-
dence was lower than the amount of the total inputs during the
low and intermediate flow events but was three times larger than
the amount of the total inputs during the storm flow event. Reach
B, a relatively short (6.1 km) section between Independence and
Harvard Ave (Fig. 1), receives effluent from the CSWTP, discharge
from upstream gaged at Independence, and stream flows from
three ungaged tributaries (West Creek, Mill Creek, and Big Creek).
Compared to the magnitude of the two contributors, inputs from
the ungagged tributaries are negligible. The loading of TP was more
or less balanced under the three different flow conditions, whereas
the loading of SRP at Harvard Avenue was on average 38% less than
that of the total inputs of SRP from CSWTP and upstream at Inde-
pendence. In summary, losses of the loading of SRP in the lower
Cuyahoga River occurred on most occasions while the loading of
TP could increase substantially during storm events. The amount
of gain in the TP loading was closely related to the amount of loss
in the TP loading during the low and intermediate flow periods.

5. Discussion

We found multiple lines of evidence indicating that the P load-
ing in the Cuyahoga River came largely from effluent inputs. First,
the riverine P loading increased rapidly downstream due to in-
creases in municipal effluents in the lower Cuyahoga River. Second,
the ratio of SRP/TP of the Cuyahoga River increased substantially
from the upper to lower basin. Third, we found the amount of
the effluent TP input was comparable to that of the riverine TP
loading, particularly under the low and intermediate flow condi-
tions. Lastly, there was a great deal of similarity between the efflu-
ent TP loading record from the AWPCS and the riverine SRP loading
record from the Cuyahoga River at Independence. We thus con-
cluded that the lower Cuyahoga River suffered from excessive
nutrient loadings from municipal effluents, a conclusion in agree-
ment with the indices of biotic integrity and water quality (OEPA,
1999).

Furthermore, we found that effluent P was highly active and
subject to rapid changes or transformations in the Cuyahoga River
and that changes in the riverine P loading were affected by stream-
flow conditions. Comparison of the effluent P loading record from
the AWPCS and the riverine SRP loading record indicated that be-
tween 2006 and 2009 the average SRP loading of the Cuyahoga Riv-
er as gaged at Independence was only 60% of the effluent P input,
suggesting 30–40% of the reactive effluent P was converted to
other forms in this river section. This notion is in line with our
mass-balance analyses indicating that 27–77% of the total SRP in-
puts were lost in reach A. We also noted that this river section re-
tained a fair amount of TP under the low and intermediate flow
conditions and released the retained TP during the storm flow con-
ditions, highlighting the role of flow regimes in regulating the P
loading and transport across the river.

To address the influence of streamflow conditions, we used the
existing long-term tributary monitoring data of the Cuyahoga River
at Independence (NCWQR, 2010) to examine the changes in the P
loading and transport in relation to hydrological variability in the
river on different timescales. As shown in Fig. 6, the concentration
of TP increased concurrently with increasing stream discharge dur-
ing the two consecutive storm events occurred in August 2008. The
concurrent increases in the riverine TP also seen in agricultural-
dominated watersheds were attributed to increases in P-bearing
suspended sediments during storm events (Richards et al., 2001).Ta

bl
e

4
Su

m
m

ar
y

of
ph

os
ph

or
us

bu
dg

et
ar

y
an

al
ys

es
fo

r
th

e
tw

o
re

ac
he

s
(A

an
d

B)
in

th
e

lo
w

er
Cu

ya
ho

ga
Ri

ve
r.

Lo
w

fl
ow

a
In

te
rm

ed
ia

te
fl

ow
H

ig
h

fl
ow

M
ea

n

Q
(m

3
/s

)
LS

R
P

(M
g/

d)
LT

P
(M

g/
d)

Q
(m

3
/s

)
LS

R
P

(M
g/

d)
LT

P
(M

g/
d)

Q
(m

3
/s

)
LS

R
P

(M
g/

d)
LT

P
(M

g/
d)

Q
(m

3
/s

)
LS

R
P

(M
g/

d)
LT

P
(M

g/
d)

R
iv

er
re

ac
h

A
:

Fr
om

O
ld

Po
rt

ag
e

to
In

de
pe

nd
en

ce
(L

=
43

.5
km

)
In

pu
ts

U
ps

tr
ea

m
(O

P)
5.

00
0.

00
3

0.
02

2
11

.0
7

0.
00

8
0.

05
6

45
.8

7
0.

02
4

0.
38

0
20

.6
5

0.
01

2
0.

15
3

A
W

PC
S

2.
69

0.
16

8
0.

18
4

2.
81

0.
14

2
0.

15
6

6.
37

0.
16

0
0.

17
6

3.
96

0.
15

7
0.

17
2

Tr
ib

u
ta

ry
(B

)
0.

98
0.

00
6

0.
01

5
2.

21
0.

01
0

0.
03

2
26

.4
8

0.
01

6
0.

23
6

9.
89

0.
01

1
0.

09
4

To
ta

l
in

pu
ts

b
8.

67
0.

17
7

0.
22

1
16

.1
0

0.
16

0
0.

24
4

78
.7

2
0.

20
0

0.
79

2
34

.5
0

0.
17

9
0.

41
9

Ex
po

rt
s

D
ow

n
st

re
am

(I
)

10
.0

9
0.

05
5

0.
13

2
19

.8
5

0.
03

6
0.

17
7

15
2.

35
0.

14
5

2.
69

8
60

.7
6

0.
07

9
1.

00
2

R
iv

er
re

ac
h

B:
Fr

om
In

de
pe

nd
en

ce
to

H
ar

va
rd

A
ve

(L
=

6.
1

km
)

In
pu

ts
U

ps
tr

ea
m

(I
)

10
.0

9
0.

05
5

0.
13

2
19

.8
5

0.
03

6
0.

17
7

15
2.

35
0.

14
5

2.
69

8
60

.7
6

0.
07

9
1.

00
2

C
SW

TP
3.

49
0.

20
6

0.
22

6
4.

18
0.

24
8

0.
27

2
14

.3
5

0.
38

3
0.

42
1

7.
34

0.
27

9
0.

30
6

To
ta

l
in

pu
ts

13
.5

8
0.

26
1

0.
35

8
24

.0
3

0.
28

4
0.

44
9

16
6.

70
0.

52
8

3.
11

9
68

.1
0

0.
35

8
1.

30
9

Ex
po

rt
s

D
ow

n
st

re
am

(H
)c

13
.5

8
0.

21
0

0.
34

3
24

.0
3

0.
29

5
0.

45
7

16
6.

70
0.

15
8

3.
18

3
68

.1
0

0.
22

1
1.

32
8

a
A

ri
th

m
et

ic
m

ea
n

of
di

sc
h

ar
ge

(Q
),

SR
P

lo
ad

in
g

(L
SR

P)
,a

n
d

TP
lo

ad
in

g
(L

TP
)

on
th

e
th

re
e

lo
w

-fl
ow

sa
m

pl
in

g
da

te
s.

b
V

al
u

es
of

th
e

to
ta

l
in

pu
ts

gr
ea

te
r

th
an

th
os

e
of

th
e

ex
po

rt
s

ar
e

h
ig

h
li

gh
te

d
in

bo
ld

fo
n

ts
.

c
Pr

es
u

m
ab

ly
eq

u
iv

al
en

t
to

th
e

di
sc

h
ar

ge
of

to
ta

l
in

pu
ts

.



On the other hand, the concentration of SRP decreased slightly dur-
ing the storm events (Fig. 6), presumably attributed to the dilution
effect of storm water. But the results from mass-balance analysis
show that there was an up to 70% loss of the SRP loading during
the storm flow events (Table 4), indicating that the riverine P trans-
formations (e.g., adsorption) were active in the lower Cuyahoga
River. It has been repeatedly documented that P released from

WWTPs interacts quickly with stream water, sediments, and aqua-
tic communities (e.g., algae, phytoplankton and macrophytes)
through a range of physical and biological processes (House,
2003; Marti et al., 2004; Withers and Jarvie, 2008). The degree of
the interactions is highly variable, depending on the P retention
capacity, saturation rate, and effluent inputs. For instance, the rates
of P retention were reported to vary from below 10% to over 30%
under a range of flow conditions in the River Swale, northern Eng-
land (House, 2003) and reach up to 60% under low flow conditions
in the River Kennet, England (Jarvie et al., 2002). As to the Cuya-
hoga River, much uncertainty remains in the dominant processes
controlling the quantitative relationship between P retention and
stream flow. Nevertheless, our results are broadly consistent with
these studies in indicating that riverine retention and processing
can lead to changes in the form, quantity, and timing of P trans-
ported downstream (Withers and Jarvie, 2008).

Richards et al. (2001) estimated that over 90% of the suspended
solids loading in the Maumee and Sandusky Rivers was trans-
ported during storm runoff periods which normally accounted
for less than a third of the total time. Based on the daily discharge
readings from the USGS database (NWIS, 2011) and the daily and
sub-daily sampled TP and SRP concentration data of the Cuyahoga
River at Independence between 1982 and 2009 (NCWQR, 2010),
the percentages of time, discharge, SRP loading, and TP loading
were used to evaluate the relative importance of each flow regime.
The Cuyahoga River delivered, on average, 53% of river water under
the intermediate flow conditions, 27% of river water under the low
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Fig. 6. Variations in stream discharge (solid line), SRP (filled circles) and TP (open
circles) concentrations of the Cuyahoga River at Independence before and during
two consecutive storm events in August 2007.
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flow conditions, and 20% of river water under the storm flow con-
ditions even though storm runoff periods account for less than 5%
of the total time (Fig. 7a and b). 80% of the TP loading was delivered
during the storm and intermediate flow periods, whereas 91% of
the SRP loading was transported during the low and intermediate
flow periods (Fig. 7c and d). Furthermore, there were great year-to-
year variations in the percentage of the P loading during the low
flow periods. For instance, the low-flow SRP loading percentages
were below 40% between 1989 and 1991 and increased abruptly
to 75% in 1992 (Fig. 7d). Most of the high low-flow SRP loading per-
centages coincided with the low-flow years such as 1988, 1992,
1995, 1998–2002 (Fig. 8). In contrast, the high-flow TP loading per-
centage was about 5% in 1999 and increased progressively to about
60% in 2003 (Fig. 7c). As highlighted by upward paralleled arrows
in Fig. 7, the increasing trends of the high-flow discharge and TP
loading percentages from 1999 to 2003 were concurrent with the
decreasing trends of the low-flow time and SRP loading percent-
ages. The observed changes in the SRP and TP loading percentages
further attest to the importance of stream hydrology in regulating
the P loading and transport in this effluent-affected urban
watershed.

Analyses of long-term (multidecadal) monitoring data can help
develop a useful context of changes in stream chemistry (Yuan and
Miyamoto, 2004; Yuan et al., 2007), effectiveness of nutrient man-
agement (Bowes et al., 2011; Gustafsson et al., 2012; Howden and
Burt, 2008), and trends in suspended sediment and SRP loadings
(Daloğlu et al., 2012; Richards et al., 2008). We examined the
year-to-year changes in the loadings of TP and SRP in relation to
changes in streamflow discharge, using the long-term tributary
monitoring data of the Cuyahoga River at Independence for water
years from 1982 to 2009 (NCWQR, 2010). There were great varia-
tions in the annual loadings, with SRP loading ranging from 20 to
105 Mg/yr and TP loading from 150 to 500 Mg/yr (Fig. 8). The load-
ings of TP and SRP were extraordinarily large between 1982 and
1985, reflecting the historical P loadings prior to the implementa-

tion of stringent P regulations, such as the phosphate detergent
ban and 1 mg/l effluent P standard (Hartig et al., 1990). The largest
loading of TP occurred in 2003, most likely attributed to low flow
conditions in the preceding five consecutive years (1998–2002).
There was a robust correlation (r = 0.86) between the annual dis-
charge and loading of TP in the Cuyahoga River except the
above-mentioned five years (1982–85, 2003) with extraordinarily
large loading of TP as enclosed by the dashed line in Fig. 9. This
is due in part to that the annual effluent loading is more or less
constant. As a result, variations in streamflow discharge are the
dominant driver that regulates the annual TP loading of the river.

On the other hand, the annual loading of SRP generally followed
the decreasing trend of the TP loading from 1985 to 1989 as a re-
sult of the stringent P regulations (Hartig et al., 1990). The loading
of SRP remained its minima until 1994, then increased progres-
sively to the maxima in 2005, and declined from 2005 to 2009. It
is worth noting that the increasing trend of the SRP loading from
1995 to 2005 was also observed in other watersheds of the Lake
Erie basin (Baker, 2007; OEPA, 2010), coinciding with the recent
resurge of harmful algal blooms in Lake Erie (Conroy et al., 2005;
Michalak et al., 2013). Comparison of the riverine SRP loading with
the discharge record revealed there were some degrees of covari-
ability, particularly in the period between 1995 and 2009. This
observation suggests that the basin-wide changes in the tributary
loading of SRP are related to variations in hydroclimate, e.g., recent
increases in storm events across the region (Daloğlu et al., 2012).

While the results of this study may contribute to the ongoing
efforts to unravel the causes for the resurge of harmful algal
blooms in Lake Erie, some uncertainty regarding the tributary P
loading and transport still remains. First, our estimated average
values of the SRP and TP loadings from our analytical results are
comparable to those from the daily to sub-daily resolved samples
(Baker, 2007). Our estimated mean loading of TP between 2007
and 2008 was 365 Mg/yr (or 1.002 Mg/d in Table 4), close to the
average value of 350 Mg/yr from the long-term tributary monitor-
ing data (Fig. 8), while our estimated mean loading of SRP between
2007 and 2008 was 29 Mg/yr (or 0.079 Mg/d in Table 4), 25% lower
than the average value of 42 Mg/yr as derived from the long-term
tributary monitoring data (Fig. 8). Concentrations of SRP and TP are
highly variable, particularly during storm flow events (Richards
et al., 2001). Thus, an extensive sampling scheme would help elim-
inate some of the uncertainty. Second, our results revealed the
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presence of P transformations but less detail has been explored to
evaluate the relative importance of each of the major biogeochem-
ical processes. Lastly, we had to admit the complexity of the wa-
tershed. As described above, the Cuyahoga River also receives P
inputs from some diffuse sources such as agricultural runoffs and
combined sewer overflows (OEPA, 2003). Changes in the P loading
from these sources could affect the tributary loading into Lake Erie.
But the magnitude of such changes remains uncertain.

6. Conclusions

This study dealt with a temperate urban river ecosystem to de-
velop a context of P loading and transport in the Cuyahoga River
under the three different flow regimes. Although its stream dis-
charge and TP loading changed from reach to reach and from time
to time, the river delivered on average nearly 1 km3 of river water
and over 300 Mg of TP loading into Lake Erie annually. About 30%
of river water was municipal effluent from over a dozen WWTPs
across the watershed, contributing at least two thirds of the TP
loading present in the lower Cuyahoga River. We found that the
loading and transport of TP and SRP were not only affected by
the amount of P released from the municipal effluent but also reg-
ulated by stream flow regimes. Effluent P was highly reactive and
subject to rapid transformations in the river. We found that losses
of the loading of SRP in the lower Cuyahoga River occurred most of
the sampling occasions but the loading of TP increased substan-
tially in reach A during the storm flow event. The increases in
the riverine TP loading appeared to depend on the amount of loss
in the TP loading during the low and intermediate flow periods. As
a result, most of the TP loading was exported during storm and
intermediate flow periods, whereas most of the SRP loading was
delivered during low and intermediate flow periods. Our results
underscored the important role of stream hydrology in controlling
the loading and transport of P across the watershed as it dictated
the amount, form, and timing of P delivery to Lake Erie. We suggest
that an improved understanding of the major biogeochemical pro-
cesses involved is required in order to develop a better P manage-
ment practice for restoration of the Cuyahoga River and Lake Erie
as well.
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