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ABSTRACT

Surgical fusion of the spine is a conventional approach, and often last alternative, to

the correction of a degenerative painful spinal segment. The procedure involves the surgical

removal of the intervertebral disc at the problematic site, and the placement of a bone graft

that is commonly harvested from the patient’s iliac crest and placed within the discectomized

space. The surrounding bone is expected to incorporate and remodel into the bone graft to

eventually provide an immobilized site. Spinal instrumentation often accompanies the bone

graft to provide further immobility to the targeted site, thus augmenting the fusion process.

However, the status of a fusion and the incorporation of bone across a destabilized spinal

segment are often difficult for the surgeon to assess. Radiographic methods provide static

views of the fusion site that possess excessive limitations. The radiographic image cannot

provide the surgeon with information regarding fusion integrity when the patient is mobile

and the spine is exposed to multiple motions.  Fortunately, technological advances utilizing

microelectromechanical system technology (MEMS) have provided insight into the

development of miniature devices that exhibit high resolution, electronic accuracy, miniature

sizing, and have the capacity to monitor long-term, real-time in vivo pressures and forces

for a variety of situations. However, numerous challenges exist with the utilization of MEMS

devices for in vivo applications.

This work investigated the feasibility of utilizing implantable microsensors to monitor

the pressure and force patterns of bone incorporation and healing of a spine fusion in vivo.

THE DEVELOPMENT OF AN IN VIVO SPINAL FUSION MONITOR

USING MICROELECTROMECHANICAL (MEMS) TECHNOLOGY

TO CREATE IMPLANTABLE MICROSENSORS

LISA  A. FERRARA
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The knowledge obtained from this series of feasibility test using commercially available

transducers to monitor pressures and forces, will be applied towards the development of

miniature sensors that utilize MEMS technology to monitor real-time, long-term spine fusion

in living subjects. The packaging, and radiographic, and sterilization characteristics of MEMS

sensors were evaluated for the future application of long-term human implantation for real-

time, accurate measurement of the loads during bone healing.
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CHAPTER I

INTRODUCTION

1.1 The  Spinal  Market

Back pain is the second most common medical condition for which individuals seek

treatment, accounting for more than 50 million physician office visits annually in the United

States (U.S.) 52  It is estimated that more than 75% of the entire U.S. population will be

affected by low back pain over the course of their lifetime. The spinal market in the U.S. is

a $12 billion market, with spine implants comprising approximately a $3 billion sub-

segment.52  In 2006, more than $1.8 billion was spent on spinal fixation and dynamic

stabilization devices in the U.S.52,78  Sales of these products are expected to grow at a

compound annual rate of 10.4% reaching more than $3.2 billion in the year 2012.  Although

back pain requiring spinal fusion is not life threatening, and the resulting surgical caseload

is small when compared to the percentage of back pain patients, it is a major cost burden on

the American healthcare system.77,78

1.2 Clinical Relevance

Spinal surgery is often a final alternative to spinal stabilization and relief of pain. Bone

graft fusion with accompanying spinal instrumentation systems is a conventional surgical

technique used to stabilize the spine. The eventual goal of this bone graft and spinal
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instrumentation construct is to create a balanced environment where the spinal

instrumentation is used to initially function as the load bearing element that immobilizes

the fusion segment during the early unstable stages of bone grafting and healing.6,7,59,83

However, the success of a fusion across a destabilized spinal segment is often difficult for

the surgeon to assess. Numerous in vitro and in vivo studies have been conducted to

biomechanically assess the surgical fusion procedure and bone fusion integrity.6,7,34,59,92,121

Currently, conventional methods to examine bony incorporation include radiographic

evaluation of the fusion, Magnetic Resonanic Imaging (MRI) and Computed Tomography

(CT), and patient history. Yet, discrepancies exist between radiographic evidence and more

direct means of fusion assessments, such as operative exploration, biomechanical testing,

and histological techniques that will stain for newly developed bone. The disadvantage of

these direct methods is that they can only be used postmortem. Previous studies11,14 have

shown that mechanical and histological maturation of the fusion mass occurs much earlier

than what has been demonstrated radiographically. Kanayama et al.59 reported maturation

of a posterolateral fusion mass to occur at approximately 8 weeks in sheep, whereas

radiographic and histological evaluation determined maturation to occur at 16 weeks.

Histological evidence indicated the fusion site to contain mainly woven bone at 8 weeks

and entire trabeculation at 16 weeks. Contrary to this observation was the biomechanical

evidence, which demonstrated the ability of the fusion mass to bear sufficient load at 8

weeks, indicating that mechanical strength had been achieved prior to full mineralization.

Blumenthal and Gill11 confirmed that plain radiographs often led to a 20% underestimation

of the fusion grade. Furthermore, Brodsky et al.14 reported that the accuracy of radiographic

techniques to determine fusion status decreased with multiple spinal levels. These authors

also discovered that on surgical examination, the fusion mass moved independent of the

underlying vertebrae, indicating a non-union at the vertebral endplates.11,14 Thus, the use of

conventional radiographic techniques cannot provide the surgeon with the dynamics of the

fusion mass, adequate visualization of bone incorporation into the host bone (i.e. vertebral
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endplates), the mechanical strength capability of the fusion mass, and the real-time bone

remodeling scenario. Radiographic measures are greatly limited in fusion assessment by

providing a discrete snapshot of the fusion to the surgeon, which, in turn, may provide a

false positive or false negative.

Bony incorporation of the fusion graft usually occurs within 4-6 months after surgery

in the human spine. However, a patient’s post-operative assessment typically occurs at 2-3

month intervals. These intermittent patient evaluations, which are often accompanied by

plain radiographs of the fusion site, cannot provide the physician with sufficient knowledge

of the bone ingrowth across the fusion graft during the course of the bone healing, and are

frequently misleading. Radiographic imaging of bone healing provides a static solution to a

dynamically evolving process. Often the patient’s recurring pain post-operatively may not

correlate with the radiographic assessments conducted by the radiologist and surgeon. If a

patient returns with post-operative pain, a pseudarthrosis (non-fusion) may exist, but may

not be detectable via plain radiographs. Possible ramifications of a pseudarthrosis include

an increased risk of early failure and loss of fixation due to excessive stress and bending

moments placed onto the load-bearing instrumentation. Placement of the patient in flexion

and extension for radiographic imaging still limits the surgeon from viewing the dynamics

of the fusion, especially at the host bone interface. Furthermore, numerous variables factor

into the patient’s well being following surgery. Since pain is quite subjective and radiographic

imaging techniques cannot provide the entire story of the post-surgical status, diagnostic

and therapeutic solutions may be inaccurately prescribed to alleviate the patients pain,

resulting in further unnecessary repeat surgical stabilization procedures. Therefore, it is

understandable that under these circumstances, uncertainty regarding fusion status usually

prevails. If fusion status could be assessed continuously during the postoperative course,

the process of determining the need for a second surgical procedure is simplified. Finally,

knowledge of the biomechanics of the entire fusion construct, that is the spinal
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instrumentation systems and bone graft, would further enhance the surgical strategy  for the

patient and improved patient outcome, while minimizing additional surgical costs due to

second and third surgical revision procedures.

Unfortunately, in vitro biomechanical testing using cadaveric tissue cannot provide

the continuous healing scenario of remodeling bone. Currently, in vitro biomechanical testing,

where cadaveric tissue is prepared and tested under various axial and torsional loading

parameters on a hydraulic testing apparatus has been the gold standard for providing

biomechanical data. However, the use of non-living tissue introduces discrepancies in results

that cannot be translated to the scenario in actual spine patients. A cadaveric spine lacks

surrounding musculature, and a circulating fluid environment, with a constant exposed

temperature, and has begun decomposing with cellular lysis. The lack of surrounding

musculature cannot accurately simulate the spinal column during physiological loading

paradigms. Hence, there is a multitude of challenges that exist with current diagnostic

technologies used for fusion determination that directly limits the information available to

the surgeon for proper surgical strategic planning. The ability to measure biomechanical

parameters such as load, stress, strain, acceleration, and displacement in vivo would greatly

advance current medical diagnostic tools and could in turn, provide highly accurate real-

time information specific to each patient. Biomechanically speaking, contact pressures

obtained at the bone graft interface would yield healing pressures related to the actual

loading paradigms that included mechanical contribution from the surrounding musculature

and ligamentous tissue.

The ability to monitor fusion real-time in vivo would greatly advance the medical

treatment of spinal disorders. Although many factors contribute to a successful fusion, such

as lifestyle, gender, age, and tissue integrity of the patient, sensors could monitor the

progression at individual etilolgies and fusions pre and post-operatively. Monitoring fusion

could accurately provide information regarding the bone graft used for fusion and the spinal
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instrumentation that often accompanies the bone graft for added stability and immobility to

allow for bony incorporation during the initial stages of healing and remodeling. If a fusion

is unsuccessful due to a pseudarthrosis at the bone graft site, the spinal instrumentation is at

risk of early failure and loss of fixation due to excessive stress and bending moments placed

onto the load-bearing instrumentation. Catastrophic implant failure and/or loss of fixation

could cause neurologic damage to surrounding tissues. The eventual goal of the bone graft

and spinal instrumentation is to create a balanced environment where the spinal

instrumentation is used to initially function as the load bearing element that immobilizes

the fusion segment during the early unstable stages of bone grafting and healing. If the

instrumentation is too rigid, it will shield the necessary stress that the bone graft needs to

initiate osteoblastic activity for new bone formation and may result in resorption of the

graft.55,131 If the instrumentation lacks  adequate rigidity and applies excessive micromotion

across the bone graft site, a pseudarthrosis may be inevitable. The ideal amount of

micromotion necessary for a bone graft to endure for successful bony incorporation is still

a mystery to surgeons and researchers.

1.3   Research Objectives and Study Hypotheses

1.3.1. Research Objective

The objective of this research is to investigate the feasibility of using implantable

microsensors to monitor the pressure and force patterns of bone healing at a fusion site in

vivo. Conventional methods to monitor healing of the spine after surgery are based on a

combination of patient history and imaging tools such as x-rays, MRI and CT.  Unfortunately,

these “snapshot” techniques cannot provide the patient and surgeon with accurate real-time
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information on the fusion status or the possibility of spinal instrumentation failure, and can

often lead to “false positives” or an inaccurate assessment of healing status.

The overall goal would be to employ microelectromechanical systems (MEMS)

technology to develop a miniature, non-invasive, real-time, continuously monitoring, spine

fusion status assessment system.   However, initial studies using conventional transducers

are required to establish a model to quantify biomechanical parameters that will contribute

to the future design of a MEMS-based fusion assessment system. This study will use

commercially available pressure sensors and strain gauges to obtain the essential in vivo

pressure and force data from a bone graft and spinal instrumentation recorded during the

course of bone healing.

Consequently, our short-term goal and focus of this dissertation is to initially

determine the feasibility of implantable pressure and force sensors to monitor the changes

in pressure at a bone graft interface and the forces transmitted through a stabilizing spinal

implant during the bone healing process in a caprine cervical spine model. Our future long-

term goal is to extend the sensor technology to the human spine for real-time evaluation of

the bone fusion status through the development of minature, implantable wireless MEMS

sensors that can be injected into the spine.

The preliminary fusion assessment system will utilize a conventional pressure

transducer within a catheter and load transducers using strain gauge technology for the in

vivo physiological measurements of the healing status at the bone graft site and the forces

experienced by the spinal instrumentation used to stabilize the fusion site. The data from

the implanted pressure sensors and strain gauges will be obtained telemetrically, and will

determine the pressure range and trends incurred during bone incorporation of the fusion

graft, and the load variations that occur with the transition from a load-bearing device to a

load-sharing device.



7

Therefore the study hypotheses are:

(1) Load transmission along a ventral cervical spine plate and a bone graft

can be measured to monitor healing status.

(2) Pressure measured at the bone graft and vertebral body endplate interfaces

at a fusion site in the cervical spine will provide a mechanism to detect

altered biomechanical markers during bone healing. The pressure trends

during bone fusion healing will reflect the status of bone incorporation.

(3) The basic MEMS materials used to construct microsensors will prove to

be safe and efficacious materials that can be sterilized and housed within

a living body without incurring toxic foreign body responses.

1.4  Specific Aims

1.4.1  Specific Aim 1:  To establish a model that will potentially assess the feasibility of

monitoring force transmission along a ventral cervical spine fixation system and pressure

changes at the bone graft interface during fusion healing in a caprine cervical spine.

We propose to use existing commercialized sensor technology in a cadaveric caprine

(goat) model to establish the feasibility of measuring force transduction transmitted

along an implanted spinal plate during cervical spine fusion and the contact pressures at

a bone graft interface. An in vitro biomechanical study was conducted to simultaneously

monitor the forces along a ventral cervical plate and the pressures at a bone graft site.

Ventral plating across a bone graft site is conventionally used to promote spinal fusion

for stabilization of the degenerative cervical spine. Commercially available sensors were

utilized in this biomechanical model to measure the force and pressure along the ventral

plate and the bone graft interface. High resolution conventional strain gauges were

purchased from vendors and configured as a force transducer  to operate with a
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commercially available telemetry system to monitor the forces transmitted across a

ventral cervical spine fixation plate during bone fusion healing.  The strain gauges were

mounted onto conventional cervical spine instrumentation (DOC cervical spinal plate

fixation system, DePuy Acromed Inc., Raynham, Massachusetts) prior to surgery and

coated with Silastic (HiTec Corp., Westford, MA) and Parylene (Specialty Coating

Systems, Amherst, NH). Parylene was chosen as an ideal coating as it can be applied in

thin layers and is biocompatible.60,61,63  The output leads from the strain gauges were

attached to separate subcutaneously placed implanted telemetry systems (1 for the

pressure transducer, and 1 for the strain gauges), which will wirelessly transmit the data

to an external computer. The pressure was measured using a commercially available

telemetric pressure sensor (Dataquest A.R.T. 2.2 Telemetric Pressure Catheter, Data

Sciences International, St. Paul, MN) housed at the bone graft and vertebral endplate

interfaces. Early bone healing was simulated in an in vitro manner using bone cement at

the bone graft interface and the forces and pressures measured under physiological

loading of the cadaveric goat spine fusion model.

1.4.2  Specific Aim 2:  To apply the established load (force and pressure)  detection

model to a living system to determine actual performance of telemetric sensors within

the harsh environment of a living system.

The system that was developed and established through the in vitro study as discussed

in Specific Aim 1, and was then incorporated into a living system for long term

implantation and evaluation. A caprine model of similar breed and size to those used in

the in vitro study were used to evaluate the behavior and performance of the load sensing

devices during long term implantation across a fusion site of the cervical spine.  Six

goats were implanted with force sensors and/or pressure transducers to monitor the

forces along a cervical plate and pressures at the bone graft interface during bone healing.
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Both parameters were monitored immediately post-operatively and on a regular basis

for a period up to 6 months. This data provided the pressure ranges and force changes

that occur in vivo during the course of bone remodeling and fusion incorporation in the

cervical spine.  The optimal outcome will be the ability to measure and predict the

status of bone healing through altered biomechanical parameters along the spine.

1.4.3  Specific Aim 3:  To assess the site-specific biocompatibility, biofunctionality,

packaging and sterilization of MEMS pressure sensors and the materials used to fabricate

MEMS devices through implantation into the cervical spine.

Once a feasible model had been established and it demonstrated that changes in forces

and/or pressures along a bone grafted spine could be correlated with bone healing, a

novel microsized biosensor employing microelectromechanical fabrication (MEMS)

techniques were evaluated for safety and functionality after conventional sterilization

techniques in the spine. MEMS uses silicon wafers with conventional etching processes

and lithography to construct multiple microscopic devices on one wafer. However,

implantation of silicon based devices into a living system has not been evaluated in the

spine. The site-specific biocompatibility of silicon and related materials that are

commonly used to construct MEMS pressure sensors were evaluated after implantation

in the caprine cervical spine. After autopsy, gross examination, radiography, microscopy,

and histological techniques were used to characterize local tissue response and possible

material degradation. The functionality of microsized MEMS pressure sensors (GE

Novasensor, Fremont, CA) after sterilization were evaluated before implantation in the

cervical spine. Tissue responses to the pressure sensors post-implantation were evaluated

and the sensor structure was examined for mechanical damage. The optimal outcome

will be that the materials used to construct MEMS pressure sensors exhibit minimal

degradation and do not illicit unfavorable tissue response or sensor migration.
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CHAPTER II

BACKGROUND

2.1  The Mechanics of Bone Healing

Bone is a responsive viscoelastic tissue that forms in response to increased stresses,

and resorbs in response to decreased stresses. This summary of Wolff’s Law best describes

bone remodeling as that of form following function.131 Furthermore, the anisotropic nature

of bone in the vertebral bodies of the spine is caused by new trabecular bone coinciding

with the principal stress trajectories.23,131 It has long been known that bone healing is directly

related to mechanical stimulation that can induce fracture, induce fusion, or alter its biological

pathway.13,22,88,131  For example, bone hypertrophy is often the result of repetitive loading

under small strain and high frequency motions.44 However, the exact regulatory cellular

mediators of bone formation and resorption, as a result of mechanical stimuli, still remain

a mystery. Knowledge of these factors could provide the missing link towards bone

regenerative therapies.

Bone  will repair and remodel in response to favorable loading conditions.23,24,44,76,82,131

Unfavorable loading conditions can lead to bone atrophy and non-unions, often forming

fibrous tissue in lieu of bone formation. Carter et al. proposed that the type of stress applied

to immature or undifferentiated tissues can dictate the fate of the tissue formation (Figure

2.1).18 The establishment and application of controlled biophysical stimuli (i.e. loading
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paradigms) to selectively

differentiate immature

tissue cells into viable

fibrous or bone tissue could

lead to a new frontier in

tissue engineering.

However, if applied

loading paradigms can

alter the ultimate outcome

of an immature cell (mesenchymal cell), this suggests that the cells can respond to such

stimuli by altering their mechanical parameters, such as force or pressure, during various

stages of development. Simply put, if immature cells respond to mechanical stimuli, they

may also elicit detectable responses to mechanical stimuli. Thus, mechanical parameters

could potentially be used to monitor bone healing performance. Figure 2.1 demonstrates

the proposed stress and loading paradigms that alter the fate of a cell. Compressive shear

stresses applied intermittently will lead to endochondral ossification, while  constant

compressive loads lead to the formation of cartilage.

Although the mechano-cellular interactions involved with bone healing and repair

are not fully understood, there has been numerous research that furthers the evidence that

biophysical stimulation can elicit cellular responses to form or resorb bone. According to

Wolff’s Law, mechanical loading elicits an osteogenic response in bone, causing bone to

form in regions of increased stress.131 However, there is an optimal degree of stress that will

favor bone formation. Sarmiento et al. demonstrated that controlled weight bearing under

functional braces had a positive effect on tibial fracture healing.107 Meadows et al. continued

to demonstrate that loading was proven to be a permissive factor for bone defect repair.76 In

essence, cells respond to particular biophysical stimuli and can be monitored. Ideally,

improvements in biomaterials, electronics, and packaging systems will be needed to create

Intermittent compressive or
shear stresses

Tensile stress

Constant compressive stress

High shear stress

Endochondral
Ossification

Intramembranous
Ossification

Cartiliage

Fibrous Tissue
Formation

Figure 2.1.  Proposed stress and loading paradigms with their 
respective fate of immature cell differentiation.
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a sensing system that can provide long-term, real-time accurate recordings of cellular

responses. Currently, existing technology is lacking with respect to an implantable monitoring

system that could record cellular responses with wireless data transmissons over the course

of a few weeks to months. Additionally, the molecular indicators of bone repair are not well

understood.

Numerous researchers have attempted

to directly measure the various biomechanical

parameters within the spine and in various

orthopedic applications to provide a better

understanding of the bone responses and healing

mechanisms involved with daily stress exertion,

as well as, surgical intervention and fixation that

may be used to immobilize and stabilize bony

segments. Bone deformation or strain, fluid

pressure, intradiscal pressure, and forces acting

upon a bony element or internal orthopedic

fixation device have been investigated by a

multitude of researchers.1,16,17,32,50,66,68,75,80

However, numerous challenges and limitations

exist with previous published

research.16,17,32,40,50,66,68,91-101,114,115,117,131

The earliest in vivo work was conducted

by Nachemson and colleagues32,79 in the late 1960s and early 1970s monitoring intradiscal

pressures of the human spine for a variety of spinal loading motions (standing, sitting,

flexed, etc..). (Figure 2.2a & 2.2b.)  Later, the same group of researchers investigated

spinal forces in the scoliotic patient after surgical intervention by instrumenting a Harrington

Rod system with wire-connected, built-in strain gauges which converted strain into force

Figure 2.2a.  A diagrammatic comparison of

the in vivo loads (in terms of disc pressures)

in the third lumbar disc during various

activities.  The sitting pressures are greater

than standing pressures.

Figure 2.2b.  Comparison of disc pressures in
vivo at L3 during various exercises and

positions.  Pressures during sit-up with legs

bent, hyperextension exercises, and back

lying with the hips and knees flexed are

greater than standing pressures.

80

80
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transmission along the rods.79

However, the wires were brought out

through skin incisions, making it

difficult to obtain long-term stress and

strain data from the instrumentation

due to technical difficulties such as

wire breakage and infection.

More recently, Rohlman et al.

have reported the development of

telemeterized spinal fixators that can

be used to measure forces and

moments on the spine in vivo.101 A

conventional AO spinal fixateur

interne device was modified to study the effects of different spinal destabilization modes

on implant performance. A hermetically sealed cartridge housed strain gauges and an

inductively powered telemetric unit that were integrated into the threaded portion of the

implant formed this sensor, (Figure 2.3).101  The strain gauges acted as force sensors and the

wire coil was used to inductively couple power from an external source to the implanted

signal processing electronics. In addition, the wire coil acted as an antenna for telemetric

transmission of the data from the strain gauges to an external monitoring console. The

fixators were used to correlate loading of the spinal implants with postures associated with

various activities. Rohlman has published numerous reports based on the loads measured

by implantable force sensing spinal implants used to quantify the spinal forces during walking,

sitting, use of walking aids, and carrying weights.91-101

To date, the only work that has attempted to examine in vivo loading of spinal

instrumentation during the course of fusion was reported by Ledet et al., where strain gauges

Figure 2.3:  External and internal view of the tele-

meterized spinal fixation device (AO Fixator) used

by Rohlmann et al. 92 to measure the loads acting

on the internal spinal fixation device.  A measuring

cartridge integrated into the longitudinal threaded

rod containing six semiconductor strain gauges as

load sensors, and eight-channel telemetric unit and

an inductive coil for power.  The cartridge is

hermetically sealed.
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were mounted onto interbody fusion devices

and implanted into the disc interspace of the

baboon lumbar spine (Figure 2.4).68  The

strain gauges were connected by wires to a

subcutaneously implanted telemetric unit

that transmitted the data to an external

console. The system was used to correlate

real-time in vivo loads with radiographs of

the fusion sites. The implant-load cell in the

baboon spine demonstrated dynamically

changing loads during various activities, with the highest loads during extreme activities

exhibiting loads in excess of 2.8 times the body weight. The main shortcoming of the system

was its limited functionality lifespan (16 weeks or less) due to corrosion of the strain gauges

and breakage of wires as the two primary failure modes.68 However, this study clearly

demonstrated that the changes in loads (force) may be used to indicate performance demands

on the spinal construct (implant and bone).

The concept of utilizing pressure and force to measure changing conditions in the

spine is not a novel one. There have been successful in vivo demonstrations of the pressure

and force changes associated with the intervertebral disc and the loads transmitted through

posterior spinal instrumentation, yet the complications that have occurred with these

technologies have outweighed their success.29,79,80,91-101 The benefit of these studies have

been their contribution of insight towards the possibility of using these parameters in a

manner that will provide a real-time long-term in vivo status of tissue healing without the

risk of wire breakage, electronic failures, implant rejection, and bulky hardware. Therefore,

the goal of the present study was to devise an implantable spinal construct (consisting of an

active implant and/or spinal bone) that will further determine which parameter (pressure at

the bone graft stie or force along a spinal implant)  is the optimal choice for the indication

Figure 2.4.  The interbody fusion device

used by Ledet et al.67 incorporated strain

gauges to make load sensors to tele-

metrically measure the in vivo loads

transmitted across the interbody fusion

site.
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of a bone healing at a fusion site. Both pressure and force were investigated in an initial

biomechanical in vitro study to determine their feasibility for monitoring altered

biomechanical changes.

2.1.1  In Vivo Intradiscal Pressure

Nachemson and colleagues32,79 initiated some of the early in vivo work in the late

1960s and early 1970s by assessing intradiscal pressures of the human spine for a variety of

spinal loading motions (standing, sitting, flexed, etc..), and later, investigated spinal forces

in the scoliotic patient after surgical intervention by instrumenting a Harrington Rod system

with wire-connected, built-in strain gauges. However, the wires were brought out through

skin incisions, making it difficult to obtain long-term stress and strain data from the

instrumentation due to technical difficulties such as wire breakage and infection. Post-

operative measurements were successfully made in one patient for a period of one day only.

In 1973, Elfstrom and Nachemson revamped this experimental method by designing an

intravital wireless telemetric Harrington distraction rod capable of measuring the axial forces

through the instrumentation during daily spinal loading post-operatively.32,79 The wireless

technology greatly improved the monitoring duration capabilities to a maximum of two

weeks post-operatively for a number of commonly used positions, maneuvers, and physical

exercises in eleven patients.

 Furthermore, Nachemson was instrumental in providing vital in vivo intradiscal

pressure for various body positions.80 His work examined the pressure variations in vivo

within different regions of intervertebral discs using a pressure sensor mounted inside a

spinal needle. He demonstrated that a bending moment was induced on the spine by holding

a 20kg mass a certain distance from the center of rotation as measured by using a pressure

sensor mounted inside a spinal needle and correlating the data to the condition of the discs
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(healthy or degenerate) through electromyography. The pressure sensor revealed that this

particular exercise increased the intradiscal pressure of the L3-4 lumbar spinal segment to

three times the weight of the whole body, thus overstressing that particular spinal level.

However, the inconvenience associated with the insertion of a spinal needle into the patient

along with increased infection risk associated with a dangling wire connection to an external

electronics console ensured that this approach to pressure measurement was not adopted

for routine clinical assessment. To date, with respect to bone healing, there are no reports of

any previous work that has been directed towards measuring pressure fluctuations within

bone grafts during vertebral fusion.

2.1.2  In Vivo Force (Strain)  on Spinal Instrumentation

More recently, Rohlman et al. have reported the development of telemeterized spinal

fixators that can be used to measure forces and moments on the spine in vivo.94 A conventional

AO spinal fixateur interne device was modified to study the effects of different spinal

destabilization modes on implant performance. A hermetically sealed cartridge housed the

strain gauges and inductively powered telemetric unit that were integrated into the threaded

portion of the implant.94 The strain gauges acted as force sensors and the wire coil was used

to inductively couple power from an external source to the implanted signal processing

electronics. In addition, the wire coil acted as an antenna for telemetric transmission of the

data from the strain gauges to an external monitoring console. The fixators were used to

correlate loading of the spinal implants with postures associated with various activities.

Rohlman has published numerous reports using this implant design to quantify load

measurements for walking, sitting, comparing in vitro test measurements to in vivo

measurements, walking with walking aids, and load carrying.91-101 From a clinical perspective,

there are two major disadvantages to Rohlman’s approach. First, the bulkiness of the

telemetric spinal device could interfere with the bone fusion process. A bulky spinal device
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may interfere with the bony surfaces and reduce the surface area available for fusion.34,59

Furthermore, the entire data acquisition system accompanying the telemetric device was

quite large and non-portable, which limits its use to specialized research subjects. Finally, it

is not common practice in the U.S. to perform two consecutive spinal surgical procedures,

where the initial surgery incorporates the force measurement implant, followed by the second

surgery that provides surgical correction. The ideal spinal stabilization construct would

house implantable sensors that could monitor the in vivo stresses along a spinal implant and

at the site of the bone graft for an extended period of time until the bone graft has fully

incorporated.

As previously discussed, the only work that has attempted to examine in vivo loading

of spinal instrumentation during the course of fusion was reported by Ledet et al., where

strain gauges were mounted onto interbody fusion devices.68 These interbody implants were

filled with bone graft and inserted into disc spaces to induce vertebral fusion. The strain

gauges were connected by wires to a subcutaneously implanted telemetric unit that

transmitted the data to an external console. The system was used to correlate real-time in

vivo loads with radiographs of the fusion sites. The main shortcoming of the system was its

limited functionality lifespan (16 weeks or less). Corrosion of the strain gauges and breakage

of wires were two primary failure modes.

2.2  Research Motivation

The concept of pressure measurements recorded at the host bone and graft interface

is quite novel. The majority of previous research has focused on either the stresses or strains

placed upon spinal implants as a correlate to bone healing, or the pressure within the confines

of an intact intervertebral disc to identify the stresses imposed on the human spine for a

variety of loading paradigms. Knowledge of the in vivo intradiscal pressures may provide
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insight to the degenerative cascade of the intervertebral disc, as well as potential sources of

disc injury. However, the examination of the stresses and strains that may be imposed on

spinal instrumentation during fusion or motion introduces many assumptions and errors to

the model. Pressure is based on the contact pressures at the bone interface that may provide

valuable information of the biomechanical changes that may occur with bone incorporation

or resorption during fusion healing. The force measured on the spinal implant itself may

not correlate to the extent of bone healing or fusion rate, but when used in combination

with pressure sensors in other surrounding tissues can provide a biomechanical landscape

for bone healing or fusion status. Since all spinal implants differ in design and may differ in

their degree of force transmission along the spinal column, combining this implantation

with pressure sensors in the surrounding bone will provide information specific to the implant

design and its interaction at the bone healing interface.

Biomedical telemetry, the introduction of wireless data transmission, has contributed

to the refinement of in vivo measurement techniques by minimizing complications seen

with wired systems and providing the user with longer periods of monitoring within the

human body.15,19,30,40,53,54,87,101,110,115 For any implanted device, protrusion of the wires through

the skin, wire breakage, infection, accuracy of the transmitted data, biocompatibility, and

implant rejection are all challenges and risks faced with any foreign body placed into a

living system. The portability that could be provided by an implantable wireless MEMS

pressure and force  sensors are necessary features that need to be factored into implantable

sensor design.

The novelty of MEMS technology lends numerous questions with respect to the

safe and efficacious use of MEMS materials in a living system.  Previous investigators have

assessed the biocompatibility of MEMS materials utilizing standard cytotoxicity protocols.64

Kotzar et al.63 examined a series of materials commonly used in the fabrication and packaging

of standard MEMS devices for cytotoxicity using the ISO 10993 biocompatibility testing

standards. The material set comprised of; 1) silicon (Si, 500 um-thick), 2) silicon dioxide
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(SiO2, 0.5 um-thick), 3) silicon nitride (Si3N4, 0.2 um-thick), 4) polycrystalline silicon

(polysilicon, 0.5 um-thick), 5) silicon carbide (SiC, 0.5 um-thick), 6) titanium (Ti, 0.5 um-

thick), and 7) SU-8 (50 um-thick). Except for the silicon substrates, all the other materials

were formed by thin film deposition using standard techniques onto 100-mm diameter,

(100) silicon wafers, which were procured from a vendor.  Cytotoxicity tests that were

performed followed the ISO 10993-5 standard: “Test for Cytotoxicity – In Vitro Methods”.

A single extract of the test article was prepared using single strength Minimum Essential

Medium (1X MEM) supplemented with 5% serum and 2% antibiotics. Each test extract

was then placed onto three separate confluent monolayers of L-929 mouse fibroblast cells

which had been propagated in 5% CO
2
.  Test well contents were also examined for confluency

of the monolayer, and color as an indicator of resulting pH. Results were scored on a scale

of 0-4, where 0 represented the best case - no adverse reaction whatsoever - and 4 represented

the worst case - complete cell lysis. A score of 2 or below was considered acceptable for

many implantable applications. This study indicated that the cytotoxicity testing revealed

that all of the MEMS materials were graded 0, which was as good as the negative control.

The data from this evaluation suggested that MEMS materials serve as suitable candidates

for the development of implantable medical devices. However, further testing will still be

required to validate MEMS devices for specific applications, such as in vertebral bone.

Overall, the scope of this dissertation will establish that monitoring pressure and force

variations are suitable parameters for determining bone healing status and that MEMS sensors

designed to monitor these parameters will be acceptable for implantation into the spine.

In summary, the future development of a Smart Spinal System that would incorporate

MEMS technology to measure in vivo  bone healing involves a multitude of factors that

must be investigated prior to final implantation into a human spine for the long term

monitoring of a bone fusion status. Once an in vitro human cadaveric model is established

that will validate the feasibility of using pressure and force as parameters to measure bone

healing, the feasibility of sterilization and packaging of these sensors must be assessed
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Figure 2.5: Overview of the necessary areas of research for the development
of a smart spinal system capable of monitoring the in vivo biomechanical
responses related to bone healing.

prior to implantation into a living system. Once implanted, the biocompatibility of MEMS

sensors and the radiographic imaging potential of these sensors can be evaluated for their

interaction within a living system.  Figure 2.5 provides an overview of the areas of research

necessary for the development of a MEMS based smart spinal system.

In Vitro Validation Sterilization Biocompatibility

Packaging Radiographic Imaging In Vivo Validation

SMART SPINAL FUSION SYSTEM

OVERVIEW
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CHAPTER III

ESTABLISHING IN VITRO STUDY TO ASSESS THE FEASIBILITY

OF USING PRESSURE AND FORCE TO MONITOR BONE HEALING

3.1  Study Overview

The first step towards the development of a smart spinal sensor that can monitor the

forces along a spinal implant and the contact pressures related to bone healing involved

proof of concept study to determine the feasibility of measuring these biomechanical

parameters during bone healing. This will provide the basis to establish a smart bone healing

biosensor model that can be incorporated into a living system. Therefore, an in vitro cadaveric

biomechanical study was conducted to determine the feasibility of monitoring forces along

a spinal implant and the contact pressures at the bone graft interface during a simulated

bone healing process.

3.2  Introduction

Bone graft incorporation and fusion usually occur within four to six months after

interbody fusion in humans. Unfortunately, it is often difficult to interpret.  Conventional

imaging techniques provide subjective and often inaccurate information regarding the
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qualitative and quantitative aspects of the fusion process and can have a high percentage of

false positives.11,14  In addition, they do not provide the surgeon with information regarding

bone incorporation into the vertebral endplates, nor can they provide information regarding

the mechanical strength of the bone graft-endplate mortise interface.11,14 Clearly, a more

precise method for determining these parameters is desirable.

Using sensors to monitor dynamic biomechanical parameters of the spine, such as

those associated with bone healing, could serve as an ideal alternative to conventional imaging

techniques. The novel concept of monitoring pressure at the host bone and graft interface in

order to assess the spine fusion process is proposed in this chapter.5,8,105 The choice of pressure

as the assessment/monitoring parameter is based on precedent. First, pressure is a well

defined physiological assessment parameter, particularly in the cardiovascular arena.53,54

Second, it has been investigated and shown to be of significant utility in orthopedic

applications.86,87,95,96,97,98,99

Biomechanical parameters are quantifiable and dynamic in nature.21,28,29,42,103,127 Many

authors have  attempted to examine in vivo loads applied to spinal implants during the

course of healing, but few have examined pressure at the bone graft-mortise interface.28,86,91-

101,130 Unfortunately, with the in vivo implantation of electronic load measurement systems,

multiple technical difficulties arise.  These include limited functional ‘lifespan’ (typically

16 weeks or less) of the implantable recording devices, corrosion of the transducers, fracture

of wires, infection, the need for extensive data processing equipment, and the need for large

external and bulky monitoring systems that affect compliance. Others have investigated,

via in vitro biomechanical analyses, the loads and pressures placed on an interbody cervical

spine bone graft in the pre- and post-instrumentation states.29,41,126,127 These studies

demonstrated load transfer through the bone graft, thus implying that biomechanical

parameters, such as load and pressure, could serve as viable parameters that could be used

to quantify the biomechanical alterations that are associated with bone healing (i.e. fusion),
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as well as fusion failure.  These biomechanical parameters, however, have not yet been

determined nor quantified.

The long-term goal of the research presented herein was to establish the feasibility

of developing miniature telemetric biosensors to assess the process of bone healing; in this

case, spine fusion.5,8,73,105  Such technology has been proposed, but is not yet available. For

example, implantable wireless pressure sensors based on microelectromechanical systems

(MEMS) could, in principle, be inserted during fusion surgery, and subsequently monitor

changes in load (forces and pressures)  during the fusion process. This information would

be transmitted to the surgeon to augment clinical imaging technology to guide patient care.

However, the feasibility of measuring such parameters along with the ranges of physiological

pressure and load changes must first be established. Therefore, preliminary proof of concept

studies using conventional pressure transducers, were conducted to provide the necessary

information that will be used to design and develop implantable biosensors that may employ

wireless MEMS technology

The present study is a preliminary investigation that was designed to evaluate the

use of pressure and load as biomechanical determinants of bone healing in an in vitro model

for the future input towards the development of MEMS-based implantable telemetric

microsensors. In order to accomplish this, in vitro pressures at the bone graft-endplate mortise

interfaces and in vitro loads transferred through a ventrally placed cervical plate during a

simulated fusion were monitored during physiologic compressive loading.

3.3   Materials and Methods

3.3.1  Overview

Single level interbody fusions were performed on a series of six cadaveric goat

cervical spines obtained from a slaughterhouse. The goat model was chosen as the interbody

fusion model of choice because of its loading characteristics and inter-specimen anatomical
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and biomechanical consistency.117  Although a challenging mechanical model, the upright

posture of the upper cervical spine of the goat during standing exposes the cervical spine to

an axial loading environment that is comparable to that of humans.117,135-137 The load

transmission along a ventral cervical plate and the contact pressure response at the bone

graft and vertebral endplate interface of a fusion site were measured during loading for

each goat spine under five conditions (Table 3.1):

Condition (1) - intact (DISC)

Condition (2) - with an intervertebral bone graft (GRAFT)

Condition (3) - with an intervertebral bone graft with a ventral cervical plate (PLATE)

Condition (4) - with an intervertebral bone graft with the ventral plate and

polymethylmethacrylate (PMMA) to simulate early stage bone healing (PMMA)

Condition (5)- with an intervertebral bone graft after removal of the ventral cervical

plate  (REMOVAL)

The data and associated analysis presented herein represent a preliminary feasibility

study, designed to investigate the use of pressure assessment as a clinically useful metric

following spine fusion surgery.  The number of specimens used was small, therefore statistical

analysis, for the most part, was foregone.

3.3.2  Specimen Preparation and Study Design

A total of six cadaveric caprine (goat) C2-C5 cervical spines were prepared for

biomechanical testing, as this was the minimum required for a preliminary evaluation. All

specimens were denuded of surrounding musculature, leaving the ligamentous and bony

tissues intact. In preparation for biomechanical testing, each C2-C5 spinal segment was

thawed at room temperature, embedded into customized testing fixtures using a polyester

styrene polymer, and allowed to cure for 24 hours prior to testing. To minimize dehydration
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during testing, each segment

was wrapped in saline soaked

gauze during preparation.

Biomechanical testing was

conducted on each specimen for

each of the five treatment

groups, in the sequence

portrayed in Table 3.1.

All specimens were first

non-destructively tested in their

intact state (Condition 1), without the ventral plate or pressure transducers which would

allow only stiffness to be calculated. Following intact testing, a ventral cervical plate (28

mm, DOC ventral cervical rigid plate, DePuy Spine, a Johnson and Johnson Subsidiary,

Raynham, Massachusetts) that was configured as a force transducer, was placed across the

intact disc to obtain the load transmission along the plate. Since bone healing properties

were to be assessed by using pressure, as well as the load along the plate, the catheters were

not inserted into the intact disc. Once this testing was completed, the plate was removed

and a discectomy was then performed at the C3-C4 interspace and an autologous bone graft

was obtained from the dissected C6 or C7 vertebral body. This involved using a 1 cm

osteotome to create a cube-shaped cortico-cancellous bone graft (one cortical surface).

The cube-shaped bone graft was carved into similar dimensions resembling the osteotomized

void at C3-C4, and was gently impacted into the fusion site.  Biomechanical testing was

then conducted for the grafted state (Condition 2), followed by the addition of the 28mm

DOC™ ventral cervical rigid plate with 4mm X 16mm divergent fixed angle screws used to

immobilize the C3-C4 motion segment after bone graft placement. Biomechanical testing

was repeated for this condition (Condition 3).  The simulation of a fusion was then

accomplished by the addition of 2 cc of polymethylmethacrylate (PMMA) into the graft

Figure 3.1: Preparation of the graft site at C3-C4 with 

PMMA prior to inserting the bone graft (a) PMMA was 

injected into the host site, the graft was gently impacted 

into this and the graft was further sealed with additional 

PMMA (b). The force sensing plate was secured over the 

graft site for additional testing (c).

(a)                 (b)                        (c)
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site. This stiffens and strengthens the interface, as would likely occur during the early phases

of the bone incorporation process.  Injection of the PMMA involved removal of the plate

and bone graft, followed by injection of the liquid PMMA into the host site, followed by

gentle reimpaction of the graft into this region forming a mortise of PMMA surrounding the

graft.  Additional PMMA was injected around the periphery of the bone graft and allowed

to cure to further seal cracks and voids around the graft and served as a stiffening agent that

circumferentially surrounded the bone graft (Figure 3.1a and 3.1b). The DOC™ Cervical

Plate was then implanted across the C3-C4 site treated with PMMA (Figure 3.1c) and

biomechanical testing was then repeated (Condition 4).  Finally, the cervical plate was

removed and the testing repeated (Condition 5).

3.3.3 Pressure and Load Transducers

The pressure transducer consisted of two pressure sensing catheters that were inserted

at both bone graft-endplate mortise interfaces (ie. superior and inferior interfaces).  A two

channel Dataquest A.R.T. 2.2 Telemetric Pressure transducer, (Physiotel Multiplus Implant,

TL11M3-D70-PCP Data Science International, St. Paul, Minnesota) with two silicone

elastomer catheters each (1.2 mm in diameter) with a full scale range of 40 MPa,  and an

accuracy of 0.1kPa was used. The battery was rated a nominal lifespan of 3.5 months of

continuous use and was housed with the transmitter. The silicone elastomer catheters were

used for contact pressure recordings at the bone graft and vertebral endplate interfaces.

Each was housed within a circular canal at the bone graft and vertebral endplate interface

and filled with a proprietary gel at the tip and an incompressible fluid along the catheter to

transmit contact pressures from the fusion site to the sensing region of the pressure transducer

(Figure 3.2). Each catheter served as an independent channel and the data was analyzed

separately. The pressure sensors were activated by a magnet and the data recorded

continuously during simulated physiological loading.
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Prior to testing, the linearity and tracking

behavior of the pressure transducer was measured

against the compressive loading applied by the

Instron test apparatus. This was accomplished by

applying six cycles of a known compressive load to

each transducer and the pressures continuously

acquired. A sinusoidal load at a frequency of 0.1

Hz and a maximum compressive load of 200N were

applied to the pressure catheters under load control

using the servohydraulic materials test apparatus

(Instron 8874, Instron Corp., Canton,

Massachusetts).   These pressure measurements

provided an evaluation of the applied cyclical load

and its relationship with the measured pressures.

The compressive loading cycles applied by the testing apparatus were mapped against the

measured pressure cycles to assess the

transducers’ performance with respect to

phase lags and/or non-linearities in

response to the compressive loading

(Figure 3.3). A linear regression was

conducted to statistically analyze the

linearity of the pressure transducer and the

phase lag was quantified in response to the

compressive loading. Finally, the

deformation at the minimum and

maximum peaks was recorded with the

pressures and loads applied. Configuration

Figure 3.2  Pressure catheters inserted

at the bone graft interfaces of the goat

cervical spine to record pressures

continuously during axial loading.

Figure 3.3: Correlation of the pressure transducer with a 

200N applied load from the Instron testing apparatus. 

A sinusoidal waveform input from 0N to 200N in pure 

compression at a rate of 0.1Hz was applied for five cycles 

of loading. A linear correlation was observed between 

pressure and the applied load, R2=0.9998. The observed 

phase lag between the load applied and the pressure 

recorded was less than 1 second and could be attributed 

to the compliancy of the catheters or the hydraulic delay 

within the Instron testing apparatus.



28

and operation of the pressure transducers utilized Dataquest A.R.T. Version 2.3 software

(DSI™ Data Science International, St. Paul, Minnesota) to sample and analyze all of the

recorded pressures at a sampling rate of 500 Hz.

The cervical plate functioned as an active load transducer, using conventional strain

gauge technology. Load was monitored along the DOC™ cervical plate across the C3-C4

bone graft site using two independent channels to measure axial load along the plate during

loading. Two linear strain gauges (120W) were mounted along the longitudinal axis of the

plate, wired into one leg of a four-arm Wheatstone Bridge, and combined with a commercially

available telemetric strain sensing system that transmitted signals via radio transmission to

a stationary receiver (ATi 2000, ATi, Spring Valley, Ohio).  The load transmitted through

the plate was calculated by inserting the Young’s Modulus, E, for titanium alloy and the

cross-sectional area of the plate into the following equation:

Young’s Modulus states;  


E  ;

where σ is the load divided by the cross-sectional area, and ε is the strain or change in the

length due to deformation divided by the original length. To determine the normal load or

in this case, the longitudinal load along the axial plane; F
n
 = ∈

n
 * E * A ; where F

n
 is the

normal load, ∈
n 
is

 
the normal strain that is measured during loading of the DOC plate system,

and A is the cross-sectional area of the plate system where the strain gauge is mounted.

Due to the low profile geometry of the DOC™ plate, as well as the limited space for

mounting strain gauges, loads along the ventral plate were examined for compression only

during the biomechanical testing. The pressure and load assessments were associated with

different controls. The pressure measurements were paired with the bone graft (Condition

2; GRAFT) as a control and the load measurements were paired with the plate across an

intact disc (Condition 1; DISC) as a control. The relative changes in pressures and loads

were statistically compared between treatment groups to identify biomechanical differences

related to simulated fusion.
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3.3.4  Biomechanical Testing

N o n - d e s t r u c t i v e

physiological loads were

applied to each cervical spine

using an Instron 8874 biaxial

servo-hydraulic materials

testing apparatus. Pressure at

the bone graft-vertebral

endplate interfaces and load

transmission along the ventral

cervical plate were assessed

(Table 3.1).  In preparation for

testing, each spine was

embedded at C2 and C5 into

customized gripping fixtures

and mounted onto a servohydraulic biaxial testing apparatus (Instron 8874). Each spine

was preconditioned for twenty repetitive compressive loading cycles at 200N to achieve

uniformity in the tissue responses prior to sampling the pressures.  At the time of testing,

each cervical segment was secured to the Instron testing apparatus prior to biomechanical

testing. The upper jig that was housing the rostral C2 vertebra was allowed to rotate during

loading.  The angles were recorded using a ±1V rotational potentiometer mounted to the

testing fixtures. The center of rotation was located by applying a 200N maximum compressive

load to the upper jig. The load was reapplied until no angular motion was detected by the

upper rotational potentiometer. The lower jig was stationary and rigidly affixed to the testing

apparatus. Once the center of rotation (COR) was determined through this process for each

specimen tested, this position for each specimen was reflected onto the mounting fixtures

and clearly marked. The COR location specific to each specimen was maintained throughout

Table 3.1:  Treatment groups listed for each measurement
parameter.  Pressures at the bone graft-endplate mortise interfaces
and loads along a ventral cervical plate were measured during
biomechanical testing of each cervical spine.  Physiologically
relevant loads were applied to each spine specimen and the pressures
and loads were measured for the intact, grafted, plated graft, PMMA
augmented, and plate removal scenarios.
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the course of testing in each specimen.  Following the preconditioning and alignment phases,

each cervical spine was non-destructively cycled under load control in compression for six

continuous cycles at a data sampling rate of 50Hz. A 200N pure compressive load was

applied to each specimen using a sinusoidal waveform input at a frequency of 0.1Hz.135-137

The rostral mounting fixture was free to rotate, while the caudal fixture remained rigidly

attached to the Instron platform. Load and deformation data was sampled and analyzed at a

rate of 50 Hz. The mean pressures were calculated for all six cycles of axial compressive

loading for each group  The pressure and load data acquisitions were conducted on two

different computer systems (Pressure: Dataquest A.R.T. 2.2, Data Science International, St.

Paul, Minnesota and Load: ATi 2000, ATi , Spring Valley, Ohio)  that were synchronized

with the Instron testing apparatus.

The segmental stiffness was determined for C3-4 by calculating the slope of the

elastic portion of the load-deformation curve, with the corresponding pressures measured

at the bone graft-vertebral endplate interfaces at C3-4 and the load along the ventral cervical

plate.

Ventral and dorsal motion was measured across the C3-4 motion segment using a

Nikon Coolpix 4.0 Megapixel digital camera with a resolution of 320 x 240 pixels at a

sampling rate of 14Hz, and MaxTRAQ v1.41 software image analysis system (Innovision

Systems, Inc., Lapeer, MI). This technique was employed to quantify graft settling or

subsidence. Descriptive statistics were used to gather the means and standard deviations of

the acquired data for all of treatment groups. An analysis of variance with a repeated measures

technique was used to detect statistical differences between treatment groups.
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3.4   Results

3.4.1  Accuracy of the Pressure Transducer

Figure 3.3 depicts the accuracy of the pressure transducers while cyclically loaded

from 0N to 200N in pure compression by the Instron test machine. The 200N compressive

load correlated with a mean deformation on the catheter of 1.37 ± 0.04mm and approximately

20MPa of pressure.  A subsidence of 0.25 ± 0.10mm was measured across the fusion site. A

linear regression and statistical correlation was conducted on the load versus pressure yielding

an R2 of 0.998, indicative of the high linearity of the pressure transducer. There was very

little phase lag (<1 second) between the Instron load cycles and the pressures measured at

the bone graft interface (Figure 3.3). The small lag could be attributed to the delay in the

actual hydraulics of the Instron testing apparatus in combination with the delay in the

viscoelastic response of the pressure catheters due to compliance with the polymenic material

and accompanying gel.

 Fortunately, each pressure transducer housed two independent recording catheters,

such that the extrusion of a single catheter did not significantly affect the pressure monitoring

process. The pressures measured from the lower catheter located at the caudal interface of

the bone graft and vertebral endplate are presented in this study. The lower catheter pressure

data was consistently greater than the

upper catheter readings to an accuracy

less than 10% for all of the goats.

3.4.2  Stiffness

Each cervical spine segment

was observed to exhibit a progressive

increase in  compressive stiffness with

the addition of the graft (Condition 2;

Figure 3.4: Compressive Stiffness for all of the testing 

scenarios (DISC, GRAFT, PLATE, PMMA, 

REMOVAL). A 200N compressive load at 0.1Hz 

was applied to each C2-C5 spinal segment with 

grafting occurring at C3-C4.



32

GRAFT), cervical plate (Condition 3; PLATE), and PMMA (Condition 4; PMMA) (Figure

3.4). The stiffness ranged from 252.4 N/mm (Condition 1; DISC) to 331.1 N/mm (Condition

4; PMMA), with the greatest stiffness observed for Condition 4; PMMA and intermediate

stiffnesses recorded for Conditions 2 and 3.  These observations correlate with stiffness

augmentation by both surgical strategies (Conditions 2 and 3; GRAFT and PLATE) and

simulated healing (Condition 4; PMMA). Once the plate was removed (Condition 5;

REMOVAL) and the specimens retested, the stiffness decreased, but remained greater than

Condition 2; (GRAFT), due to the added rigidity achieved with the addition of the PMMA.

The amount of graft settling (subsidence) across C3-4 for a total of 50 cycles was a mean of

0.25 ± 0.10 mm.

3.4.3  In Vitro Pressures at the Bone Graft and Vertebral Endplate Interfaces

The mean graft interface

pressures for compression loading

are depicted in Figure 3.5. There

was a linear increase in pressure

from Condition 2 (GRAFT) to

Condition 5 (REMOVAL) ranging

from 0.64 to 1.03 MPa, with the

greatest pressure observed for the

plate removal state (Condition 5;

REMOVAL).  The addition of the

ventral DOC™ plate (Condition 3; PLATE) increased the graft interface pressure over that

observed in the GRAFT state (Condition 2; GRAFT), thus implying that an increased load

was borne by the bone graft after the addition of the ventral plate (Condition 3; PLATE).

PMMA injection into the mortise resulted in an even greater increase in the pressure measured

Figure 3.5:  Mean pressures in compression at the bone graft 

and vertebral endplate interface measured for each test 

group. There is a steady increase in the pressures at the 

bone graft and endplate interface after plate implantation 

and further with PMMA augmentation.
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at the interface (Condition 4; PMMA), followed by further increase in the pressure at the

graft-endplate interface after plate removal (Condition 5; REMOVAL).

3.4.4  In Vitro Compressive Loads through the DOC™ Cervical Plate

The mean compressive

loads through the DOC Cervical

Plate are depicted in Figure 3.6 for

two loading conditions (Conditions

3 and 4; PLATE and PMMA,

respectively).  This correlates with

the stability acquired via the natural

process of bone fusion

(biomechanically simulated with

PMMA insertion in this case).

3.5   Discussion

3.5.1  Compressive Stiffness

In the model presented here, the stiffness was greatest for the specimens with the

bone graft augmented with PMMA (Conditions 4 and 5).  The specimens associated with

the least stiffness were in the Condition 1 group (DISC).  This is expected due to the greater

mobility and reduced elastic modulus of the intervertebral disc versus a bone graft.   The

grafted group (Condition 2; GRAFT)  was observed to be associated with marginally greater

stiffness than the DISC (Condition 1) group. The etiology of this is multifactorial, but may

in large part be due to the lack of support from the anterior longitudinal ligament, which

was obligatorily removed during bone graft insertion. Furthermore, the removal of an intact

Figure 3.6: Mean load transmission along the DOCTM 

ventral cervical plate measured at the C3-C4 fusion site.
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disc involves disruption of the supportive annulus fibrosus and vertebral endplates. Once

the connection between the nucleus pulposus, annulus fibrosus, and endplate interfaces are

disrupted and the anterior longitudinal ligament is compromised, a decrease in spinal stability

is expected. Additionally, the placement of an interbody bone graft, does not achieve a

100% surface area of contact between the vertebral endplates and the bone graft interface.

These factors neutralized much of the expected increase in stiffness associated with grafting.

This is most likely so in the human clinical situation as well (i.e., the attainment of only a

modest increase in stiffness in the early time frame following anterior cervical discectomy

and fusion without plating).

The addition of a rigid plate, on the other hand, increased the stiffness of the grafted

motion segment (Condition 3; PLATE).  Additional augmentation with PMMA, a material

that possesses a higher modulus of elasticity than bone, increased the overall stiffness of the

grafted and plated construct even further. The addition of PMMA created a scenario that

simulates a maturing fusion at the vertebral endplate-graft interface, thus increasing the

stability in compression by minimizing the motion across the graft site and increasing the

surface area of contact at the endplates.  In the in vivo fusion situation, the contact surface

area increased, motion was reduced, and the overall global stiffness increased as the bone

fusion process ensued and the bone graft began to incorporate and remodel into the adjacent

vertebral bodies.  The addition of PMMA in this experimental model (Condition 4) appears

to appropriately replicate the biomechanics of early bone healing of this scenario.  At such

a point in the postoperative period, the construct can adequately resist compressive and

tensile loads.  This process, as demonstrated herein, can be characterized and quantified via

the assessment of pressure.
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3.5.2   In Vitro Pressures at the Bone Graft Interface and Load Transmission along the

DOC™ Plate

The assessment of the mean graft interface pressures (Figure 3.5) demonstrated a

steady increase for each consecutively applied condition, although the increase from the

GRAFT group (Condition 2) to the PLATE group (Condition 3) was minimal. The loading

and unloading of a bone graft has a direct impact on the pressures measured at the bone

graft-endplate interface, as well as the loads transmitted along a ventral cervical plate.

Taking this into consideration, the addition of a rigid plate should unload the interbody

graft in compression, shielding the pressure catheters at the graft-endplate interfaces from

additional loading.29,126  A small amount of graft settling or subsidence (0.25 ± 0.10 mm)

was observed after the 20 preconditioning cycles prior to testing,  followed by the added

cycles during compression testing. The cause of the increase in graft site pressure after

ventral plate application (the slight increase observed from Condition 2 to Condition 3)

could be attributed to two factors.  First, the aforementioned subsidence of the graft most

certainly resulted in further compression on the pressure catheters. A second rationale is

that the application of the ventral plate with sagittally divergent screws is known to compress

the spine locally (bringing, in this case, C3 and C4 vertebral bodies closer together) via the

triangulation effect the screws that are divergently placed in the sagittal plane.  This results

in a compression force vector that, in turn, translates into greater graft interface pressures.

Subsidence, or the settling of a bone graft, has been consistently observed after

fusion surgery in humans. It consists of both axial and angular components.  As the process

of subsidence evolves, the surrounding vertebrae settle onto the surface of the bone graft,

the bone graft shortens, and a loss of vertical height is observed. The spine deforms due to

the effects of gravity and repetitive axial impulse loading of the spine during ambulation,

even in the presence of interbody grafts.  In humans, within 1 to 2 weeks after surgery, there

exists a mean subsidence of 1.4 mm with anterior cervical fusion using autologous bone.

Even rigid ventral plating does not eliminate subsidence of the cervical spine.119,120  This is
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in spite of the fact that a rigid implant should result in less load transmitted to the bone graft

and hence, less subsidence.119 Subsidence has been shown to be less of a concern in animals

due to the dense nature of bone and the rapidity at which the bone fusion process transpires.

It has been experimentally demonstrated in cadaveric bovine spines that the extent of

subsidence is small and the majority of settling (mean of 0.1 mm of subsidence) occurred

within the first one hundred cycles of loading, which is consistent with the findings observed

in the presented study.49

Bone graft loading and the resulting subsidence was obviously not completely

shielded by ventral plate fixation.  Since subsidence occurs regardless of plate fixation,9,119

a significantly  biomechanical effect of the plate may be expected in the early phases of

bone healing in the clinical setting, or biomechanical testing as performed here (Conditions

1-3).  This graft subsidence along with the ventral plate loading of the graft may explain the

increase in the graft site pressures after the addition of the ventral plate (Condition 3).  In

addition, the increase of graft site pressure may be further explained by a ventral shifting of

the center of rotation (COR) caused by the plate and the manner in which the specimen was

loaded via the experimental design.29,41,126  The serial repetitive loading paradigms of the

spine may have caused the COR to shift more ventrally as the spine continued to settle, than

during the preconditioning phase of the experiment.

PMMA was added to simulate early fusion healing (Condition 4).  The load borne

by the ventral plate decreased following the addition of PMMA, while the graft site pressure

rose.  These findings are consistent with those expected during early bone fusion incorporation

following surgery.  Load sharing with a redistribution of the loads along the ventral spinal

column can be implied with this finding.   With the simulated maturation of the fusion mass

using PMMA, the load borne by the ventral plate was diminished, while greater load was

absorbed by the graft in the form of increased pressure.  In other words, a greater portion of

the load was borne by the simulated early fusion (bone healing), which simultaneously
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offloaded the plate.  Subsequently, as the fusion further matures in vivo, greater loads are

transmitted through the bony mass and the woven bone solidifies into organized remodelled

bone.  Simultaneously, a reduction in the load transmitted through the ventral plate is

expected and, in fact, was observed here.

The scenario presented herein most likely simulates an early to intermediate phase

of healing from a biomechanical perspective.  With the cyclical loading of a simulated

fusion mass (Condition 4; PMMA), subsidence or settling of the fusion mass continues to

occur.  More importantly, after plate removal, greater pressures continue to be observed at

the graft site due to continued subsidence and greater load borne by the graft.  The load

sharing provided by the plate had been removed, thus shifting the entire load to the graft.

This is reflected in a further increase of graft site pressure. It can be hypothesized, that had

a dynamic plate been incorporated for fixation in this study (in lieu of the rigid ventral

plate) greater subsidence would have been observed and thus, greater pressures at the graft

site would have been expected.

3.5.3  Implications of Experimental Findings

It appears, from the data presented herein, that the assessment of bone graft-endplate

mortise pressure and implant loads can be used to assess the progression of fusion acquisition

in the in vivo state. The utilization of the PMMA simulated the early to intermediate stages

of bone healing in this study, as demonstrated by previous researchers.3,21,130 Due to the

difficulty of obtaining precise in vivo biomechanical data in humans,  methods must be

employed in an in vitro study to simulate clinical relevancy. Thus, the application of PMMA

in this study represented the early to intermediate stages of bone healing after fusion surgery.

Overall, this preliminary study supports further investigations to determine feasibility

of using pressure at the graft site and the simultaneous loads along a ventral plate to assess

bone fusion status. The observation that pressure very closely parallels load (Figure 3.3)
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lends significant credence to the use of pressure as a metric for the clinical assessment of

biomechanical parameters. Use of these biomechanical parameters to quantify a biological

phenomenon, such as bone healing, could lead to the future development of implantable

biosensors to achieve similar information in an in vivo human clinical environment.

Theoretically, MEMS technology could be applied to produce miniature biosensors that

could be implanted at fixation and fusion sites to monitor healing progressions in vivo.

This would provide an accurate real-time assessment of fusion status. Further work, however,

is required.   At the very least, the potential feasibility of using such measurements clinically

has been shown.

3.6   Conclusion

In summary, this preliminary assessment demonstrated the biomechanical sequelae

of load sharing during the acquisition of simulated arthrodesis.  The alterations of pressure

at the bone graft-endplate interface and the loads along the ventral plate were altered by

various loading paradigms and construct conditions that simulated the early to intermediate

fusion healing. Both graft site pressure and implant loading varied with different loading

conditions. It appears that both pressure and load can serve as indicators for bone healing

and fusion incorporation. The knowledge of these variables in the clinical situation, combined

with appropriate clinically derived information, could greatly enhance the spine surgeon’s

postoperative assessment capabilities. In essence, graft site pressure and implant load

evaluation serve as relevant biomechanical indicators of biological phenomenon, such as

bone fusion acquisition. Accordingly, we have stated that our study is preliminary and that

future investigations will be necessary to establish statistical significance.
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CHAPTER IV

IN VIVO EVALUATION TO MONITOR THE CONTACT PRESSURES

DURING BONE HEALING UTILIZING A GOAT MODEL

4.1  Study Overview

This study utilized a goat model to validate the ability to monitor contact pressures

during bone healing at an interbody bone graft interface. The previous chapter concluded

that it was conceivable to monitor the pressures at a bone graft interface and the forces

along an active telemetric ventral cervical plate during bone healing. However, there were

significant challenges that plagued monitoring cervical plate forces in vivo, in particular

long-term coating of the plate and wiring system could not withstand long-term implantation

into the harsh fluid environment of a living system. This was demonstrated by a trial

implantation of a telemetric active cervical plate into a goat model. Within two weeks,

there was significant cracking of the parylene and silastic coating of the wiring and

electronics, leading to rapid failure of the active plate.  Pressure posed to be an ideal parameter

to monitor bone healing, as it directly measured the pressures at the bone graft site, which

is the point of bone incorporation.

4.2   Introduction

Postoperatively, the status of a fusion and the incorporation of bone across a destabilized

spinal segment can be difficult to assess and has led to a 20% underestimation of the fusion
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grade.11,14  In addition, conventional imaging techniques are limited in utility and cannot

provide the surgeon with information regarding the dynamics of the fusion mass, adequate

visualization of bone incorporation into the host bone (ie, vertebral endplates), mechanical

integrity of the fusion mass, and the real-time bone remodeling scenario. An alternative

mechanism for assessment with greater accuracy would be desirable.

We propose the novel concept of pressure measurement at the host bone and graft

interface to monitor the spine fusion process.  This choice of pressure as the monitoring

parameter is based on some precedent. First, pressure is a well-defined physiological

assessment parameter, particularly in the cardiovascular arena. Second, pressure

measurement has been investigated for other areas in medicine, including the orthopedic

arena.19,40,80,87,105,113   For example, many researchers and clinicians have examined the

relationship between intradiscal pressure and pain or the extent of motion segment

degeneration.19,69,86  Nevertheless, there is a dearth of research exploring the relationship

between pressure and bone healing.

Telemetric transmission of biomechanically derived information for in vivo healing

and implant behavior assessment is not a novel concept.69,86,95,99,113 Researchers have

attempted to employ strain gauges on spinal implants, using telemetric data transmission

for in vivo serial monitoring of loads following fusion during daily activities.99,101

Unfortunately, these systems were plagued with complications. The telemetric unit was

bulky, and internal wire breakage was a common occurrence. Consequently, long-term

measurements (> 4-6 months) of in vivo axial loads on implants and bone healing were not

accomplished. In our study, we used a commercially available implantable telemetric

transducer with two gel-filled catheters that were implanted at the graft and vertebral endplate

interface at the bone graft site in the goat cervical spine. These transducers housed all of the

electronic components within a hermetically sealed chamber and used the two gel-filled

catheters for pressure transmission. Therefore, there was little risk of internal wire breakage

and loss of signal transmission.
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In vivo animal studies are often used to investigate the effects of altered biomechanical

parameters and their association with evolving biological events. The goat’s cervical spine

has greater bone density than that of humans, shows less variability within the species, is

kinematically different, and possesses anatomical differences from that of humans.117

Nevertheless, several factors make the goat a suitable model for measurement of interbody

bone graft pressure. The upright posture of the goat’s cervical spine is ideal for interbody

fusion studies because the cervical spine is axially loaded.117,137 In addition, although the

cervical disc interspace of a goat spine is essentially a ball and socket joint and the human

disc interspace is elliptically shaped, the range of motion is similar.132

This preliminary study was designed to assess the in vivo healing status of the spine,

with an overall goal to demonstrate thatchanges in the in vivo biomechanical parameters

(ie, pressure in this scenario) can be measured over time. The basic concept of the study

was to establish the feasibility of using telemetric pressure sensors to assess the process of

bone healing in vivo. Information generated from studies like this could contribute to future

development of implantable microsized biosensors using microelectromechanical systems

(MEMS) technology for in vivo chronic monitoring of orthopedic implant performance and

tissue healing.5,8,38,105 However, this technology is not yet commercially available, and the

ability to actually monitor the in vivo bone healing and to sense a change in biomechanical

parameters must be addressed before the technology can be developed. Therefore, preliminary

proof-of-concept studies using conventional pressure transducers are required to provide

the necessary information to design and develop implantable biosensors that might employ

novel technologies such as MEMS. Once it is deemed a feasible concept to investigate

further, the potential of such a technology is infinite. Possible applications include

incorporation of microsized implantable biosensors onto orthopedic implants to detect early

migration of the implant, loss of fixation at the bone and implant interface, and changes in

tissue performance based on these measurements.
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A goat cervical interbody fusion model was employed in this study to address the

feasibility of using pressure measurements to monitor the process of bone healing by

differentiating between the successful initial acquisition of fusion and the development of a

pseudarthrosis during the early postoperative period. Therefore, we focused on the use of

pressure as an indicator of changes in healing patterns that can be indicative of fixation loss

and pseudarthrosis.

4.3  Materials and Methods Overview

A goat cervical interbody fusion model was employed. Pour study groups were analyzed.

Six male castrated Alpine goats underwent a ventral fusion operation at C3-C4, following

discectomy. Iliac crest autograft, with an accompanying ventral cervical fixation plate (DOC;

Depuy-Acromed, Raynham, Massachusetts), was employed. Five of the goats were implanted

with a dual-channel telemetric pressure transducer and were sacrificed at either 4 (Group

A) or 6 (Group B) months (Table 4.1). The remaining goat functioned as an operative

control in which telemetric hardware was not placed, but a bone graft at C3-4 was placed

(Group C). This goat was sacrificed at 4 months. In vivo contact pressure at the bone graft

and vertebral endplate interface was assessed in each goat in Groups A and B three times

daily. At the termination of the study, each goat was euthanized, and the spines were harvested

for further evaluation of the fusion status via non-destructive biomechanical testing,

histological sectioning, or micro-CT imaging.

TTTTTable 4.1.able 4.1.able 4.1.able 4.1.able 4.1.  Study Group Composition and Fusion Status Assessments Conducted

Group Group Group Group Group AAAAA Group BGroup BGroup BGroup BGroup B Group CGroup CGroup CGroup CGroup C Group DGroup DGroup DGroup DGroup D

Goats 1,2,3 Goats 4,5 Control Cadaveric cervical spines
CompositionCompositionCompositionCompositionComposition Euthanized at 4 months Euthanized at 6 months No pressure transducer for in vitro testing

(n=3) (n=2) (n=1) (n=6)

Fusion SFusion SFusion SFusion SFusion Statustatustatustatustatus Histology (n=1) Histology (n=1) Histology (n=1) Biomechanical (n=6)

Biomechanical (n=2) Biomechanical (n=1)

MicroCT (n=1) MicroCT (n=2)

AssessmentsAssessmentsAssessmentsAssessmentsAssessments
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4.3.1    Pressure Transducer and Calibration Procedure

Prior to surgical implantation, the calibration of the DSI dual-channel, telemetric pressure

transducer (Physiotel Multiplus Implant, TL11M3-D70-PCP Data Science International,

St. Paul, Minnesota) was evaluated by placing a manual contact load onto each catheter

following the configuration of the device once in vivo. Each transducer had an accuracy of

± 0.1 kPa and a maximal pressure shift of 2%, with two independent catheters used to

monitor in vivo contact pressure at the bone graft interface site in the goat spines (Figure

4.1). The battery was rated at a nominal lifespan of 3.5 months for continuous use and was

housed with the transmitter. Two

1.2-mm-diameter silicone,

elastomeric, close-ended,

compressible tube catheters with

pressure sensors housed at the

proximal end of the fluid-filled

tubes were used to measure

pressure at the bone graft and

vertebral endplate interfaces

under compressive loading. Each closed catheter was affixed within a circular canal at the

bone graft and vertebral endplate interface and transmitted the contact pressure measurements

from the bone graft to the pressure sensor sealed within each catheter.

Prior to implantation of each pressure transducer, the linearity and tracking behavior of

each pressure transducer was measured against the compressive loading applied by the

Instron test apparatus. This was accomplished by applying six cycles of a known compressive

load to each transducer and comparing it to the pressure measurements acquired. A sinusoidal

load at a frequency of 0.1 Hz and a maximum compressive load of 200 N were applied

under load control using the servohydraulic materials test apparatus (Instron 8874, Instron

Figure 4.1:  The DSI telemetric pressure transducer housing

two pressure sensors within the fluid-filled catheters, with

one catheter being compressed to a measured displacement 

to demonstrate the catheter compliancy.
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Corp., Canton, Massachusetts) to the

pressure transducer. To do so, the

catheter was restrained within a

semicircular canal and directly

compressed by the Instron testing

apparatus. The compressive loading

cycles applied by the testing apparatus

were mapped against the measured

pressure cycles to assess the transducers’

performance with respect to phase lags,

accuracy, and/or nonlinearities in response to the compressive loading (Figure 4.2). The

maximum catheter deformation under compressive load for each sample was also measured.

A linear regression analysis was conducted to assess the linearity of the pressure transducer

and the phase lag in response to the compressive loading. The configuration and operation

of the pressure transducers was by Dataquest A.R.T. version 2.3 software (DSI) to sample

all of the recorded pressure at a sampling rate of 500 Hz. Finally, the subsidence across the

C3-C4 motion segment was quantified by measuring the ventral and dorsal motion during

cadaveric biomechanical testing for six of the cervical spine specimens using the MaxTRAQ

version 1.41 software image analysis system (Innovision Systems Inc., Lapeer, Michigan).

4.3.2  Surgical Procedure for the Cervical Interbody Fusion

An incision was made ventral to the stenocleidomastoid muscle (SCM). The spine was

approached between the strap muscles, esophagus, and trachea medially and the carotid

sheath and SCM laterally. After the longus coli muscle was retracted laterally, a ventral

discectomy was performed at the C3-C4 segment after localization with fluoroscopy. An

osteotome was used to craft mortises by cutting out a box-shaped region (1.3 cm3) for

placement of the bone graft (Figure 4.3). Autogenous bone was harvested from the goat’s

Figure 4.2:  Correlation of the pressure transducer with a

200-N applied load from the instron testing apparatus.  A

sinusoidal waveform input from 0 N to 200 N in pure

compression at a rate of 0.1 Hz was applied for five cycles

of loading.  The accuracy of the transducers is demonstrated

by the linear correlation between pressure and the applied

load, R2=0.9998.
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iliac crest, properly sized, and gently

impacted into the C3-C4 disc space

(Figures 4.3 and 4.4). Each bone graft

for all five goats was reproducible in size

to an error of less than 10%. A 2.8-cm

DOC ventral cervical rigid plate (DePuy

Spine, [J&J subsidiary], Raynham,

Massachusetts), with 4-mm-by-16-mm

divergent fixed angle screws, was used

to immobilize the C3-C4 motion

segment once the bone graft was in place

(Figure 4.4). The telemetric pressure transducer

was implanted after the bone grafting procedure

by insertion of each catheter above and below the

bone graft into two pre-awled locations at the bone

graft-vertebral endplate interfaces and sutured into

place (Figure 4.4). Each pressure-sensing catheter

was seated into a circular channel that was created

at the bone graft-vertebral endplate interface to

provide localized containment of the catheters for

the transmission of contact pressures. The

transmitter and battery portions of the transducer

were implanted in a submuscular pocket created

in the dorsolateral region in each goat’s neck.

The goats were monitored daily for signs of

infection and distress for the duration of the study

Figure 4.3  Cuboid-shaped autogenous bone

graft crafted from the iliac crest of the goat.

The dimensions closely matched that of the

host sites at C3-C4.

Figure 4.4  An illustration of the two

catheter placements from the DSI

pressure transducer into the goat

cervical spine.  The catheters were

inserted approximately 1 cm in depth

at the superior and inferior bone

graft and vertebral endplate interface.
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(4-6 months). This time frame has been used successfully for cervical interbody fusion in

goats.135-137  One of the six original goats demonstrated early signs of wound infection and

was dropped from the study analysis. Pressure was recorded three times daily for a duration

of 2 minutes per trial while the goats stood idle with their necks in an upright position.

Efforts were made to calm each animal prior to sampling pressure data to ensure minimal

physical activity during data sampling. At the end of 4 to 6 months, the goats were euthanized

with an overdose of pentobarbital (75 mg/kg) using a standardized protocol that is compliant

with the Animal Review Committee for the Cleveland Clinic.

4.3.3   Histological Preparation

Two goats (one each in Groups A and B) were used for histological evaluation. Tissue

samples were fixed in 70% ethanol and rough-cut with a band saw to remove adherent soft

tissue and the spinous processes. Tissue blocks were then slowly dehydrated without

decalcification in a graded series of ethanols and embedded in methylmethacrylate (MMA)

using a vacuum chamber at 2°C to 8°C over a 23-day period. Without removing the fixation

hardware, sagittal cuts were made using an Exakt diamond saw (EXAKT, Appartebau,

Germany), in three sections (central, medial, and lateral) of each C3-C4 level. Each section

was ground to a final thickness of 10 to 40 mm and stained with Villanueva’s mineralized

bone stain (Poly Scientific, Bay Shore, New York). With this staining technique, the

mineralized bone stains green, osteoid seams stain magenta, and the remaining tissue stains

blue and pink. Once the sections were stained, a board-certified pathologist meticulously

assessed each slide for signs of new bone growth and adverse tissue reactions.

4.3.4   Biomechanical Testing

An in vitro biomechanical evaluation of the fusion status for three of the Group A and B

goats was conducted and compared to the biomechanical behavior of six cadaveric goat
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spines implanted with a bone graft and ventral cervical plate at C3-C4 (Group D) to assess

the status of the fusions in the implanted goat spines postmortem. Group D consisted of six

cadaveric goat cervical spines obtained from a local slaughterhouse and implanted with

bone grafts and ventral plates, just prior to the time of biomechanical testing. In these

Group D specimens, snug bone-on-bone contact was achieved with an accompanying

overlying ventral plate. This position resembles the clinical situation that exists immediately

after surgery, when healing and arthrodesis have not yet begun. Variations in contact pressure

at the graft interface were examined for possible relationships to fusion status.

Nine goat spines were used for the biomechanical evaluation of the fusion site to

determine whether a fusion was present. Three spines were harvested from Groups A and B

(Table 4.1). Six additional spines (Group D) were obtained from a local slaughterhouse

vendor and used as a biomechanical comparison for the immediate nonfused grafted situation

at C3-C4.

In preparation for testing, the spines were embedded at C2 and C5 into customized

gripping fixtures and mounted onto a servohydraulic biaxial testing apparatus (Instron 8874).

Each spine was secured to the Instron testing apparatus in a cantilever loading fashion and

preconditioned for 20 cycles to 200 N in compression. The center of rotation was located

by applying a 200-N maximum compressive load to the upper jig and reapplied until no

angular motion was detected by the upper rotational potentiometer. Following the

preconditioning and alignment phases, each cervical spine was nondestructively cycled

under load control in compression to 200 N at 0.1 Hz for six continuous cycles at a data

sampling rate of 50 Hz.25,135-137

4.3.5   Micro-CT Imaging

Micro-CT images of three of the five goats (Three out of five goats were chosen for

MicroCT examination, as this procedure was conducted on the specimens allotted for
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biomechanical testing. The remaining two

specimens were prepared for histology prior

to MicroCT.)  from Group A and B specimens

(Table 4.1) were obtained by collecting one

hundred and eighty 512-by-512 twelve-bit

projection radiographs at 1° intervals around

half of the entire specimen.67 The images were

collected at 90 kVp, 28mA, and with a 1-

second exposure time with the image

intensifier operating in 7-inch mode and at

twice the magnification. Off-line image

corrections of the x-ray projection data were

conducted following the protocol of Grass et

al.46 The micro-CT images provided high-

resolution x-ray imaging of the fusion sites

for each goat specimen and provided details

of the trabecular structure.

4.3.6  Data Analysis

F o r   t h e   p r e s s u r e

measurements, care was taken to

capture data while each animal

stood idle and was not engaged in

chewing or swallowing. The

relative change in pressure from

the three daily trials was averaged

and normalized to the pressure

Table 4.2:  Fusion outcomes and a summary
of the relative changes in pressure within the
first ten days of recording for Groups A and B.

Group 
 

Goat 
Number 

Relative 
Change in 
Pressure  

(Normalized 
to Day 0) 

 (%) 
 

Fusion 
Status 

 

A 1 390 No 

 2 410 No 

 3 237 No 

    

B 4 214 No 

 5 333 No 

    

C   Yes 

    

D 1  No 

 2  No 

 3  No 

 4  No 

 5  No 

 6  No 
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Figure 4.5   Graphical representation of the relative change in

pressure from day 0 for all of the goats.  A rapid increase in

pressure was observed within the first 10 days of healing with

peak pressure occuring between days 6 and 9.
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recorded on day 0 and then plotted against time (Figure 4.5). The means and standard

deviations were calculated for each daily data set and the means are presented in Figure

4.5. The maximum relative change in pressure within the first 10 days of pressure recordings

is shown in Table 4.2. Due to the small sample size of the animals used for fusion in this

study, the trends in relative pressure changes were examined, and a limited statistical analysis

was conducted for bone graft sizing using a one-way analysis of variance (ANOVA).

4.4   Results

4.4.1  Evaluation of the Pressure Transducer

Figure 4.2 demonstrates the output performance of the pressure transducers while loaded

from 0 N to 200 N in pure compression by the Instron test machine. The 200-N compressive

load correlated with a mean deformation of 1.37 ± 0.04 mm for the catheter and

approximately 20 MPa of pressure recorded from the catheter. A linear regression and

correlation was conducted on the load and pressure, yielding an R2 of 0.998, indicating the

presence of a high degree of linearity of the pressure transducer. Very little phase lag (< 1

second) was observed between the Instron load cycles and the pressure measured at the

bone graft interface. The lag is attributable to the delay in the actual hydraulics of the

Instron testing apparatus and the delay in the viscoelastic response of spinal tissues.

4.4.2  Fusion Status

None of the remaining five goats exhibited external evidence of infection, distress, or

catheter extrusion within the first 20 days postoperatively. Long-term complications after

20 days, however, were observed in three of the goats implanted with the pressure transducers.

Seroma formation and catheter extrusions were observed in these goats after 20 days.

Fortunately, each pressure transducer housed two independent recording catheters. Hence,

the extrusion of a single catheter did not affect the pressure monitoring process. The pressure
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measurements from the caudal catheter are

presented in this report. The caudal catheter

pressure readings were consistently greater than

the rostral catheter readings by a small margin

(< 10% for all goats). This is attributable, at least

in part, to the added weight of the graft and the

additional load transmission to the caudal

portion of the vertebral body at C3-C4.

For all 11 goat spines that were grafted

(Table 4.2), no significant difference was

observed between the bone graft sizes for any

of the goat spines (P$0.5). None of the goats

from Groups A or B, however, achieved a solid

bony fusion (Table 4.2). The histological and

micro-CT images demonstrated a pseudarthrosis

at the C3-C4 bone graft site in the goats

implanted with pressure transducers

(Figures 4.6 and 4.7). The single

goat (Group C) that did not receive a

pressure transducer demonstrated

histological evidence of a solid

fusion at C3-C4 after four months

(Table 4.2).

A proprietary gel contained

within the catheter was found in the

surrounding tissues at the operated

sites. Histologically, an inflammatory

Figure 4.6  MicroCT depicting the sagittal

view through the C3-4 fusion site.  A solid

arthrodesis has not formed at 6 months post-

operatively and bone graft remnants that

have not completely resorbed, are visible.

Figure 4.7  Undecalcified histological section depicting

the inflammatory response observed surrounding the

gel exudates from the pressure transducer catheters.
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reaction associated with this gel was present near the bone interface where the gel had

egressed from the implanted catheters (Figure 4.7).

4.4.3  Pressure

Table 4.2 depicts the relative maximum change in pressure for Groups A and B within

the initial 10 days of recordings. The pressure measurements at day 0 ranged from 0.6 MPa

(Goat 5) to 3.6 MPa (Goat 4). All of the data for each goat were normalized to day 0 for

valid comparisons. Goat 2 (Group A) demonstrated the highest change in pressure, with a

410% increase within the first 10 days (Table 4.2). All of the goats demonstrated consistent

increases in interface pressure within the first 10 days postoperatively, ranging from a 200%

to 400% increase (Figure 4.5 and Table 4.2). The absolute pressure ranged from 2.5 MPa

for Goat 2 to 7.6 MPa for Goat 4, with the standard deviations ranging from 0.01 to 1.00 for

the average daily means among all of the goats studied. The peaks in pressure occurred

between days 6 and 9 for all goats. From day 10 to day 20, all of the goats demonstrated a

decline in pressure. Erratic pressure was observed thereafter. With respect to the extent of

quantifiable subsidence measured during the in vitro biomechanical testing of the Group D

specimens, a mean subsidence of 0.25 + 0.10 mm was measured across the C3-C4 bone

grafted site.

4.5  Discussion

This preliminary study defines the pressure changes that occur during the development

of a non-union after attempted cervical spine fusion. An increase in pressure during the

early stages (first 10 days) correlates with an expected early graft subsidence. Postoperative

subsidence increases the load borne by the graft, thus increasing the pressure observed at

the interface between the bone graft and the vertebral endplate.119 The initiation of graft

instability and pseudarthrosis appears to be heralded by the appearance of erratic fluctuating

pressure patterns at the bone graft-vertebral body interface. A rise in the interface pressure

was consistently observed in all goats within the first 10 days of monitoring in the present
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study.  As previously stated, early graft settling or subsidence occurs within the first week of

surgery. In humans, a mean subsidence of 1.4mm with ventral cervical fusion using

autologous bone graft at 1 to 2 weeks after surgery has been reported.6,119 It is therefore

likely that the reproducible increase in pressure during this phase of healing is attributable

to early bone graft subsidence at the fusion site, as validated during the in vitro testing

conducted on the Group D spines. An interesting point to consider is that the DOC ventral

cervical rigid plate used divergent fixed angled screws that by nature of design provide an

anterior localized compression to the bone graft where the plate meets the bony margin of

the vertebral body. This type of plating causes the center of rotation (COR) of the spine,

which is naturally located halfway between the anterior and posterior vertebral margin, to

shift toward the proximity of the plate fixation.29,126 This shifting of the COR toward the

plate contributed to a localized compression at the anterior portion of the vertebral body

and bone graft. This would technically stress shield the posterior portion of the bone graft

but provide greater stress upon the anterior and middle portion of the graft. Therefore,

higher pressure would have been expected but was masked by this phenomenon.

There were some limitations to this preliminary study. The absence of fusion in this

study could be attributed to the adverse reactions to the catheter and its gel, as well as the

eventual seroma formation. An inflammatory reaction was found to be associated with the

catheter gel in the surrounding tissue at the fusion site. Additionally, one of the disadvantages

of currently available implantable telemetric units is that the bulky implants cause

inflammation in the juxtaposed musculature, resulting in irritation and seroma formation.

Fortuitously, the ensuing pseudarthroses provided the opportunity to document the

pressure changes associated with a failed fusion. The erratic pressure was observed following

the initial subsidence phase of healing, during which interface pressure was elevated. This

is intuitively associated with motion and pseudarthrosis. If stability were present, motion at

the graft site would not occur and fluctuations of pressure at this site would similarly not be

observed. Therefore, erratic fluctuations of pressure are consistent with pseudarthrosis,
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whereas elevations of pressure are consistent with the expected subsidence that accompanies

the nonpathological events that ensue during the early postoperative healing period.

Nevertheless, the proof-of-concept goal of this study—that is, the ability to monitor pressure

fluctuations with early bone healing-was achieved even with a small sample size. This

concept can be applied further to the potential use of implant performance and tissue reaction

for numerous motion-preserving and dynamized devices. However, improved clinical

methods for telemetric pressure assessment are eagerly anticipated, with the hope that these

improvements will facilitate the development of an implantable biosensor using MEMS

technology.
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CHAPTER V

AN IN VIVO BIOCOMPATIBILITY ASSESSMENT OF MEMS MATERIALS

FOR USE WITH AN IMPLANTABLE MEMS PRESSURE SENSOR

5.1  Study Overview

The site-specific biocompatibility of silicon and related materials that are commonly

used to construct MEMS pressure sensors were evaluated six months after implantation in

the caprine cervical spine. After autopsy, gross examination and histological techniques

were used to characterize local and peripheral tissue responses. The study involved two

phases of in situ implantations of MEMS materials into the caprine spine. The first phase

involved the insertion of silicon chips into the nucleus pulposus of multiple lumbar discs

and the implantation of MEMS pressure sensors into autologous bone grafts in the caprine

cervical spine. The second phase involved a more comprehensive implantation of five types

of materials used for fabricating MEMS pressure sensors.  Titanium is a commonly used

material for orthopedic implants and served as the study control.  Two castrated adult male

goats were used to test for the site-specific biocompatibility of materials used in MEMS

devices to determine the site-specific biocompatibility and wound-healing behavior of tissue

exposed to MEMS based materials. Histological analysis of compromised spinal segments
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after a six-month survival period did not reveal evidence of any adverse foreign body response

by the caprine spinal tissue to the implanted MEMS materials. Furthermore, there were no

signs of infection or inflammation in response to the variety of MEMS materials used in the

fabrication of miniature devices.

5.2    Introduction

The concept of MicroElectroMechanical Systems (MEMS) has raised considerable

attention for their potential use in medical devices. MEMS technology combines integrated

circuit technology similar to the semiconductor industry with microfabrication processing

for the development of microsized devices that can detect pressures, strains, forces,

displacements, etc... However, the implantation of foreign objects into a living system,

such as a device made with the materials used for the fabrication of MEMS sensors, must

be evaluated with respect to tissue response and adverse tissue reactions.

The existing materials used to construct orthopedic and cardiac implants are not suitable

materials for fabricating MEMS biosensors. Silicon is a common material used in the

fabrication of MEMS devices which has recently entered the medical device arena. Materials

such as medical grade epoxy and titanium (Ti) have been supplemented with Silicon Nitride

(Si
3
N

4
) for use in dental applications.27 Drug-delivery devices, microneedles, and immune-

isolating biocapsules for long-term implantation are incorporating MEMS

technology.63,70,75,123,124 Although titanium implants within the body are biocompatible if

they do not generate large doses of titanium particulate due to  wear and fretting (greater

than 200 mg of particulate)26, the processing techniques used in MEMS construction may

pose a threat to a living system if MEMS materials are combined with titanium implants.

Large doses of titanium particulate from wear debris have been shown to elicit osteolysis or

bone resorption in the spine.20,25,26,42,48,122 Combining the interaction of titanium with MEMS



56

materials for use as long-term implantable sensors could produce adverse tissue reactions,

thus prompting further in situ investigation within tissue.

 MEMS devices or silicon-based microelectrodes have demonstrated significant

biofouling in living systems over time.27,84,85,118 Previous work has been conducted by the

authors demonstrating the inert  effects of MEMS materials in the cervical spine vertebrae

and lumbar intervertebral discs using a caprine model.37,38  Further analysis was needed,

however, in the form of  a more comprehensive evaluation of the safety of MEMS

microfabrication materials within spinal bone. Therefore, the objective of this study was to

expand upon earlier work by determining the site-specific biocompatibility and wound-

healing behavior of osseous and intradiscal tissue exposed to the materials currently utilized

in the construction of potentially implantable MEMS devices.37,38

5.3   Materials and Methods

5.3.1  Phase I

Phase I was a limited biocompatibility evaluation that investigated the base material

(silicon) used to fabricate MEMS devices  and actual MEMS pressures sensors. Samples of

single crystal silicon (Si) and commercially available MEMS based piezoresistive pressure

sensor die were selected for evaluation in a caprine model. A <100>-oriented, n-type, single

side polished, 100 mm-diameter, 500

μm-thick Si wafer was diced into 1 mm-

long x 2 mm-wide chips using an

automated dicing saw. The pressure

sensor die (Lucas NovaSensor P529B,

Fremont, CA) was 0.6 mm thick with a

1 x 1 mm-wide square top surface

(Figure 5.1). The sensor was rated for
Figure 5.1:  The Lucas NovaSensor MEMS Pressure

Sensor.
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absolute pressure measurement up to 350 kPa and comprised of a bulk micromachined Si

membrane with 150 x 150 μm-wide aluminum contact pads. For the purpose of this study,

the pressure sensors were not powered to minimize the confounding effects from wires and

implanted batteries. The MEMS materials were cleaned in isopropyl alcohol and deionized

water and subsequently treated by sterilization, which was conducted in a standard steam

autoclave under a wrap/gravity algorithm for 25 minutes and 10 minutes dry at 121°C.

5.3.1.1  Surgical Procedures

The caprine (goat) model was selected due to the favorable anatomy of its cervical

spine, which exhibits a long upright posture and axial loading characteristics117. The relatively

long and slightly lordotic neck of a goat is exposed to daily cyclical loads and bending

moments similar to the loading paradigm of the human spine.112,117,132,135-137  The cervical

and lumbar spine regions of an adult castrated 65kg male Nubian goat were chosen as the

target areas for site-specific biocompatibility testing of silicon chips and the pressure sensor

die.

An autologous iliac crest bone graft was implanted into the C4-5 intervertebral disc

space after a complete discectomy. A MEMS pressure sensor was placed within the C4-5

bone graft close to the vertebral endplate interface. Three intervertebral discs in the lumbar

spine (L2-3, L3-4, L4-5) were also selected for evaluation. The L2-3 intervertebral disc was

selected as the sham control for the lumbar spine where a MEMS pressure sensor was not

implanted but a surgical approach was employed. Two Si chips were implanted into the L3-

4 disc and two pressure sensors were inserted into the L4-5 disc. The implantation period

for the MEMS sensors and materials was six months after which the animal was euthanized

and the cervical and lumbar spines meticulously harvested for subsequent evaluation.
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Cervical Spine

The goat was prepared for surgery in accordance with an approved ARC (Animal Review

Committee) protocol that complies with federal regulations for the humane treatment of

animals. The goat was anesthetized with 1% isoflurane and positioned laterally on a Jackson

table. A standard ventral incision was made on the cervical region of the spine in the goat

neck and the surrounding musculature carefully displaced to expose the C3-C7 segments of

the cervical spine. Care was taken not to stress the carotid artery, esophagus, and trachea of

the animal. The organs were gently retracted laterally, to allow access to the vertebral bodies.

A standard cervical discectomy was performed at the C4-5 vertebral levels using small

pediatric pituitary rongeurs. The cervical intervertebral space was then prepared for the

bone graft implantation. The vertebral endplates were meticulously cleaned using a curette

to allow for increased vascularization,

which would provide a favorable

environment for enhanced bone

incorporation.

A bone graft was harvested from the

iliac crest of the goat (Figure 5.2). A

small incision was made over the iliac

crest and the musculature carefully

dissected using a Cobb elevator. A

horseshoe shaped section of bone

(approximately 21 mm-wide x 32 mm-

deep x 10 mm-in height) was removed

from this region using a sharpened

osteotome and stored in sterile Ringer’s

Lactate solution until the time of

Figure 5.2:  The upper figure (a) illustrates the
cubed shape bone graft carved from the
goat's iliac crest used for fusion into the C3-
C4 interbody space of the cervical spine.
The lower figure (b) illustrates the MEMS
pressure sensor relative to the Touhey
needle, used for minimally invasive insertion
of the sensors into the vertebral bone and
discs of the goat.
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implantation. An 18-gauge Touhey needle was used to bore approximately a 1 mm-diameter

x 3 mm-deep cylindrical hole into the bone graft. Afterwards, the pressure sensor was placed

into this hole and packed with morselized bone. The graft was inserted into the C4-5

intervertebral space and was stabilized using a ventral DOC cervical stabilization spinal

implant (DOC Ventral Rod System, DePuy Acromed (a Johnson & Johnson company,

Raynham, MA).

Surgical closure was performed in a standard manner after the spinal instrumentation

was in place. The musculature was closed using Ethibond (0.0) suture and single whip

stitches. The skin was closed with Prolene suture (0.0) utilizing a continuous running stitch.

Lumbar Spine

The lumbar spine was approached through the dorsal aspect with the goat positioned in

a lateral configuration. Each disc was exposed through a lateral view and the center of each

disc located using 14-gauge needles. Samples of MEMS materials were subsequently

introduced into nucleus pulposus regions of the L3-4 (Si chips) and L4-5 (pressure sensor)

discs using an 18-gauge Touhey needle. The L2-3 disc was also penetrated with the needle

without the placement of a sample material to serve as a sham control. The dorsal musculature

was then closed over the exposure site and sutured with Ethibond 2.0, followed by a standard

skin closure utilizing Prolene 0.0 suture with running stitches.

The stitches were cleaned with Betadine antibiotic and the animal was transported to

the Intensive Care Unit for 48 hours of observation. Fluoroscopy and plain radiographs

were conducted to document the surgical sites of the cervical and lumbar spines, as well as

the placement and integrity of the DOC spinal instrumentation.



60

5.3.1.2  Euthanasia and Histological

Procedure

The goat was euthanized six

months post-operatively and the

cervical and lumbar spine segments

were harvested for histological

preparation (Figure 5.3). An overdose

of Pentobarbital was administered

intravenously at a lethal dosage (75

mg/kg via intravenous injection) to

ensure rapid demise with no sensation of pain or discomfort. After absence of a cardiac

pulse, the cervical and lumbar spines were harvested and subsequently prepared for

histological assessment. The DOC spinal system was meticulously dissected from the cervical

spine with sufficient care to prevent destruction of the essential bony matrix at the fusion

site. Each segment in both the cervical and lumbar regions was visually inspected for any

gross abnormalities that might have resulted from adverse reactions to the MEMS materials.

Each cervical and lumbar segment were further dissected serially within the sagittal

plane into smaller segments and fixed in 10% neutral buffered formalin, decalcified using

a commercially prepared hydrochloric acid (HCl) based decalcifier, dehydrated through a

series of graded alcohols, cleaned in xylene, and embedded in paraffin. The paraffin

embedded segments were sectioned into 5 μm-thick specimens, mounted onto glass slides,

and stained with hemotoxylin and eosin (H&E). A licensed pathologist supervised the

histological assessment and each slide was evaluated for signs of inflammatory responses

by three independent observers.

Figure 5.3:  Section of harvested cervical spine

showing the intact DOC Ventral Rod System

that was used to stabilize the fusion site.
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5.3.2  Phase 2

This phase of the study was conducted to further address the in situ biocompatibility of

multiple varieties of MEMS fabrication materials. Five varieties of materials used for

fabricating the components of MEMS pressure sensors were implanted into various regions

of the caprine cervical spine (Table

5.1). One 65kg castrated adult male

goat was used to test for the site-specific

biocompatibility of MEMS materials

used in the microfabrication of devices.

Six vertebral bodies (C2-C7) of the

caprine cervical spine were each used

to house a different set of materials as

listed in Table 5.1. The materials

consisted of;

1) Silicon Nitride (Si
3
N

4
),

2) Titanium particles (Ti),

3) Inactive piezoresistive MEMS

pressure sensors (composed of silicon and aluminum wire bonding, - Lucas

NovaSensor P529B, Fremont, California)

4) Silicon carbide (SiC),

5) Silicon dioxide (SiO
2
),

6) Silicon (Si),

Medical grade titanium (Ti-6Al-4V, TRADCO Inc., Sullivan, Missouri) has widely

demonstrated its biocompatibility when implanted into human tissue for over a decade of

Table 5.1:  Listing of the cervical spine materials and the
specific material implanted to test for site specific
biocompatibility.
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use in surgical spinal implants. Multiple studies have demonstrated that medical grade

titanium does not elicit adverse affects during long-term surgical implantation into living

tissues. The scope of titanium spinal implants covers the gamut from rod and pedicle screw

systems, interbody device systems, and dorsal and ventral plating systems. Thus, titanium

is  a widely accepted implant material for use in orthopedic applications and served as the

study control.4,58,109,116,133

The materials listed in Table 5.1, with the exception of titanium, were prepared on

silicon substrates by sputtering four inch silicon wafers with carbide, dioxide, or nitride.

Each sputtered wafer was cut into multiple 1 mm x 1 mm x 0.5 mm chips, examined by

microscopy for visual characteristics, and measured for approximate dimensions. The

titanium alloy particles measured approximately 1-2mm in length by 0.5 mm in width and

were provided by grinding medical grade titanium alloy plates. All materials were packaged

and steam sterilized utilizing a wrap/gravity algorithm in a standard steam autoclave (Steris/

AMSCO, Mentor, Ohio) for 25 minutes at 121°C and 15 psi prior to implantation.

5.3.2.1  Surgical and Post-surgical Procedures

One 65kg castrated male goat was prepared for surgery in the standard ARC (Animal

Review Committee) manner. The goat was anesthetized with 1% isoflurane and positioned

laterally on a

Jackson table. A

standard ventral

incision was

made on the skin

layer along the

cervical region of

the spine. The

Figure 5.4:  Three Lee-Lok 11-Gauge bone marrow needles placed into the anterior aspect of a

cervical vertebral body, covered by the surrounding musculature (a). A fluoroscopic image

demonstrating the insertion of the three Lee-Lok 11 gauge bone marrow needles into a cervical

vertebral body. One cluster containing five chips of a specified material was injected via a saline-

filled syringe down the needles and into the targeted bone (b). A MEMS pressure sensor and the

delivery needle used in the procedure (c).

(a)                                                  (b)                                           (c)
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skin was carefully dissected exposing the underlying musculature. The musculature remained

intact and was not displaced to avoid compromising the neck muscles and excessive bleeding.

A minimally invasive anterior approach through the musculature into the targeted cervical

vertebral bodies was incorporated using fluoroscopy for guiding the bone marrow needles

into the vertebral bodies. A 5 mm incision was made through the musculature into the bone

at each cervical spine level (C2 to C7), and three Lee-Lok 11-Gauge, 5 ½  inch long bone

marrow harvesting needles were gently impacted into each vertebral body in three locations

(Figure 5.4 a,b and c).

A saline-filled syringe containing one cluster of five chips was connected to each needle

and injected into the prepared bone space through the tip of each needle. An additional 20

cc of saline was injected to ensure delivery and further chase the chips into the bone space.

Three clusters of five chips were placed into each vertebral body at pre-assigned depths

(anterior, mid, and posterior). The anterior location was the first 1/3 of the vertebra, the mid

location referred to placement at the midline of the vertebra, and the posterior section referred

to placement of the chip into the posterior 1/3 section of the vertebra. Flouroscopic imaging

was used during surgery to document the surgical sites of each targeted cervical vertebral

body, needle placement, and chip delivery to ensure proper placement of each chip cluster.

After completion of the material insertions into all six vertebral bodies (C2-C7), the

small muscular incisions were closed with 2.0 silk suture and the skin was closed using

Prolene suture in a continuous manner.

5.3.2.2   Euthanasia and Specimen Retrieval

The goat was euthanized six months post-operatively via pentobarbital administered

intravenously at a lethal dosage (75 mg/kg via intravenous injection) to ensure a rapid

demise with no sensation of pain or discomfort.  The cervical vertebral segments were then
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harvested and prepared for undecalcified histological sectioning.  Each cervical vertebra

was dissected and removed of surrounding musculature, and inspected for any gross

abnormalities due to adverse reactions to the implanted materials or chip migration. The

vertebral bodies were then placed separately into a 3:1 volume of 70% ethanol to initiate

the dehydration process for histological preparation.

5.3.2.3  Histology

After a period of four weeks in 70% ethanol, each of the vertebral bodies was placed

into 100% ethanol for an additional four weeks. Each specimen was dehydrated further by

using five changes of 100% ethanol at ambient temperature over the course of five days.

Following dehydration, the specimens were further cleared of soft tissues with three changes

of xylene at ambient temperature over the course of three additional days.  They were then

embedded into a solution of methylmethacrylate (MMA), placed into a vacuum chamber,

and kept at 2°C - 8°C over a 23-day period with three changes of MMA.

Using an Exakt diamond saw (EXAKT, Appartebau, Germany), three transaxial sections

(central, medial, lateral) were made into each embedded vertebra, each measuring between

750μm -850μm in thickness.  MicroCT was used to provide a detailed view of the silicon

chips within each vertebra. The exact locations of the chip clusters were quantified utilizing

scaled CT images and the coordinates of each chip cluster employed during histologic

sectioning, so that the sections were made just shy of each chip cluster location and ground

to reveal the chip clusters. Each prepared section was affixed to a glass slide and ground to

approximately 125μm using an Exakt grinder with 500 grit paper. Finer grit (1000 grit) was

used to grind each section to 75 microns in thickness, followed by a 2000 grit paper to grind

each section to a final thickness of 10-40μm. Following grinding, each section was then

stained with a proprietary mineralized bone stain.  With this preparation, the mineralized

bone stained trabeculae green, osteoid seams stained magenta, and the remaining tissues
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stained blue and pink. Each slide was photographed, digitized, and scaled using a dissecting

microscope and viewed under high magnification (400X) utilizing a light microscope. Three

independent observers, two of which were bone pathologists, evaluated the slides for any

signs of inflammatory responses or foreign body reactions to each material.

5.4    Results and Discussion

5.4.1  Phase 1

The animal surgery was uneventful and all vital signs were normal. During recuperation,

there were no complications related to the surgical procedures, post-operative infection, or

mortality observed in the six-month survival period . Gross examination of cervical and

lumbar spinal segments after harvest and dissection did not reveal any visible signs of

adverse reactions to the MEMS materials including bony abnormalities, osteophytic

formations, infection, or inflammation. The surrounding tissues and musculature for both

spinal regions were devoid of necrosis and signs of infection.

Microscopic examination of the histological slides confirmed that there was no adverse

tissue reaction to the MEMS

materials either locally or

peripheral to the implantation

sites. The location of Si chips

and the MEMS pressure sensor

in the lumbar and cervical

spinal regions respectively,

were correlated with the series

of histological sections.

Examination of histological

slides confirmed the absence of

Figure 5.5:  Gross section (a) of L3-4 lumbar spine segment

where Si chips were implanted into the disc. The

corresponding histological image of the disc region (b)

(H&E stain) shows a void due to previous location of the Si

chips and needle penetration (dotted circle).  Evidence of

inflammatory or infectious cellular responses is absent.
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abnormal macrophage or lymphocytic

cellular activity within the lumbar discs and

at the cervical fusion site.

The histological sections of the lumbar

disc sites indicated normal fibrous regions

that lacked any evidence of inflammatory

or infectious cellular responses (Figure 5.5).

There were visible voids within the disc

tissue where the MEMS materials were

implanted, as confirmed during the physical

dissection and sectioning of the specimen.

These regions were carefully examined to

confirm the absence of any adverse localized

and peripheral tissue responses to the

implanted materials.

The histological sections of the cervical fusion site indicated regions of healthy remodeled

bone with vascularization and viable osteoclasts and osteoblasts within the bony margins

(Figure 5.6). The older original bone graft material exhibited osteocytes housed within

multiple lacunae, an indication of remodeled healing bone. Remnants of the bone graft

were surrounded by healthy young bone at various stages of remodeling. Furthermore, lines

of newly mineralized bone connected the autograft to the host bone.

Previous investigations using a baseline battery of ISO 10993 physiochemical and

biocompatibility tests showed that common materials used in the construction of MEMS

devices including Si, silicon dioxide (SiO
2
), and silicon nitride (Si

3
N

4
), did not exhibit

cytotoxicity in vitro or adverse foreign body responses in vivo when implanted into rabbit

musculature for up to 12 weeks.63 The present study sought to build on the previous work by

focusing on long-term biocompatibility of MEMS materials in specific sites relevant for a

Figure 5.6: Histological image of the C4-5

cervical fusion site (H&E stain) that was

implanted with bone graft containing a

piezoresistive pressure sensor.  There is

evidence of vascularization and remnants

of the bone graft were surrounded by

healthy young bone at various stages of

remodeling.

Fusion
site

5mm
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clinical application. The preliminary results of this investigation demonstrated the site-

specific biocompatibility of MEMS materials that might be utilized in the construction of a

spinal fusion monitoring system. Limitations of the current investigation include the

implantation of non-powered pressure sensors, limited selection of MEMS materials, and

lack of biomechanical tests to validate the fusion strength of the spinal segments implanted.

Nevertheless, our results from this phase demonstrated preliminary feasibility and suggest

that further investigation of the in situ biocompatibility of additional MEMS fabrication

materials for the construction of complex implantable medical devices is warranted and

will be addressed in Phase 2.

5.4.2  Phase 2

The animal surgery for Phase 2 was uneventful. There were no complications due to

surgical procedure, post-operative infection, or mortality during the following six months

of survival. Gross examination of each cervical spinal segment after harvest and dissection

did not reveal any visible signs of adverse reactions to the MEMS materials including bony

abnormalities, osteophytic formations, infection, or inflammation. The surrounding tissues

and musculature for the cervical spine were devoid of necrosis and signs of infection.

Furthermore, migration of the chips out of the vertebrae and into the surrounding tissue was

not observed during dissection and histological sectioning.

5.4.2.1  Macroscopic Findings

There were no visible signs of adverse reactions to the MEMS materials or titanium

during gross observation of the cervical vertebrae. No bony abnormalities, osteophytic

formations, infection, or inflammation was observed for any of the cervical vertebral bodies.

There was a normal appearance to all of the surrounding tissues and musculature for all

vertebrae. All regions were devoid of necrosis and signs of swelling. One vertebral body,
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C7, exhibited signs of malpositioning of the chip placement related to implantation at the

time of surgery, where the chips were found located towards the lateral bony margin, rather

than centralized within the vertebral body.

5.4.2.2  Histological Findings

Microscopic examination of the undecalcified sections through the vertebrae and

implanted chips did not reveal evidence of lymphocyte and macrophage activity. For the

cervical vertebrae that were implanted with silicon based MEMS materials (C2, C4, C5,

C6, C7), giant cells were found along the jagged edges and corners of each chip. Although

the quantity of giant cells was limited to two or three for each silicon based material (Si
3
N

4
,

MEMS pressure sensor, SiC, SiO
2
, Si), the titanium particulate had less incidence of giant

cells present with fewer giant cells observed. Osteoclasts were observed along the margins

of the Si
3
N

4
 chips and there was very little evidence of a fibrous tissue layer encompassing

any of the silicon based materials implanted.

It was determined that there was no adverse

tissue reaction to the MEMS materials and the

materials composing the pressure sensors

(Figures 5.7-5.9). There were no signs of

increased macrophage or lymphocytic cellular

activity within the cervical bone. However, there

was an increased activity of giant cell formation

along the jagged edges and corners of the Silicon

based chips. Examination of the mature

surrounding bone indicated regions of healthy

bone with minimal osteoclastic activity. The

microscopic size of the chips allowed them to

Figure 5.7:  One cluster of Si3N4 inserted

into the C2 vertebral body taken from a

transaxial view.  One Si3N4 chip is

depicted under light microscopy at 400X

magnification.  Mature  bone  (green)

surrounds the Si3N4 chip with a giant

located at the jagged corner of the chip. A

fibrous tissue layer has not formed around

the periphery of the chip.
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co-exist with the mature bone (stained green)

without distruption of its integrity.

Osteoconductive activity was significantly

absent between all of the materials implanted

and the surrounding native bone.

Overall, the silicon based materials used in

the construction of MEMS devices did not pose

infectious risk and chronic inflammatory

responses to the implanted tissues of the spine.

An organized layer of fibrous tissue was not

observed to encompass the silicon based

materials. The titanium particles did exhibit a

very fine layer of disorganized fibrous tissue,

where a low dose of titanium particles

(<200mg) implanted into the C3 vertebra did

not affect the bone integrity nor cause adverse osteolytic reactions. The titanium exhibited

expected behavior, with a very thin formation of a fibrous tissue layer surrounding the

titanium shards. Due to the titanium’s irregularity in size and shape, there was very little

osteoconductive properties and bone was not observed to have formed around the titanium

particles. This can best be explained by existing wear debris literature of orthopedic implants

constructed of titanium. Conventionally, once a titanium implant has been placed into the

body, the wear and debris accumulation is initiated. Such particles are often less than 7-10

microns in size and are caused by micromotion, corrosion, or oxidative surface

reactions.44,111,128 Studies have shown that macrophages are the predominant cells surrounding

newly implanted metal alloys and are associated with wear particles from titanium particulate.

These cells are capable of differentiating into multinucleated cells exhibiting all the

phenotypic features of osteoclasts, which are highly multinucleated and are responsible for

Figure 5.8: One cluster of titanium inserted into the C3

vertebral body, taken from a transaxial view. An irregular

shard of titanium is depicted under light microscopy at

400X magnification. There is a giant cell located within

the proximity of the jagged apex of the titanium matter.

A thin organized fibrous tissue layer was observed to 

surround the titanium particles.

Figure 5.9: One cluster of MEMS pressure sensors into the

C4 vertebra taken from a transaxial. One MEMS pressure

sensor is depicted under light microscopy at 400X

magnification. Mature bone (green) surrounds the MEMS 

sensor and giant cells are located to the right of the sensor.

There is no fibrous tissue layer presently surrounding

the sensor.

Giant Cell

Ti

Bone

MEMS
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lacunar resorption.25,44,111,128 Therefore, it is to be expected that macrophage activity is induced

with the implantation of a metal alloy into a living system and can contribute to osteolysis

surrounding an implant due to their osteoclastic behavior in the presence of excessive wear

debris. However, if the particulates are greater than 7-10 microns, it is feasible to understand

that this is beyond the phagocytic capabilities of the macrophages, resulting in less

macrophage population surrounding the metal alloy and fibrous encapsulation of the

particulate. Surface texture, size, and shape of the metal particulate are factors that affect

the macrophage activity, phagocytic behavior, and osteolytic properties of the implant.20,25,26,43

The titanium shards used in the present study were 1-2mm x 0.5mm or within the 1000 to

2000 micron range. These particles were larger than what is observed from wear particulate

and too large to induce phagocytosis, resulting in reduced macrophage activity.  Research

studies have demonstrated that particulate matter greater than 50 microns in size does not

excite a foreign body or phagocytic reactions unless there is a dimension on the particulate

matter that is in the range of 0.1 to 1.0 μm (i.e. for long slender fibers). Ideally, particle size

must be within a range of 0.1μm to 1.0μm particle size to induce phagocytosis, however

particulate matter of up to 5μm can be easily phagocytosed.10 A condition termed frustrated

phagocytosis may result where large particles (entire implants or implant shards) activate

phagocytosis, cannot be dissolved, resulting in an external release of lysozyme and oxidative

byproducts.10

The concept of monitoring real-time fusion status in vivo using MEMS sensors is

attractive for clinical implementation in spine patients undergoing vertebral stabilization

surgery. However, there have been limited investigations into biocompatibility of MEMS

materials for implantable clinical applications, especially where extraneous packaging must

be avoided due to size constrains. Overall, this study successfully demonstrated the site-

specific biocompatibility of MEMS-based materials that may be utilized in the construction

of future implantable sensor technology for human implantation. Although there was some

osteoclastic behavior observed for the silicon based materials (Si
3
N

4
), the materials used to
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fabricate MEMS devices were relatively inert in nature. The giant body cells did illicit a

foreign body response to the materials, however, signs of infection, inflammation, and adverse

responses were absent in vivo. However, the lack of a thick fibrous tissue layer surrounding

the MEMS materials is of concern. An organized fibrous tissue layer can contribute to

anchoring a microscopically sized MEMS chip into a designated region. Organized fibrous

tissue is representative of normal mechanical loading and a healthy environment that has

resumed after tissue has been violated and has healed. It can be used to encapsulate medical

devices and isolate the materials from foreign body attack, a system that occurs naturally.

Although this layer was absent around the silicon based materials, there were no signs of

adverse reactions to the foreign bodies implanted into cervical bone. In essence, fibrous

tissue may function as a protective shield against self-attack from one’s immune system

and may assist in resisting implant migration.

Finally, none of the materials studied promoted osteoconduction of bone upon the surface

of the materials. Although titanium promotes osteoconduction where bone will intermingle

with the oxidative surface of a titanium implant, the titanium particle size used in this study

did not provide an ideal environment that promoted osteoconduction.

5.5   Conclusion

The site-specific biocompatibility of Si chips and silicon based MEMS pressure sensors

were investigated using a caprine model. Surgical procedures for the successful implantation

of MEMS devices into osseous and intradiscal regions were developed. Histological analysis

of the vertebral bone and intervertebral discs of the goats after a six-month survival period

did not reveal evidence of any adverse foreign body response by the caprine spinal tissue to

the implanted MEMS materials. Although there was an absence of thick layers of organized

fibrous tissue surrounding each implanted material, none of the materials induced a severe
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foreign body reaction. There were no signs of infection or inflammation in response to the

variety of MEMS materials used in the fabrication of microsized devices, as well as an

absence of osteoconductive properties for any of the materials implanted.
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CHAPTER VI

STERILIZATION

6.1  Study Overview

The effects of steam, ethylene oxide, and gamma sterilization on the performance of

micromachined pressure sensors were investigated using a variable pressure setup. These

sterilization techniques are conventional techniques used for surgical applications and are

conducted on all devices prior to human implantation. It is essential to determine if MEMS

sensors are capable of withstanding such harsh forms of sterilization without a compromise

in electronic integrity. Commercially available pressure sensor die were characterized prior

and subsequent to sterilization over a 0-500 Torr pressure range. The effects of sterilization

were examined as changes in sensor output voltage (ΔV) at various applied pressures.

6.2  Introduction

Recent advances in MEMS (microelectromechanical systems) technology have resulted

in an increased interest in its biomedical applications. In medicine, the incorporation of

MEMS devices into clinical systems is gaining momentum as evidenced by development of

micromachined disposable pressure sensors, microfluidic lab-on-chip systems, and ultrasonic

imaging microtransducers2,37,57,72,105 Miniature, implantable, physiological monitoring systems
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that integrate in vivo sensing capabilities with wireless transmission to an external data

acquisition system have also been proposed for bone fusion assessment, intracranial pressure

monitoring, and detection of congestive heart failure.5,70,81,105 However, successful translation

of MEMS into implantable physiological monitoring systems must overcome challenges

associated with device functionality and biocompatibility.35,36,37,38,47,63,105

Silicon is a fundamental material of construction for MEMS devices. This material

choice is motivated by a combination of available microfabrication infrastructure and the

desire to incorporate microelectronics components into the MEMS device.56,71,89,129  However,

the properties of silicon and related microfabrication materials such as silicon nitride, silicon

dioxide, and aluminum can prove problematic for implantable clinical applications. For

example, the human body’s natural defense mechanism that begins with inflammation

coupled with the corrosive effects of biofluids can disrupt the functionality of devices.84,104

Furthermore, the brittle contact pad nature of silicon leads to a risk of device breakage upon

implantation. Another challenge results from the need for sterilization, which is required of

any surgical tool or medical device that contacts the body. Although biocompatibility

assessment of MEMS materials has been recently reported, there is a paucity of data on the

effects of sterilization on the functionality of devices. 63,89   In addition, previous reports on

the effects of sterilization of MEMS devices are generally anecdotal without details on

operational performance shifts (if any), and often, based on non-standard protocols that

would be unacceptable within a clinical environment.12,51

Moist heat and radiation sterilization procedures have become widely established in

medical institutions for surgical sterilization of implantable devices.34,88  Other sterilization

choices include gas ( ethylene oxide  EtO ) and dry heat.  Radiation sterilization usually

involves exposure of the device to gamma rays from a 60Co or 137Cs source until a dosage of

1.5–3.5 MRAD is achieved.33   Moist heat sterilization typically refers to a 20–45 min exposure

of the device to dry saturated steam at 121–132°C under pressure.90  Principal advantages

of steam sterilization are the simple sterilization algorithms and rapid processing times,
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while gamma sterilization offers a ready alternative for hygroscopic or thermolabile products.

In addition, both gamma and steam sterilization procedures do not result in toxic residue,

which is an inherent limitation with EtO sterilization.

This paper reports on the effects of steam and gamma sterilization procedures on the

functionality of one common class of MEMS devices. Micromachined pressure sensors

were selected as the model MEMS device for evaluation because of their wide commercial

availability, established performance history, and numerous potential clinical applications.

The performance characteristics of commercially available MEMS pressure sensors were

determined prior and subsequent to conventional sterilization conditions using a variable

pressure testing setup. The results of this investigation should provide guidance to medical

device design engineers on their strategies to integrate MEMS components into implantable

biomedical systems.

6.3.    Pressure sensors

Commercially available P529B Novasensor bare silicon pressure sensor die (GE

NovaSensor, Freemont, CA)

sized at 1.0 ×1.0 ×0.6 mm
3
 were

obtained for the evaluation. The

essential sensor elements

comprising the pressure sensor

include four doped silicon

piezoresistors, a bulk micro-

machined silicon (Si) membrane,

and eight aluminum (Al) contact

pads (Fig. 6.1). The silicon

membrane is exposed to ambient

conditions on its superior surface
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while the inferior surface constitutes the roof of a sealed vacuum cavity. According to the

manufacturer’s datasheet, the device functions as a 0–50 psi (0–345 kPa or 0–2,586 Torr)

absolute pressure sensor with a 3 VDC input excitation voltage, which, in turn, provides

60±15 mV full scale output (FSO). The rated temperature coefficient of sensitivity and zero

offset are -0.2 %FSO/°C and ±8 mV/V, respectively.

For pressure sensing operation, the four piezoresistors around the silicon membrane

were connected into a Wheatstone bridge configuration using five contact pads. Two input

(-IN) pads were shorted using aluminum wire and standard wirebonding techniques.

Afterwards, the wirebonded pressure sensor was mounted onto a glass slide using

biocompatible medical grade (Master Bond, Hackensack, NJ) epoxy adhesive. Altogether,

55 sensors were wirebonded and mounted for subsequent evaluation.

6.4    Sterilization  Protocols

The pressure sensors were inspected using light and scanning electron microscopy as

well as by energy dispersive X-ray spectroscopy (EDS/EDX). The sensors were subsequently

divided into two groups for gamma and steam sterilization to achieve sterility assurance

level of 10-6. Gamma sterilization was performed on 21 sensors for a dosage of ~5 MRAD

via contract service from STERIS Isomedix Services (Morton Grove, IL). The gamma

irradiation was provided by a 60Co source and the dosage was selected to simulate 2× exposure

of the conventional sterilization dosage of 2.5 MRAD. Steam sterilization was performed

on the remaining 34 sensors using a wrap/ gravity algorithm in a standard steam autoclave

(Steris/ AMSCO, Mentor, OH) for 25 min at 121°C and 15 psi. The larger sample size of

pressure sensors for the evaluation of steam sterilization was based on previous anecdotal

evidence that suggested greater likelihood of damage during the handling and sterilization

procedure.
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6.5  Characterization  Setup

The pressure sensors were characterized

using a MMR LTMP vacuum probe station

(MMR Technologies, Mountain View, CA)

at room temperature (~25°C). This probe

station was originally intended for testing of

electronic devices down to cryogenic

temperatures and is comprised of four

micromanipulators, a pressure control port,

a convectron vacuum gauge, and an optical

access window (Fig. 6.2). The system was

adapted for testing of the micromachined

pressure sensors by attaching standard

electrical probe tips to the micromanipulators and a mechanical roughing pump to evacuate

the test chamber to a base pressure of <100 mTorr A 3 VDC electrical excitation and voltage

readout was provided by a Hewlett Packard E3630A Triple Output DC Power Supply and a

Keithley 2000 Multimeter, respectively. The characterization setup was situated on a vibration

isolation table.

The glass slide mounted with the pressure sensor was placed in the test chamber, which

was then evacuated to base pressure. Afterwards, the four probe tips were brought into

contact with the sensor pads to complete the Wheat-stone bridge configuration and the

output voltage was noted. The pressure valve was subsequently opened until the chamber

pressure increased to approximately 100 Torr (13 kPa) and another output voltage was

recorded. This procedure was repeated for chamber pressures of approximately 200, 300,

400, and 500 Torr. In order to compare data from the various sensors, the output voltage

Figure 6.2  Schematic of the vacuum probe station and

circuit diagram of characterization setup to test pressure

sensors.  Probe tip placement is achieved through

manipulaton of adjustment knobs and observed using

the optical microscope.  Each of the four probes was

electrically connected to either the voltage source or

and electronic multimeter to measure output change

as the chamber pressure was varied.
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characteristic of each pressure sensor was normalized to compensate for zero offset and

pressure control variations. Experiments were also conducted to establish the accuracy and

reproducibility of the characterization setup.

6.6 Data Evaluation.

Each sensor was tested prior and subsequent to sterilization to generate output voltage

versus applied pressure data using the characterization setup. The change in output voltage

after sterilization at the various applied pressures was calculated for each sensor according

to the following equation: [ΔΔΔΔΔV = Vp - Vs]  where ΔV represents the change in sensor output

voltage, while Vp and Vs represent the

sensor output voltages prior and

subsequent to sterilization, respectively.

These varia-tions were examined

statistically using GraphPad Prism v.3.02

(GraphPad Software, San Diego, CA)

software. A one-way analysis of variance

(ANOVA) was conducted to determine

statistical significance at a 95%

confidence interval.

6.7   Results and Discussion

Figure 6.3  presents a graph of

output voltage versus applied pressure for

a typical pressure sensor mounted on the

Figure 6.3   Graphs showing sensor output voltage versus

applied pressure data from tests used to validate the

characterization setup.  The first set of tests (a) was

conducted over 15 consecutive pressure cycles.  The 

second set of tests (b) was conducted over five consecutive

days with three tests per day.

(b)

(a)
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probe station. The sensor

was tested 15 times over

consequent pressure cycles

ranging from base pressure

(<100 mTorr) to 500 Torr.

The maximum variation in

test-to-test sensor output

was less than 0.40 mV. The

apparent nonlinearity of

the sensor response is an

artifact of the convectron

vacuum gauge response.

Day-to-day variations were also investigated by comparing output voltage of a sensor that

was tested on five consecutive days over three pressure cycles daily. In this case, the

maximum variation in sensor output was 0.93 mV.

Figure 6.4  presents typical scanning electron microscope (SEM) images of non-

sterilized and steam-sterilized pressure sensors. Although both images were obtained under

identical SEM conditions, the sterilized sensor exhibits a lower contrast, which suggests

the presence of an insulating layer. Indeed, analysis of the sensor surface by EDX provides

evidence for the formation of an oxide film during the steam sterilization procedure. The

SEM image of the sterilized sensor also shows partial reflow of excess epoxy adhesive

during the steam sterilization procedure. The extent of epoxy reflow was greater on some

sensors such that excess epoxy fouled the silicon membrane. Altogether, epoxy fouling and

mishandling resulted in structural damage to ten steam-sterilized sensors.  In contrast, all

21 gamma-sterilized sensors were functional and did not exhibit epoxy reflow or the presence

of an oxide film.

O

Al
Si

Non-Sterilized Pads

Accelerating Voltage:  25 KeV

Live Time:                   17 seconds

Take Off Angle:  38.782o

Dead Time:         2.909

(a)

(b)

Sterilized Pads

Accelerating Voltage:  25 KeV

Live Time:                   15 seconds

Take Off Angle:  38.944o

Dead Time:         2.644

Figure 6.4  SEM images and corresponding EDX spectra of

contact pad regions on a MEMS pressure sensor prior (a) and

subsequent (b) to steam sterilization.
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The 45 (24 steam- and 21

gamma-sterilized) functional

pressure sensors were tested using

the characterization setup. Figure

6.5 presents representative output

voltage characteristics of two

representative sensors prior and

subsequent to sterilization. The

data confirm that the sensors are

functional after sterilization. To

further investigate the effect of

sterilization on sensor

performance, the change in output

voltage (ΔV) after sterilization at

the various applied pressures was

calculated for all 45 sensors. Table

6.1 and Fig. 6.6 respectively

present a statistical summary and

the corresponding graphical

depiction of the changes in output

voltage due to sterilization. For steam sterilization, mean ΔV decreased with applied pressure

Table 6.1  Summary of changes in sensor output (DV) after sterilization. The mean
voltage represents the change in voltage pre and post sterilization.

Figure 6.5  Graph showing representative sensor output voltage

versus applied pressure data prior and subsequent to steam and

gamma sterilization.  The pressure sensors are functional after

sterilization.

Figure 6.6  Changes (mean and standard error) in sensor ouput 

voltage (DV) at various applied pressures due to sterilization.  The 

increased variation in DV for the steam-sterilized sensors is prob-

ably due to formation of an oxide film.  Nevertheless, the effect 

of both sterilization procedures on DV is statistically insignificant.

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

Pressure (Torr)

V
(m

V
)

Steam

Gamma

100
200

300

400 500

Pressure (Torr) Steam sterilization
Mean Standard error Mean Standard % error

100 0.27 0.17 0.01 0.16
200 0.09 0.17 -0.04 0.17
300 0.09 0.19 -0.02 0.2
400 -0.06 0.22 -0.04 0.23
500 -0.14 0.25 -0.06 0.27
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ranging from +0.27 mV at 100 Torr to -0.14 mV at 500 Torr. In contrast, the corresponding

values for gamma-sterilized sensors were lower, decreasing from +0.0 1 mV 100 Torr to -

0.06 mV at 500 Torr. The increased variation in ΔV for the steam-sterilized sensors is

probably due to the oxide film, which, in turn, could degrade the electrical characteristics

of the piezoresistors and contact pads as well as the deformation behavior of the

micromachined membrane.  Nevertheless ANOVA revealed that the effect of both

sterilization procedures on ΔV was statistically insignificant (p$0.05).

To our knowledge, this is the first report of a systematic investigation into the effects

of sterilization on the performance of MEMS devices. The above results indicate that neither

steam nor gamma sterilization degrade the performance of MEMS pressure sensors.

However, a primary limitation of our investigation is that the sensors were tested only to

500 Torr. Consequently, further experiments are required to verify that the effect of

sterilization on ΔV remains insignificant up to 1,060 Torr, which is the upper limit of

typical medical pressure sensors. The selection of micromachined pressures sensors as the

model MEMS device for evaluation of sterilization was based on their wide commercial

availability, established performance history, and numerous potential clinical applications.

Accordingly, the results of our investigation can provide insight into the effects of sterilization

on other silicon-based MEMS devices. The effects of sterilization will likely depend on the

type of device and its functionality. On the one hand, for most passive (simply mechanical)

devices that do not exhibit electrical functionality such as microneedles, it may be safely

assumed that performance will not be affected whatsoever.  In contrast, for most active

(electromechanical) devices such as ultrasound microtransducers and micropumps, the

effect on performance will largely depend on the susceptibility of the integrated electrical

components to sterilization conditions.

Disinfection of MEMS devices will be critical for their successful deployment in

implantable medical applications.  Steam and gamma sterilization procedure are currently

established as the leading disinfection techniques for processing of medical devices.
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Consequently, the compatibility of MEMS devices with these sterilization procedures will

enhance their commercialization and clinical implementation.

6.8    Conclusion

The performance characteristics of commercially available MEMS pressure sensors

prior and subsequent to steam and gamma sterilization were investigated using a variable

pressure testing setup.  The effects of sterilization were examined as changes in sensor

output voltage at various applied pressures.  The steam sterilized sensors exhibitied increased

variation in output voltage changes compared to sensors exposed to gamma irradiation.

Nevertheless, ANOVA  revealed that the effect of both sterilization procedures on sensor

performance was statistically insignificant.
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CHAPTER VII

BIOPACKAGING  OF  MEMS  IMPLANTABLE  MEDICAL  DEVICES

7.1  Study Overview

Packaging and coating of implantable devices for long-term implantation is a

requirement for any implant to withstand long-term implantation in vivo. Multiple studies

were conducted to assess various coating and adhesive properties on conventional medical

grade metals used for spinal implantation. The mechanical characteristics of a variety of

polymeric coatings and adhesives were examined after sterilization to determine electrical

continuity, fluid permeability, and adhesive strength.

7.2  Introduction

The advent of microelectromechanical systems technology (MEMS) has led to a “second

silicon revolution” 102, with the first revolution directed toward the integrated circuit

technology originated in the 1950s. The potential for implantable MEMS devices for use in

clinical applications is slowly moving into the medical arena and has led to a surge in the

development of biomedical applications utilizing MEMS devices. Miniaturization of medical

devices shows promise for the future implantation of MEMS sensors and actuators into a

living environment. These micro-sized devices are advantageous to the medical industry
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due to their general reduction in mass and size, low production cost, low energy consumption,

electronic accuracy, easy disposal, wireless transmission capabilities, and

durability.64,65,85,106,108  Such devices will lend to in vivo applications (i.e., devices applied

for use in a living biological environment) related to the diagnoses and treatment of numerous

pathologies. The ability to monitor and measure in vivo, real-time fluid pressures, forces,

chemistries, temperatures, frequencies, and the internal mechanics of a variety of biological

systems through implantable MEMS devices will launch medical science into the

technological forefront and make current therapeutic technologies obsolete. The major

challenge towards implantable microsensors is the need for rugged packaging that can

withstand surgical sterilization initially, and long-term implantation into the harsh fluid

environment of a living system for an extended period of time.61,62,72,125

Packaging is an essential part of MEMS design and fabrication in order to protect the

micro-devices from environmental influences in vivo. It involves coating or encasing MEMS

devices within chambers that can shield the devices from harsh elements, while maintaining

electronic, mechanical, and biofunctionality (i.e., the electromechanical function of the

sensors in a biological environment). The functions of packaging are twofold; 1) to protect

the device from environmental degradation and, 2) to protect the internal in vivo environment

from the functioning device so that the environment is not compromised.61  Although there

is no general applicable packaging method for all MEMS based sensors, there are general

principles useful in packaging design.61,62   Protection of devices include the electrical isolation

of leads and device structures from moisture and humidity infiltration, mechanical protection

to maintain structural integrity of the device, thermal and optical isolation, and chemical

and biological isolation from invading elements. To date, MEMS sensors have not been

successfully implanted into the human body for the long-term monitoring of various

biological parameters due to the challenges the MEMS devices encounter when implanted

into a harsh internal biological environment.
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Numerous packaging challenges exist with the concept of implantable MEMS devices.

Such challenges include the protection of the MEMS devices from foreign body responses

within the human environment, low power consumption, delivering and anchoring the MEMS

device into targeted regions, biocompatibility of the materials composing each MEMS device,

robust design of the sensors and devices for patient safety, and long-term preservation of

the electronic viability of the implanted MEMS device. These existing challenges currently

limit the capabilities of implantable sensors. Protection from harsh environments involving

temperature fluctuations, humidity exposure, changes in chemistry, protein deposition,

biofouling, and other foreign body responses limit the functionality of these sensors.

Furthermore, there are other existing issues with respect to the wiring of MEMS devices for

power and signal transmission. Corrosion and breakage of wires is a common complication

once a device is implanted into a living environment for long-term function. The development

of a wireless micro-device for signal transmission is the ideal option for optimal performance

and survival for long-term implantation.

Once an implantable MEMS device is developed, it will require sterilization prior to

implantation into a living environment. Currently, gamma irradiation, steam, or ethylene

oxide gas are conventional surgical sterilization processes used to purge implants and surgical

tools of any infectious agents or foreign bodies prior to insertion into living tissue. Therefore,

the packaging surrounding the device must be able to withstand high temperature and

humidity, gamma irradiation, and ethylene oxide gas without degradation to the device or

its packaging. It is these challenges that have established the need for the development of

novel packaging coatings, chambers, and/or mechanisms that provide protection of an

implantable MEMS device from the surrounding internal environment.

 MEMS packaging utilizes many processes and toolsets similar to the fabrication of

MEMS device, and is just as labor intensive and costly as is the fabrication process. Currently,

it is the packaging of a MEMS sensor that is limiting the market potential and applications,
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especially for medical use. MEMS devices that are currently used, such as pressure sensors

and accelerometers, are marketed for external human use and are therefore, relatively easy

to package, making them commercially viable and inexpensive products. However, MEMS

packaging is application specific; for example, an implantable pressure sensor for monitoring

cardiovascular fluid pressures will require a significantly different packaging process than

an implantable MEMS based microarray for monitoring neural signal potentials of the brain.

The cardiovascular pressure sensor must remain intact while being inserted into delicate

tissue, avoid damaging or puncturing the tissue, and must be able to viably monitor the

pressures of the existing environment. On the other hand, the micro-array device must have

a means to contact the tissue and may puncture the tissue microscopically to record signals

from single neurons in the brain.  Both applications require significantly different packaging

mechanisms to allow for proper and efficient functioning of each device. Thus it is important

that the design of the packaging be concurrent with the development of a MEMS device for

a specific application at the time of project conception.72

Currently, few studies have investigated the use of wireless implantable sensing devices

for the transmission of in vivo diagnostics due to the numerous challenges that presently

exist with implantable medical devices. Even fewer studies have been performed to examine

the biocompatibility of sound packaging agents for the development of implantable MEMS

devices into the human body. Commercially available strain gauges have also been implanted

for the long-term potential of monitoring strain on spinal stabilizing fixation systems45, but

have remained unsuccessful due to similar challenges experienced by the MEMS devices.

Although strain gauges have been used conventionally for many years, few studies have

successfully implanted and packaged these gauges for their long-term use as a monitoring

system in vivo. Similar challenges such as wire breakage and corrosion, loss of fixation,

delamination of the gauge, loss of bonding to the host element, and loss of electronic integrity

have been experienced once implanted into the harsh human environment. There is existing

literature that discusses MEMS packaging and the challenges encountered with non-
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implantable MEMS devices, yet none have breached the potential of long-term use inside

the human body.

Therefore, the aim of this study was to evaluate numerous adhesives and coatings as

potential packaging agents with respect to their mechanical integrity after sterilization.

The end result will be to determine optimal coatings and adhesives that could maintain

adhesive integrity before and after surgical sterilization, as well as provide protection from

harsh elements for the potential use as implantable MEMS devices.

7.3  Methods

To evaluate packaging materials and their

mechanical responses to various surgical

sterilization techniques, commercially

available strain gauges were purchased and

mounted onto medical grade metals that are

currently used in the orthopedic surgical

implant industry. Rectangular titanium shams

(Ti6Al4V - 5 x 0.5 x 1 cm ) and medical grade stainless steel shams (316L, 1.4 x 1.1 x 3 cm)

served as the host materials. Two linear strain gauges of similar resistive ratings (120 Ω or

350 Ω) were mounted onto the surface of each metallic sham and randomly subjected to

either ethylene oxide or steam sterilization (Figure 7.1). Specific designated adhesives and

coatings were used to affix the gauges and to assess their mechanical integrity and durability

post-sterilization.

Figure 7.1:  Digital photograph of the
non-coated (a) and thinly coated (b) 120
Ω strain gauge on a titanium sham.
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7.3.1  Mounting and Coating of the Strain Gauges

Each sham was prepared in a standard manner for strain gauge mounting. This involved

sanding of the metallic surface in a sequential manner using three grades of abrasive grits

and degreasing with 100% ethylene alcohol. A conditioner (M-Prep Conditioner A,

Measurements Group Inc., Raleigh, NC) was applied using two passes, the first in circular

patterns, followed by a single swipe in one direction to dry. The surface was then neutralized

using M-Prep Neutralizer 5A, (Measurements Group Inc., Raleigh, NC) in a similar manner

following conditioning. The back surface of the strain gauge was placed onto the surface of

the glass slide and covered with cellophane tape using a sliding motion over the sensing

surface of the guide.

The non-sensing surface of each gauge was mounted using a thin layer of the adhesives

listed in Table 7.1 onto each metallic sham and following the manufacturer’s specifications

for gauge application. Each specimen was allowed to cure for 24 hours prior to the application

of the coating. Two coatings were investigated in this study. The coating was gently applied

to each gauge using a syringe containing either epoxy or Ep42ht in liquid form. One small

drop was applied over the gauge and allowed to cure for 24 hours for the Phase 1 samples.

In Phase 2, the coatings were applied with a small paintbrush in thin layers over the strain

gauges and allowed to cure for 24 hours. A four-point resistivity check was conducted on

each mounted, but non-coated strain gauge to validate the gauge resistivity prior to and

after sterilization. Measurement of the resistivity post-sterilization was necessary to evaluate

gauge integrity and to detect possible interruptions in the gauge wiring caused by application

of the adhesive. No change in the resistivity indicated there was no degradation or defect in

the strain gauge after sterilization. Finally, resistivity measurements were not feasible with

the coated gauges due to the lack of access to the metallic resistive pads, nor were they

feasible on the significantly thicker stainless steel shams due to geometrical challenges of

the host blocks.
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7.3.2  Sterilization Algorithm

Ethylene oxide sterilization was conducted through the Animal Surgical Unit at The

Cleveland Clinic Foundation (Cleveland, Ohio) following a standard 24 hour sterilization

process within an enclosed chamber  that allowed for aeration while monitoring the time,

temperature, humidity and the concentration of gas sterilant. Steam sterilization was

performed on the strain gauges in a standard steam autoclave utilizing a wrap/gravity

algorithm for a total cycle of 45 minutes, 25 minutes of steam under 30 psi at 121°C and a

10 minute dry cycle.

7.3.3  Determining Adhesive and Coating Integrity

Coating and adhesive integrity were blindly graded after sterilization. One independent

grader conducted a standard peel test to detail the consistency and adhesive integrity of

each of the mounted strain gauges. Ample sample sizes were used to concur with the

repeatability of the adhesive and/or coating integrities. This involved assessing the peel

strength of each gauge. The adhesive strength was graded initially with forcep manipulation

post-sterilization, and if the attachment was strong, a scalpel manipulation followed for

further strength assessment of the strain gauge attachment to the metallic sham. A grading

scale of 1 was deemed equivalent to a strong attachment, and 5 to a weak attachment and

bond integrity.

This study was conducted in three phases with the following three study aims listed below:

1. To conduct a preliminary assessment of available coatings and sterilization techniques

(Phase 1).

2. To conduct a refined assessment of optimal coatings and adhesives for strain gauge

attachment to medical grade materials for the further evaluation of adhesive and coating

performance and mechanical integrity after steam sterilization (Phase 2).



90

3. To conduct a narrower

assessment of coating and

adhesive integrity; an evaluation

of the coating spread and

mechanical integrity after steam

sterilization on the titanium,

316L medical grade stainless

steel, and glass shams (Phase 3)

7.4   Results

7.4.1  Phase 1

The purpose of Phase 1 was to

examine possible coatings and

adhesives that would prove viable

and structurally sound after ethylene

oxide or steam sterilization. This

phase served as a pilot assessment

to detail the advantages and/or

disadvantages of ethylene oxide and

steam sterilization. It further

evaluated a variety of adhesives and

coatings and was used to narrow the

possibilities.

Table 7.1 illustrates the coatings

and sterilization techniques used for

Phase 1. Four coatings and adhesives were evaluated for adhesive strength after exposure to

Key: E-Biocompatible Epoxy, P- Biocompatible Polyurethane, M-M600 strain bond

Table 7:1:  Phase 1 study design outlining adhesives and
coatings for eight titanium shams housing a total of sixteen
350Ω strain gauges.  Four shams were exposed to ethylene
oxide sterilization and the remaining four shams were exposed
to stream sterilization.

Table 7.2:  Phase 1 preliminary results for the ethylene oxide
sterilization assessment.  Adhesive strength grades are listed,
where a grading scale of 1 was deemed equivalent to a strong
attachment, and a 5 was deemed equivalent to a weak bond
integrity.  (Key: E-Biocompatible Epoxy, P-Biocompatible
Polyurethane, M-M600 strain bond).

Sterilization 

Process 

Adhesive 

Only 

Adhesive & Coating 

Combination 

Ethylene Oxide   Strain Gauge 1 Strain Gauge 2 

M MP 

ME

E EP 

EE 

Steam Strain Gauge 1 Strain Gauge 2 

M MP 

ME

E EP

EE 

ADHESIVE STRENGTH GRADES PRE- AND POST STERILIZATION 

STEAM STERILIZATION 

Adhesive Coating Pre-sterilization Post-sterilization 

M 4 5

M P 2 3 

E 1 2

E P 1 2 

E  1 3 

E E 3 3 

M  1 1 

M E 5 5

ETHYLENE OXIDE STERILIZATION 

Adhesive Coating Pre-Sterilization Post-sterilization 

M  3 4 

M P 2 4

E  1 2 

E P 3 3

E  1 3 

E E 2 2 

M 1 1

M E 2 2 
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either ethylene oxide or steam sterilization. A conventional strain gauge adhesive, M600

(M-Prep Conditioner A, Measurements Group Inc., Raleigh, NC), was used as the adhesive

for eight titanium shams with dual mounted gauges (350Ω) that were exposed to ethylene

oxide sterilization or steam sterilization. Four of the titanium shams, housing two strain

gauges each, were exposed to ethylene oxide sterilization and the remaining four shams

with strain gauges were exposed to steam sterilization. Two coatings were used on these

shams: 1) polyurethane coating, known as N,N-dimethylacetamide, (Epo-Tek, Epoxy

Technology, Billerica, Massachusetts), and 2) Biocompatible epoxy 301(Epo-tech).

Table 7.2 represents a summary of the adhesive strengths for non-coated and coated

strain gauges prior to and after sterilization. Two strain gauges resided on each sham, one

with adhesive only, and the second with the same adhesive and a designated coating, as

shown. Sterilization consisted of either ethylene oxide or steam sterilization.

For the steam sterilization series on the titanium shams, the biocompatible epoxy as an

adhesive performed optimally, and the epoxy combined with a polyurethane coating

demonstrated significant bonding to the titanium. However, polyurethane possessed slight

osmotic permeability and was therefore, not an ideal candidate for long-term coating of

strain gauges due to water infiltration disrupting the coating seal. This was observed

microscopically.  As an adhesive, the epoxy possessed superior peel strength. When the

epoxy was coupled with itself as a coating, it performed reasonably well with a score of 3.

However, the placement of a large bolus of epoxy deposited onto a titanium sham

accompanied with the stiffer elastic modulus of the epoxy after it was cured, contributed to

a reduced adhesive strength to the titanium only when it was coated in the manner described.

The adhesive integrity improved when the epoxy was applied in a thin layer with a paintbrush

to coat the strain gauges. The M600 adhesive, although not a biocompatible substrate,

demonstrated adequate adhesive strength prior to steam sterilization, but performed sub-

optimally after steam sterilization.
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The ethylene oxide sterilization group demonstrated superior adhesive strength for the

biocompatible epoxy. Furthermore, the epoxy provided superior adhesive strength as a

coating. The polyurethane did not withstand ethylene oxide sterilization, and puckered upon

exposure to it. This was evident by the weak  bond attachment and the lack of adhesion to

the titanium after sterilization. The M600 performed favorably as an adhesive, but again

served only as a control and is not suitable for human use.

Overall, the biocompatible epoxy demonstrated superior adhesive strength to the

prepared titanium shams for both types of sterilization processes, and performed optimally

as a coating material. As a result, it was further evaluated in phases 2 and 3 of the study,

leading to altering the deposition of epoxy for coating purposes in phase 2 due to the stiffer

elastic modulus of the cured material. The eventual goal of the epoxy would be to serve as

both an adhesive and coating for strain gauges mounted on orthopedic implants for the

future in vivo long-term monitoring of implant strains.  It was clearly evident that brush

application of the coating was superior to globular placement with respect to maintaining

integrity. Currently, there are novel coatings used on spinal implants that are deposited via

plasma spray and remain durable after aggressive mechanical testing. Therefore, the brush

application of the coatings, although crude, could be analogous to the plasma spray

application. With respect to steam sterilization, it did not perform as ideally as ethylene

oxide sterilization. However, there are advantages with this technique including accessibility

in numerous medical facilities, durability, ease of use, and inexpensive.

7.4.2  Phase 2

The purpose of Phase 2 was to conduct a further refinement of the preliminary Phase 1

study. Steam sterilization was chosen as sterilization of choice for this phase of the study

due to its low cost, ease of use, widespread accessibility, and immediate availability. For

this phase, forty-two titanium shams and nineteen stainless steel shams were used to house

dually matched strain gauges. One strain gauge per sham was not coated and was used for
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resistivity measurement

purposes, while the

matched gauge was

coated. The adhesive and

coating combinations are

illustrated in Table 7.3. A

greater number of

titanium shams was used

due to the widespread use

of titanium as the dominant orthopedic implant material.  In this phase, a novel biomaterial,

a fast curing polymeric system termed Ep42ht, (Master Bond Inc., Hackensack, NJ) with a

mix ratio of 10:4 was introduced into the study for investigation. All of the shams in Phase

2 were subjected to steam sterilization and the adhesive integrity and coating appearance

were graded.

The biocompatible epoxy

and the fast curing polymer

(Ep42ht)  and epoxy were

evaluated as the adhesives and

coatings for this phase. Both

120Ω and 350Ω strain gauges

were used for evaluation, and the

epoxy and Ep42ht were assessed

as an adhesive, as well as a

coating. Each sham was steam

sterilized following the algorithm

detailed previously in phase 1.

Table 7.3  The study design, adhesives, coatings, and
resistance of the strain gauges evaluated for mechancial
integrity after steam sterilization for Phase 2.

Host Material Adhesive Coating Resistance of Strain 

Gauges (Ω)

 053  E E )81( muinatiT

 021 th24pE E )41( muinatiT

 021 th24pE th24pE )01( muinatiT

 021 th24pE E )9( sselniatS

Stainless (10) E Ep42ht 120 & 350 

Table 7.4:  Summarized grading of the adhesive
durability of 120 Ω strain gauges to the metallic shams
post-steam sterilization for Phase 2 of the study.

Titanium 120 Ohm Strain Gauges 

Adhesive / Coating No Coating Coating 

E / E 1 1

E / Ep42ht 3 2

Ep42ht / E 2 2

Ep42ht / Ep42ht 2 2

Stainless Steel 120 Ohm Strain Gauges

Adhesive / Coating No Coating Coating 

E / E 1 2

E / Ep42ht 1 2

Ep42ht / E 2 2

Ep42ht / Ep42ht 1 1
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Coating and adhesive integrity was blindly graded post-sterilization in the same fashion

performed in phase 1.

Table 7.4 lists the adhesive durability grading scores for E and Ep42ht utilized as adhesive

and coating agents for 120 Ω strain gauges mounted on titanium and stainless steel shams.

Epoxy used in combination as an adhesive and a coating demonstrated the strongest

attachment for the titanium shams, while epoxy as an adhesive combined with Ep42ht as a

coating agent was the weakest on titanium. Ep42ht as an adhesive, when combined with

itself as a coating, did not demonstrate as strong a bond to the titanium, as did the epoxy.

However, when used as both an adhesive and coating agent, the Ep42ht was superior to the

epoxy on stainless steel.

Phase 1 concluded that application of the coatings as thin layers using a paintbrush

application was essential for a strong adhesion. Using a syringe as an applicator for epoxy

as an adhesive and coating, created a large bolus of material that did not effectively bond to

the titanium or the stainless steel, and was easily peeled off. However, if applied as a thin

layer with a paintbrush, the coating material was distributed over a greater surface area of

the sham, provided a lower profile, and demonstrated greater bonding strength due to the

lower mass of material.

The electronic

resistivity of each non-

coated gauge was

measured before and

after steam sterilization

and is demonstrated in

Table 7.5. The results

for each non-coated

strain gauge mounted to

Table 7.5:  Summarized table of the electronic resistivity
measurements (Ohms) for the non-coated strain gauges on
the titanium shams before and after steam sterilization for
Phase 2.

Titanium Pre - steam Post - steam 

E 122.9 (0.8) 120.3 (2.1) 

EP42hHT 119.6 (0.2) 119.7 (0.4) 

Stainless Steel 

E 119.6 (0.3) 119.5 (0.4)

EP42hHT 119.4 (0.3) 126.2 (2.3) 
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titanium was not statistically different after steam sterilization (P>0.05). A total of 27 strain

gauges used epoxy as an adhesive and/or coating. A power analysis for a two-tailed analysis

with and alpha of 0.05 yielded a sample size of n=20 for this group. Unfortunately, the

thicker geometry of the stainless steel shams limited the ability to quantify resistivity due to

limitations in the geometrical dimensions of the test stage. The stage displacement was

limited and reached maximal displacement that was not suitable for the stainless steel blocks.

Additionally, resistivity measurements were similarly limited for coated gauges as well.

However, the Phase 2 results concluded that steam sterilization did not alter the electronic

performance of the non-coated gauges as indicated by the resistivity measurements in Table

7.5. There was very little loss in resistivity, <5%.

7.4.3  Phase 3

The goal of this phase was to evaluate the material spread and mechanical integrity

post-steam sterilization for a selected coating on titanium, stainless steel, and glass hosts.

Material spread can be defined as the change in the surface area of the epoxy on the host

material (titanium, medical grade stainless steel, or glass)  subjected  to steam sterilization.

Bio-compatible epoxy 301 (Epo-tech) was chosen as the coating of choice for further

assessment. The titanium and stainless steel shams were of similar size and chemical

composition as those used in the previous phases. All substrates were cleaned, degreased,

and conditioned in a manner identical to Phase 1. The glass substrate consisted of glass

slides that are conventionally used to mount biological tissue sections for histological

preparations. Each substrate was marked with a circle 1 cm in diameter. This circle served

as the boundary guideline for accurate and repeatable placement of the coatings used in this

phase of the study.

The biocompatible epoxy was mixed in the prescribed ratio (4:1, mixture to curing

agent) and 1 cc of epoxy in its liquid state was gently applied in a controlled manner using
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a syringe to each designated circle onto the substrate. Care was taken not to apply the epoxy

beyond the boundary area. Each substrate housing two accurately scribed circular regions

of epoxy was digitally photographed and the circular regions were measured using a software

image analysis system, (Scion Image, National Institutes of Health, Bethesda, Maryland).

To obtain actual circular dimensions, each image was calibrated against known dimensions

measured from a standard placed in each photograph. Following this, each substrate with

the circular epoxy regions were subjected to steam sterilization in the manner discussed

above. Digital photography was repeated for all the substrates post-steam sterilization.

Each area of the epoxy regions was digitally analyzed and quantified for the pre and

post-steam sterilization conditions. The horizontal and vertical dimensions of each imaged

areas were measured, and an elliptical or circular area analysis was conducted. Descriptive

statistics and a student’s t-test were used to detect statistical differences in the material

spread of the epoxy

deposits before and after

steam sterilization.

The final phase of the

study used the results of

Phases 1 and 2 and further

evaluated material spread

and mechanical integrity

after exposure to steam

sterilization. Table 7.6 lists

the measured areas of the epoxy deposits before and after steam sterilization.  An increase

in material spread (less than 10%) was noted for the epoxy mounted to the titanium and

stainless steel shams. The glass shams demonstrated a larger degree of material spread

(23.6%). However, the amount of material spread for all three host materials was not

statistically different between the pre and post-steam sterilization conditions (p$0.05).

Table 7.6:  The areas measured of the epoxy deposits
before and after steam sterilization to exam material
spread.  There was no statistically significant difference
between epoxy deposit areas before and after steam
sterilization.

Area 

Pre-sterilization 

(cm2)

Area 

Post-sterilization 

(cm2)

Percent 

Increase in 

Spread 

Titanium 2.41 (0.61) 2.59 (0.57) 7.5 

Stainless 

Steel 3.03 (0.29) 3.29 (0.44) 8.6 

Glass 1.44 (0.24) 1.78 (0.61) 23.6
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7.5    Conclusion

Overall, no adverse effects in electronic performance, material spread, and mechanical

integrity were observed for the adhesives and coatings after exposure to steam sterilization.

This form of sterilization was chosen as the conventional method of sterilization due to its

high availability, inexpensive cost, ease of use, efficient nature, and negligible effects upon

the test materials. Resistivity served as an ideal indicator to examine the electrical and

mechanical integrity of the strain gauges and was shown not to be compromised after

sterilization.

The assessment of the coatings demonstrated that the biocompatible epoxy performed

favorably as a sterilizible adhesive and coating agent for both titanium and 316L medical

grade stainless steel.  However, when the epoxy was applied with a syringe as a thick bolus

for coating purposes, the coating bonded with the adhesive and formed a firm mass that

easily lifted from the metallic shams. The Ep42ht fast curing polymer also performed

favorably when used as both an adhesive and coating on the stainless steel, but not as well

as the  epoxy (coating and adhesive) on titanium. A combination of epoxy and Ep42ht for

either an adhesive and/or coating was not ideal. The optimal situation was to use each

substrate as both an adhesive and a coating agent to protect each mounted gauge, while

maintaining a thin layer of coating. The application of thin layers of coating materials by

paintbrush or other controlled processes such as plasma spray or vapor deposition will

prevent easy removal of the coating material due to the application of multiple thin layers

for coating indications.

Biocompatible epoxy served as a superior adhesive and ideal coating agent when

applied as a thin layer. The durable exterior and stiffer elastic modulus of epoxy lends itself

to fluid impermeability and resistance to the effects of intense temperatures necessary for
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surgical sterilization. One limitation to epoxy is the lack of flexibility of the substrate that

could lead to issues of cracking and chipping once in vivo related to excessive and repetitive

stresses. Furthermore, biocompatible epoxy is readily available and practical for in vivo

use, as opposed to Ep42ht, which tends to be expensive and difficult to obtain in large

quantities.

The future of implantable MEMS relies heavily on the packaging of such devices to

insure resistance to decay and degradation of the harsh chemical and mechanical environment

of a living system. The chemical, electrical, optical, mechanical, and/or biological interfaces

which MEMS devices will encounter must be able to maintain electronic, mechanical, and

structural integrity for the eventual implantation and long-term monitoring within a living

system. Ideally, generic packaging systems should be developed to house single or multiple

modes of implantable MEMS devices along with corresponding electronics that drive each

system. Coatings can be applied using plasma spray technologies to ensure a uniform

distribution of thin protective layers capable of withstanding repetitive motions and excessive

forces.
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CHAPTER VIII

CONCLUSIONS,  STUDY LIMITATIONS,

AND  FUTURE  WORK

8.1  Conclusions

Spinal fusion with accompanying spinal instrumentation has been the gold standard for

stabilization of the degenerative spinal segment. The ideal outcome of a fusion is to create

a balanced environment where the spinal instrumentation provides early stage immobilization

to allow for bone incorporation at the site of the bone graft.6,7,59,83 Once bone has fully

incorporated and remodeled at the interbody site, the spinal implant no longer bears a

significant portion of the axial load, the load is shared with the bone graft and implant until

the fusion site is solidified bone, at which point the load is transferred and borne by the

fused site.  One of the current challenges with fusion surgery is the ability to determine the

status of bone healing during the fusion process using conventional radiographic techniques.

Often there is a 20% underestimation of the fusion grade by radiographic assessment. Ideally,

a system that can measure the real-time bone healing process of a fusion in vivo can determine

the status of healing with the necessary accuracy that would make radiographic assessment

obsolete.

The development of a microsized implantable biosensor using microelectromechanical

sensor technology (MEMS) to monitor in vivo biomechanical parameters such as tissue

healing has the potential to revolutionize the medical industry. The advantages for
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implementing MEMS technology in the development of medical devices include; (1) the

ability to microsize medical devices for the potential use of in vivo applications, (2) the

reproducibility of the devices after a prototype has been developed, (3) the electronic accuracy

of MEMS devices, and (4) the ability to manufacturer numerous replicas of each device at

low cost.

Currently,  MEMS technology is in its infancy. Silicon-based MEMS technology is

starting to be utilized in the medical field, as few of the materials used for orthopedic and

cardiac implant markets are suitable for use in the fabrication of MEMS devices. Therefore,

additional work must be performed to fully characterize the safety and efficacy of implantable

MEMS sensors into a living system. Tissue healing can generate many responses in vivo

that have the potential to be measured and quantified. Changes in the local tissue temperature,

chemistry, pressures, and loads may all signal a change in the tissue’s response to various

stimuli. In the spine, changes in intradiscal pressures represent the degenerative nature of

the disc, and can correlate with the biomechanical integrity of the disc. Higher pressures

within a disc are associated with an increase in disc degeneration identified by compromised

disc hydration and a loss of disc height.69,86 This would make the disc less efficient in load

bearing, thus transferring the loads to other regions of the spine, such as the facets, and

further augmenting the degenerative cascade of the motion segment and adjacent segments.

Furthermore, bone is a viscoelastic tissue that responds to mechanical stimuli and can be

measured in terms of loads and pressures.91,113, 114, 115

This dissertation presents the reserach necessary to validate the concept of measuring

in vivo biomechanical parameters, and the feasibility of using implantable telemetric sensor

technology to monitor changes in pressures and axial forces during bone healing. Initially,

an in vitro model was established to address the feasibility of measuring altered

biomechanical parameters during early bone healing.  A simulated in vitro bone healing

model utilizing polymethylmethacrylate (PMMA), (an orthopedic cement that possesses an

elastic modulus similar to bone), demonstrated changes in the graft site pressures and axial
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loads along the ventral cervical plate that was used to immobilize the fusion site during a

conventional anterior cervical fusion procedure.  Noticeable differences in the pressure and

force trends were observed for different stages of the simulated stages of healing. However,

the in vitro study described in Chapter 3 demonstrated that pressure served as a better

indicator of bone healing due to the direct contact and vicinity of the pressure sensors

placed at the location of the bone healing site. The ventral cervical plate that functioned as

an active force transducer to monitor the loads along the spine was placed ventral to the

bone graft and bone healing site and had divergent fixed screw fixation at this margin. This

would have placed a localized compressive load at the ventral margin of the vertebral cortex,

thus demonstrating localized compressive loads in the plate that may not be mimicked by

the pressures measured at the bone graft healing site.  Theoretically, the pressures measured

at the bone graft site should increase with simulated bone healing (as observed) and the

forces along the ventral plate should decrease with bone healing (not observed).  The localized

compressive forces related to the divergent screws and accompanying subsidence measured

across the bone graft site may have masked  the ‘offloading’ of the plate once bone started

to heal and share in the axial support.

The in vivo evaluation of monitoring pressure at the bone graft site demonstrated that

monitoring altered biomechanical pressures such as pressures and forces in a wireless fashion

was feasible within a living system.  Although a solid fusion was not achieved at the bone

graft site after six months in the goat cervical spines due to unforeseen complications, the

pressures measured at the bone graft site did reveal the presence of the pseudarthrosis.

Erratic pressures were observed following the initial subsidence phase of healing, during

which interface pressures were elevated. This erratic pressure fluctuation was intuitively

associated with motion and pseudoarthrosis.  If stability were present, motion at the graft

site would not have occurred and fluctuations of pressure at this site would similarly not be

observed.  Erratic fluctuations of pressure were consistent with pseudoarthrosis, as

demonstrated radiographically, while elevations of pressure were consistent with early healing
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and inflammation. A cascade of events occurred with the ensuing non-union. A rise in pressure

was observed during the early stages of bone healing, however, once the bone graft started

to fail and early signs of a non-union were forming, the pressures revealed erratic patterns

indicative of excessive motions across the graft site.  As the bone graft started to resorb

during the pseudarthrosis cascade, the motions across the bone graft increased and the

pressures grew irregular. Overall, the in vivo study established a model that provided a

living environment that was capable of monitoring altered biomechanical parameters over

time, and have the potential to serve as markers to determine the status of tissue, whether it

is a positive or negative outcome.

It appears that both pressure and load can serve as indicators for bone healing and

fusion incorporation. The later chapters (5-7) in this work evaluate the feasibility of

incorporating MEMS technology into the fabrication of microchips for long-term

implantation into living systems. Due to the complications associated with conventional

telemetric medical devices, the future potential of developing a microscopic, wireless,

implantable biosensor is an attractive prospect for orthopedic applications.  However, general

concepts of feasibility for implanting MEMS sensors such as; packaging, sterilization, and

biocompatibility must be assessed to determine the potential of long-term implantation and

surrounding tissue reaction to MEMS based biosensors. The electronic integrity of MEMS

pressure sensors post-sterilization was evaluated to ensure that conventional sterilization

techniques (steam or ethylene oxide) will not damage the electronic capacity of the

microchips, but will provide a sterile sensor with minimal risk of infection. The epoxy and

Ep42ht polymeric coatings examined for packaging force transducers and potential MEMS

sensors served as suitable adhesive and coating materials that were not compromised by

conventional sterilization means, whereas, polyurethane coatings demonstrated permeability

to fluids and would not be an ideal coating material. Finally, biocompatibility was evaluated

by implanting a series of MEMS fabrication materials and MEMS pressure sensors into the

intervertebral disc and vertebral bone for a maximum of six months. Histological analysis



103

after six-months of implantation into a series of goat models did not reveal evidence of any

adverse foreign body response, inflammation, infection, or excessive fibrous tissue reaction

in the caprine spinal tissue to the implanted MEMS materials and MEMS pressures sensors.

8.2   Study Limitations

There were limitations with respect to the work presented in this dissertation. The in

vivo goat study provided the greatest challenges.  The current lack of a commercially

available, viable, wireless telemetric pressure sensor that could withstand long-term

implantation  limited the capabilities of recording pressure alterations for long term bone

healing. Additionally, radiographic identification of a microscopically sized MEMS chip

posed significant challenges. The radiographic capabilities of MEMS sensors and MEMS

materials were investigated and demonstrated that the microscopic nature of the sensors

did not provide a dense enough material to be detected by radiographic means (Figures 8.1

and 8.2). The MEMS materials (10mm x 10mm x 0.5μm) were placed in saline beakers

and radiographed, followed by placement of the MEMS sensors into the intervertebral disc

with repeated radiographic imaging. A top view of the sensors and MEMS materials were

not visible radiographically. A sagittal (lateral) view of an implanted spinal segment did

reveal the presence of the MEMS chip (silicon 10mm x 10mm x 0.5μm), however, this

would not suffice for post-surgical assessment of sensor placement.

                                                   

Figure 8.1: Top View: MEMS chips in a saline bath did

not demonstrate visibility radiographically.
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Figure 8.2: Side View: Placement of a MEMS chip in the

 intervertebral disc of a human cadaveric lumbar segment.

The side of the chip is visible due to the density of the chip in that view.

Realistically, MEMS sensors will be significantly smaller than the 10mm x 10mm x

0.5μm sized MEMS wafer chips used in this radiographic evaluation. Therefore, sagittal

visualization capabilities will be inadequate for post-surgical assessment of chip location.

The sensors must potentially be visible in the oblique and anteroposterior radiographic

planes for tracking chip positioning during tissue healing, as this would be essential to

ensure the warranted measurements are being accurately monitored.

The available telemetric technology used in this dissertation demonstrated the

feasibility of in vivo recordings, yet the adverse reactions of the local tissue to the catheter

and gel-based sensor technology interfered with the tissue healing process.  Furthermore,

the telemetric ventral cervical plate that utilized strain gauges to form a load transducer for

recording load transmission along the cervical plate also exhibited challenges with respect

to potential wire breakage and gauge delamination if used for long-term in vivo implantation.

Once implanted into the goat model, there was cracking of the polymeric coating (parylene

and silastic coatings) within one week of implantation (Figures 8.3A and 8.3B).

This resulted in immediate fluid infiltration and failure of the ventral plate electronics

housed in the goat neck.  Although, the load transducer along the ventral cervical plate
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demonstrated in the in vitro study that load

transmission along the plate can be quantified, the

current means of implantable technology with respect

to pliable coatings is still inadequate to resist cracking

and biodegradation, resulting in failure to sustain long

term implantation. Thus, there is a current void in

availability of compliant biocompatible device

coatings and adhesives that will prevent cracking,

crazing, biodegradation, delamination, and wire

breakage for MEMS devices and that would prevent

fluid infiltration into the electronics.  However, it

could be concluded that the parylene and silicone

combination used in the present study was not ideal

for this application.

8.3  Future Work

Nevertheless, the ‘proof of concept’ goal of

this study, that is the ability to monitor in vivo, altered

biomechanical parameters (pressure and force) related to early bone healing, was achieved.

The limitations discussed above further reiterate the need for additional research to develop

a completely wireless encapsulated microsized biosensor that can be implanted long-term

to further evaluate implant performance for numerous technologies, including motion

preserving orthopedic devices.  Improved and efficient clinical methods for telemetrically

Figure 8.3A:  Checking and
crazing of the parylene and
silastic coating on the wires
leading to the ventral plate.

Figure 8.3B:  Large cracks
observed in the coating expos-
ing the wire leading to the
battery pack.
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assessing in vivo pressures are eagerly anticipated, thus leading to the development of a

microsized implantable biosensor using MEMS technology. An ideal  implantable coating

of these  sensors that resist long term biodegradation, crazing, and cracking during

implantation that does not cause adverse tissue reactions requires additional research. Novel

polymeric coatings that possess the compliant properties to respond to varied loading rates

are on the forefront of development and are not yet commercially available for human use.

The challenges discussed for radiographic assessment of the MEMS chips post-operatively

require additional innovation. Deposition of metallic markers of a substantial size that will

suit radiographic visibility could alleviate this limitation. Currently, the orthopedic implant

industry incorporates tantalum markers in their polymeric implants that are less than 1mm

in diameter and allow for post-surgical radiographic visibility. Finally, optimization of the

electronic capabilities and data transmission of an implantable MEMS sensor are needed to

accommodate various implantation depths and allow for multiple sites of tissue recordings.

Overall, this dissertation work contributed the necessary groundwork to validate

the potential for in vivo monitoring of bone healing. The concept of measuring the mechanics

associated with real-time tissue healing can eliminate the need for conventional post-

symptomatic diagnostic technologies (i.e. radiographs, MRI, CT). Further evaluation of the

MEMS materials combined with novel compliant coatings and optimized electronics used

for the potential fabrication of such biosensors is needed to increase the lifespan of

implantable microsized biosensors.

A series of peer reviewed publications were generated from the work presented in

this dissertation. The feasibility of incorporating MEMS into miniature sensing platforms

to monitor in vivo tissue healing was validated by the early in vitro and in vivo studies

previously discussed in Chapters 3 and 4, which were published in the Journal of

Neurosurgery, Spine 2007 and the Spine Arthoplasty Society Journal, 2008.35,36   Once it

had been determined that the concept of using implantable sensors to monitor fusion healing

was feasible, the factors that can affect MEMS lifespan during long-term implantation were



107

investigated as reported in Biomedical Microdevices in 2003 and 2007.37,38  Clearly, MEMS

technology offers the miniaturization necessary to develop small sensing platforms that

will not negatively impact the surrounding tissue environment, while utilizing biocompatible

materials to fabricate small sensors that can be  sterilized for long-term tissue implantation.
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