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Interactive Markov Models of Optimization
Search Strategies

Haiping Ma, Dan Simon, Senior Member, IEEE, Minrui Fei, and Hongwei Mo

Abstract—This paper introduces a Markov model for evolu-
tionary algorithms (EAs) that is based on interactions among
individuals in the population. This interactive Markov model has
the potential to provide tractable models for optimization prob-
lems of realistic size. We propose two simple discrete optimization
search strategies with population-proportion-based selection and
a modified mutation operator. The probability of selection is lin-
early proportional to the number of individuals at each point
of the search space. The mutation operator randomly modifies
an entire individual rather than a single decision variable. We
exactly model these optimization search strategies with interac-
tive Markov models. We present simulation results to confirm
the interactive Markov model theory. We show that genetic algo-
rithms and biogeography-based optimization perform better with
the addition of population-proportion-based selection on a set of
real-world benchmarks. We note that many other EAs, both new
and old, might be able to be improved with this addition, or
modeled with this method.

Index Terms—Evolutionary algorithm (EA), interactive
Markov model, Markov model, optimization search strategy,
population-proportion-based selection.

I. INTRODUCTION

EVOLUTIONARY algorithms (EAs) and swarm intelli-
gence (SI) algorithms have received much attention over

the past few decades due to their ability as global optimization
search methods for real-world applications [1]–[3]. Some pop-
ular EAs include the genetic algorithm (GA) [4], [5], evolu-
tionary programming [6], differential evolution (DE) [7]–[10],
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evolution strategy (ES) [11], biogeography-based opti-
mization (BBO) [12], [13]. SI algorithms include ant
colony optimization (ACO) and particle swarm optimiza-
tion (PSO) [14]–[16]. Inspired by natural processes, EAs and
SI are search methods that are fundamentally different than
traditional, analytic optimization techniques. EAs are based
on the collective learning process of a population of candi-
date solutions to an optimization problem. In this paper, we
often use the shorthand term individual to refer to a candidate
solution.

The population in an EA is usually randomly initialized,
and each iteration (also called a generation) evolves toward
better and better solutions by selection processes (which can
be either random or deterministic), mutation, and recombi-
nation (which is omitted in some EAs). The environment
delivers quality information about individuals (fitness values
for maximization problems, and cost values for minimization
problems). Individuals with high fitness are selected to repro-
duce more often than those with lower fitness. All individuals
have a small mutation probability to allow the introduction of
new information into the population.

Each EA and SI algorithm works on principles of different
natural phenomena. For example, the GA is based on survival
of the fittest, DE is based on vector differences of candi-
date solutions, ES uses self-adaptive mutation rates, PSO is
based on the flocking behavior of birds, ACO is based on the
behavior of ants seeking food, and BBO is based on migration
behavior. EAs all have certain features in common and proba-
bilistically share information between candidate solutions to
improve solution fitness. EAs have been applied to many
optimization problems and have proven effective for solving
various kinds of problems, including unimodal, multimodal,
deceptive, constrained, dynamic, noisy, and multiobjective
problems [17].

A. Evolutionary Algorithm Models

Although EAs have shown good performance on various
problems, it is still a challenge to understand the kinds of
problems for which each EA is most effective, and why. The
performance of EAs depends on the problem representation
and the tuning parameters. For many problems, when a good
representation is chosen and the tuning parameters are set to
appropriate values, EAs can be very effective. When poor
choices are made for the problem representation or the tun-
ing parameters, an EA might perform no better than random
search. If a mathematical model could predict the improvement
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in fitness from one generation to the next, it could be used to
find optimal values of the problem representation or the tuning
parameters.

For example, consider a problem with very expensive fitness
function evaluations. For some problems we may even need to
perform long, tedious, expensive physical experiments to eval-
uate fitness. If we can find a model that reduces the number
of required fitness function evaluations in an EA, we can use
the model during the early generations to adjust the EA tun-
ing parameters, or to find out which EAs will perform the
best. A mathematical model of the EA could be useful to
develop effective algorithmic modifications. More generally,
an EA model could be useful to produce insights to how the
algorithm behaves, and under what conditions it is likely to
be effective.

There has been significant research in obtaining mathe-
matical models of EAs. One of the earliest approaches was
schema theory, which analyzes the growth and decay over
time of various bit combinations in discrete EAs [4]. It has
several disadvantages, including the fact that it is only approx-
imate. Perhaps the most widely developed EA model is based
on Markov theory [18]–[20], which has been a valuable theo-
retical tool that has been applied to several EAs, including
GAs [21] and simulated annealing [22]. Infinite population
size Markov models are discussed in detail in [23], and exact
finite population size Markov models are discussed in [24].

In Markov models, a Markov state represents an EA popu-
lation distribution. Each state describes how many individuals
there are at each point of the search space. The Markov
model reveals the probability of arriving at any population
given any starting population, in the limit as the genera-
tion count approaches infinity. But the size of Markov model
increases drastically with the population size and search
space cardinality. These computational requirements restrict
the application of the Markov model to very small problems,
as we discuss in more detail in Section II.

B. Overview of the Paper

The first goal of this paper is to present a Markov model
of EAs which is based on interactions among individuals.
The standard EA Markov model applies to the population
as a whole; that is, it does not explicitly model interac-
tions among individuals. This approach is extremely limiting
and leads to intractable Markov model sizes, as we show in
Section II. In interactive Markov models we define the states
as the possible values of each individual. This gives a separate
Markov model for each individual in the population, but the
separate models interact with each other. The transition prob-
abilities for each Markov model are functions of the states of
other Markov models, which is a natural and powerful exten-
sion of the standard Markov model. This method can lead to
a better understanding of EA behavior on problems with more
realistic sizes.

The standard Markov model has a state space whose
dimension grows factorially with search space cardinality and
population size, while the interactive Markov model presented
here has a state space whose dimension is independent of

population size and grows linearly with the cardinality of the
search space. The interactive Markov model presented here is
limited to EAs with a discrete search space and is still limited
to relatively small problems, but is not nearly as limited as the
standard Markov model, as we will see in Section II.

The second goal of this paper is to propose two sim-
ple optimization strategies that use population-based selection
probabilities. We call these strategies “population-proportion-
based EAs.” We use a modified mutation operator in the EAs.
The modified mutation operator randomly modifies (replaces)
an entire individual rather than modifying a single decision
variable. We exactly model these EAs with interactive Markov
models. We confirm the interactive Markov model with simu-
lation on a set of test problems. We then empirically compare
standard GA and BBO with population-proportion-based GA
and BBO on a set of real-world benchmarks to show the
performance improvement that is possible.

Section II introduces the preliminary foundations of inter-
active Markov models, presents two simple EAs, models them
using an interactive Markov model, uses interactive Markov
model theory to analyze their convergence, and discusses their
computational complexity. Section III discusses the similari-
ties and differences between our two simple EAs and standard,
well-established EAs, including GA and BBO. Section IV
explores the performance of the proposed optimization search
strategies using both Markov theory and simulations, and
shows that the inclusion of population-proportion-based selec-
tion significantly improves both GA and BBO performance on
real-world benchmarks. Section V presents some concluding
remarks and recommends some directions for future work.

Notation: The symbols and notations used in this paper are
summarized in Table I.

II. INTERACTIVE MARKOV MODELS

Section II-A presents the foundation for interactive Markov
models. Section II-B presents two proportion-selection-based
EAs, and Section II-C discusses their convergence properties.
Section II-D analyzes the interactive Markov model transi-
tion matrix of the two EAs, and Section II-E discusses their
computational complexities.

A. Fundamentals of Interactive Markov Models

A standard, noninteractive Markov model is a random pro-
cess with a discrete set of possible states si(i = 1, . . . , K),
where K is the number of possible states, also called the car-
dinality of the state space. The probability that the system
transitions from sj to si is given by the transition probabil-
ity pij. The K×K matrix P = [pij] is the transition matrix. In
standard noninteractive Markov models of EAs, pij is the prob-
ability that the population transitions from the jth population
distribution to the ith population distribution in one genera-
tion. The standard Markov model assumes that the transition
probabilities apply to the entire population rather than to indi-
viduals. That is, individual behavior is not explicitly modeled;
it is only the population as a whole that is modeled.

To illustrate this point, consider an EA search space with
a cardinality of K ≥ 2; that is, there are K points in the search



TABLE I
SYMBOLS AND NOTATION

space, denotes as {x1, x2, . . . , xK}. Suppose m(t) = [mi(t)] is
the K-element column vector containing the fraction of the
population that is equal to each point at generation t; that is,
mi(t) is the fraction of the population that is equal to xi at gen-
eration t. Then the equation m(t + 1) = Pm(t) describes how
the fractions of the population change from one generation
to the next. However, this equation assumes that the transi-
tion probabilities P = [pij] do not depend on the population
distribution m(t).

Interactive Markov models deal with cases, where P is
a function of m(t), so transition probabilities are functions of
the Markov states. P is written as a function of m(t); that is,
P = P[m(t)], and the Markov model is interactive

m(t + 1) = P[m(t)]m(t). (1)

A standard Markov model with constant P can model an EA.
Given K points in search space and N individuals in the

population, there are T =
(

K + N − 1
N

)
possible states for

the population, and we can define a T × T transition matrix
that contains transition probabilities between each population
distribution [19]. However, this idea is not useful in practice
because there is not a tractable way to handle the prolifera-
tion of states. For instance, for a problem with K = 100 and
N = 20, T is on the order of 1022. For a larger problem with
K = 200 and N = 30, T is on the order of 1037.

In contrast, interactive Markov models in the form of (1) are
tractable for larger search spaces and populations. For instance,
if K = 100, then the interactive Markov model consists of only

100 states, regardless of the population size. The challenge
that we address in this paper is how to define the interactive
Markov model for an EA, and how to obtain theoretical results
based on the interactive model.

The interactive Markov model is a fundamentally different
modeling approach than the standard (noninteractive) Markov
model. The states of the standard Markov model consist of
population distributions, while the states of the interactive
Markov model consist of fractions of each individual in the
search space. The standard Markov model transition matrix is
larger (T states) but with a simple form, while the interactive
Markov model transition matrix is smaller (K states) but with
a more complicated form. Both the standard and the interac-
tive Markov models are exact; no approximations are involved.
However, due to their fundamentally different approaches to
the definition of state, neither one is a subset of the other
(in general), so neither one can be derived from the other.

For standard Markov models, many theorems exist for sta-
bility and convergence. But for interactive Markov models
such results do not come easily because of the immense variety
of possible forms of P(·). Conlisk [25] discussed a particular
class of P(·) defined as follows for a K-state system:

pij(m) = aij + bijmi∑
k

(
akj + bkjmk

) for all (i, j) ∈ [1, K]

where aij ≥ 0, bij ≥ −aij for all (i, j) ∈ [1, K]

min
m

∑
k

(
akj + bkjmk

)
> 0 for all j ∈ [1, K] (2)

where the summations go from 1 to K, and m(t) = [mi(t)]
is abbreviated to m = [mi]. Values for the matrices A = [aij]
and B = [bij] specify the interactive Markov model. P is the
transition matrix of the interactive model because it defines
the transition probabilities of (1). Matrices A and B in (2) are
intermediate matrices used to simply the expression for P.

Equation (2) specifies the transition matrix P(m), and the
evolution of m(t) from any initial value m(0) is determined
by (1). In a standard Markov model the probability pij(m)

of a transition from state j to i would be constant; that
is, pij(m) = aij. But in an interactive Markov model, pij(m)

depends on m. The transition probability pij(m) is a measure
of the attractive power of the ith state. In (2), if bij > 0
then crowding in the ith state makes it more attractive, and
if bij < 0 then crowding in the ith state makes it less
attractive.

Since the columns of P(m) = [pij(m)] must each sum to
one, pij(m) must be normalized. The division in (2) of each
column of the matrix [aij+bijmi] by the corresponding column
sum

∑
k(akj + bkjmk) provides the desired normalization.

B. Optimization Search Strategies

In this section, we modify two previously-published mod-
els of social processes to obtain two simple EAs that use
population-based selection. We will see that these EAs have
interactive Markov models of the form of (2).

1) Strategy A: The first EA adaptation, which we call
strategy A, is based on a social process model [25, Example 1].
Strategy A involves the replacement of individuals with



TABLE II
STRATEGY A RESULTS FOR TEST PROBLEMS WITH β = 0.25 AND DIFFERENT MUTATION RATES. THE NUMBERS IN THE TABLE SHOW

THE PROPORTION OF OPTIMAL INDIVIDUALS IN THE POPULATION; THAT IS, THE FRACTION OF THE POPULATION THAT IS OPTIMAL

randomly-selected individuals. Strategy A does not include
recombination or mutation, although it could be modified to
include these features. The population of strategy A evolves
according to the following two rules.

1) Denote α ∈ [0, 1] as the replacement pool probability.
Randomly choose round(αN) individuals, where N is
the population size. Denote λj ∈ [0, 1] as the modifica-
tion probability. λj is typically chosen as a decreasing
function of fitness; that is, good individuals should
have a smaller probability of replacement than poor
individuals.

2) The jth individual chosen in the previous step, where
j ∈ [1, round(αN)], has a probability of λj of being
replaced with one of K individuals from the search space
(recall that K is the cardinality of the search space, and
{xi : i = 1, . . . , K} is the search space). The probabil-
ity of selecting the ith individual xi as a replacement is
denoted as μi and is composed of two parts: a) β ∈ [0, 1]
is assigned to each individual equally and b) the remain-
ing probability 1−β is assigned among the xi individuals
in the proportions (m1, . . . , mK), where mi is the pro-
portion of the xi individuals in the population; that is,
mi is the number of xi individuals in the population
divided by the population size. So the probability of
selecting xi as a replacement is μi = β/K + (1− β)mi.
Note that

∑K
i=1 μi = 1. If the selection probability

is independent of mi, that is, β = 1, then the prob-
ability of selecting xi as a replacement is μi = 1/K
for all i.

Algorithm 1 shows an EA that operates according to
strategy A. We see from Algorithm 1 that strategy A has four
tuning parameters: 1) N (population size); 2) α (replacement
pool probability); 3) β (the constant component of the selec-
tion probability); and 4) λ (modification probability, which is
a function of fitness).

Note that strategy A (Algorithm 1) is not an EA
when β = 1; in this case the algorithm is equivalent to
a Monte Carlo search strategy in which random candidate

Algorithm 1 EA Based on Strategy A. α and β are Tuning
Parameters in the Range [0, 1], λ is a Decreasing Function
of Fitness, and K is the Cardinality of the Search Space. The
Interactive Markov Model for this Algorithm will be Shown in
Section II-D1. The Equilibrium Population of this Algorithm
will be Established in Theorem 1
Generate an initial population of individuals Y = {yk : k = 1, · · · , N}
While not (termination criterion)

Randomly choose round(αN) parent individuals
For each chosen parent individual yj ( j = 1, · · · , round(αN))

Use modification probability λj to probabilistically
decide whether to replace yj
If replacing yjthen

Select one of the xi(i = 1, · · · , K), each with
probability [β/K + (1− β)mi]
yj ← xi

End replacement
Next individual: j← j+ 1

Next generation

solutions are evaluated. As β → 0 the algorithm becomes
more and more evolutionary in the sense that individual fit-
ness implicitly drives the algorithm more strongly. Tables II–V
show that strategy A performs better as β → 0.

2) Strategy B: The second EA adaptation that we intro-
duce, which we call strategy B, is based on a social process
model [25, Example 6]. Strategy B is similar to strategy A
in its selection of random individuals from the search space,
and the replacement of individuals with those randomly-
selected individuals. However, strategy B includes elites. The
population of strategy B evolves according to the following
two rules.

1) For each individual yk in the population, if yk is the best
individual in the search space, there is a probability σ1
that it will be classified as elite, where σ1 ∈ [0, 1] is
a user-defined tuning parameter.

2) If yk is not classified as elite, use λk to probabilisti-
cally decide whether to modify yk. If yk is selected for
modification, it is replaced with xi with a probability



TABLE III
STRATEGY A RESULTS FOR TEST PROBLEMS WITH β = 0.5 AND DIFFERENT MUTATION RATES. THE NUMBERS IN THE TABLE SHOW

THE PROPORTION OF OPTIMAL INDIVIDUALS IN THE POPULATION; THAT IS, THE FRACTION OF THE POPULATION THAT IS OPTIMAL

TABLE IV
STRATEGY A RESULTS FOR TEST PROBLEMS WITH β = 0.75 AND DIFFERENT MUTATION RATES. THE NUMBERS IN THE TABLE SHOW

THE PROPORTION OF OPTIMAL INDIVIDUALS IN THE POPULATION; THAT IS, THE FRACTION OF THE POPULATION THAT IS OPTIMAL

proportional to α+ βmi, where mi is the fraction of the
population that is comprised of xi individuals. Recall
that {xi : i = 1, . . . , K} is the search space.

Similar to strategy A, strategy B does not include recombi-
nation or mutation, although it could be modified to include
these features. Algorithm 2 illustrates an EA that operates
according to strategy B. We see from Algorithm 2 that strat-
egy B has the same four tuning parameters as strategy A:
1) N (population size); 2) α (replacement pool probability);
3) β (selection constant); and 4) λ (modification probabil-
ity, which is a function of fitness). However, note that α

and β are used differently in strategies A and B (that is, in
Algorithms 1 and 2).

Note that strategy B (Algorithm 2) is purely random when
β = 0. In this case the only role of the fitness values is to
decide which individuals to replace. The fitness values do not
guide the formation of new individuals since the individu-
als that are kept are essentially useless. The same outcome
would be provided with a population of a single individual

being replaced every generation by a randomly chosen indi-
vidual from the search space. As β → 1 the algorithm
becomes more and more evolutionary in that individual fit-
ness implicitly drives the algorithm more strongly. Later in
the paper, Table VI will show that strategy B performs better
as β → 1.

The selection probability of xi in strategy B is

μi ≡ Pr(yk ← xi) = α + βmi (3)

for i ∈ [1, K]. Equation (3) is the probability that yk is replaced
by xi, and this probability is a linear function of mi, which
is the proportion of xi individuals in the population. Note
that (3) holds for all k ∈ [1, N] for which yk is selected for
replacement.

3) Selection Pressure in Strategies A and B: The selection
probabilities in strategies A and B are both linear with respect
to the fraction of xi individuals in the population. Fig. 1 depicts
the selection probability.



TABLE V
STRATEGY A RESULTS FOR TEST PROBLEMS WITH β = 1 AND DIFFERENT MUTATION RATES. THE NUMBERS IN THE TABLE SHOW THE

PROPORTION OF OPTIMAL INDIVIDUALS IN THE POPULATION; THAT IS, THE FRACTION OF THE POPULATION THAT IS OPTIMAL

Algorithm 2 EA Based on Strategy B. α and β Are Tuning
Parameters in the Range [0, 1], λ is a Decreasing Function
of Fitness, and K is the Cardinality of the Search Space.
The Interactive Markov Model for This Algorithm Will be
Shown in Section II-D2. The Equilibrium Population of this
Algorithm will be Established in Theorem 2.
Generate an initial population of individuals Y = {yk : k = 1, · · · , N}
While not (termination criterion)

For each individual yk
If ykis not the best individual in the search space then

Use replacement probability λk to decide whether
to replace yk
If replacing yk then

Select one of the xi(i = 1, · · · , K), each
with probability [α + βmi]
yk ← xi

End replacement
End if

Next individual: k← k + 1
Next generation

If the search space cardinality K is greater than the popula-
tion size N in Fig. 1, as in practical EA implementations,
then min(mi) = 0. This is because there are not enough
individuals in the population to cover the search space, so
there are some search space individuals xi that are not in the
population Y.

If selection is overly-biased toward populous individuals,
the EA may converge quickly to a uniform population while
not widely exploring the search space. If selection is not
biased strongly toward populous individuals, the population
will be more scattered with fewer good individuals. Note that
the most populous individuals will be the ones with highest
fitness if we define modification probability λk as a decreas-
ing function of fitness. We will see this effect in our results
in Section IV.

A useful metric for quantifying the difference between
various selection methods is selection pressure φ, which is

Fig. 1. Selection probability in strategies A and B. The min and max oper-
ators are taken over i ∈ [1, K], where K is the cardinality of the search
space.

defined as follows [4, p. 34]:

φ = max(Pr(selection))

average(Pr(selection))
(4)

where Pr(selection) is the probability that an individual is
selected to replace another individual.

The most populous individual has the fraction max(mi)

individuals, which we denote as mmax. Since selection prob-
ability is affine (Fig. 1), average selection probability is an
affine function of (max(mi)+min(mi))/2 = mmax/2, assum-
ing K > N, as discussed earlier. In this case the selection
pressure of strategy B can be calculated from (4) as

φ = α + βmmax

α + βmmax/2
. (5)

If we normalize the selection probabilities to sum to 1, we get

K∑
i=1

Pr(yk ← xi) =
K∑

i=1

(α + βmi)

= Kα + β

K∑
i=1

mi = Kα + β = 1 (6)



TABLE VI
STRATEGY B RESULTS FOR TEST PROBLEM f 1. THE NUMBERS IN THE TABLE SHOW THE PROPORTION OF OPTIMAL

INDIVIDUALS IN THE POPULATION; THAT IS, THE FRACTION OF THE POPULATION THAT IS OPTIMAL

where we used the fact that
∑K

i=1 mi = 1 since the sum of the
fractions must equal 1. If we desire a given selection pressure
we can solve (5) and (6) for α and β to obtain

α = mmax(2− φ)

Kmmax(2− φ)+ 2(φ − 1)

β = 2(φ − 1)

Kmmax(2− φ)+ 2(φ − 1)
. (7)

Note that (7) also holds for strategy A (Algorithm 1) if α is
replaced with β/K, and β is replaced with (1− β).

C. Convergence

We begin this section with a preliminary theorem of the
convergence conditions of interactive Markov models.

Theorem 1: Consider an interactive Markov model in the
form of (1). If there exists a positive integer R such that∏R

t=1 P[m(t)] is positive definite for all m(t) ≥ 0 such that∑K
i=1 mi(t) = 1, where t = 1, 2, . . . , R, then

∏R
t=1 P[m(t)]

converges as R → 8 to a steady state which has all nonzero
entries.

Proof: See [26] for a proof and discussion.
Later in this section, we will use Theorem 1 to show that

there is a unique limiting distribution for the states of the
interactive Markov models in strategies A and B. We will also
show that the probability of each state of the model is nonzero
at all generations after the first one. Theorem 1 will show
that Algorithms 1 and 2 have a unique limiting distribution
with nonzero probabilities for each point in the search space.
This implies that Algorithms 1 and 2 will both eventually
find the globally optimal solution to a discrete optimization
problem.

D. Interactive Markov Model Transition Matrices

The previous sections presented two simple EA adapta-
tions and showed that they both have a unique population
distribution as the generation count approaches infinity. Now
we analyze their interactive Markov models in more detail
and find explicit solutions to the steady-state population
distributions. Firstly, we discuss strategy A.

1) Interactive Markov Model for Strategy A:
a) Selection: We can use [25, Example 1] to obtain the

following interactive Markov model of strategy A:

pij =
{

(1− α)+ α
[(

1− λj
)+ λj

(
β/K + (1− β)mj

)]
if i = j

αλj(β/K + (1− β)mi) if i �= j

(8)

for (i, j) ∈ [1, K]. pij is the probability that a given individual
in the population transitions from xj to xi in one generation.

The first equality in (8), when i = j, denotes the probability
that an individual does not change from one generation to the
next. This probability is composed of three parts.

1) The first term, 1−α, is the probability that the individual
is not selected for the replacement pool.

2) The first part of the second term is the product of the
probability that the individual is selected for the replace-
ment pool (α), and the probability that the individual is
not selected for modification (1− λj).

3) The second part of the second term is the product of
the probability that the individual is selected for the
replacement pool (α), the probability that the individual
is selected for modification (λj), and the probabil-
ity that the selected individual is replaced with itself
(β/K + (1− β)mj).

The second equality in (8), when i �= j, is the probability that
an individual is changed from one generation to the next. This
probability is similar to the second part of the second term of
the first equality as discussed in 3) above, the difference being
that mi is used instead of mj because the selected individual
is changed from xj to xi.

b) Mutation: Next we add mutation to the interactive
Markov model of strategy A. Typically EA mutation is imple-
mented by probabilistically complementing each bit in each
individual. Then the probability that xi mutates to xk can be
written as

pki = Pr(xi → xk) = pHik
m (1− pm)q−Hik (9)

where pm ∈ (0, 1) is the mutation rate, q is the number of
bits in each individual, and Hij is Hamming distance between
xi and xj.



pkj =
∑

i

pkipij

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1− (K − 1)pm

K

)
(1− α)+ α

[(
1− (K − 1)pm

K

)(
1− λj

)+ λj

((
1− (K − 1)pm

K

)
β

K
+ (K − 1)pm

K2
β + pm

K
(1− β)+ (1− β)(1− pm)mj

)]

if k = j
pm

K
(1− α)+ α

[
pm

K

(
1− λj

)+ λj

((
1− (K − 1)pm

K

)
β

K
+ (K − 1)pm

K2
β + pm

K
(1− β)+ (1− β)(1− pm)mk

)]
if k �= j

(11)

akj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1− (K − 1)pm

K

)
(1− α)+ α

[(
1− (K − 1)pm

K

)(
1− λj

)+ λj

((
1− (K − 1)pm

K

)
β

K
+ (K − 1)pm

K2
β + pm

K
(1− β)

)]
if k = j

pm

K
(1− α)+ α

[
pm

K

(
1− λj

)+ λj

((
1− (K − 1)pm

K

)
β

K
+ (K − 1)pm

K2
β + pm

K
(1− β)

)]
if k �= j

bkj = αλj(1− β)(1− pm) (12)

But with single-bit mutation, the transition matrix elements
pkj = ∑

i pkipij would not satisfy the form of (2) and (8).
So we use a modified mutation operator that randomly
replaces an entire individual rather than a single bit of an
individual. Mutation of the jth individual is implemented
as follows.

For each individual yj

If rand(0, 1) < pm

yj← rand(L, U)
End if

Next individual

In the above mutation (replacement) logic, rand(L, U) is
a uniformly distributed random number between L and U,
and L and U are the lower and upper bounds of the search
space. The above logic replaces each individual with prob-
ability pm. The descriptions of strategies A and B with
mutation are the same as Algorithms 1 and 2 except that we
add the above replacement logic at the end of each gener-
ation. Note that replacement acts equally on all individuals
Y = {yk : k = 1, . . . , N}. In strategy B, we use elitism to
prevent selection but not to prevent replacement.

The transition probability of the modified mutation (replace-
ment) operator is described as follows:

pki =
{

(1− pm)+ pm/K if k = i
pm/K if k �= i.

(10)

Then the transition probability of strategy A with mutation,
and the corresponding A and B matrices in (2) can be written
as (11) and (12), shown at the top of this page.

The derivation of (11) and (12) is in the Appendix. Now
we are in a position to state the main result of this section.

Theorem 2: The K×1 equilibrium population fraction vector
m* of Algorithm 1, which is exactly modeled by the interac-
tive Markov model of (1) and (11), is equal to the dominant
eigenvector (normalized so its elements sum to one) of the
matrix A0 = akj/(bj +∑K

i=1 aij), where akj is given by (12),
and bj is shorthand notation for bkj in (12) since all the rows
of B are the same.

Proof: This theorem derives from [25, Th. 1]. We provide
the proof in the Appendix.

Next we consider the special case μi = 1/K in Algorithm 1.
In this case the transition probability of (11) is written as

pkj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1− (K − 1)pm

K

)
(1− α)+ α

[(
1− (K − 1)pm

K

)(
1− λj

)+ λj

K

]

if k = j
pm

K
(1− α)+ α

[
pm

K

(
1− λj

)+ λj

K

]
if k �= j

(13)

which is independent of mi; that is, the interactive Markov
model reduces to a standard noninteractive Markov model.
In this case we can use [25, Th. 1] or standard noninterac-
tive Markov theory [18] to obtain the equilibrium population
fraction vector m*.

2) Interactive Markov Model for Strategy B: Before dis-
cussing the interactive Markov model of strategy B, we define
some notation. Suppose that σ = [σk] denotes the fraction of
individuals that always remain equal to xk for each k ∈ [1, K].
Then

∑
k σk is the fraction of all individuals that never change.

We call these individuals stayers. In an EA, the stayers are
comprised of a user-specified fraction of the best individu-
als in the population. Vector n = [n1, . . . , nK] consists of the
fractions of all individuals that are allowed to change, and we
call these individuals movers. m = [m1, . . . , mK] is the frac-
tion of all individuals in the population. The fraction of xj

individuals thus includes two parts: 1) σj, which is the frac-
tion of all xj individuals that are not allowed to change and
2) (1−∑K

k=1 σk)nj, which is the fraction of all xj individuals
that may change in future generations. So the fraction vector
m is given by

m = σ +
(

1−
K∑

k=1

σk

)
n. (14)

The σ vector is related to EA elitism since it defines the pro-
portion of individuals in the population that are not allowed
to change in subsequent generations. One common approach
to elitism is to prevent only optimal-enough individuals from
changing in future generations [17]. That is, σ1 > 0 (assum-
ing without loss of generality that x1 is the optimal point in
the search space), and σk = 0 for all k > 1. In this case (14)
becomes

mi =
{

σ1 + (1− σ1)n1 for i = 1, the optimal state
(1− σ1)ni for i �= 1, nonoptimal states.

(15)



pij =

⎧⎪⎪⎨
⎪⎪⎩

(1− λ1)+ λ1[α + β(σ1 + (1− σ1)n1)] if i = j = 1, which is the best state
λj[α + β(σ1 + (1− σ1)n1)] if i = 1 and j �= 1(
1− λj

)+ λj[α + β(1− σ1)ni] if i = j �= 1
λj[α + β(1− σ1)ni] if i �= j, and i �= 1

(16)

Strategy B elitism is a little different than standard EA elitism.
In strategy B we assume that we know whether or not an
individual has acceptable performance in the judgment of the
decision maker. This is not always the case in practice, but it
may be the case for certain problems. For example, suppose
we are trying to solve a state estimation problem. In this case,
the Cramer–Rao bound gives a lower bound on the estimation
error, along with conditions that tell us if such an estima-
tor exists, but does not tell us what estimator achieves the
lower bound [27]. An engineer may also know ahead of time
the acceptable performance for an estimator, regardless of the
Cramer–Rao bound. The same situations arise with the per-
formance bounds and design of H2 and H∞ controllers [28].
As another example, if the fitness of a product design is mea-
sured by the qualitative judgments of test subjects, we might
know ahead of time that a rating of 9 out of 10 is accept-
ably optimal, although we might not know how to achieve
that rating.

If S individuals at the global optimum are retained as elites,
then σ1 = S/N (this quantity could change from one gener-
ation to the next). If N1 individuals at the global optimum
are allowed to change, then n1 = N1/(N − S). Multiple indi-
viduals at the global optimum could mean that there are
duplicate individuals in the population, or it could mean that
there are multiple solutions to the optimization problem. If
an individual is not globally optimal, then we must always
allow it to change—that is, we can implement elitism only
for individuals that are globally optimal. Even if we have
globally optimal individuals in the population, we may want
to continue the search. This is because other solutions near
(but not at) the global optimum may have desirable proper-
ties. To return to our previous example, an estimator with
an error larger than the lower bound may be more desirable
than one at the lower bound if the first estimator is more
robust. Similarly, a product rating less than perfect might be
more desirable than one with a perfect rating because of other
factors.

Example: To clarify the relationships between σ , n, and m,
we present a simple example. Suppose we have a population of
14 individuals, and the search space size is 3; that is, N = 14
and K = 3. Then:

1) two individuals in state 1 are stayers (they will never
leave state 1);

2) three individuals in state 1 are movers (they may
transition out of state 1);

3) four individuals are in state 2, and they are all movers;
4) five individuals are in state 3, and they are all movers.
Therefore:
1) n1 = 3/12 (fraction of movers that are in state 1);
2) σ1 = 2/14 (fraction of population that are stayers in

state 1);

3) n2 = 4/12 (fraction of movers that are in state 2);
4) n3 = 5/12 (fraction of movers that are in state 3).
In this example, we have assumed that the engineer has

specified that the best 2/14 of the population will be stayers
and that the rest of the population will be movers. We sub-
stitute these values in (15) and obtain m1 = 5/14 (fraction
of individuals that are in state 1), m2 = 4/14 (fraction of
individuals that are in state 2), and m3 = 5/14 (fraction of
individuals that are in state 3), which are the same as the
distributions stated at the beginning of this example.

a) Summary of the interactive Markov model for
strategy B: Now we use [25, Example 6], combined with (6)
above, to obtain the following interactive Markov model of
strategy B selection.

Equation (16), as shown at the top of this page, can be
explained as follows. For the first equality, when i = j = 1,
which is the best state, the transition probability includes two
parts: 1) the first term, which denotes the probability that the
individuals is not changed (1 − λ1) and 2) the second term,
which denotes the probability that the individual is changed
to itself, and which is the product of the probability that the
individual is changed (λ1), and the probability that the selected
xi term is equal to λ1(μ1/

∑K
k=1 μk). This second term can be

written as

λ1
μ1∑K

k=1 μk
= λ1

α + βm1∑K
k=1(α + βmk)

= λ1
α + β(σ1 + (1− σ1)n1)

Kα + β

= λ1(α + β(σ1 + (1− σ1)n1)). (17)

The third equality in (16), for i = j �= 1, is the same as the first
equality, except that σ1+(1−σ1)nj is replaced with (1−σ1)nj

as indicated by (15). In the second equality in (16), when i = 1
(corresponding to the best state) and j �= 1 (corresponding to
a suboptimal state), the transition probability only includes the
probability that the individuals is changed, which is the same
as the second term in the first equality. Finally, the fourth
equality in (16) is the same as the second equality, except that
σ1+ (1−σ1)nj is replaced with (1−σ1)nj since i �= 1 (that is,
xi is not the best state), as indicated by (15).

By incorporating the modified mutation probability
described in (10), we obtain the transition probability of strat-
egy B with mutation. The A and B matrices shown in (2)
can be derived as shown in the Appendix and can be written
as (18) and (19), shown at the top of next page.

Theorem 3: Assume that the search space has a single global
optimum. Then the K×1 equilibrium fraction vector of movers
n* of Algorithm 2, which is exactly modeled by the interactive
Markov model of (1) and (18), is equal to the dominant eigen-
vector (normalized so its elements sum to one) of the matrix
A0 = akj/(bj +∑K

i=1 aij), where akj is given by (19), and bj is



pkj =
∑

i

pkipij

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pm/K + (1− pm)[(1− λ1)+ λ1(α + β(σ1 + (1− σ1)n1))] if k = j = 1, which is the best state

pm/K + (1− pm)
[
λj(α + β(σ1 + (1− σ1)n1))

]
if k = 1 and j �= 1

pm/K + (1− pm)
[(

1− λj
)+ λj(α + β(1− σ1)nk)

]
if k = j �= 1

pm/K + (1− pm)
[
λj(α + β(1− σ1)nk)

]
if k �= j, and k �= 1

(18)

akj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pm/K + (1− pm)[(1− λ1)+ λ1(α + βσ1)] if k = j = 1, which is the best state

pm/K + (1− pm)
[
λj(α + βσ1)

]
if k = 1 and j �= 1

pm/K + (1− pm)
[(

1− λj
)+ λjα

]
if k = j �= 1

pm/K + (1− pm)
[
λjα

]
if k �= j, and k �= 1

bkj = (1− pm)λjβ(1− σ1) (19)

shorthand notation for bkj in (19) since all the rows of B are
the same. Furthermore, the equilibrium fraction vector m* is
obtained by substituting n* in (15).

Proof: The proof of Theorem 3 is analogous to that of
Theorem 2, which is given in the Appendix.

E. Computational Complexity

The computational cost of Algorithms 1 and 2, like most
other EAs, is dominated by the computational cost of the
fitness function, which is computed for each individual in
the population once per generation. Therefore, the compu-
tational costs of Algorithms 1 and 2 are of the same order
as any other EA that uses a typical selection–evaluation-
recombination strategy. Algorithms 1 and 2 also require
a roulette-wheel process to select the replacement individ-
ual (xi in Algorithms 1 and 2), which requires effort of the
order K2, but that computational cost can be greatly reduced
by using linear ranking [17, Sec. 8.7.5].

The computational cost of the interactive Markov model
calculations requires the formation of the transition matrix
components, which is (12) for Algorithm 1 and (19) for
Algorithm 2. After the transition matrix is computed, the
dominant eigenvector of a certain matrix needs to be com-
puted to calculate the equilibrium population, as stated in
Theorems 2 and 3. There are many methods for calculating
eigenvectors, most of which have a computational cost of the
order K3, where K is the order of the matrix and is equal to
the cardinality of the search space.

In summary, using the interactive Markov chain model to
calculate an equilibrium population requires three steps: 1) cal-
culation of the transition matrix components, as shown in (12)
for Algorithm 1 and (19) for Algorithm 2; 2) formation of
a certain matrix, as shown in Theorem 2 for Algorithm 1 and
Theorem 3 for Algorithm 2; and 3) calculation of a dominant
eigenvector, as described in Theorem 2 for Algorithm 1 and
Theorem 3 for Algorithm 2. The eigenvector calculation dom-
inates the computational effort of these three steps, and is of
the order K3.

The above analysis is a per-generation analysis. In prac-
tice, an EA runs for a certain number of generations before
termination. Per-generation run time is not meaningful unless

a convergence rate can be established. Section II-C guarantees
convergence for Algorithms 1 and 2, but does not establish the
convergence rate. Future work could explore the convergence
rate of the algorithms, perhaps using Markov process-based
approaches [29] or run-time analysis [30].

III. SIMILARITIES OF EAS

In this section, we first compare strategies A and B as
shown in Algorithms 1 and 2. Note that we only consider
selection here. If the replacement pool probability α = 1
in strategy A, then it reduces to strategy B if elitism is not
used (σ1 = 0). Although the probability of selection of xi

in the two strategies appears different, they are essentially
the same because they both use a selection probability that
is a linear function of the fractions of the xi individuals in the
population.

Next we discuss the equivalence of strategy B, and
a GA with global uniform recombination (GA/GUR) and
elitism with no mutation as described in [31, Fig. 3].
Strategy B and GA/GUR are equivalent under the following
circumstances.

1) In GA/GUR we replace an entire individual instead of
only one decision variable at a time.

2) In GA/GUR we use a selection probability that is pro-
portional to the fractions of individuals in the population.

3) In strategy B we use modification probability λk = 1.
This implementation of GA/GUR is also called the Holland

algorithm [32] and is shown in Algorithm 3. Note that
some researchers would not consider GA/GUR as a genuine
GA since it does not include classical crossover. It might
instead be more correctly referred to as “EA/GUR.” However,
we retain the GA/GUR terminology here for consistency with
previous work [31].

Next we discuss the equivalence of strategy B and BBO with
elitism and no mutation [13]. BBO is an EA that is inspired
by the migration of species between islands and is described
by [31, Fig. 2]. BBO involves the migration of decision vari-
ables between individuals in an EA population. If we allow
migration of entire individuals instead of decision variables,
and if we set the BBO emigration probability proportional
to the fractions of individuals in the population, then BBO



Algorithm 3 Genetic Algorithm With Global Uniform
Recombination (GA/GUR) With Selection Probability
Proportional to the Fractions of Individuals in the Population.
This is Equivalent to Strategy B in Algorithm 2 if λk = 1 for
all k.
Generate an initial population of individuals Y = {yk : k = 1, · · · , N}
While not (termination criterion)

For each individual yk
If ykis not the best individual in the search space then

Use population proportions to probabilistically select
xi, i ∈ [1, K]
yk ← xi

End if
Next individual: k ← k+1

Next generation

Algorithm 4 Biogeography-Based Optimization (BBO) With
Global Migration and With Selection Probability Proportional
to the Fractions of Individuals in the Population. This is
Equivalent to Strategy B in Algorithm 2
Generate an initial population of individuals Y = {yk : k = 1, · · · , N}
While not (termination criterion)

For each individual yk
If yk is not the best individual in the search space then

Use λkto probabilistically decide whether to immigrate
to yk
If immigrating then

Use population proportions to probabilistically select
xi, i ∈ [1, K]
yk ← xi

End immigration
End if
Next individual: k← k + 1

Next generation

becomes equivalent to EA strategy B. Algorithm 4 shows this
modified version of BBO.

There are many other EAs that are equivalent to each other
under special circumstances [33] and so they may also be
equivalent to strategies A or B under certain conditions. We
leave this study to future research.

IV. SIMULATION RESULTS AND COMPARISONS

In the following, Sections IV-A and IV-B confirm the
interactive Markov model theory of Section II with simula-
tion results, and investigate the effects of tuning parameters
on strategies A and B. Section IV-C compares population-
proportional selection with two standard EAs (GA and BBO)
on a set of real-world benchmark problems.

A. Strategy A—Confirmation of Interactive Markov Model

In strategy A (Algorithm 1), the main tuning parameters are
the replacement pool probability α, and the parameter β of
the selection probability β/K+ (1−β)mi. We use the fraction
m∗b of how many individuals are equal to the optimum to com-
pare performances with different tuning parameters. A larger
fraction m∗b indicates better performance.

The first three test functions have a search space cardinality
of K = 8; that is, they are three-bit problems with fitness
functions that correspond to bit strings (0 0 0), (0 0 1), (0 1 0),

(0 1 1), (1 0 0), (1 0 1), (1 1 0), and (1 1 1). These three fitness
functions are given as follows:

f1 =
(

1 2 2 3 2 3 3 4
)

f2 =
(

4 2 2 3 2 3 3 4
)

f3 =
(

4 1 1 2 1 2 2 3
)
. (20)

These functions are chosen as representative functions because
f1 is a unimodal one-max problem, f2 is a multimodal problem,
and f3 is a deceptive problem. Note that all three of these
problems are maximization problems.

We also use the multimodal Ackley function with 20 dimen-
sions to confirm the interactive Markov model of strategy A.
The Ackley function is described as follows:

f4 = −20 exp

⎛
⎝−0.2

√∑n
i=1 x2

i

n

⎞
⎠

− exp

(∑n
i=1 cos(2πxi)

n

)
+ 20+ e, −30 ≤ xi ≤ 30.

(21)

The granularity or precision of each independent variable is
set to 1 here to allow for experimental confirmation of the
interactive Markov model theory while still providing for rea-
sonable computational effort. Note that the Ackley function is
a minimization problem.

We use α = 0.25, 0.50, 0.75 and β = 0.25, 0.50, 0.75, with
modification probabilities λi = 1−fitness(xi), where fitness(xi)
denotes the fitness value of individual xi, which is normalized
to the range [0, 1]. We use population size = 50, genera-
tion limit = 20 000, and 30 Monte Carlo runs for each test.
Tables II–IV show comparisons between theoretical interactive
Markov results (Theorem 2 in Section II) and strategy A simu-
lation results. Table V shows similar comparisons for strategy
A for the special case β = 1, which gives selection probability
μi = 1/K for all i, independent of population fractions. The
results in Tables II–V can be reproduced with MATLAB code
that is available at the authors’ Web site [34].

The numbers in the tables show the proportion of optimal
individuals in the population. For example, the optimal indi-
vidual for function f 1 is [1, 1, 1]. The first entry in Table II (α
= 0.25, no mutation) shows the number 0.8155, which means
that 81.55% of the population is comprised of the bit string
[1, 1, 1].

Note that the purpose of Tables II–V is not to show the
superiority of one algorithm over another, or of one set of
tuning parameters over another. The purpose is rather to show
that simulation results confirm the theoretical Markov results.

Note first from Tables II−V that the parent selection proba-
bility α does not affect the proportion of individuals in the
population in the case of no mutation. This is because α

divides out of the m∗ = P(m∗)m∗ equilibrium equation in this
case. The finding is consistent with [25, p. 162]. However, we
see that α can slightly affect the proportion of individuals in
the case of nonzero mutation.

Second, for a given replacement pool probability α and
parameter β, the proportion of optimal individuals decreases



with increasing pm. This indicates that low mutation rates have
better performance. A high mutation rate of 0.1 results in
too much exploration and the population remains too widely
distributed across the search space.

Third, for a given replacement pool probability α and muta-
tion rate pm, the proportion of optimal individuals decreases
with increasing β. This is because the modification probability
λi tends to result in a population in which good individu-
als dominate, and increasing β causes individuals with high
populations to be more likely to replace other individuals.

Fourth, Tables II–V show that the interactive Markov
model results and the simulation results match well for all
test problems, which confirms the interactive Markov model
theory.

Fifth, the average CPU times in the last rows of Tables II–V
show the simulation times for the four test problems.
Strategy A runs faster with smaller mutation rates. The rea-
son is that larger mutation rates require more mutations,
which slightly increases computation time. However, in real-
world problems, computational effort is dominated by fitness
function evaluation, which is independent of the mutation rate.

B. Strategy B—Confirmation of Interactive Markov Model

In this section, we investigate the effect of selection pres-
sure φ, which influences the selection probability α+βmi of xi

in strategy B, as shown in (7). In this section, we test only the
unimodal one-max problem f 1 (Theorem 3 assumes that the
optimization problem is unimodal). Recall that EA selection
pressure is constrained to the domain φ ∈ (1, 2) [4, p. 34].
In this section, we test φ = 1.25, 1.50, 1.75 in (7) to com-
pute parameters α, β of the selection probability, and we test
elitism probabilities σ1 = 0.25, 0.50, 0.75. The other parame-
ters of the EA are the same as in the previous section. Table VI
shows comparisons between interactive Markov theory results
and strategy B simulation results. The results in Table VI can
be reproduced with MATLAB code that is available at the
authors’ Web site [34].

Note first from Table VI that for a given value of elitism
probability σ1 and mutation rate pm, performance improves
as selection pressure φ increases. This is expected because
a larger value of φ exploits more information from the popu-
lation. For a more complicated problem with a larger search
space, we might arrive at different conclusions about the effect
of φ on performance.

Second, for a given value of selection pressure φ and muta-
tion rate pm, performance improves as elitism probability σ1
increases. Again, this is expected for simple problems such
as the test problem studied in this section, but the conclusion
may not hold for more complicated problems.

Third, for a given value of elitism probability σ1 and selec-
tion pressure φ, performance improves as mutation rate pm

decreases. This again indicates that low mutation rates give
better performance for the test problems that we study. A high
mutation rate of 0.1 results in too much exploration, and the
population remains too widely distributed.

Fourth, we see that the interactive Markov model theory and
the simulation results match well, which validates the theory.

TABLE VII
REAL-WORLD BENCHMARK RESULTS. THE “/P” VERSION OF EACH

ALGORITHM IS THE POPULATION-PROPORTION-SELECTION

MODIFICATION OF THE ALGORITHM. THE NUMBERS SHOW

THE MEAN VALUE OF 25 INDEPENDENT SIMULATIONS.
THE BEST RESULT IN EACH ROW IS SHOWN IN BOLD FONT

Fifth, we see that strategy B runs faster with smaller muta-
tion rates (the same observation we made for strategy A in
Tables II–V). The reason is that larger mutation rates result in
more mutations, which slightly increases computation time.

C. Comparisons on Real-World Benchmarks

This section uses real-world optimization problems from the
2011 IEEE Congress on Evolutionary Computation (CEC) [35]
to compare population-proportional selection GA and BBO
(Algorithms 3 and 4) with standard GA and BBO. For the
modified EAs with population-proportion-based selection, we
use selection probability (α+βmi), where mi denotes the frac-
tion of xi individuals in the population. For the GAs we use
real coding, roulette wheel selection, single-point crossover
with a crossover probability of 1, and a mutation probability
of 0.001. For BBO we use maximum immigration and emi-
gration rates of 1, linear migration curves [13], and a mutation
probability of 0. Each algorithm uses a population size of 50,
an elitism size of 2, and a fitness function evaluation limit
of 100 000.

Algorithm 3 is equivalent to a GA with population-
proportional selection (GA/P), and Algorithm 4 is equiva-
lent to BBO with population-proportional selection (BBO/P).
These equivalences motivate us to compare GA with GA/P,
and BBO with BBO/P. The only difference between standard
GA and GA/P in this section is that standard GA uses fitness-
based selection while GA/P uses population-based selection.



TABLE VIII
WILCOXON TEST RESULTS FOR PAIR-WISE ALGORITHM COMPARISONS.

IF THE DIFFERENCE BETWEEN THE ALGORITHMS IS STATISTICALLY

SIGNIFICANT, THE PAIRS ARE MARKED AS FOLLOWS: “X-O” SHOWS

THAT THE LEFT ALGORITHM IS BETTER THAN THE RIGHT ONE;
“O-X” SHOWS THAT THE RIGHT ALGORITHM IS BETTER THAN

THE LEFT ONE. THE B/S/W ROW AT THE BOTTOM SHOWS THE

TOTAL SCORES, WHERE “B” DENOTES THE NUMBER OF TIMES

THE LEFT ALGORITHM PERFORMS BETTER, “S” DENOTES

THE NUMBER OF TIMES THE TWO ALGORITHMS PERFORM

THE SAME, AND “W” DENOTES THE NUMBER OF

TIMES THE LEFT ALGORITHM PERFORMS

WORSE THAN THE RIGHT ONE

Similarly, the only difference between standard BBO and
BBO/P in this section is that standard BBO uses fitness-based
selection while BBO/P uses population-based selection.

Table VII summarizes the performances of the EAs on the
real-world optimization problems. All results are averages of
25 independent simulations. The performance data in Table VII
for standard GA and BBO is taken from [33]. Computational
time is the same for standard GA and GA/P, and is the same
for standard BBO and BBO/P. This is because the algorithms
execute identically except for the difference between fitness-
based selection and population-based selection.

We use the Wilcoxon method to test for statistical
significance [36]. The Wilcoxon test results are shown in
Table VIII, where a pair is marked if the difference between
the pair of algorithms is statistically significant.

The results in Table VIII are divided into the GA versus
GA/P group, and the BBO versus BBO/P group. For each pair
of algorithms we calculate B/S/W scores, where “B” denotes
the number of times that the left algorithm performs better than
the right one, “S” denotes the number of times that the left
algorithm performs statistically the same as the right, and “W”
denotes the number of times that the left algorithm performs
worse than the right one.

Table VIII shows that for GA versus GA/P, the B/S/W score
is 1/4/17, which indicates that GA outperforms GA/P one
time, GA is statistically the same as GA/P four times, and
GA/P outperforms GA 17 times. For BBO versus BBO/P, the
B/S/W score is 6/5/11, which indicates that BBO outperforms
BBO/P six times, BBO is statistically the same as BBO/P five
times, and BBO/P outperforms BBO 11 times. Population-
proportion-based EAs significantly outperform standard EAs
on the CEC 2011 real-world problems.

V. CONCLUSION

This paper first presented a formal interactive Markov
model, which involves separate but interacting Markov models
for each individual in an EA population. Then we proposed
two simple optimization search strategies whose basic features
are population-proportion-based selection and modified muta-
tion, which we called population-proportion-based EAs, and
analyzed them exactly with interactive Markov models. The
theoretical results were confirmed with simulation results, and
showed how the interactive Markov model can describe the
convergence of the EAs. The theoretical and simulation results
in Tables II–VI can be reproduced with MATLAB code that
is available at the authors’ Web site [34]. Tables VII and VIII
showed that GA and BBO perform better on real-world
benchmark problems if population-proportion-based selection
is used.

The use of interactive Markov models to model EAs can
lead to useful conclusions. Interactive Markov models prove
to be tractable for much larger search spaces and populations
than noninteractive Markov models.

The noninteractive (standard) Markov model has a state
space whose dimension grows factorially with search space
cardinality and population size, while the interactive Markov
model has a state space whose dimension grows linearly with
the cardinality of the search space, and is independent of
population size. Like the noninteractive Markov model, the
interactive Markov model provides exact models for the behav-
ior of the EA. Interactive Markov models can be studied as
functions of EA tuning parameters to predict their impact on
EA performance, and to provide real-time adaptation. Just
as noninteractive Markov models have led to the develop-
ment of dynamic system models, the same could happen with
interactive Markov models. Although the interactive Markov
models in this paper explicitly provide only steady-state prob-
abilities, they might also be used to understand transient
EA behavior and to obtain the probability of optimum-hitting
each generation, and to obtain expected hitting times. We
see some research in this direction for noninteractive Markov
models [37]–[39]; such results are impractical for real-world
problems due to the large transition matrices of noninterac-
tive Markov models, but such a limitation will not be as great
a concern for interactive Markov models.

For future work beyond the suggestions listed above,
we see several important directions. First, the interactive
Markov model analysis of this paper was based on two
simple EAs; future work should explore how to apply
the model to other EAs. Second, we used two examples



PS =
[
pij
]

=

⎡
⎢⎢⎢⎢⎢⎣

(1− α)+ α
[
(1− λ1)+ λ1(β/K + (1− β)m1)

]
αλ2(β/K + (1− β)m1) · · · αλK(β/K + (1− β)m1)

αλ1(β/K + (1− β)m2) (1− α)+ α
[
(1− λ2)+ λ2(β/K + (1− β)m2)

] · · · αλK(β/K + (1− β)m2)

.

.

. · · · · · ·
.
.
.

αλ1(β/K + (1− β)mK) αλ2(β/K + (1− β)mK) · · · (1− α)+ α
[
(1− λK)+ λK(β/K + (1− β)mK)

]

⎤
⎥⎥⎥⎥⎥⎦

(A1)

PA =
[
pkj

]

=

⎡
⎢⎢⎢⎢⎢⎣

(1− pm)+ pm/K pm/K · · · pm/K

pm/K (1− pm)+ pm/K · · · pm/K

.

.

. · · · · · ·
.
.
.

pm/K pm/K · · · (1− pm)+ pm/K

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

(1− α)+ α
[
(1− λ1)+ λ1(β/K + (1− β)m1)

]
αλ2(β/K + (1− β)m1) · · · αλK(β/K + (1− β)m1)

αλ1(β/K + (1− β)m2) (1− α)+ α
[
(1− λ2)+ λ2(β/K + (1− β)m2)

] · · · αλK(β/K + (1− β)m2)

.

.

. · · · · · ·
.
.
.

αλ1(β/K + (1− β)mK) αλ2(β/K + (1− β)mK) · · · (1− α)+ α
[
(1− λK)+ λK(β/K + (1− β)mK)

]

⎤
⎥⎥⎥⎥⎥⎦

(A3)

PA(1, 1) = ((1− pm)+ pm/K)
[
(1− α)+ α((1− λ1)+ λ1(β/K + (1− β)m1))

]+ ( pm/K)
[
αλ1(β/K + (1− β)m2)

]+ · · · + ( pm/K)
[
αλ1(β/K + (1− β)mK)

]
= ((1− pm)+ pm/K)

[
(1− α)+ α((1− λ1)+ λ1(β/K))

]+ (K − 1)( pm/K)(αλ1)(β/K)+ ((1− pm)+ pm/K)(αλ1)(1− β)m1

+ ( pm/K)(αλ1)(1− β)(m2 + m3 + · · ·mK)

=
(

1− (K − 1)pm

K

)[
(1− α)+ α

(
(1− λ1)+ λ1

(
β

K

))]
+ (K − 1)pm

K
(αλ1)

(
β

K

)
+
(

1− (K − 1)pm

K

)
(αλ1)(1− β)m1 + pm

K
(αλ1)(1− β)(1− m1)

=
(

1− (K − 1)pm

K

)
(1− α)+ α

[(
1− (K − 1)pm

K

)
(1− λ1)+ λ1

((
1− (K − 1)pm

K

)
β

K
+ (K − 1)pm

K2
β + pm

K
(1− β)+ (1− β)(1− pm)m1

)]

(A4)

from the literature to derive two EAs, but we could use
other previously-published examples to construct additional
EA paradigms that use population-proportion-based selection.
Third, population-proportion-based selection is a new selec-
tion strategy that does not require fitness calculations (possible
computational cost savings), and future work could develop
an entire family of modified EAs based on this selection
strategy.

Fourth, we suggest the combination of estimation of dis-
tribution algorithms (EDAs) with the population-proportion-
based selection operator. Recall that EDAs use fitness values
to approximate the distribution of an EA population’s fitness
values. In contrast, our population-proportion-based selection
uses population sizes rather than fitness values for selection.
However, EDA ideas could be incorporated in population-
proportion-based selection by approximating the probability
distribution of the population sizes and then performing selec-
tion on the basis of approximate distribution. This idea would
merge the advantages of EDAs with the advantages of
population-proportion-based selection.

Finally, we note that methods will need to be developed to
handle problems with realistic sizes. The interactive Markov
model presented here enables tractability for problems of
reasonable size, which is a significant advantage over the
standard noninteractive Markov models published before now.
However, the interactive Markov model is still the same size
as the search space. For realistic problem sizes, say with
a search space on the order of trillions, the interactive Markov
model will also be on the order of trillions. Methods will need

to be developed to reduce the interactive Markov model to
a tractable size.

APPENDIX A

Here, we derive the interactive Markov model of strategy A
with mutation shown in (11). The selection transition matrix
PS of strategy A in (8) can be written as (A.1), shown at the
top of the page.

Transition matrix PM of the modified mutation operator
in (10) can be written as

PM =
[
pki

]

=

⎡
⎢⎢⎢⎢⎣

(1− pm)+ pm/K pm/K · · · pm/K

pm/K (1− pm)+ pm/K · · · pm/K
.
.
. · · · · · · .

.

.

pm/K pm/K · · · (1− pm)+ pm/K

⎤
⎥⎥⎥⎥⎦

(A2)

where pm is the mutation rate. So the transition matrix of
strategy A with mutation can be computed by PB = [pkj] =
PMPS =∑

i pkipij as (A.3), shown at the top of the page.
Combining this result with the equation

∑K
i=1 mi = 1, ele-

ment PB(1, 1) = p11 in (A.3) is obtained as (A.4), shown at
the top of the page.

Element PB(1, 2) = p12 in (A.3) is obtained as (A.5), shown
at the top of the next page.

We follow the same process to obtain as (A.6), shown at the
top of the next page, which is equivalent to (11), as desired.



PA(1, 2) = ((1− pm)+ pm/K)
[
αλ2(β/K + (1− β)m1)

]+ ( pm/K)
[
(1− α)+ α((1− λ2)+ λ2(β/K + (1− β)m2))

]
+ · · · + ( pm/K)

[
αλ2(β/K + (1− β)mK)

]
= ((1− pm)+ pm/K)(αλ2)(β/K)+ ((1− pm)+ pm/K)(αλ2)((1− β)m1)+ ( pm/K)

[
(1− α)+ α((1− λ2)+ λ2(β/K))

]
+ ( pm/K)(αλ2)(1− β)m2 + · · · + ( pm/K)(αλ2)(β/K)+ ( pm/K)(αλ2)((1− β)mK)

= ((1− pm)+ pm/K)(αλ2)(β/K)+ ( pm/K)
[
(1− α)+ α((1− λ2)+ λ2(β/K))

]+ (K − 2)( pm/K)(αλ2)(β/K)

+ ((1− pm)+ pm/K)(αλ2)((1− β)m1)+ ( pm/K)(αλ2)(1− β)(m2 + · · · + mK)

= (K − 1)pm

K
(αλ2)

(
β

K

)
+
(pm

K

)[
(1− α)+ α

(
(1− λ2)+ λ2

(
β

K

))]
+ (K − 2)pm

K
(αλ2)

(
β

K

)

+
(

1− (K − 1)pm

K

)
(αλ2)(1− β)m1 + pm

K
(αλ2)(1− β)(1− m1)

= pm

K
(1− α)+ α

[
pm

K
(1− λ2)+ λ2

((
1− (K − 1)pm

K

)
β

K
+ (K − 1)pm

K2
β + pm

K
(1− β)+ (1− β)(1− pm)m1

)]

(A5)

pkj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1− (K − 1)pm

K

)
(1− α)+ α

[(
1− (K − 1)pm

K

)(
1− λj

)+ λj

((
1− (K − 1)pm

K

)
β

K
+ (K − 1)pm

K2
β + pm

K
(1− β)+ (1− β)(1− pm)mj

)]

if k = j
pm

K
(1− α)+ α

[
pm

K

(
1− λj

)+ λj

((
1− (K − 1)pm

K

)
β

K
+ (K − 1)pm

K2
β + pm

K
(1− β)+ (1− β)(1− pm)mk

)]
if k �= j

(A6)

PS =
[
pij
] =

⎡
⎢⎢⎢⎣

(1− λ1)+ λ1[α + β(σ1 + (1− σ1)n1)] λ2[α + β(σ1 + (1− σ1)n1)] · · · λK[α + β(σ1 + (1− σ1)n1)]
λ1(α + β(1− σ1)n2) (1− λ2)+ λ2(α + β(1− σ1)n2) · · · λK(α + β(1− σ1)n2)

... · · · · · · ...

λ1(α + β(1− σ1)nK) λ2(α + β(1− σ1)nK) · · · (1− λK)+ λK(α + β(1− σ1)nK)

⎤
⎥⎥⎥⎦

(B.1)

PB =
[
pkj

] =
⎡
⎢⎢⎢⎣

(1− pm)+ Pm/K pm/K · · · pm/K
pm/K (1− pm)+ pm/K · · · pm/K

... · · · · · · ...

pm/K pm/K · · · (1− pm)+ pm/K

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

(1− λ1)+ λ1[α + β(σ1 + (1− σ1)n1)] λ2[α + β(σ1 + (1− σ1)n1)] · · · λK[α + β(σ1 + (1− σ1)n1)]
λ1(α + β(1− σ1)n2) (1− λ2)+ λ2(α + β(1− σ1)n2) · · · λK(α + β(1− σ1)n2)

... · · · · · · ...

λ1(α + β(1− σ1)nK) λ2(α + β(1− σ1)nK) · · · (1− λK)+ λK(α + β(1− σ1)nK)

⎤
⎥⎥⎥⎦

(B.3)

APPENDIX B

Here, we derive the interactive Markov model of strategy B
with mutation as shown in (18). The selection transition matrix
PS of strategy B in (16) can be written as (B.1), shown at the
top of the page.

Transition matrix PM of the modified mutation in (10) can
be written as

PM =
[
pki

]

=

⎡
⎢⎢⎢⎢⎣

(1− pm)+ pm/K pm/K · · · pm/K

pm/K (1− pm)+ pm/K · · · pm/K
.
.
. · · · · · · .

.

.

pm/K pm/K · · · (1− pm)+ pm/K

⎤
⎥⎥⎥⎥⎦.

(B.2)

So the transition matrix of strategy B with mutation can be
computed by PB =

[
pkj

] = PMPS =∑
i pkipij as (B.3), shown

at the top of the page.
Combining this result with the sum

∑K
i=1 pij = 1 of each

column of PS, element PB(1, 1) = p11 in (B.3) is obtained
as (B.4), shown at the top of the next page.

Element PB(1, 2) = p12 in (B.3) is obtained as (B.5), shown
at the top of the next page.

Element PB(2, 2) = p22 in (B.3) is obtained as (B.6), shown
at the top of the next page.

Element PB(2, 1) = p21 in (B.3) is obtained as (B.7), shown
at the top of the next page.

We can follow the same process to obtain as (B.8), shown
at the top of the next page, which is equivalent to (18), as
desired.



PB(1, 1) = ((1− pm)+ pm/K)[(1− λ1)+ λ1[α + β(σ1 + (1− σ1)n1)]]+ ( pm/K)[λ1(α + β(1− σ1)n2)]

+ · · · + ( pm/K)[λ1(α + β(1− σ1)nK)]

= ((1− pm)+ pm/K)[(1− λ1)+ λ1α]+ (K − 1)( pm/K)(αλ1)+ ((1− pm)+ pm/K)(λ1β(σ1 + (1− σ1)n1))

+ ( pm/K)(λ1β(1− σ1)(n2 + n3 + · · · nK))

= ((1− pm)+ pm/K)[(1− λ1)+ λ1α]+ (K − 1)( pm/K)(αλ1)+ ((1− pm)+ pm/K)(λ1β(σ1 + (1− σ1)n1))

+ ( pm/K)(λ1(1− Kα − β(σ1 + (1− σ1)n1)))

= pm/K + (1− pm)[(1− λ1)+ λ1(α + β(σ1 + (1− σ1)n1))] (B.4)

PB(1, 2) = ((1− pm)+ pm/K)λ2[α + β(σ1 + (1− σ1)n1)]+ ( pm/K)[(1− λ2)+ λ2(α + β(1− σ1)n2)]

+ · · · + ( pm/K)[λ2(α + β(1− σ1)nK)]

= ((1− pm)+ pm/K)(αλ2)+ ((1− pm)+ pm/K)(λ2β(σ1 + (1− σ1)n1))

+ ( pm/K)(λ2β(1− σ1)(n2 + n3 + · · · + nK))+ ( pm/K)(1− λ2)+ (K − 1)( pm/K)λ2α

= ((1− pm)+ pm/K)(αλ2)+ ((1− pm)+ pm/K)(λ2β(σ1 + (1− σ1)n1))+ ( pm/K)(1− λ2)+ (K − 1)( pm/K)λ2α

+ ( pm/K)(λ2(1− Kα − β(σ1 + (1− σ1)n1)))

= pm/K + (1− pm)[λ2(α + β(σ1 + (1− σ1)n1))] (B.5)

PB(2, 2) = ( pm/K)λ2[α + β(σ1 + (1− σ1)n1)]+ ((1− pm)+ pm/K)[(1− λ2)+ λ2(α + β(1− σ1)n2)]

+ · · · + ( pm/K)[λ2(α + β(1− σ1)nK)]

= ( pm/K)λ2βσ1 + ((1− pm)+ pm/K)(1− λ2)+ ((1− pm)+ pm/K)λ2α + (K − 1)( pm/K)λ2α

+ ((1− pm)+ pm/K)(λ2β(1− σ1)n2)+ ( pm/K)[λ2β(1− σ1)(n1 + n3 + · · · + nK)]

= ( pm/K)λ2βσ1 + ((1− pm)+ pm/K)(1− λ2)+ ((1− pm)+ pm/K)λ2α + (K − 1)( pm/K)λ2α

+ ((1− pm)+ pm/K)(λ2β(1− σ1)n2)+ ( pm/K)(λ2(1− Kα − βσ1 − β(1− σ1)n2))

= pm/K + (1− pm)[(1− λ2)+ λ2(α + β(1− σ1)n2)] (B.6)

PB(2, 1) = ( pm/K)[(1− λ1)+ λ1(α + β(σ1 + (1− σ1)n1))]+ ((1− pm)+ pm/K)λ1(α + β(1− σ1)n2)

+ · · · + ( pm/K)[λ1(α + β(1− σ1)nK)]

= ( pm/K)(1− λ1)+ (K − 1)( pm/K)λ1α + ( pm/K)(λ1βσ1)+ ((1− pm)+ pm/K)(αλ1)

+ ((1− pm)+ pm/K)(λ1β(1− σ1)n2)+ ( pm/K)(λ1β(1− σ1)(n1 + n3 + · · · + nK))

= ( pm/K)(1− λ1)+ (K − 1)( pm/K)λ1α + ( pm/K)(λ1βσ1)+ ((1− pm)+ pm/K)(αλ1)

+ ((1− pm)+ pm/K)(λ1β(1− σ1)n2)+ ( pm/K)(λ1(1− Kα − βσ1 − β(1− σ1)n2))

= pm/K + (1− pm)[λ1(α + β(1− σ1)n2)] (B.7)

Pkj =

⎧⎪⎪⎨
⎪⎪⎩

pm/K + (1− pm)[(1− λ1)+ λ1(α + β(σ1 + (1− σ1)n1))] if k = j = 1, which is the best state
pm/K + (1− pm)

[
λj(α + β(σ1 + (1− σ1)n1))

]
if k = 1 and j �= 1

pm/K + (1− pm)
[(

1− λj
)+ λj(α + β(1− σ1)nk)

]
if k = j �= 1

pm/K + (1− pm)
[
λj(α + β(1− σ1)nk)

]
if k �= j, and k �= 1

(B.8)

APPENDIX C

Here, we derive Theorem 2. Before proceeding with the
proof, we establish the preliminary foundation. Time indices
and function arguments will usually be suppressed to simplify
notation: that is, m = m(t), mi = mi(t), pij = pij(m). The nota-
tion �m = [�mi] is defined by �m = m(t + 1) − m(t). The
symbol u indicates the (K, 1) vector of ones

[
u′ = (1, . . . , 1)

]
.

The ith equation of the interactive Markov model (1) will often
be written in the following form:

�mi =
∑

j

pijmj − mi =
∑
j�=i

pijmj − (1− pii)mi

=
∑
j�=i

pijmj −
∑
j�=i

pjimi =
∑
j�=i

(
pijmj − pjimi

)
(C.1)

where
∑

jmeans the sum over all j from 1 to K; and∑
j�=imeans the sum over all j from 1 to K except j = i.
Next, we formally prove Theorem 2. It follows from the

definition of A0 and (2) that:

P(m) = A0 + mb0 b0 = u′(I − A0). (C.2)

Namely, b0 = [bj/(bj +∑
i aij)] because all the rows of B

are the same. Thus the Markov chain can be written as

m(t + 1) = (A0 + mb0)m = [A0 + (b0m)I]m

= [
A0 +

(
u′(I − A0)m

)
I
]
m = [

A0 +
(
1− u′A0m

)
I
]
m.

(C.3)



To find the equilibrium m∗, set m(t + 1) = m = m∗ in this
equation and rearrange the terms to get

A0m∗ = (
u′A0m∗

)
m∗. (C.4)

Thus, an equilibrium m∗ > 0 for the Markov chain exists if
and only if (C.3) has a solution m∗ such that m∗ > 0 with∑

k m∗k = 1.
Since A0 is indecomposable by the equations of the inter-

active Markov model of strategy A, it has a real positive
dominant eigenvalue and a corresponding positive eigenvec-
tor. We call the root λ and the eigenvector z (normalized so
that its elements sum to one). Then we obtain

A0z = λz, u′A0z = λ, A0z = (
u′A0z

)
z. (C.5)

The first equation is true by the definitions of λ and z; the sec-
ond equation follows from the first on premultiplying by u′;
and the third follows from the first two. However, compari-
son of (C.4) to the third equation of (C.5) shows that m∗ = z
is a solution to (C.4). Thus, we have an equilibrium m∗ = z
which is a positive dominant eigenvector of A0 with the
following eigenvalue:

λ = u′A0z = u′A0m∗ = 1− u′m∗ + u′A0m∗

= 1− u′(I − A0)m
∗ = 1− b0m∗. (C.6)

Furthermore, m∗ = z is a unique solution to (C.4) since
a non-negative indecomposable matrix cannot have two non-
negative and linearly independent eigenvectors. This completes
the proof of Theorem 2.
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