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ROLE OF CD36 IN PLATELET FUNCTION 
  
 

ARUNIMA GHOSH 
 
 

                                               ABSTRACT 
 

 

CD36 is a Class B scavenger receptor expressed on platelets, erythrocyte 

precursors, monocytes, microvascular endothelial cells, epithelial cells, 

adipocytes, and cardiac and skeletal myocytes. It recognizes multiple ligands 

including thrombospondins, oxidized phospholipids and apoptotic cells, and has 

been shown to play a role in phagocytosis, angiogenesis and atherosclerosis.  

The function of CD36 on platelets is incompletely characterized, but our group 

has recently identified CD36 on platelets as a signaling receptor which can 

modulate platelet function by binding to ligands such as oxidized LDL. 

Endothelial cell (EC) derived microparticles (MP) have been identified in the 

circulation of patients with diseases such as diabetes, anti-phospholipid 

syndrome and acute coronary syndrome in which patients are prone to arterial 

thrombosis, and thus platelet activation and aggregation play a pivotal role. 

Because EC MP express phosphatidyl serine (PS) on their surfaces, a potential 

CD36 ligand, we hypothesize that MP may bind to platelets via a PS-CD36 

interaction and function to transmit an activating signal, thereby promoting a 

prothrombotic state.  



vii  

To test this hypothesis, we first isolated EC-derived MP by stimulating 

human umbilical vein EC with TNFα and cyclohexamide according to a 

previously published protocol.  MP were characterized and quantified by flow 

cytometry and shown to express CD105 and PS.  Binding of MP to platelets was 

detected and quantified by flow cytometry and immunofluorescence microscopy.  

Platelet activation was assessed by aggregometry and flow cytometry.  Washed 

human platelets (CD105 negative) were incubated with EC-derived MP at a ratio 

of 1:9 and analyzed by flow cytometry with a fluorescence tagged anti-CD105 

dye) positive MP formed rosettes around (Calcein-Green Tagged) platelets.  With 

both the flow cytometry and microscopy assays, platelet-MP association was 

inhibited by addition of anti-CD36 antibody or by using platelets from CD36 null 

donors. This inhibition by CD36 antibody was statistically significant (p=0.02). 

Furthermore, pretreatment of platelets with other CD36 ligands such as oxLDL 

inhibited MP-platelet association by more than 50%.  Next we determined the 

functional effect of the MP-platelet association.  We observed a significant 

increase in the rate and extent of platelet aggregation to low concentrations 

(2µM) of ADP and an increase in platelet secretion (measured as surface P-

selectin expression) when platelets were incubated with EC-derived MP prior to 

addition of agonist.  This effect was markedly diminished in platelets from CD36 

null donors and also inhibited by pre-incubation with anti CD36 antibody.  To test 

the MP-platelet interaction in vivo, carotid arteries were injured by FeCl3 in wild 

type and CD36 knock out mice. The thrombosed arteries were sectioned and 

immunostained with an endothelial cell specific antibody to CD105 (red) and a 
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platelet specific antibody to CD61 (green). We reasoned that CD105 staining of 

thrombi would reflect incorporation of EC-derived MP into the thrombi.  We 

observed significantly more CD105 staining within the thrombi from wild type 

mice compared to CD36 null mice,  

We thus propose a model where CD36 ligands presented to platelets 

renders them “hyperactive” predisposing patients to pathological thrombosis. It is 

also possible that CD36 ligands such as EMPs, generated during an acute 

thrombotic event, could increase the thrombotic response in a CD36 dependent 

manner by signaling platelets in a positive feedback loop. 

CD36 expression levels have been reported to vary significantly among 

normal human subjects.  We thus hypothesized that levels of expression in an 

individual donor would correlate with platelet reactivity in response to CD36 

ligands.  We developed a quantitative flow cytometric technique to measure 

CD36 surface expression on platelets and studied 32 normal healthy volunteers. 

We found that expression levels were highly variable ranging from as low as less 

than 2000 molecules per platelet to more than 14000 molecules per platelet.  We 

then replicated this study in a larger population (567) of subjects who came for 

screening at the Cleveland Clinic Cardiac Catheterization lab.  To assess 

whether this variability of CD36 expression had a functional effect, donors were 

selected from high, medium and low expressing groups, and their platelet 

reactivity to oxLDL was analyzed by flow cytometric techniques. Results showed 

a very good correlation of platelet activation by oxidized LDL with levels of CD36 

expression. 
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Having shown that CD36 expression levels varied among individuals but 

was consistent over time in any single donor we hypothesized that a component 

of the variance was heritable.  We identified 10 tagged SNPs in the CD36 gene 

from the International HapMap consortium website. DNA from the 550 subjects 

described above were then genotyped for the tagged SNPs and 3 SNPs were 

found to be significantly associated with expression level (rs3211864, p value 

0.023, OR=0.55; rs3211932, p value=0.02, OR=0.617 and rs1537593, p 

value=0.03, OR=1.067).  For all of these SNPs the minor allele was associated 

with lower levels of CD36 expression.  These data suggest that the variability of 

CD36 expression on platelets is at least in part genetically determined and 

together this phenotype-genotype can affect platelet function.  
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CHAPTER I 
 
       INTRODUCTION 

 
PLATELETS  
 
 
 

The mammalian hemostatic system is a defense mechanism whose 

function is to preserve the integrity of the high-pressure circulatory system. An 

intact vessel wall lined by endothelial cells maintains an inert surface that helps 

to traffic blood flow without interaction of the blood cell components 

(erythrocytes, leukocytes and platelets), or the soluble plasma proteins required 

for blood coagulation with the endothelium. Platelets are anucleated cells that 

originate from their precursors, the megakaryocytes and “circulate in the blood 

surveying the integrity of the vascular system” (Ruggeri, 2000). When the lining 

of the vessel wall is disrupted, platelets are engaged by the body’s defense 

mechanism on the exposed subendothelium to form a clot and thereby seal the 

leak in the blood vessel. However platelets cannot distinguish between traumatic 

wounds in the vessel lining and other potentially pathogenic “lesions” on the 

vessel wall and can form thrombi at sites of ruptured atherosclerotic plaque. The 
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otherwise beneficial defense mechanism, now becomes an important cause of 

heart attacks, strokes and peripheral vascular diseases. 

 

Platelet adhesion: 

The first step in hemostasis is platelet adhesion which is highlighted by the 

platelet-subendothelial matrix interaction. The constituents of the exposed sub 

endothelium including collagen, von Willebrand factor (vWF), fibronectin, laminin 

and thrombospondin mediate this interaction. Platelets bind to vWF via platelet 

membrane glycoproteins GP1b-IX-V complex (Fig 1). The history of this 

discovery dates back to 1948 when Bernard and Soulier reported two children of 

consanguineous parents with a mucocutaneous bleeding disorder, giant sized 

platelets and thrombocytopenia (Lopez et al., 1998). Later, based on the 

pioneering studies by Nurden and Caen that identified a defect in platelet GP1b 

as a cause of Bernard Soulier syndrome (Caen et al., 1976; Nurden and Caen, 

1975), many others have provided important information about the interactions 

between platelet glycoprotein receptors GP1b and GPIIbIIIa (α2bβ3) with vWF. 

vWF-GP1b interaction can transmit signals that initiate α2bβ3 activation (De Marco 

et al., 1985; Kasirer-Friede et al., 2004). This receptor complex allows firm 

anchoring of platelet monolayer to the vessel wall. Also, it has been shown that in 

conditions of high shear as seen in arterioles or larger arteries, it is vWF that 

mediates stable surface adhesion (Savage et al., 1996). The effect of shear may 

explain both the very large size and the multimeric structure of vWF. Collagen 

 2



also contributes to platelet adhesion by binding to α2β1 and GPVI (Clemetson 

and Clemetson, 2001).  
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Fig 1. Schematic diagram showing the classical platelet adhesion, 
activation and aggregation. Adhesion involves interaction of the specific 
platelet receptors with collagen and vWF. Adhesion leads to platelet shape 
change and release of granules (ADP, TxA2) and activation. There are specific 
G-protein coupled receptors for ADP (P2Y12 and P2Y1) and TxA2. Finally, 
platelet aggregation is a result of the cross-linking of activated α2bβ3 molecules 
expressed on two different platelets by fibrinogen or vWF (Adapted from 
“Antiplatelet drugs” G.J. Hankey and J.W. Eikelboom, The Medical Journal of 
Australia) 
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Platelet activation: shape change: 

The adhered platelets undergo shape change and activation. Shape 

change is typically described as a change from the discoid form to a spherical 

form. The platelet granules then retreat towards the center and finger like 

filopods are extended from the surface leading to spreading of the platelets 

(Hartwig, 2006). Reorganization of the actin cytoskeleton and intracellular 

signaling drive the alterations in the platelet morphology (Maxwell et al., 2006). 

Shape change is very rapid, beginning within seconds and completed within a 

minute after exposure to agonists.  

 

Platelet activation: secretion: 

The initial platelet “plug” now undergoes “extension” by recruitment of 

more platelets (Fig 3). Recruitment is mediated by the local accumulation of 

molecules that are secreted or released from activated platelets such as 

Adenosine diphosphate (ADP) and TxA2 (Thromboxane A2). A large number of 

granule contents (from alpha and dense granules) are released from activated 

platelets and these can significantly modify platelet activation. The dense 

granules of platelets contain important agonists like ADP and serotonin. “ADP is 

predicted to be the prominent amplifier of initial platelet aggregation” (Gachet, 

2001). It interacts with specific extracellular membrane receptors to induce 

intracellular signaling. When platelets are activated, diacylglycerol (DAG) and 

inositol triphosphate (IP3) cause release of calcium from the dense tubular 

system. Intracellular calcium levels increase and this causes exocytosis of 
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platelet granules. There are two classes of receptors for ADP, P2Y1 and P2Y12 

which belong to the seven transmembrane receptor family (Dorsam and 

Kunapuli, 2004; Fabre et al., 1999) and P2X1 which belongs to the ADP/ATP 

driven calcium channel family of purinergic receptors (Sun et al., 1998). ADP 

interacts with P2Y1 to mobilize calcium and shape change and “transient 

aggregation” (Fig 1) (Fabre, 1999 #320). P2Y12 receptor is believed to potentiate 

platelet secretion and to be involved in “sustained irreversible platelet 

aggregation” (Dorsam and Kunapuli, 2004).  

Serotonin is another bioactive substance released from the dense 

granules. It is a vasoconstrictor and by binding to G-protein coupled receptor 

5HT2A, it exerts its action locally (Baumgartner and Born, 1968). Interestingly, 

Dale et al described a new concept in platelet biology called the “coat platelets.” 

These are platelets activated by thrombin and collagen that bind serotonin to 

retain certain procoagulant protein such as alpha granule protein factor V, 

fibrinogen and thrombospondin on their surface (Dale et al., 2002). 

Platelet alpha granules are the most abundant secretory granules in 

platelets (Sixma et al., 1989) and release a large number of adhesive proteins 

(vWF, thrombospondin, fibronectin); mitogenic factors (PDGF, TGFβ, VEGF); 

coagulation factors (factors V, VII, XI, XIII). Some glycoproteins such as 

Pselectin (CD62P) is localized to the surface of the alpha granule membrane and 

are trafficked during platelet secretion to be exposed on the surface of the 

activated platelet. In recent years a number of important functions have been 

attributed to P selectin and these include platelet binding to neutrophils and 
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monocytes (Singbartl et al., 2001) or leukocyte rolling on platelets (Furie et al., 

2001). Patients with alpha storage pool disorder have diminished or absent alpha 

granules and a variable bleeding diathesis (Weiss et al., 1979).  

Platelets also synthesize thromboxane A2 (TxA2) which is produced from 

arachidonic acid in platelets. Arachidonate is derived from phospholipids by the 

enzyme phospholipase C, it is converted to TxA2 by the cycloxygenase pathway, 

of which prostaglandin H2 (PGH2) is an important intermediate (Fig 1). Once 

formed, TxA2 can diffuse across the plasma membrane and like ADP can 

activate and recruit other platelets. TxA2 receptors on platelets are physically 

associated with G protein family (Fig 1). TxA2 and ADP together with the other 

agonists produced at the site of vascular damage (thrombin) modulate platelet 

adhesion and activation.  

 

Platelet-coagulation protein interactions:  

Another important step in platelet activation is localization of subsequent 

procoagulant events to the injury site. Activation of platelets leads to assembly of 

a prothrombinase complex on their surface (Fig 2). A very important mechanism 

for formation of the prothrombinase complex on the surface of the platelets is 

reversal of membrane asymmetry. Once there is rise in intracellular calcium 

levels in the ADP or thrombin activated platelet, an enzyme called the 

phospholipid scramblase (Williamson et al., 1992; Zwaal et al., 1993) causes 

rapid flip-flop of all the major internal phospholipids such as phosphatidylserine 

(PS) and phosphatidylethnolamine to exteriorize (Fig 2). This is vital for the 
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assembly of the prothrombinase complex on the platelet surface (Zwaal, 1978). 

The prothrombinase complex is capable of converting large amounts of 

prothrombin into thrombin to form a consolidate platelet-fibrin thrombus (Fig 2). 
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Fig 2. Platelets and formation of prothrombinase complex: The activated 
platelet expresses PS (phosphatidylserine) on their surface due to reversal of 
membrane asymmetry. This allows activation of several blood coagulation factors 
on the platelet surface. Activated Factor Xa binds to Factor V on the platelet 
surface to form the prothrombinase complex. This prothrombinase complex is 
capable of converting prothrombin into thrombin which in turn can clot fibrinogen. 
Tissue factor (TF) is expressed on the surrounding extravascular cells and TF 
can generate minute quantities of thrombin which can initiate the coagulation 
pathway by activating factor XI on platelets. (adapted and modified from Current 
concepts of hemostasis, Richard B. Weiskopf, Anaesthesiology 2004; 100:711-
30). 
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Platelet aggregation: 

The aggregation of platelets results in the accumulation of platelets into a 

hemostatic plug. Platelet aggregation is a result of the cross-linking of activated 

α2bβ3 molecules expressed on two different platelets by fibrinogen (Fig 1) 

(Marguerie et al., 1979; Peerschke et al., 1980) at low shear rates or vWF at high 

shear rates (Savage et al., 1996; Weiss et al., 1989). α2bβ3 is a platelet 

membrane protein of the integrin family and is composed of heterodimers of α2b 

and β3 expressed on resting platelets in an inactive conformation. Activation of 

integrin α2bβ3 is brought about by inside-out signals that modulate α2bβ3 affinity 

by regulating its interaction with intracellular proteins including talin. (Ulmer et al., 

2003; Vinogradova et al., 2000; Vinogradova et al., 2004; Vinogradova et al., 

2002). This transmits information to the cytoplasmic domain of α2bβ3 leading to a 

cascade of signaling events which includes the phosphorylation of tyrosine 

residues Y747 and Y759 in the β3 cytoplasmic domain. α2bβ3 undergoes a Ca2+ 

dependent conformational change so that it becomes “fit” to bind fibrinogen. 

Inside-out signaling is initiated either by agonists such as ADP or TxA2 through 

the G-protein coupled receptors (Brass et al., 1997; Eckly et al., 2001), or by the 

adhesive proteins vWF and collagen which interact with GP1b-IX-V or collagen 

receptors GPVI and α2β1 respectively. 

Once ligands bind to α2bβ3 receptor, it initiates a signaling event from the 

integrin into the cell and this is known as outside in signaling. This in turn can 

promote  firm platelet adhesion, fibrin clot retraction and development of platelet 

procoagulant activity and microparticle generation (Kasirer-Friede et al., 2007).  
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Recent technical advances have provided a more detailed analysis of 

platelet aggregation and the factors involved in the process. Rate of blood flow is 

one of the factors that can influence platelet aggregation under different shear 

conditions. In conditions of low shear rate, such as veins, fibrinogen binding to 

α2bβ3 is the only appropriate mechanism for aggregation; whereas in conditions 

of high shear as seen in arterioles or larger arteries, vWF also participates in 

adhesion (Savage et al., 1996) or aggregation of platelets (Goto et al., 1998). 

 

Post–aggregation events in platelets: 

Formation of a platelet plug at the site of endothelial injury is essential for 

hemostasis and can also trigger pathological thrombosis. After the “initiation” of 

platelet plug formation by vWF and collagen (Fig 3), extension of the platelet plug 

is mediated by agonists released from the platelet granules such as ADP and 

TxA2 or thrombin. These agonists by signaling through their respective G-protein 

coupled receptors promote platelet aggregation by activating α2bβ3 on the platelet 

surface. These bridges can lead to sustained contacts between platelets and 

eventual “perpetuation” of the platelet plug (Fig 3). In this context, the phrase 

“contact dependent signaling” refers to “intercellular signaling events initiated by 

the binding of the proteins on the surface of one platelet to proteins on the 

surface of an adjacent platelet, either directly or indirectly” (Brass et al., 2006).  
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Fig 3. Steps in platelet plug formation. A) Resting state where PGI2 and NO 
form an inert endothelial surface. B) Platelet plug formation is initiated by 
exposure of collagen and vWF that causes platelets to adhere to the matrix. C) 
platelet plug is extended as more platelets are activated and recruited via the 
release of ADP, TxA2 and D) close contacts between platelets and contact 
dependent signaling help to stabilize the clot (Adapted from Platelets, Alan D. 
Michelson, Academic Press). 
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Among the assortment of proteins and signaling molecules involved in 

“contact dependent signaling” the most well studied molecule is α2bβ3. Adhesive 

proteins can bridge α2bβ3 of one platelet to another, and in the process, not only 

strengthens the adhesion but also initiates α2bβ3 mediated outside-in signaling. 

However, several other molecules play an important role in this “platelet synapse” 

(Fig 4) (Brass et al., 2006). These include receptor tyrosine kinases such as 

Ephrins and Eph kinases (Prevost et al., 2005; Prevost et al., 2004); Gas6 and its 

tyrosine kinase receptors, mer, tyro3 and axl (Angelillo-Scherrer et al., 2005; 

Angelillo-Scherrer et al., 2001); adhesive molecules such as PECAM (Falati et 

al., 2006); JAM-1 (Naik et al., 2001); CD40 and its corresponding ligand CD40L 

(Andre et al., 2002; Henn et al., 2001) and semaphorins (Zhu et al., 2007) (Fig 

4).   

An example of this contact dependent signaling is Eph kinase/ ephrin 

interactions. Eph kinases are receptor tyrosine kinases with an extracellular 

binding domain and an intracellular kinase domain. Eph kinases and their 

ligands, known as ephrins are known play a role in axon guidance and 

development of the vascular system (Adams and Klein, 2000). Human platelets 

express eph kinases Eph A4, Eph B1 and the Eph kinase ligand, ephrin B1 

(Prevost et al., 2002). Studies have reported that in platelets Eph A4 and ephrin 

B1 interaction modulate platelet-platelet interaction: “forced clustering” of ephrin 

B1 or Eph kinases promotes platelet shape change, secretion, adhesion and 

aggregation , whereas inhibition of Eph/ephrine interactions leads to “premature 

disaggregation” at low agonist concentrations (Prevost et al., 2002). Other 
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studies by the same group have concluded that activation of Eph A4 and ephrin 

B1 on the platelet surface can support the growth of a stable platelet plug under 

flow (Prevost et al., 2003) and at the same time contribute to outside in signaling 

through α2bβ3 by assisting tyrosine phosphorylation of β3 chain and probably, a 

sustained activation of the integrin (Prevost et al., 2005). This provides 

considerable support to the growth and stability of the platelet plug (Prevost et 

al., 2005).  

In addition to the Eph/ephrin interactions, other laboratories have shown 

that platelets express receptors for Gas6, a vitamin K–dependent protein that  It 

can bind to receptor tyrosine kinases Axl, tyro3, and Mer (Stitt et al., 1995; 

Varnum et al., 1995). Gas6 is released form α granules upon initial stimulation of 

platelets by agonists. After release, Gas6 could significantly enhance the 

formation of stable platelet macro-aggregates by amplifying fibrinogen induced 

platelet spreading and irreversible platelet aggregation. Gas6 amplifies by 

signaling through its receptors. Activation of Gas6 receptor by Gas6 activates 

PI3kinase, granule secretion and stimulates tyrosine phosphorylation of β3 

integrin. PI3K in turn, plays an important role in amplifying platelet aggregation 

(Kovacsovics et al., 1995; Trumel et al., 1999). Absence of Gas6 or any of its 

receptors can protect mice from thrombosis (Angelillo-Scherrer et al., 2001). 

Gas6 thus constitutes an important amplification system in pathological 

conditions. 

Another important bioactive substance is CD40L which is a 

transmembrane protein that is shed following platelet stimulation (Henn et al., 
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1998). Studies have shown that proteolytic cleavage of CD40L from platelets is 

stimulated by its binding to CD40 which is expressed “constitutively on platelets” 

(Henn et al., 2001). It was also reported that the soluble CD40L alone could 

potentiate integrin mediated platelet aggregation in high shear conditions (Andre 

et al., 2002). CD40L null mice exhibited delayed vessel occlusion and abnormally 

small platelet thrombi with risks of frequent embolization compared to the wild 

type mice (Andre et al., 2002; Crow et al., 2003). 

In a continuing search for molecules that might contribute towards contact-

dependent signaling events during thrombus formation, Zhu et al reported the 

role of Semaphorin D (sema4D), an integral membrane protein and the ligand of 

two receptors, CD72 and plexin B1. Platelets were shown to express both the 

ligand and its receptors, expression of both increased during platelet activation 

followed by gradual shedding of sema4D extracellular domain. Platelets from 

mice that lack sema4D show impaired collagen induced aggregation responses 

in vitro and after vascular injury, showed delayed arterial occlusion in vivo (Zhu et 

al., 2007). In the context of the contact dependent signaling, as platelet activation 

begins, sema4D that is on the platelet surface is able to interact directly with 

receptors on nearby platelets, promoting thrombus formation on exposed 

collagen.  
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Fig 4. “Platelet synapse” formation and its importance. The initiation of 
aggregation brings platelets into close contact with each other so that integrins 
and other cell molecules can interact. The space between platelets also provides 
a protective environment in which soluble agonists for G protein-coupled 
receptors (ADP, thrombin, TxA2) and receptor tyrosine kinases (Gas-6) and the 
proteolytically shed bioactive molecules of platelet surface proteins (CD40L and 
sema4D) can accumulate (Brass et al., 2006). 
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Once thrombus formation begins, contacts between platelets become 

increasingly stable and the spaces between the platelets become increasingly 

constrained. This provides a protective shelter (Fig 4) for not only the bioactive 

molecules shed from the platelet granules (such as ADP and Gas6) but also 

those released from the surface of activated platelets (such as CD40L or 

sema4D) which can locally accumulate at the site of platelet-platelet contact. All 

these contribute to promote the “stability of the hemostatic plug, support clot 

retraction and help to maintain the plug till wound healing is complete or at least 

under way” (Brass et al., 2004; Prevost et al., 2003). 
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CD36 

CD36 is an 88kDa glycoprotein belonging to Scavenger Receptor family 

Type B (Tandon et al., 1989). It is a member of a family of related genes 

including SRBI (scavenger receptor B1) and LIMPII (lysosomal integral 

membrane protein). CD36 was identified several decades ago as a protease 

resistant platelet surface glycoprotein and named glycoprotein IV for its migration 

on SDS-PAGE gel (Clemetson et al., 1977). It was later found to be identical to 

the leukocyte differentiation antigen, CD36 a marker for blood monocytes and 

tissue macrophages. The CD36 protein sequence is highly conserved across 

species. There are several CD36-family homologs in Drosophila; Croquemort, 

epithelial membrane protein (emp), sensory neuron membrane protein (SNMP). 

Croquemort (“catcher of death”) is expressed on macrophages and hemocytes, 

where it is essential for phagocytosis of apoptotic cells (Franc et al., 1996). Emp, 

which is expressed “in precursor cells for adult epidermal structures”, has 32% 

homology to human CD36 and 34% homology to human LIMP-II (Hart and 

Wilcox, 1993). Recently, SNMP was described as another CD36 homologue in 

Drosophila and implicated in pheromone detection (Benton et al., 2007). 

 

CD36 expression and its regulation: 

 CD36 is expressed on a diverse array of cells and tissues including 

platelets (Bolin, 1981), mature monocytes (Talle et al., 1983), endothelial cells of 

microvasculature (Greenwalt et al., 1990; Swerlick et al., 1992), erythroblasts 
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(van Schravendijk et al., 1992), epithelial cells of breast (Greenwalt and Mather, 

1985), gut and kidney (Greenwalt and Mather, 1985; Greenwalt et al., 1995; 

Susztak et al., 2005) and skeletal muscles (Greenwalt and Mather, 1985). It is 

also expressed on phagocytic cells including dendritic cells (Albert et al., 1998), 

microglia (Husemann et al., 2002), monocytes and macrophages (Endemann et 

al., 1993) and retinal pigment epithelium (Ryeom et al., 1996). CD36 expression 

in monocytes has been shown to be highly regulated. It can be upregulated by 

adhesion (Huh et al., 1995), M-CSF and IL4 (Yesner et al., 1996) (Huh et al., 

1996), native and oxidized LDL (Feng et al., 2000; Huh et al., 1996), glucose 

(Griffin et al., 2001) and endothelin1 (Kwok et al., 2007). CD36 is downregulated 

by cholesterol efflux (Han et al., 1999), TGF-β1 (Han et al., 2000), 

lipopolysaccharide (LPS) (Yesner et al., 1996), IL10 (Rubic and Lorenz, 2006), 

alpha tocopherol (Devaraj et al., 2001; Venugopal et al., 2004). Important 

observations by Tontonoz suggested that PPARγ activation in a macrophage cell 

line could increase CD36 expression (Tontonoz et al., 1998). These authors have 

suggested a mechanism of CD36 induction by PPARγ. In the presence of oxLDL,  

CD36 expression on a macrophage leads to intracellular accumulation of 

oxidized ligands (9- and 13-hydroxyoctadecadienoic acid [HODE], prostaglandin 

J2 [PGJ2]; which in turn activate PPARγ and this cycle continues in a “feed-

forward loop” (Febbraio et al., 2001) ultimately leading to the conversion of 

macrophage into a foam cell.  
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CD36: Structure: 

In human, mice and rats CD36 consists of 472 amino acids with a 

predicted molecular weight of about 53 kDa. However, CD36 is extensively 

glycosylated and its apparent Molecular weight on SDS PAGE gel is about 

88kDa (Greenwalt et al., 1990; Oquendo et al., 1989). It has 10 potential N 

glycosylation sites (Fig 5) which are processed differently in different cell types. 

This modification protects the protein from being degraded by cell specific 

proteases or during inflammatory processes (Febbraio et al., 2001). 

Phosphorylation is another post-translational modification reported in CD36. 

Asch et al showed by site-directed mutagenesis that CD36 was phosphorylated 

in the extracellular loop at position Thr92 (Asch et al., 1993). 
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CD36 consists of a hairpin like structure with a large glycosylated 

extracellular loop, two α helical transmembrane domains and two short 

cytoplasmic tails (Fig 5)(extending residues 1-6 and 167-172 respectively) 

(Oquendo et al., 1989; Vega et al., 1991). Very little is known about the 

secondary structure of the extracellular loop. The central hydrophilic domain, rich 

in N glycosylation sites and in monoclocal antibody epitopes (Daviet et al., 

1995a; Daviet et al., 1995b) lies extracellularly but its exact topology is unknown. 

Fig 5. Cartoon showing CD36 structure. CD36 consists of a large, heavily 
glycosylated extracellular loop, two trans-membrane domains and two short (α 
helical) cytoplasmic tails. The cysteine residues at positions 3, 7, 464 and 466 at 
the N and C termini are palmitoylated and help anchoring the pr
m
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However, six cysteines residues clustered around the C terminal half of this loop 

are proposed to be essential for the maturation and transport of the protein 

(Gruarin et al., 2000). A number of studies have contributed significantly towards 

our understanding of the CD36 topology. Tao et al reported that CD36 is 

palmitoylated at the membrane proximal cysteine residues (positions 3, 7, 464 

and 466) in the N and C terminal cytoplasmic tails (Fig 5) suggesting that both N 

and C termini are cytoplasmic (Tao et al., 1996). In the same study a C-terminal 

truncation mutant of CD36 was made which deleted the C-terminal 

transmembrane domain. This mutant was found to be membrane-bound when 

expressed in human embryonic kidney 293 cells, indicating that the “N-terminal 

hydrophobic domain serves as a transmembrane anchor, and thus supporting a 

CD36 

t CD36 adopts a 

topology with two transmembrane domains” (Fig 5) (Tao et al., 1996). 

Another study by Gruarin et al generated a panel of mutants lacking either 

one or both hydrophobic regions and analyzed their folding and transport in 

COS-7 cells. The N and the C-terminal hydrophobic regions were both sufficient 

to anchor CD36 in the membrane. These results indicated tha

“ditopic configuration” (Gruarin et al., 2000) as shown in Fig 5.  

 Binding sites for some of the different ligands have been mapped on 

CD36 molecule. Crombie et al have proposed a binding site for TSP-1 termed 

the CLESH domain (CD36 LIMP-II Emp sequence homology) (Crombie and 

Silverstein, 1998) on CD36 in the region of amino acids 93–120. High affinity 

binding sites for oxidized LDL (oxLDL) have been mapped on amino acids 28-93 
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(Pearce et al., 1998) whereas another binding site on amino acids 155-183 has 

Puente Navazo et al., 1996). also been reported (

 

CD36: Functions: 

CD36 is a multi-functional molecule. It has independent binding sites for 

different classes of ligands such as modified phospholipids, thrombospondins, 

and free fatty acids. This enables CD36 responsible for several different cellular 

processes depending on the nature of the ligand and the type and location of the 

cell on which it is expressed. On phagocytes CD36 functions as a scavenger 

receptor helping in recognition and internalization of apoptotic cells (Albert et al., 

1998; Fadok et al., 1998b; Greenberg et al., 2006; Ren et al., 1995), Falciparum 

malaria infected erythrocytes (Aitman et al., 2000; McGilvray et al., 2000; Omi et 

al., 2003; Pain et al., 2001b; Patel et al., 2004; Smith et al., 2003), photoreceptor 

outer segments (Ryeom et al., 1996), Staphylococcus aureus (Stuart et al., 

2005), oxidized lipoproteins (Endemann et al., 1993; Febbraio et al., 2000; 

Kunjathoor et al., 2002; Rahaman et al., 2006) and non-enzymatically glycated 

ain fatty acid uptake. (Abumrad et al., 1993). 

end products (AGE) (Kuniyasu et al., 2003; Ohgami et al., 2001; Ohgami et al., 

2002). 

 On adipocytes CD36 was identified as a long chain fatty acid transporter 

(Abumrad et al., 1993). It was later found that the C terminus of CD36 is required 

for its ability to enhance long ch

Adipocytes in CD36 null mice failed to accumulate radiolabeled oleate or 

palmitate (Febbraio et al., 1999). 
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 CD36 recognition, binding and uptake of oxidized LDL have been shown 

to be critical in cholesterol accumulation and foam cell formation. Cells 

expressing CD36 bound and took up oxLDL (Endemann et al., 1993) whereas 

CD36-deficient macrophages were resistant to foam cell formation (Febbraio et 

al., 2000). The expression of CD36 also could be upregulated by its ligand oxLDL 

(Han et al., 1997). A specific region of CD36 in the N-terminal region is said to 

contribute to this oxLDL recognition by CD36 (Pearce et al., 1998). In successive 

years Podrez et al, in collaboration with our group, have reported that LDL 

modified by the myeloperoxidase (MPO) system is highly specific for CD36 

binding (Podrez et al., 1999). The MPO system is comprised of MPO generated 

reactive nitrogen species.  This MPO-modified LDL could form foam cells which 

could be significantly inhibited by mAb against CD36 (Podrez et al., 2000). Our 

group also identified a highly specific oxidized phosphatidylcholine (oxPC) 

possessing a sn-2 acyl group (oxPCCD36) that acts as a high affinity ligand on 

oxLDL for recognition by CD36 (Podrez et al., 2002). Other studies by our group 

have been instrumental in showing that CD36 is the major receptor on 

macrophages for binding and internalization of oxLDL and that although ApoE 

mice were pro-atherogenic, ApoE-CD36 double knock out mice were protected 

from developing atherosclerotic lesions by about 70-80% (Febbraio et al., 2000). 

CD36 also has a very important function in endothelial cell biology. On 

microvascular endothelial cells, CD36 is a receptor for thrombospondin 1(Asch et 

al., 1987) and 2 (TSP-1 and 2) and mediates their anti-angiogenic activity 

(Dawson et al., 1997; Simantov et al., 2005). TSP1 inhibits angiogenesis by 
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inducing apoptosis in activated endothelial cells and this requires activation of 

CD36, p59fyn, caspase like proteases and p38 MAPK (mitogen–activated protein 

kinases) (Jimenez et al., 2000). Elucidation of this signaling pathway would help 

eficiency in hereditary hypertrophic cardiomyopathy (Tanaka et al., 

997b) 

phagocytosis of falciparum infested 

plan interventional strategies to inhibit tumor angiogenesis and hence tumor 

growth. 

 CD36 is also expressed on skeletal and cardiac muscles where it 

facilitates uptake of fatty acids. In CD36 null mice, injection of a radionuclide 

labeled long chain fatty acid (LCFA) analog, such as BMIPP (β methyl-

iodophenyl-pentadecanoic-acid) showed that there was a significant decrease in 

fatty acid uptake in skeletal and cardiac muscles compared to wild type (Coburn 

et al., 2000). There have been reports describing an increased prevalence of 

CD36 d

1 suggesting an important role of CD36 in fatty acid metabolism in the 

heart.  

 CD36 also functions as an adhesion molecule. Oquendo et al identified 

CD36 as the receptor that helps in cytoadherence of Plasmodium Falciparum 

parasitized erythrocytes (Oquendo et al., 1989). Pain et al reported that CD36 

on platelet mediates clumping of P falciparum infested erythrocytes is strongly 

associated with severe malaria (Pain et al., 2001a). In contrast, CD36 on 

monocytes or macrophages can help 

erythrocytes (McGilvray et al., 2000). Thus the location of CD36 receptor can 

regulate the severity of malarial disease.  
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 Several studies have suggested an important role of CD36 in phagocytic 

clearance of apoptotic and senescent cells. In vitro, expression of CD36 on 

fibroblasts and melanoma cells (Ren et al., 1995) confers phagocytic activity by 

recognition of apoptotic cells. In vivo, CD36 mediated phagocytosis of apoptotic 

cells have observed in photoreceptor outer segments of retinal pigment 

epithelium (RPE) (Ryeom et al., 1996) or in dendritic cells (Albert et al., 1998). 

Earlier studies have reported interactions between phosphatidylserine (PS) 

(Fadok et al., 1998a; Pittoni and Valesini, 2002; Ryeom et al., 1996) on the outer 

surface of the apoptotic cells that acts as a recognition ligand for CD36. Recently 

response. Inhibition of lyn kinase inhibited the recruitment of microglial cells to β 

we showed that similar to the sn-2 acyl group on oxPCCD36 that are highly specific 

ligands for CD36, the sn-2 acyl groups on oxPS could be a highly specific ligand 

on apoptotic cells for recognition by CD36 (Greenberg et al., 2006). 

 CD36 signaling has been very well studied in macrophages where CD36 

signals have been known to regulate reactive oxygen species (ROS) formation 

(Maxeiner et al., 1998). CD36 probably localizes in lipid rafts (Ehehalt et al., 

2006; Pohl et al., 2005; Ring et al., 2006) with other signaling molecules such as 

CD9 (Miao et al., 2001) or integrin (Thorne et al., 2000). Jiminez et al showed 

that CD36 dependent fyn phosphorylation together with activation of p38 MAPK 

was required for anti-angiogenic activity of TSP-1 on capillary endothelial cells 

(Jimenez et al., 2000). Moore et al reported that β amyloid could induce 

association of CD36 with lyn and activate a signaling cascade involving the Src 

kinase fyn, p44/42 MAPK which in turn induced a macrophage inflammatory 
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amyloid (Moore et al., 2002). More recently work by Rahaman et al in our lab 

illustrated the CD36 signaling in monocytes and macrophages by showing that 

D36-lyn was engaged in a complex with MEKK2 and that uptake of pro-

therogenic oxLDL was associated with Jnk activation (Rahaman et al., 2006). 

C

a

 

 

CD36 gene: 

 The CD36 gene extends 32kb on the q11.2 band of chromosome 7 

(Armesilla and Vega, 1994). It consists of 15 exons (11 exons in the extracellular 

loop) of which 12 are coding and 3 non-coding exons. The regular translation 

initiation codon is located at position +290 (exon 3). There is also an ATG codon 

within the first exon at position +62 (Armesilla et al., 1996). This ATG codon 

might play a role in transcriptional control by acting as a binding site for 

transcriptional factors PEPB2/CBF (Armesilla et al., 1996). Sato et al identified 

three independent promoters for CD36 gene (Sato et al., 2002; Sato et al., 2007); 

CD36 has a wide range of functions in the cell types where it is expressed and 

the presence of multiple promoters was partly “to achieve tissue-specific 

transcriptional regulation” (Sato et al., 2007). CD36 gene has been most 

extensively studied in Asian populations (Japan, Korea, Indonesia, Thailand and 

China) where 3-8% of individuals are platelet CD36 deficient (Lin et al., 1993; 

Santoso et al., 1993; Seo et al., 1998; Urwijitaroon et al., 1995). This deficiency 

was initially observed during the investigation of a Japanese patient who 

developed transfusion-refractory thrombocytopenia due to a platelet specific 
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antibody and led to discovery that 3-11% of Japanese do not express CD36 on 

their platelets (Tomiyama et al., 1990; Yanai et al., 2000). The antibody epitope 

here the expression is absent 

in plate

ace expressed which are 

ummarized in the table 1 below. 

on CD36 is called Naka and the individuals lacking GPIV are called Naka minus.  

 CD36 deficiency is divided in to two subgroups. In type I deficiency, 

neither platelets nor monocytes express CD36 while in type II, only platelets fail 

to express CD36 (Take et al., 1993; Yamamoto et al., 1990). About 10% of the 

Naka minus group are truly null (type I deficiency) w

lets, monocytes, endothelium and muscle.  

Five mutations have been reported (table 1) to be associated with Type I 

CD36 deficiency C478T, 539delAC, 1159insA, 839-841del-->insAAAAC and 

1438-1449del accompanied with or without skipping of exon 9 (nt 959-1028) in 

Japanese patients (Kashiwagi et al., 1993a; Kashiwagi et al., 1992; Kashiwagi et 

al., 1993b). The most common, C478T with an allelic frequency of 80-90% in 

CD36 null, produces an amino acid change from proline to serine at position 90 

and a misfolded protein that appears to be targeted for intracellular degradation 

(Kashiwagi et al., 1993b). The nt539delAC and nt115insA mutations cause a 

frameshift, generating a new translation stop codon and reduce CD36 transcripts 

in platelets and monocytes to a great extent. The other polymorphisms create 

premature stop codons and proteins that are not surf

s
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Table 1:  Common polymorphisms accounting for CD36 deficiency  

 

scription of CD36 or total loss 
f expression due to premature stop codons or proteins which cannot be 

processed and presented on the platelet surface. 
 

 

 
Table 1.Common polymorphisms in CD36 deficient subjects. Table showing 
the 5 polymorphisms, which account for more than 90% of CD36 deficiency in 
Japan. These polymorphisms cause reduced tran
o
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The genetic mechanism for type II CD36 deficiency is unclear. About half 

of the individuals tested are heterozygous for one of the five common mutations, 

but many heterozygous do not have any phenotypes and this probably suggests 

that other mutations are involved. The Naka minus phenotype is also highly 

prevalent in African and African-American populations with frequencies in the 

range of 2.4-7.8% (Curtis and Aster, 1996). Genotyping studies indicate either 

homozygous or heterozygous combinations of different mutations other than 

those reported in Asia, with a single base substitution T1264G in exon 10 being 

the most common (>90%). This encodes a premature stop codon and CD36 is 

not expressed on the cell surface. 

The Naka minus phenotype is however very uncommon in the Caucasian 

population (0-0.3%) (Yamamoto et al., 1990).  This suggests “that selection 

pressures existed to maintain or eliminate CD36 null mutation within certain 

populations and these may include interaction with pathogens” (Stuart et al., 

2005). One such interaction may be CD36 mediated recognition of P. falciparum 

in malaria. The T1264G polymorphism is reportedly associated with protection 

from severe malaria in Kenyans (Pain et al., 2001b), although there is a 

contradictory report suggesting the susceptibility of T1264G to severe malaria 

(Aitman et al., 2000). A study from Thailand showed that in3(TG)12 (12 TG 

repeats of intron 3) was significantly associated with the reduction in risk of 

cerebral malaria (Omi et al., 2003). 

CD36 is a highly polymorphic gene. In addition to the null mutations 

mentioned above, there are multiple other polymorphisms and 
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insertions/deletions described, including some in the promoter region that involve 

putative transcription factor binding site or in the 5 and 3’ UTR regions. Mutations 

specially in the 5’ and 3’ UTR regions are of potential significance since 

translational efficiency of CD36 mRNA and CD36 expression levels have been 

shown to be regulated by the 5′ UTR (Griffin et al., 2001). In Asia, 9 

polymorphisms with allelic frequencies of >15% are known; while in West Africa 

40 common SNPs have been identified. In European population, at least 50 

SNPs have been identified, including 21 with minor allele frequency of >5%, 11 of 

which are in putative promoter region or regulatory UTR regions. More recently, 

completion of the Hap Map project gave us access to a huge number of CD36 

SNPs in 4 different populations, Japanese, Han from China, Yoruba from Nigeria 

and people with European ancestry from Utah, USA (2003). A recent study of 

585 residents of eastern Italy using 21 common polymorphisms reported 

significant linkage disequilibrium across the entire locus with 2 blocks of 

preferential LD, Common haplotypes accounted for >80% of the haplotypes in 

each block allowing investigators to use 5 polymorphic markers as tag SNPs 

(33137A>G, 31118G>A, 25444G>A, 27645 del and 30294G>C) to classify the 

haplotype variability in the population (Ma et al., 2004). 

Although the functional impact of CD36 deficiency has been well studied 

in different mice and rodent models, the impact of CD36 null mutations and 

polymorphisms in human biology is largely unknown. Our lab generated a CD36 

knock-out mouse which showed hyperlipidemia (Febbraio et al., 1999) and 

insulin resistance (Hajri et al., 2002). In rodent models for CD36 deficiency, diets 
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affected phenotypic expression (Aitman et al., 1999). CD36 deficiency has been 

found in one strain of spontaneous hypertensive rats (SHR) expressing insulin 

resistance (Aitman et al., 1999; Glazier et al., 2002). Because CD36 functions as 

a fatty acid transporter in skeletal muscles and adipocytes and because of the 

probable link between CD36 null mutation and insulin resistance in the SHR rat, 

there has been considerable interest in human type I deficiency and heart 

disease and diabetes.  

The relationship between CD36 deficiency and hypertrophic 

cardiomyopathy was reported by several groups in Japan while studying the 

cardiac uptake of radionuclide labeled long chain fatty acid (LCFA) analogs, such 

as BMIPP (β-methyl-iodophenyl-pentadecanoic-acid) (Tanaka et al., 1997a; 

Watanabe et al., 1997a; Watanabe et al., 1998a; Watanabe et al., 1997b; 

Watanabe et al., 1998b). Miyaoka et al looked for insulin resistance in genetic 

CD36 deficiency, by using a euglycaemic hyperinsulinaemic clamp technique 

and reported insulin resistance in the five CD36-deficient people tested. (Miyaoka 

et al., 2001). The study from Italy reported that men carrying the common AGGIG 

haplotype had 30% higher fasting free fatty acid levels and 20% higher 

triglyceride levels than non-carriers. The CAGIG haplotype was associated with 

lower levels of circulation free fatty acid levels in this population. The same group 

also reported that the overall prevalence of the AGGIG haplotype in diabetics 

was not different than non-carriers (Ma et al., 2004). More recently CD36 

deficiency in humans was reported to be accompanied by hyperlipidemia and 

increased remnant lipoproteins, impaired glucose metabolism due to insulin 
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resistance and mild hypertension (Yamashita et al., 2007), all features 

suggestive of “metabolic syndrome.” This may be related to defective uptake of 

LCFA in the heart (Nozaki et al., 1999; Tanaka et al., 1997a) and increased 

uptake of LCFA in the liver (Yoshizumi et al., 2000) which, in turn, may lead to 

increased production of VLDL and increased free fatty acid levels in plasma in 

these subjects. This may also contribute to insulin resistance. 

 

CD36 on platelets: 

CD36 was recognized as a major platelet glycoprotein more than three 

decades ago, but its role in platelet physiology has not been studied in great 

details. There are about 24000 CD36 molecules per platelet with at least half of 

those at the platelet surface (Thibert et al., 1992). Electron microscopy reveals 

that CD36 is located on plasma membrane and open canalicular system (OCS) 

in platelets (Berger et al., 1993). 

A functional role of CD36 on platelets was suggested by the report of 

Huang et al according to which CD36 could be co precipitated from platelet 

membranes with the non receptor tyrosine kinases fyn, lyn, and yes (Huang et 

al., 1991). Interestingly, Naka minus individuals show no evidence of a hemostatic 

defect such as bleeding diathesis. Recent reports have shown that VLDL 

(Englyst et al., 2003) and amyloid-like protein (Herczenik et al., 2007). increased 

platelet activation by the TxA2 pathway. A recent report also links platelet 

activation by thrombospondin-1 by inhibition of the NO signaling (Isenberg, 2007 

#419) Several reports have linked CD36 autoantibodies with human thrombotic 
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diseases, including TTP (Tandon et al., 1994), antiphospholipid antibody 

syndrome (Fabris et al., 1994) and lupus (Rock et al., 1994) suggesting that this 

phenomenon is clinically relevant.  

CD36 is unique among platelet receptors in its ability to recognize a broad 

variety of ligands, many of which are generated as a consequence of diseases 

with high thrombotic risks. The ligands include oxidized LDL (oxLDL) generated 

in atherosclerosis; advanced glycation end (AGE) products generated in 

diabetes; membranes of apoptotic cells generated in viral infections and cancer; 

and falciparum-infected erythrocytes. Of these, the most extensively-studied 

ligand is oxidized LDL (oxLDL) because of its pathogenic role in atherosclerosis.  

Systemic conditions with dyslipidemic phenotype is seen in conditions like 

diabetes, atherosclerosis and metabolic syndrome and these can predispose to 

increased platelet reactivity (Carvalho et al., 1974; Davi et al., 1998). The 

mechanisms for increased platelet reactivity in these dyslipidemic states were 

largely unknown until recently when our group demonstrated that the 

engagement of platelet CD36 by structurally defined oxidized choline 

glycerophospholipid ligands (oxPCCD36) could play an important role in the 

development of dyslipidemia–associated prothrombotic state. These ligands 

were increased in plasma of hyperlipidemic mice and human subjects, were able 

to bind platelet CD36 and promote platelet activation in a CD36 dependent 

manner. Using in vivo mouse thrombosis models, we also demonstrated that 

CD36 null mice were protected from “hyperlipidemia associated platelet reactivity 

and the accompanying prothrombotic phenotype” (Podrez et al., 2007). Another 
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group demonstrated that low level oxidation (0-15%) of LDL mediated increase 

platelet activation involving a p38 MAPK signaling (Korporaal et al., 2005; 

Korporaal et al., 2007) while at higher levels of oxidation (>30%) LDL could exert 

an opposite effect on platelet activation by interfering with integrin α2bβ3 

(Korporaal et al., 2005). 
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MICROPARTICLES (MP) 

Microparticles are phospholipid microvesicles that bud off normal cells 

during either activation or apoptosis (Combes et al., 1999; Jimenez et al., 

2003a). MP were first described by Wolfe in 1967 in platelets when he referred to 

them as “platelet dust” (Wolf, 1967). Since their first recognition, several studies 

have contributed towards understanding more about MP and their role in 

physiology and pathology. In vitro, MP is released from endothelial cells, 

platelets, leukocytes, lymphocytes and erythrocytes. In vivo, some of these MP 

can be detected in normal or patient human plasma. MP are typically 200 nm-

1000 nm in size and possess different antigenic properties depending on the type 

of cell (endothelium, leukocytes, platelets or cancer cells) from which they are 

derived or the process by which they are formed. 

 

Formation of MP:  

MP can be produced from cell activation by agonists. In platelets, for 

example, maximum MP release is induced by Ca2+ ionophore A23187, followed 

by collagen, thrombin and ADP. MP release is also stimulated by the 

complement complex C5b-9 or by shear stress (Barry et al., 1997; Gemmell et 

al., 1993; Gilbert et al., 1991; Miyazaki et al., 1996; Miyoshi et al., 1996; Siljander 

et al., 1996; Sims et al., 1988; Sims et al., 1989; Tans et al., 1991). In endothelial 

cells (EC), the process of membrane vesiculation and MP generation has been 

shown to follow stimulation by proinflammatory cytokines such as TNFα (Combes 

et al., 1999; Jimenez et al., 2003a) or interleukin (IL) 1β and by infectious agents 
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or their components such as lipopolysaccharide (Satta et al., 1994). Increase in 

membrane calcium is the most critical step for MP release particularly at the site 

of release (Ariyoshi and Salzman, 1996). This is further supported by the fact that 

chelation of extracellular calcium ions by EGTA blocks the increase in cytosolic 

calcium as well as the release of microparticles (Miyoshi et al., 1996). MP 

formation probably also requires the breakdown of the membrane skeleton at the 

point of release, although this has not yet been elucidated. The formation of 

membrane vesicles is also associated with the loss of plasma membrane 

asymmetry leading to the exposure of phosphatidylserine (PS) on the outer 

leaflet as a consequence of the calcium-dependent activation of scramblase and 

floppase (Daleke, 2003; Zwaal and Schroit, 1997).  

MP can also be released from apoptotic cells. Apoptosis is characterized 

by “cell contraction, DNA fragmentation and dynamic membrane blebbing” 

(Coleman et al., 2001). Apoptotic membrane blebbing is regulated by caspase3 

induced Rho-kinase I activation (Sebbagh et al., 2001).  

 

Importance of release of MP: 

There has been considerable speculation about why cells release MP. MP 

may be released as messengers, to transfer receptors or proteins or to initiate 

signaling events. The release of MP would also allow cells to escape 

phagocytosis by removing death signals (“eat me signals”) such as 

phosphatidylserine (Fadok et al., 2000; Simak and Gelderman, 2006)  from their 

surface. 
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Composition of microparticles: 

MP are composed of mainly proteins and lipids. The composition depends 

on the cell they originate from and the type of stimulus involved in their formation. 

For example, phospholipid composition of MPs isolated from synovial fluid of 

patients with rheumatoid arthritis differs from that of MPs isolated from the 

plasma of healthy subjects (Fourcade et al., 1995). MPs also express proteins 

that are specific to the cell that they originate from and this characteristic can be 

used to determine their parental source by using antibodies directed against 

these specific antigens. For example, endothelial microparticles (EMP) released 

upon activation or apoptosis differ considerably in terms of antigenic expression 

(Jimenez et al., 2003b). Those expressing constitutive markers such as CD105 

and CD31 are greatly increased in number in apoptosis while those expressing 

inducible markers such as CD62E, CD54 are increased in activation. 

 

Function 

 

A) Effect on blood coagulation system:  

MP undergo a loss of membrane asymmetry during their formation and 

thus characteristically express phosphatidyl serine (PS) on their surfaces. This 

may contribute to thrombosis by acting as a catalytic surface for assembly of the 

prothrombinase complex (Sims et al., 1989). MPs are procoagulant not only 

because of the presence of anionic phospholipids on their surface but also 

because they are major carriers of blood borne tissue factor (TF). There have 
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been reports of monocyte derived MP that contain TF, P selectin glycoprotein 

ligand (PSGL-1, a protein that binds to P selectin) in human platelet poor plasma 

(Falati et al., 2003). P selectin and TF both play a very important role in thrombus 

formation. Both cell surface P selectin on activated platelets and endothelial cells 

and P selectin shed from these cells bind to PSGL-1 in the monocytes and this 

induces formation of TF-positive MP (Falati et al., 2003). P selectin on the 

activated platelets helps in the recruitment of these MP to the thrombus by 

binding to PSGL-1 on the MP (Celi et al., 2004). This ultimately leads to 

increased thrombin generation at the site of injury. 

  

B) Effects of MPs on platelets, leukocytes and endothelial cells 

Circulating MP have been shown to interact with platelets, leukocytes and 

endothelial cells (Morel et al., 2006) and may influence cell activation. Endothelial 

derived MP (EMP) from TNFα stimulated EC, for example, not only bound to 

human monocytes and monocytic cell lines via intracellular adhesion molecule 

(ICAM)-1 expressed on EMP, but also stimulated TF expression and 

procoagulant activity on the cells (Sabatier et al., 2002). Platelet MP bind, 

activate and aggregate neutrophils in vitro (Lo et al., 2006). In addition, another 

study showed that platelet MP increased the adhesion of monocytes to 

endothelial cells (Barry et al., 1998). A recent study showed that platelet MPs 

may act as carrier for arachidonic acid from pulmonary endothelial cells and this 

arachidonate is subsequently metabolized by MP to TxA2 (Pfister, 2004). 

Besides arachidonic acid, PAF, another potent mediator was documented in 
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platelet derived and PMN derived MPs (Iwamoto et al., 1996), potentially 

contributing towards platelet activation.  

 

C) Microparticles as markers in diseases 

MP have been postulated to play an important role in inflammation 

(Soriano et al., 2005), atherosclerosis (Falati et al., 2003) and thrombosis, and in 

part related to tissue factor (TF) and selectins expressed on their surface (Falati 

et al., 2003).   

Endothelial Cell (EC)-derived MP (EMP) have been found in the blood of 

patients with thrombotic and inflammatory disorders. These include lupus 

anticoagulant (Dignat-George et al., 2004), coronary artery disease (CAD) 

(Bernal-Mizrachi et al., 2003; Werner et al., 2006), diabetes mellitus (Davi and 

Ferroni, 2005; Koga et al., 2005), thrombotic thrombocytopenic purpura (Jimenez 

et al., 2001), active multiple sclerosis (Minagar et al., 2001), hypertension 

(Gonzalez-Quintero et al., 2004), or after hematopoietic stem cell transplantation 

(Pihusch et al., 2006).   

Platelet derived microparticles (PMP) correlate with early phase of 

myocardial infarction and atherosclerosis (van der Zee et al., 2006), in patients 

with intermittent claudication (Tan et al., 2005), in stroke (Lee et al., 1993), deep 

vein thrombosis (Rectenwald et al., 2005) or sickle cell anemia (Shet et al., 

2003). 

The different studies mentioned above clearly demonstrate that the 

detection and characterization of MP is an interesting and valuable tool to 
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diagnose certain disease states and perhaps also function as risk calculator for 

certain cardiovascular conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 39



HYPOTHESES 

CD36 on macrophages can initiate signals that play a significant role in 

fatty streak formation. The function of CD36 on platelets is incompletely 

characterized, but our group has recently shown that atherogenic oxidized LDL 

(oxLDL) binds and activates platelets in a CD36-dependent manner (Podrez et 

al., 2000). We also demonstrated that CD36-dependent phagocyte recognition 

and uptake of apoptotic cells and/or shed photoreceptor outer segments was 

mediated by binding of CD36 to PS and/or oxPS on their surfaces (Greenberg et 

al., 2006; Ryeom et al., 1996; Sun et al., 2006).  Since MP express PS on their 

surface, we hypothesized that they might also act as a ligand for platelet 

CD36 and thereby promote platelet activation. In a clinical scenario where MP 

are formed, such as in inflammation, cancer, atherosclerosis or thrombosis, 

CD36-mediated platelet signaling might contribute to pathological thrombosis. 

There has been evidence to suggest that there is significant population 

variance in CD36 expression. When we studied a small group of study subjects, 

we observed that there was considerable variation in CD36 expression (Fig17, 

chapter IV). We thus also hypothesized that the variability in CD36 expression 

on platelets might affect platelet function and that part of this variability 

might be explained by genetic polymorphisms. 

In the Caucasian study reported by Ma et al (Ma et al., 2004), the 

phenotype (increased triglycerides and FFA) associated with the AGGIG CD36 

haplotype is consistent with a decrement in CD36 function. No direct data, 

however, exists to support this. Since CD36 is a fatty acid transporter in heart 
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muscles and adipocytes, we hypothesized that there may be a relationship 

between CD36 polymorphisms and its expression and function. 

In summary, we propose a novel mechanism for modulation of platelet 

reactivity by the surface receptor CD36 with specific ligands generated during 

disease states associated with increased risk of arterial thrombosis. 

Determination of the molecular and genetic mechanisms that control this 

pathway would help us to a) discover novel methods to diagnose these events 

and b) design novel preventative strategies to control these events. 
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CHAPTER II 

MATERIALS AND METHODS 

 

Preparation of platelets and platelet rich plasma: 

Whole blood was collected from healthy human volunteers in 0.109 M sodium 

citrate, 7.4 pH (1:9 dilution) in accordance with the Cleveland Clinic Institutional 

Review Board.  These donors had no known disease and were not taking aspirin, 

non steroidal anti-inflammatory drugs (NSAIDs) or any other medication. Platelet 

rich plasma (PRP) was obtained by centrifugation at 100g for 12min at room 

temperature.  Platelets were counted in a Z2 particle counter (Coulter) and 

platelet number adjusted to 2x108/ml for all aggregometry experiments.  For flow 

cytometry experiments, washed platelets were prepared by centrifuging PRP at 

600g for 10min in the presence of 10 mM prostaglandin E1 (PGE1). PGE1 

prevents any platelet activation by ADP during the process of centrifugation.  The 

pellet was washed twice with Modified Tyrode’s Buffer and then resuspended in 

this buffer at a concentration of 1X106/ml. 
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Detection of platelet CD36 expression:  

100 μl of PRP from healthy normal donors were incubated with either PE-

conjugated anti-CD36 monoclonal antibody (Santa Cruz) or isotype matched 

control antibody.  CD36 expression was determined by flow cytometry by gating 

platelets with an anti-CD42b monoclonal antibody (BD Biosciences) and also on 

forward versus side scatter, followed by gating on PE-fluorescence vs. forward 

scatter for CD42b/CD36 positive events. 

 

Generation of endothelial derived microparticles (EMP):   

Human EC were isolated from umbilical veins and maintained in culture as per 

Jaffe et al (Jaffe et al., 1989). Cells of second passage were typically used for 

experiments and were incubated with 100 ng/ml TNFα (R&D Systems) and 50 

ug/ml cyclohexamide (Sigma) for 24hr (Simak et al., 2002) to generate EMP.  

Culture supernatants were collected and nonviable cells and large cell fragments 

were removed by centrifugation at 4300g for 5min.  The supernatants were then 

centrifuged at 100,000g for 90min at 10°C to pellet EMP.  Pelleted EMP were 

resuspended in 100ul HEPES-Tyrode’s buffer (137 mmol/L NaCl, 2.8 mmol/L 

KCl, 1.0 mmol/L MgCl2, 12 mmol/L NaHCO3, 0.4 mmol/L Na2HPO4, 0.35% 

bovine serum albumin (BSA), 10 mmol/L HEPES, 5.5 mmol/L glucose, pH 7.4) 

and stored at -70°C.  Freezing and thawing had no adverse effect on size or 

morphology of the EMP as assessed by immunofluorescence microscopy.  EMP 

were characterized by flow cytometry (PCA Analyzer, GUAVA Technologies) and 

shown to bind FITC-conjugated annexin V (BD Biosciences) and phycoeryrthrin 
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(PE)-conjugated antibodies to CD105/endoglin (Ancell), VE-cadherin (BD 

Biosciences), and CD31 (BD Biosciences).  In all cases, corresponding isotype 

matched non-immune IgGs were used as controls.  CD105 positive EMP were 

counted by flow cytometry using 0.3 and 3 µm latex beads (Sigma) as size 

standards. Each confluent T75 flask of cells generated approximately 3x105 

CD105 positive EMP. 

Isolation of MP from human plasma:   

Human blood was isolated from healthy normal and centrifuged at 500 g to 

obtain platelet poor plasma (PPP).  The PPP was then centrifuged at 15000 g for 

45 minutes at 20°C to pellet the MP which were resuspended in Modified 

Tyrode’s buffer containing 0.35% BSA and stored at -70°C.  Human MP were 

heterogenous and some expressed endothelial (CD105 and CD144), platelet 

(CD41), monocytic (CD14) markers. Each marker was separately counted by 

flow cytometry. Our colleague, Dr. McCrae, analyzed 105 subjects and a 

representative group of 13 was used for experiments. 

 

Preparation of oxidized LDL (oxLDL): 

OxLDL was prepared by oxidation with copper sulphate (5µm) at 37˚C for 6 

hours according to a previously published protocol (Febbraio et al., 2000). The 

amount of lipid oxidation that had taken place in each LDL sample was assessed 

using the TBARS (thiobarbuturic acid-reactive substances) assay (Morel and 

Chisolm, 1989). 
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Immunofluorescence flow cytometry detection of platelet-MP interactions:  

Washed platelets were incubated with MP for 30min prior to incubation with the 

EC-specific anti-CD105 antibody.  After antibody incubation, cells were pelleted, 

washed and analyzed by flow cytometry.  Relative fluorescence intensity 

histograms and dot-plots were made and analyzed with Flow Jo software (Tree 

Star, Inc). For the MP binding studies, we used anti-CD105 antibody which is 

specific for endothelial cells. EMP but not platelets would bind anti-CD105.  

Washed platelets were pre-incubated with MP at a ratio of 1:9 for 30 minutes, the 

reaction mix was then centrifuged at 700g, a speed that would pellet only the 

platelets and washed to get rid of any free EMPs. When the resuspended pellet 

was incubated with anti-CD105, the platelets acquired fluorescence suggesting 

that CD105-positive MP were physically associated with the platelets and the 

change in platelet acquired anti-CD105 fluorescence was measured and 

statistically quantified.  In some studies, platelets or MP were incubated with 

antibodies, oxLDL, or Annexin V (BioVision) prior to CD105 staining. Blood 

collection, MP incubation, antibody incubation, and data acquisition for all 

samples were done on the same day, using the same instrument for each 

individual experiment for consistency.  Univariate analyses were performed using 

analysis of variance (ANOVA) and paired and unpaired t-tests, as appropriate.  

Data are presented as mean ± SD. Statistical significance was defined as 

p<0.05.  Statistical analyses were performed using commercially available 

software (StatView 5.0; Abacus Concepts Inc, Berkley, CA). 
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Immunofluorescence microscopy:  

For immunofluorescence microscopy, platelets were loaded with an intracellular 

green fluorophore (Calcein, Molecular Probes) and EMP with a red fluorophore 

(PKH-26, Sigma) and incubated together as above prior to imaging with a Leica 

DM-RXE microscope, interfaced to a PC using Q capture software (Quantitative 

Imaging Company). 

 

Platelet activation studies:   

Washed platelets (1x106) were incubated with EMP (1:9 ratio) or buffer control for 

30min and then stimulated with ADP. In case of human MP, numbers were 

normalized on the basis of endothelial markers. They were then incubated for 15 

mins with PE-conjugated anti-P-selectin IgG (BD Biosciences) or FITC-

conjugated PAC1 (BD Biosciences), a monoclonal antibody that recognizes the 

activated conformation of the platelet integrin α2bβ3. After incubation, the platelets 

were centrifuged at 700 g for 10 min, resuspended in PBS, and analyzed by flow 

cytometry. In some studies, washed platelets were pre-incubated with anti-

human CD36 antibody (clone FA6, Invitrogen) or isotype matched control IgG 

(Sigma). 

 

Platelet aggregation studies:  

Platelet aggregation was assessed turbidometrically with a dual channel 

aggregometer (Chronolog Corporation, PA) using graded doses of ADP from 1-
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20 µM under constant stirring conditions.  The light transmission of PPP was 

regarded as 100% aggregation and the light transmission of PRP before addition 

of agonist was regarded as 0%.  Any change in light transmission after addition 

of agonist was recorded and expressed as a percentage of deflection. 

 

Intravital thrombosis: 

Carotid arteries in wild type and CD36 knock out mice were visualized on a Leica 

DM LFS microscope with water immersion objectives and recorded images with 

a high speed color, cooled digital camera (QImaging Retiga EXi Fast 1394) with 

Streampix high-speed acquisition software. We recorded the blood vessels for 30 

minutes and then created a vessel- wall injury by application of a 1.5 x 1.5 mm 

square of Whatman filter paper soaked in saturated FeCl3 solution to the surface 

of the vessel (we used 12.5% FeCl3 for 1 minute).Then we removed the paper, 

covered the vessel with saline at 37˚C and recorded platelet-vessel wall 

interactions for 15 minutes. The thrombosed arteries were sectioned and frozen 

at -20˚. 

 

Immunofluorescence staining: 

Frozen thrombosed carotid sections were used for immunohistochemistry to 

detect endothelial derived microparticles (primary CD105; secondary, Alexa Fluor 

568)  and platelets (marker  primary,CD61; secondary, Alexa Fluor 488) or both. 

Cryosections of thrombosed carotid were thawed at room temperature, post fixed 
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in acetone and hydrated in PBS. Tissues were blocked for 1 hour at room 

temperature with BSA, followed by incubation with 1:200 dilution of CD61 

antibody and subsequently with 1:500 dilution of AlexaFluor 488. The same 

slides were also stained with CD105 antibody (1:500 dilutions) followed by Alexa 

Fluor 568 conjugated secondary. Confocal imaging was acquired with Leica 

TCS-SP2 confocal microscope (Leica Microsystems, Heidelberg) at room 

temperature using 63X lens. Using Adobe Photoshop software, histograms were 

linearly adjusted for optimal representation of the 8 bit signals, individuals 

channels were overlaid in RGB images and composites of panels were made for 

final figures. 

 

Western Blot analysis:  

Human platelets were lysed and resuspended in lysis buffer ( Tris, pH 7.5 20mM, 

NaCl 100mM, EDTA 1mM, EGTA 1mM, Triton x 1%) containing protease 

inhibitors. Proteins (20 µg) were separated by SDS-PAGE and transferred to 

PVDF membranes (Immobilon-P, Millipore). CD36 was identified using a 

monoclonal antibody (clone FA6, Invitrogen). Membranes were reprobed with an 

antibody with actin (Santa Cruz) or GPIX (Santa Cruz) to normalize for protein 

loading. Detection was performed with ECL plus Western Blotting Detection 

Reagents (Amersham Biosciences) and band intensity was analyzed by 

densitometry (Image J). Experiments were done twice in duplicate and 

normalized readings expressed as mean ± S.E. 
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OxLDL induced platelet activation: 

Washed platelets (1x106) were incubated with oxLDL (50ug/ml) or native LDL 

(control) for 30min and then stimulated with or without ADP. They were then 

incubated for 15 minutes with PE-conjugated anti-P-selectin IgG (BD 

Biosciences) or FITC-conjugated PAC1 (BD Biosciences), a monoclonal antibody 

that recognizes the activated conformation of the platelet integrin α2bβ3.  After 

incubation, the platelets were centrifuged at 700g for 10min, resuspended in 

PBS, and analyzed by flow cytometry. Results are representative of at least 2 

independent experiments.  

 

Study population: 

The initial screen included 32 healthy human volunteers. This was followed by a 

larger patient population who came to Cleveland Clinic Cardiac Catheterization 

lab, agreed to participate in a study and the blood was collected by GeneBank. 

GeneBank is a large cardiovascular genetic repository in Cleveland Clinic 

Foundation which is involved in prospective collection of DNA, plasma and serum 

as well as maintenance of an extensive database of deidentified patient records. 

We have used 550 patients from this diverse population. Each sample was 

collected fresh and deidentified before use. 

 

Tagged SNPs: 

Using the haploview software offered at the international HapMap consortium 

website, we identified 10 SNPs with allelic frequencies >5% that “tag” major 
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areas of linkage disequilibrium. 10 SNPs were picked out for population CEU 

(population from Utah, USA with European descendency) using the algorithm-

Tagger-pairwise tagging (Carlson et al., 2004; Chapman et al., 2003). The mean 

r2 cut off for the tagging was 0.8. 

 
 

Table 2: Identification of 10 tagged SNPs 
 
 
 

number #tag SNPs Chromosome Position MAF 

1 rs10499858 chr7 79880497 0.108 

2 rs6968407 chr7 79882768 0.342 

3 rs10499859 chr7 79903461 0.492 

4 rs9918586 chr7 79911387 0.091 

5 rs3211864 chr7 79930995 0.05 

6 rs3211869 chr7 79931803 0.119 

7 rs3211908 chr7 79938567 0.108 

8 rs3211932 chr7 79943538 0.483 

9 rs1527483 chr7 79946151 0.158 

10 rs1537593 chr7 80091847 0.134 

 
 
 
 
 
Table 2: Tag SNPs. Table showing the 10SNPs with minor allelic frequency (MAF) of 
5%.Also shows the position of each SNP. The numbers were allocated according to the 
position of the SNPs. In haplotype analyses, these numbers were used rather than the 
SNP designation. 
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SNP genotyping: 

Genotyping of SNPs was carried out by the 5’allelic discrimination assay (the 

TaqMan assay) as described previously (Shen et al., 2007). SNP assay probes, 

Assay-on-Demand or Assay-by-Design, were from Applied Biosystems (ABI, 

Foster City, CA, USA). PCR for SNP genotyping was performed in a 5 μl volume 

containing 20ng of genomic DNA sample and 2 μl TaqMan Universal PCR 

Master Mix a GeneAmp PCR System 9700. The PCR products were scanned by 

an ABI PRISM 7900HT Sequence Detection System. Alleles of SNPs were called 

analyzed with software version 2.1.  For quality control, SNP genotyping results 

were verified for eight random selected DNA samples by direct DNA sequence 

analysis as described (Shen et al., 2007). DNA sequence analysis was 

performed by Big Dye Terminator Cycle Sequencing v 1.1 Mix (ABI, Foster City, 

CA, USA) using ABI 3100 Genetic Analyzer.   

 

Genetic Data analysis:  

 

A) SNP analysis:  

The mean fluorescence intensity of CD36 expression on platelets was 

categorized into 2 groups by their median (< 3.75 or > 3.75). We generally 

considered phenotypes as outcomes and SNPs as predictors. If outcome was 

binary, we used fisher exact test of the association and calculated OR (Odds 

Ratio) by logistic regression. If the outcome was multilevels, we used trend test 
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or the linear-by-linear association tests (Agretsi, 2002; Horthorn, 2006) R coin 

package: independence test) to test the association between the SNPs and 

traits. We fitted proportional odds ordinal logistic regression models, which apply 

maximum likelihood estimation or penalized maximum likelihood estimation 

(Agretsi, 2002; Harrel, 1998; R) to estimate the ratio of the cumulative odds of 

the upper quintiles and lower quintiles of the traits. Since we were testing the 

associations of 10 SNPs simultaneously, we considered the multiple 

comparisons adjustment, where we implemented a correction introduced by 

Benjamini & Hochberg (Benjamini and Hochberg, 1995) controlling the false 

discovery rate (FDR), the expected proportion of false discoveries amongst the 

rejected hypotheses. The FDR is a less stringent condition than the family wise 

error rate (FWER), so it is more powerful than those controlling FWER. Only 

those with P values < 0.05 and FDR values < 0.2 were reported as statistically 

significant findings. 

 

B) Haplotype analyses: 

We applied the ‘haplo.stats’ package in R (Schaid et al., 2002) (http://cran.r-

project.org/src/contrib/Descriptions/haplo.stats.html) to identify the association 

between a trait and haplotypes. A suite of R routines, referred to as 

“haplo.score”, was used to compute score statistics to test associations between 

haplotypes and traits. “haplo.score.slide” was used to identify sub-haplotypes 

from a group of loci. It is useful for a series of loci where little is known of the 

association between a trait and haplotypes. 
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We first ran “haplo.score.slide” on all contiguous SNP subsets of size, 

n.slide. Using a range of n.slide values (=2,3,4,5), the region with the strongest 

association consistently have low p-values for locus subsets containing the 

associated haplotypes.  

For each phenotype, we considered different SNPs subsets with a range 

of n.slide values, which meant that we were testing the associations of multiple 

subsets (30 subsets) simultaneously. Therefore, we need to consider the multiple 

comparisons adjustment. We considered two error measures: the false discovery 

rate (FDR) and the tail probability of the proportion of false positives (TPPFP). 

We used Bonferroni procedure to get adjusted p-values, then applied 

augmentation approach to these p-values to get generalized TPPFP adjusted p-

values (van der Laan, 2004, 2). Also we considered a multiple comparisons 

adjustment implemented by Benjamini & Hochberg correction to control FDR. We 

report the SNP subsets with TPPFP adjusted p-values less than 0.2 have 

statistically significant association with the trait.  

For each of these significant SNP subsets, we ran “haplo.score” to identify 

the haplotypes which are significantly associated with the trait. We considered 

those haplotypes with p values of score tests less than 0.05 as potential 

significant ones.   

To calculate the odds ratio of the significant haplotypes for the specific 

phenotype, we applied the “haplo.glm”. The base haplotype is the most frequent 

one.  
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CHAPTER III 

 

ENDOTHELIAL DERIVED MICROPARTICLES BIND AND ACTIVATE 

PLATELETS IN A CD36 DEPENDENT MANNER 

 

 

Characterization of EMP:  

Human EC were isolated from umbilical veins were incubated with 100 ng/ml 

TNFα and 50 ug/ml cyclohexamide overnight to generate EMP. EMP were 

characterized by flow cytometry and shown to bind FITC-conjugated annexin V 

(a marker for surface PS) and phycoeryrthrin (PE)-conjugated antibodies to  the 

EC specific proteins CD105/endoglin, VE-cadherin, and CD31 (BD Biosciences) 

(Fig 5).  In all cases, corresponding isotype matched non-immune IgGs were 

used as controls. As CD105 gave most robust fluorescence, it was used for the 

subsequent assays.  
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Fig 6. Characterization of EMP. HUVECs were treated with TNFα and 
Cyclohexamide and EMP were obtained from the supernatant. Flow cytometry 
histograms of EMP shown to bind FITC-conjugated annexin V and phycoeryrthrin 
(PE)-conjugated antibodies to CD105/endoglin, VE-cadherin, and CD31 (BD 
Biosciences). 
 

EMP bind to platelets:  

As shown in Fig 7A, EMP but not platelets (Fig 7B) bound anti-CD105.  When 

washed platelets were pre-incubated with EMP prior to incubation with anti-

CD105, the platelets acquired fluorescence (Fig 7B), suggesting that CD105-

positive EMP were physically associated with the platelets.  This physical 
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association was confirmed using 2-color fluorescence microscopy (Fig 8): EMP 

were labeled with a red fluorophore (Fig 8A, bottom panel) and platelets were 

labeled with a green fluorophore (Fig 8A, top panel).  As shown in Fig. 8B, the 

red EMP formed rosettes with the green platelets. 

 

 

 
 
Fig 7. CD36-dependent binding of EMP to platelets detected by 
immunofluorescence flow cytometry.  EMP were generated and purified from 
HUVEC cultures treated with TNFα (100ng/ml) and cyclohexamide (50μg/ml) for 
24hrs.  (A) Flow cytometry histogram showing that EMP stain with a PE-
conjugated anti-CD105 IgG (solid line) but not an isotype matched control IgG 
(dotted line).  (B) Flow cytometry histogram showing that platelets did not react 
with the anti-CD105 IgG (dotted line) but when incubated with EMP at a ratio of 
1:9, the platelets acquired PE fluorescence (solid line).  (C) Platelets and EMP 
were mixed together and stained with anti-CD105 IgG as in panel B, except the 
platelets were first pre-incubated with anti-CD36 IgG FA6 (dashed line); or (Panel 
D) isotype matched control IgG (dotted line). (E) Platelets and EMP were mixed 
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together and stained with anti-CD105 IgG as in panel B, except platelets were 
from a donor shown to be CD36 null.  Platelet-associated PE fluorescence was 
reduced by more than 95%.  In all cases histograms represent one of at least 3 
separate experiments. 
 

 

EMP binding to platelets is CD36 dependent:  

We used two independent methods to define the role of CD36 in platelet-EMP 

interactions.  As shown in Fig. 7C, pre-incubation of washed platelets with a 

monoclonal anti-CD36 antibody inhibited the acquisition of anti-CD105 positivity 

in a flow cytometry assay; control IgG had no effect (Fig 7D).  Similarly, using 

immunofluorescence microscopy, oxLDL, an alternative ligand for CD36 (Fig. 8C) 

or antibody to CD36 (Fig. 8E), inhibited platelet-EMP interaction whereas control 

IgG (Fig 8F) and native LDL (Fig 8D) had no effect.  Furthermore, platelets 

isolated from a CD36 null donor did not bind EMP (Fig 7E). 
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Fig 8. CD36-dependent binding of EMP to platelets detected by 
immunofluorescence microscopy.  (A) Washed platelets (top panel) were 
loaded with calcein and visualized by green fluourescence.  EMP (bottom panel) 
were loaded with PKH26 and visualized by red fluorescence. (B) Platelet-EMP 
rosettes seen when calcein-loaded platelets and PKH26-loaded EMP were 
incubated together at a 1:9 ratio for 30min prior to visualization. (C) Fluorescence 
tagged platelets and EMP were mixed together as in panel B except that 
platelets were first incubated with oxLDL (50µg/ml) or (D) nLDL (50ug/ml) as 
control or (E) an inhibitory anti-CD36 IgG or (F) its IgG control prior to 
visualization.  
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Blockade of MP-PS inhibited platelet-MP interaction:   

Incubation of MP with annexin V to block exposed PS dramatically reduced 

platelet acquired CD105 fluorescence (Figure 9A). A control protein, thioredoxin, 

had no effect. In addition, incubation of MP with a monoclonal anti-PS antibody 

significantly reduced the platelet-MP interaction whereas a non-immune control 

IgM did not (Figure 9B). These data suggest that the ligand for CD36 on the MP 

surface is phosphatidylserine. 
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Fig 9. Binding of EMP to platelets is PS dependent.  Platelets and EMP were 
mixed together and stained with anti-CD105 IgG as in Figure 1B, except the EMP 
were first pre-incubated with annexin V (150nmol) to block exposed PS.  Platelet 
associated anti-CD105 fluorescence was reduced by >95% (Figure 9A).  Pre-
incubation of EMPs with thioredoxin, a control protein had no effect. Similarly, 
EMP preincubated with anti PS antibody (25µg/ml) were mixed with platelets and 
stained with CD105. The platelet associated fluorescence was significantly 
reduced (Figure 9B, dashed line) whereas the control IgM had no effect (Figure 
9B, dotted line) .The histograms are representative of at least 2 separate 
experiments. 
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EMP enhance platelet activation and aggregation: 

To assess the functional consequences of EMP-platelet CD36 interactions, we 

incubated PRP with EMP prior to assessment of activation and aggregation 

responses to graded concentrations of the agonist ADP.  EMP at a ratio of 1:9 (9 

EMP per platelet) did not induce platelet aggregation (not shown).  In contrast, in 

combination with low doses of ADP, EMP induced a significant increase in the 

rate and extent of the aggregation response (Fig 10A). This effect was not 

observed in platelets from CD36 null donors (Fig 10B) demonstrating CD36 

dependence. Fig.10C shows that EMP significantly enhanced the extent of 

aggregation of CD36 expressing platelets induced by ADP concentrations of 1-4 

µM but not 20 µm (white and black bars).  No EMP effect was observed at any 

ADP concentration in CD36 null platelets (hatched and checkerboard bars). We 

also observed that responses of CD36 expressing platelets to graded doses of 

ADP (1-20µM) were significantly higher than those of CD36 null platelets (white 

and hatched bars). 
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Fig 10. CD36-dependent enhancement of platelet aggregation by EMP in 
response to low doses of ADP.  EMP were added to PRP obtained from 
healthy CD36 expressing (A) or CD36 null (B) donors and then stimulated with 
2μM ADP.  Aggregration was assessed turbidometrically with a dual channel 
aggregometer.  Tracings show representative aggregometry curves from n=4.  
(C) Maximum aggregation response of CD36 expressing platelets (open and 
closed bars) and CD36 null platelets (hatched and checkerboard bars) incubated 
with EMP (closed and checkerboard bars) or with buffer control (open and 
hatched bars) in response to graded doses of ADP. Values are the means of 
measurements done in triplicate from CD36 expressing or null donors and are 
expressed as +/- SE. Significant differences between CD36 expressing platelets 
with(open bar) or  without(closed bar) prior incubation with EMP are shown by(*) 
sign. Significant differences between ADP dose responses between CD36 
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expressing (hatched bar) and CD36 null platelets (checkerboard bar) are shown 
by (#) sign. 
 

EMP enhance platelet activation and secretion: 

To determine the effect of EMP on platelet activation and secretion, we assessed 

platelet P-selectin expression, a marker of α-granule secretion (Fig 11A) and 

PAC1  binding, a marker of integrin α2bβ3 activation (Fig 11B) in response to 2 

µM ADP.  In both cases we observed that EMP induced a marked increase in the 

expression of these markers.  These effects were significantly diminished by pre-

incubation of platelets with anti-CD36 IgG (Fig 11A and 11B).  Furthermore, 

washed platelets from a CD36 null donor showed neither increased P-selectin 

expression nor PAC1 binding in the presence of EMP and 2 µM of ADP (Fig 11C 

and 11D). 
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Fig 11. CD36-dependent enhancement of platelet activation by EMP in 
response to low dose ADP.  Washed platelets from CD36 expressing donors 
(A) and (B) or CD36 null donors (C) and (D) were incubated with EMP (1:9) or 
buffer control for 30min and then stimulated with 1μM ADP.  They were then 
incubated with either PE-conjugated anti-P-selectin (A) and (C) or FITC-
conjugated PAC1 (B) and (D) and analyzed by flow cytometry.  (A and B) 
Histograms showing increased anti-P-selectin (A) and PAC-1 (B) binding to 
CD36-expressing platelets when pre-incubated with EMP. Binding was 
significantly decreased when platelets were pre-incubated with anti-CD36 IgG, 
but not an isotype matched control IgG. (C and D) Histograms showing lack of 
increased anti-P-selectin (C) or PAC-1 (D) binding to CD36 null platelets when 
pre-incubated with EMP.  Histograms are representative of three independent 
experiments. 
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Isolation and characterization human blood-derived MP: 

Human MP (MP) were characterized by endothelial (CD105 and CD144), platelet 

(CD41), monocytic (CD14) markers and each marker was separately counted by 

flow cytometry. Our colleague, Dr. McCrae analyzed 105 subjects and a 

representative group of 13 subjects was used for experiments. 

Table 3: Characteristics of MP isolated from normal human plasma 

donor  Annexin V APC CD 105 PE CD 14 PE CD 41 PE-Cy5 

donor 1 14730 6030 1980 900 

donor  2 180 270 90 450 

donor 3 8190 3960 1125 17440 

donor 4 9450 4865 225 23940 

donor 5 9630 2655 720 2250 

donor 6 13950 1485 585 1680 

donor 7 360 180 135 2295 

donor 8 5040 4500 315 2520 

donor 9 540 3420 135 1710 

donor 10 5490 2025 90 1350 

donor 11 NA 8963 12 13249 
donor 12 8820 2025 675 20644 

donor 13 10170 1710 720 22470 

Mean ± SD 7213±4988 3238±2453 524±352 8531± 9412 
 

Table 3:  Characteristics of MP isolated from blood of normal human 
subjects.  MP were isolated from platelet poor plasma of normal human 
subjects.  Human MP were analyzed by flow cytometry and were quantified by 
light scatter and annexin V staining.  MP were also characterized by cell of origin 
using antibodies to endothelial: (CD105), platelet (CD41) and monocytic (CD14) 
markers.  Each marker was separately counted by flow cytometry.  Also shown 
here are the average count per ml ± SD for each MP marker.  We analyzed 105 
subjects and a representative group of 13 was used for experiments. NA: not 
available 
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MP isolated from normal healthy subjects bind and activate platelets in a 

CD36-dependent manner: 

As noted by others (Berckmans et al., 2001; Jimenez et al., 2001; Simak et al., 

2002), MP can be isolated from healthy subjects with no thrombosis history or 

risk.  MP isolated from 13 healthy human subjects were used for the studies 

discussed below.  As shown in Figure 6A, MP isolated from normal healthy 

volunteers stained positively for CD105.  When washed platelets were pre-

incubated with human plasma derived MP at a ratio of 9 MP per platelet prior to 

incubation with anti-CD105, the platelets acquired fluorescence (Figure 12B), 

suggesting that CD105-positive MP were physically associated with the 

platelets.  To determine the effect of blood borne MP on platelet activation, we 

assessed platelet PAC1 binding, a marker of integrin α2bβ3 activation (Figure 

12C) in response to 2 µM ADP.  Human plasma-derived MP induced a marked 

increase in the expression of PAC1.  This effect was significantly diminished by 

pre-incubation of platelets with anti-CD36 IgG (Figure 12C).  These studies 

show that MP isolated from normal human plasma similar to those generated in 

vitro from cultured EC could bind and activate platelets in a CD36 dependent 

manner. 
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Figure 12.  MP isolated from normal healthy subjects bind and activate 
platelets in a CD36 dependent manner. MP were isolated from normal healthy 
volunteers and characterized and counted. (A) Flow cytometry histogram 
showing that human blood-derived MP stain with a PE-conjugated anti-CD105 
IgG (solid line). (B) Flow cytometry histogram showing that platelets did not react 
with the anti-CD105 IgG (dotted line) but when incubated with human (CD105 
positive) MP at a ratio of 1:9, the platelets acquired PE fluorescence (solid line). 
Washed platelets from CD36 expressing donors were incubated with CD105 
positive human blood-derived MP (1:9) or buffer control for 30min and then 
stimulated with 1μM ADP.  They were then incubated with FITC-conjugated 
PAC1 and analyzed by flow cytometry.  (C) Histogram showing increased PAC-1 
binding to CD36-expressing platelets when pre-incubated with human blood-
derived MP (solid bold line). Binding was significantly decreased when platelets 
were pre-incubated with anti-CD36 IgG (solid thin line). Histograms are 
representative of at least three different experiments. 
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MP isolated from normal subjects augmented platelet aggregation in a 

CD36-dependent manner:  

Human plasma derived MP were incubated with PRP from healthy human 

volunteers prior to stimulation with 2 µM ADP.  Since we observed a subtle 

decrement in CD36 null platelet responses to low doses of ADP (Figure 10C), 

ADP concentrations were adjusted to produce the same aggregation response 

in both the CD36 null and CD36 expressing platelets.  As shown in Figure 13 

left panel, when human plasma derived MP were incubated with CD36 

expressing platelets, there was a significant enhancement in the aggregation 

response to ADP.  This was not observed when human plasma derived MP 

were incubated with CD36 null platelets (Figure 13, right panel).  These studies 

show that blood-borne MP have similar effects as culture derived EMP on 

platelet function. 

 

 

 

 

 67



 

 

Figure 13.  MP isolated from normal healthy subjects augment platelet 
aggregation in a CD36 dependent manner.  PRP from healthy CD36 
expressing (A) or CD36 null (B) human subjects was mixed with MP isolated 
from plasma of 13 normal healthy subjects and then stimulated with 1μM ADP 
(A) or 2µM ADP (B).  Aggregation was assessed turbidometrically as in Figure 
10.  Tracing is representative of findings from at least 5 different normal subjects. 
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CD105 staining in thrombi from CD36 null mice was decreased: 

Ongoing studies in the lab by a colleague had shown that the carotid artery 

occlusion times in CD36 wild type was significantly longer compared to knock out 

mice. We hypothesized that one of the contributing factors to this could be EMP-

platelet interaction in CD36 wild type mice.To determine if MP and platelets 

interact in vivo, carotid arteries were injured by FeCl3 in wild type and CD36 

knock out mice. The thrombosed arteries were sectioned and immunostained 

with an endothelial cell specific antibody to CD105 and a platelet specific 

antibody to CD61, followed by detection with secondary antibodies conjugated 

with different color fluorophores. Nuclei were stained with DAPI. We reasoned 

that CD105 staining of thrombi would reflect incorporation of EC-derived MP into 

the thrombi.  Images (Fig. 14) were acquired by confocal microscope from wild 

type (A) and CD36 null mice (B). Each image has four panels showing blue 

nuclei (DAPI), red CD105 suggestive of EMP, green platelets (CD61) and a 

merged image.  When we compared these two images, we observed significantly 

more CD105 staining within the thrombi from wild type mice (A) and also more 

colocalizing areas between the red EMP and the green platelets (yellow) in the 

merge imaged compared to CD36 null mice (B).  
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Fig 14:  Detection of EMP in thrombi of CD36 wild type and knock out mice. 
Immunohistochemistry of cryo preserved carotid artery sections following FeCl3 
injury in A) wild type and B) CD36 knock out mice. Section were stained with 
DAPI (blue), CD105 (red), platelets (green) and images merged. The merged 
section when compared show less CD105 in the CD36 null mice compared to the 
wildtype. (C) Quantification of CD105 fluorescenc in thrombi showed a significant     
difference (pvalue=0.006)between WT and null mice.
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CHAPTER IV 

 

LEVELS OF CD36 EXPRESSION ON PLATELETS MODULATE PLATELET 

FUNCTION 

 

Development of an assay to quantify platelet CD36: 

 Platelet rich plasma from healthy human volunteers was stained with anti CD36 

antibody or its isotype control to quantify CD36 expression levels on platelet 

surface. Mean fluorescence intensity was quantified by a standard curve 

generated with the PE-Quantibrite Beads (BD Biosciences) using a mixture of 

beads tagged with defined amounts of PE ranging from 200 to 70000 molecules 

per bead (Fig 15). Knowing the molar ratio of PE to anti-CD36 immunoglobulin 

(supplied by the manufacturer) allowed us to calculate the number of bound 

antibody molecules on each platelet by comparing mean fluorescence intensity to 

the standard curve, and hence, the number of CD36 molecules per platelet. Fig 

16 shows typical anti-CD36 fluorescence histograms of platelets from a high (top 

panel), low (bottom left) and null (bottom right) donor. 
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Fig 15. Quantification of platelet CD36 expression: Flow cytometry of PE-
Quantibrite beads on forward scatter vs fluorescence intensity (upper left panel) 
and histogram (upper right panel) showing four ranges of fluorescent beads  and 
when plotted against the number of PE molecules per bead as per 
manufacturer’s instructions, a graph standard curve (bottom panel) was obtained. 
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Fig 16. Detection of CD36 expression in human subjects:  Platelet Rich 
Plasma (PRP) from human subjects were incubated with either PE-conjugated 
CD36 antibody (blue) or its isotype control (red) and then analyzed by flow 
cytometry. This helped to identify CD36 expresser (Top panel), CD36 low 
expresser (left, bottom panel) and CD36 null donors (right, bottom panel). 
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CD36 expression on platelets is variable: 

Quantification of the flow cytometry data allowed us to assess the range of CD36 

expression in the healthy human population. In a sample size of 32 normal 

healthy volunteers, the CD36 expression on platelets ranged from as low as zero 

to as high as 14000 molecules per platelet. The mean was 6005±1484, the 

median was 5766 per platelet. 
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Fig 17: CD36 distribution in the population is variable. CD36 expression on 
platelets in a small group of healthy human volunteers was quantified as 
described above. The range of CD36 expression was as low as 2000/platelet to 
as high as 14000/platelet. Also shown are the mean (6005) and median (5766) 
values. 
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CD36 expression levels on platelets from individual donors were consistent 

over time:  

Of the 32 normal healthy volunteers tested, a representative group of five 

individual donors showed consistent levels of CD36 expression on at least five 

repeated analyses. Analyses done over three years at different times in the day 

were also consistent (Fig 18).  
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Fig 18. CD36 expression on platelets were consistent over time.  3 
representative histograms from the same subject over three years (2005, 2006 
and 2007) at different times of the day. CD36 expression is shown by green and 
its isotype control by red. 
 
Table 4: Summary of CD36 analysis in different donors on different days 

 
 
Table 4 shows the mean, SD and coefficient of variance for each reading for 4 
donors on 4 different time points. 
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Change of CD36 expression with platelet activation does not show 

significant difference among donors: 

As reported by others (Kestin et al., 1993; Murasaki et al., 2007; Rinder et al., 

1991), we found that when activated, platelet CD36 levels increases by about 

20%. Importantly, there was no significant difference in the % increase in CD36 

expression among donors (high expresser and medium expresser), regardless of 

resting levels of expression (Fig 19). This suggests that the wide variability in 

platelet CD36 expression cannot be accounted by differences in degrees of in 

vivo or ex vivo platelet activation among donors. 
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Fig 19. Difference in platelet CD36 expression between resting and 
activated platelets. Platelets from high and medium expresser were stained with 
either a PE- conjugated anti CD36 antibody or its isotype control. After activation 
by ADP10uM, platelets from high or medium donors (black bars) showed the 
same difference in expression when compared to resting (blue bars) platelets.  
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CD36 surface expression correlates with total CD36 protein: 

Variable CD36 surface expression on platelets could be due to differences in 

cellular localization or distribution rather than total expression. To test this, 

platelet protein lysates from high, medium and low expessers were subjected to 

Western Blot analyses to detect total CD36 protein (Fig 20A). Platelet GPIX or 

actin were used as internal controls (Fig 20B). Platelet CD36 was expressed as a 

ratio to GPIX and showed considerable variance. We saw a good association 

(r2=0.99) between the number of CD36 surface molecules   and the normalized 

CD36 protein (Fig 20C) suggesting that the variance in CD36 expression was 

due to differences in megakaryocyte CD36 synthesis and not intracellular 

distribution.   
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Fig 20. Platelet CD36 surface expression correlates with total CD36 protein: 
Platelet lysates were immunoblotted (A) with an anti CD36 antibody (clone FA6, 
Invitrogen). A specific CD36 band was observed at 88kDa in all samples but of 
varying band density. The blot was stripped and reprobed with either a polyclonal 
antibody to actin or a monoclonal antibody to platelet GPIX to normalize CD36 
expression. Plotting the normalized CD36 expression against the flow based 
surface expression of the samples (C), suggested a possible association 
between the two (r2=0.99). 
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Variability in CD36 expression modulates platelet function: 

To assess the functional consequences of this variability in CD36 expression we 

studied the effect of oxLDL on platelets from donors with high, medium and low 

levels of expression (Fig 21B). It is known that oxLDL can activate platelets in a 

CD36 dependent manner (Podrez et al., 2007). To assess platelet activation and 

aggregation, we incubated PRP or washed platelets with oxLDL. oxLDL induced 

a significant increase in the rate and extent of aggregation response (Fig 21A, 

left panel). This effect was not observed in null donors (Fig 21A right panel) 

demonstrating CD36 dependence. 

To determine the effect of oxLDL on platelet activation and secretion, we 

assessed platelet P-selectin expression, a marker of α-granule secretion. We 

observed that oxLDL could induce a marked increase in the expression of P-

selectin (not shown). We also found a good correlation (correlation 

coefficient=0.98) between platelet activation by oxLDL and level of CD36 

expression (Fig 21C). 
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Fig 21. CD36 expression and oxLDL mediated platelet activation. PRP from 
healthy CD36 expressing (A, left panel) or CD36 null (A, right panel) donors were 
incubated with oxLDL for 30 minutes and then stimulated with ADP 2µM. 
Aggregation was assessed turbidometrically with a dual chamber aggregometer. 
Tracings show representative aggregometry curves from n=3. (B) Selection of 
four normal healthy subjects with their CD36 expression ranging from null to 
high. (C) Washed platelets from the selected subjects were incubated with oxLDL 
for 30 minutes and the lipid mediated platelet activation was detected by anti P-
selectin antibody. Activation data plotted against surface expression of CD36 
suggested a good correlation (0.98). 
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CHAPTER V 

 

PLATELET CD36 EXPRESSION LEVELS ARE ASSOCIATED WITH GENETIC 

POLYMORPHISMS 

 

 

Platelet CD36 expression is variable: replicability in a larger population: 

Using the quantitative immunofluorescence flow cytometric technique to assess 

the level of platelet CD36 expression described in Chapter IV, we studied a large 

sample size of 567 successive subjects recruited through the Cleveland Clinic 

Cardiac Catheterization lab.  As with the normal volunteers, this group also 

showed a wide variability in platelet CD36 expression (Fig 22). The mean was 

7876±1924 CD36 molecules per platelet and the median was 7611.  
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Fig 22: CD36 distribution in a large patient population: The variability of 
CD36 expression in a small group of normal healthy population was replicated in 
a large (567) patient population. The mean is 7876±1924, median is 7611 CD36 
molecules per platelet. 
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Patient profile: 

Table 5 shows the anthropometric and biochemical data for the study subjects 

focusing on those variables that relate to CD36 function. The reference values for 

each if the phenotypes were blood cholesterol (CHOL) 200mg/dl; HDL 60mg/dl 

(in female) and 50mg/dl (in male); serum triglycerides (TG) 200mg/dl; blood 

glucose (GLU) 120mg/dl; platelet count 150,000/ml and Body mass index (BMI) 

30. Most patients had a past history of coronary artery disease (CAD) which was 

consistent with the fact that they all presented at the Cardiac Catheterization Lab. 

Almost 70% patients showed history of smoking in the past and more than 80% 

were hypertensive (criteria, 120/90) and more than  50% reported a history of 

cardiac disease. 
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Table 5: Phenotypic traits of the study subjects. CHOL=cholesterol; 
HDL=high density lipopoprotein; LDL=low density lipopoprotein; TG=triglycerides, 
GLU=glucose; PLT=platelet count; BMI=body mass index; hx=history of; 
CABG=coronary artery by-pass graft surgery; PCI= per cutaneous intervention. 
All numbers are total counts and percentages (%). 
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SNP analysis:  

10 tagged SNPs for CD36 were identified from the HapMap website as described 

in the “Materials and Methods” section (Table 2). Table 5 shows the major 

findings of our SNP analysis in 567 patients. All the SNPs were in Hardy-

Weinberg equilibrium. When the MFI was considered as a continuous variable, 

the none of the SNPs were found to be associated with CD36 expression levels, 

although one SNP seemed to have an important effect in females (rs1537593, p 

value= 0.019). When the MFI was considered as a binary variant (based on 

median values), three SNPs (rs3211864, p value0.023, OR=0.55; rs3211932, p 

value=0.02, OR=0.617 and rs1537593, p value=0.03, OR=1.067) were 

significantly associated with CD36 expression level. In 2 of 3 SNP analyses, 

owing to small number of subjects and the low frequency of the minor allele, 

homozygotes or heterozygotes for the rare allele were grouped together. In case 

of SNP rs 3211864, the presence of the minor allele (AG or GG) was associated 

with lower CD36 expression (OR=0.55). Similarly in case of rs1537593, the minor 

allele (TT or CT) was associated with lower CD36 levels. In rs3211932, a 

common polymorphism, both the T and the C allele were almost equally 

distributed and only the heterozygous (CT) was significantly associated with 

levels of CD36.  

As Caucasians represent the majority of this population, we reanalyzed the data 

excluding the African-American subjects (48 of 567). The same effect was 

observed for the SNPs rs3211864 and rs3211932 in the Caucasian population 

(519 of 567) (table 6), where the minor alleles were associated with lower levels 
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of CD36. One interesting observation in the Caucasians was that one of the 

above three SNPs in Table 5 was not significantly associated with the CD36 

expression levels (rs 1537593).   
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Table 6A: SNP analysis in all patients using MFI as a continuous variable 

 

B: SNP analysis in all patients using MFI as a binary variant (median) 

 

Table 6 SNP analysis in all patients. A) SNP analysis in all subjects using MFI 
as a continuous variable. The genotypes are designated as 1, 2 or 3 and are 
compared by either ANOVA or T test. A linear correlation coefficient is 
designated by r2. For each SNP, the dominant genotype is designated by the 
model column. None of the SNPs were associated with CD36 expression levels 
in the in the total population. B) SNP analysis using binary va.lues for MFI. The 
frequency of each genotype is denoted in percentage (%). P value was corrected 
with FDR. Only those with P values < 0.05 and FDR values < 0.2 were reported 
as statistically significant findings. When calculating Odds Ratio, owing to smaller 
number of subjects, homozygotes for the rare allele (GG in case of SNP 
rs3211864) and heterozygotes (AG for rs3211864) were grouped as carriers of 
the G allele. 
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Table 7A: SNP analysis in 519 Caucasian patients using MFI as a 

continuous variable 

 

 

 

 

 

7B: SNP analysis in males 
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C: SNP analysis in females 

 

D: SNP analysis in all Caucasians: using MFI as a binary (median) variable 

 

 

 

 

 

 
 
Table 7: SNP analysis in Caucasian patients. A: SNP analysis in all Caucasian 
subjects using MFI as a continuous variable. The genotypes are designated as 1, 
2 or 3 and are compared by either ANOVA or T test. A linear correlation 
coefficient is designated by r2. For each SNP, the dominant genotype is 
designated by the model column. None of the SNPs were associated with CD36 
expression levels in the in the total (A) or the male (B) Caucasian population. 
However, in the female population (C) one SNP rs1537593 was significantly 
associated (p=0.018) with CD36 expression levels. (D) When the CD36 
expression was divided into two groups their by median values, analysis revealed 
two SNPs to be significantly associated with median CD36 expression levels 
(3.74); rs3211864 and rs3211932. P value was corrected with FDR. Only those 
with P values < 0.05 and FDR values < 0.2 were reported as statistically 
significant findings. Odds ratio (OR) for each SNP was calculated with 95%CI. 
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Haplotype analysis: 

Haplotype analyses in all patients revealed (Table 8) that a number of haplotypes 

were associated with CD36 expression. In all instances, the p values were 

corrected by TPPFP which is midway between the most conservative bon-

Ferroni and the least conservative False Discovery Rate (FDR) statistic.  

Considering TPPFP at a significance level of 0.2, 4 haplotypes were found to be 

significantly associated with CD36 expression levels. These are CA, GTGT, 

TGTC, and GTGTC. Of these, the most significant haplotype was GTGTC 

(3,4,5,6,7), p value= 0.0044, TPPFP= 0.13. G allele of SNP5 (rs3211864) 

seemed to have an important effect in the outcome of these haplotypes as seen 

with the SNP analysis.  
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Table 8: Haplotype analysis of CD36 expression in all patients 

 

Table 8. Haplotypes associated with MFI. showing the haplotypes associated 
with CD36 expression. P value, adjusted P value (TPPFP ) and OR (Odd’s ratio) 
of the significant base is also shown. GTGTC was the haplotype associated most 
significantly with levels of CD36 (p= 0.0044, TPPFP= 0.42). The Odds of this 
haplotype of being associated with the CD36 levels was 0.42. 
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CHAPTER V 

 

DISCUSSION 

 

Endothelial derived microparticles bind and activate platelets in a CD36 

dependent manner 

In the present study we demonstrated using inhibitory antibodies, a 

competitive ligand (oxLDL), and platelets from CD36 null donors, that EMP 

bound to resting platelets in a CD36-dependent manner.  Binding was assessed 

by both flow cytometry and immunofluorescence microscopy.  Our studies using 

annexin V or more specifically a monoclonal antibody to PS to mask surface 

PS/oxPS suggest that it is PS exposed on EMP surfaces during their formation 

that serves as a ligand for platelet CD36.  This is consistent with previous studies 

from our lab and others that showed that PS and/or oxPS serve as a ligand on 

apoptotic cells and shed photoreceptor outer segments facilitating CD36-
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dependent recognition and internalization by phagocytic cells (Greenberg et al., 

2006; Ryeom et al., 1996; Sun et al., 2006).  In these previous studies, CD36 

was shown to initiate a signal in the phagocyte that resulted in internalization of 

the bound particle (Greenberg et al., 2006; Ryeom et al., 1996; Sun et al., 2006). 

We and others have also defined CD36-mediated signals in macrophages 

that are required for oxLDL uptake and foam cell formation and for clearance of 

bacterial products (Stuart et al., 2005).  Since platelets are probably not 

phagocytic cells, we hypothesized that CD36 signaling induced by MP might 

modulate platelet activation.  To test this hypothesis, we demonstrated using 

both turbidometric platelet aggregation studies and flow cytometry assays that 

EMP augment platelet aggregation at low doses of the weak agonist ADP (1-4 

µM).  This effect was abrogated by CD36 inhibitory antibodies and was not 

observed in platelets from CD36 null donors. 

The classic platelet activation model suggests that agonists, such as 

collagen, thrombin and epinephrine, interact with platelet surface receptors, most 

of which are G protein coupled receptors (GPCR), to initiate intracellular 

signaling events that lead to activation of integrins, reversible platelet 

aggregation, and secretion of platelet granule contents.  “Outside-in” signals 

mediated by integrin α2bβ3 and additional GPCR activation via secretion of ADP 

and thromboxane result in enhancement of the signal and ultimately stable 

platelet aggregation and thrombus formation.  Recent studies have significantly 

advanced and refined this model.  A large number of signaling molecules 

(receptors and ligands) have been identified that appear to act within the platelet-
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platelet contact zone after the aggregation event.  These include ephrins and 

their receptors, eph kinases (Prevost et al., 2005; Prevost et al., 2004), gas6 

(Angelillo-Scherrer et al., 2005; Angelillo-Scherrer et al., 2001), and its tyrosine 

kinase receptors, mer, tyro3, and axl, PECAM-1 (Falati et al., 2006), CD40 and 

CD40L (Henn et al., 1998; Hermann et al., 2001) and semaphorin 4D (Zhu et al., 

2007).  It has been suggested that after aggregation, platelets form a “synapse” 

(Brass et al., 2006) facilitating signaling by membrane tethered receptor/ligand 

pairs and localizing secreted and shed ligands.  This promotes growth and 

stability of the thrombus (Jackson, 2007). 

Our studies suggest that CD36 can also function as a signaling receptor on 

platelets capable of modulating platelet activation and aggregation.  Unlike the 

case of most of the receptor-ligand pairs described above, CD36 may function on 

resting platelets to signal and sensitize platelets to activation by other agonists.  

Importantly, the ligands that we have shown to bind CD36 on platelets (oxidized 

lipids and EMP) are generated as a consequence of diseases known to be 

associated with increased thrombotic risk.  We thus propose a model whereby 

CD36 ligands presented to platelets renders them “hyperreactive”, predisposing 

patients to pathological thrombosis.  In support of this model, we demonstrated 

that both EMP isolated from HUVEC culture and MP isolated from the blood of 

healthy human subjects augmented platelet aggregation in a CD36-dependent 

manner.  In times of pathological stress, the number of circulating MP presenting 

to platelets increases, leading to binding and activation and this might account, at 

least in part, for the higher risk of thrombosis in these stressful conditions.  Our 
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model does not preclude a role for CD36 in the platelet synapse.  It is also 

possible that ligands such as EMP that are generated during an acute thrombotic 

event could interact with CD36 in the platelet contact zone to increase responses 

to other signals and thereby provide a positive feedback loop during normal 

hemostasis.  

 

 
 
 
 
Fig 23. Model showing platelet CD36-MP interaction. EMP bind platelet CD6 
and in turn can activate platelets, thus leading to recruitment of more platelets in 
a thrombi of CD36 expressing platelets(right panel) forming a feed forward loop 
promoting thrombus formation; whereas in the CD36 null platelets, this loop is 
absent 
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In fact our data supports this; ADP dose response in CD36 null donors 

was blunted compared with CD36 expressing donors. The mechanism of this 

effect is unclear but our in-vivo study showed decreased EMP (CD105) staining 

in the thrombi from CD36 null mice suggesting that MP generated during normal 

hemostasis might serve as a ligand to facilitate platelet activation. Thus CD36 

could potentially modulate platelet function in both resting state as well as after 

platelet activation in the platelet synapse.  
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Levels of CD36 expression on platelets modulate platelet function  

 

In the first part of our studies we established the hypothesis that CD36-

ligand interactions could “prime” or sensitize platelets to activation by low doses 

of agonists. We had seen that the absence of CD36 could significantly alter 

platelet function. We thus hypothesized that levels of CD36 expression in healthy 

individuals could modulate platelet function. 

We reported here using a quantitative flow cytometric method that CD36 

expression on resting platelets among individual donors is highly variable with 

expressions ranging from 200 to 14000 molecules/ platelet. A recent study in this 

lab, in collaboration with others, has characterized the role of oxLDL as a ligand 

for platelet CD36 and shown that oxLDL can mediate platelet activation (Podrez 

et al., 2007). We showed here by flow cytometry and platelet aggregation studies 

that oxLDL could modulate platelet function in a CD36 dependent manner. 

When we selected four donors who were high, middle or low expressers 

and assessed platelet activation after pre-incubation with oxLDL, we observed 

that the extent of oxLDL induced platelet activation correlated closely with CD36 

levels on the platelets (r2=0.98) (Fig 21). These data suggest that individuals with 

high expression of CD36 on platelets might be more susceptible to platelet 

activation and, in turn, more prone to acute thrombotic events, while those with 

low levels of expression might have lower risk.   

The mechanisms responsible for variability of platelet CD36 expression 

are not known. We propose here that a component of the variability might be 
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genetic, but it is also likely that non-genetic e.g. environmental factors contribute. 

CD36 expression in monocytes and macrophages has been shown to be 

regulated by a number of conditions and agents. For example, in monocytes and 

macrophages PPARγ agonists, statins, vitamin E, HIV protease inhibitors, diet 

(fat), hyperglycemia, oxLDL, cytokines (IL4, TGFb, M-CSF) have been shown to 

influence CD36 expression (Feingold et al., 2004; Feng et al., 2000; Han et al., 

2000; Han et al., 1999; Huh et al., 1995; Huh et al., 1996; Kwok et al., 2007; 

Tontonoz et al., 1998), but it is not known whether any of these agents could 

affect platelet CD36 expression at the megakaryocytic level. 

CD36 (GPIV) expression on platelets has also seen to vary in certain 

disease conditions. For example, Rinder et al had showed that cardiopulmonary 

bypass produced significant increase in platelet Glycoprotein IV expression after 

2-4 hours of the bypass (Rinder et al., 1991). Changes in platelet surface CD36 

expression were also observed by Kestin et al who reported an increase in 

expression of GPIV detected by the monoclonal antibody OKM5 in a group of 

sedentary subjects after strenuous exercise (Kestin et al., 1993). In another 

report, CD36 expression detected by two antibodies, OKM5 and GS95 in 

subjects who underwent coronary stenting surgery reflected the level of platelet 

mediated restenosis (Murasaki et al., 2007). In all of these studies increase in 

CD36 expression was associated with evidence of platelet activation. This is 

consistent with our study where we showed that platelet CD36 expression 

increased by 20% after activation. 
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Platelet CD36 expression levels are associated with genetic 

polymorphisms 

 

CD36 is a highly polymorphic gene, yet systematic studies related to its 

genetic polymorphisms and their functional consequences are limited. In one of 

the few studies reported, 5 polymorphisms in Caucasians were used to define 

two specific LD blocks in the CD36 gene and thereby classify the population into 
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several haplotypes (Ma et al., 2004). There was a correlation between one of 

these haplotypes and circulating free fatty acid levels. Since CD36 is a fatty acid 

transporter, the results suggested an association with CD36 expression on fat 

and/or muscle, but there was no experimental evidence to support this. 

Generally, a haplotype is a collection of SNPs that are inherited together. 

This coinheritance suggests that some of these SNPs may be strongly linked to 

each other; this is known as linkage disequilibrium (LD). This strong association 

also implies that analysis of any one of these SNPs within a region of LD would 

provide us information on all the other SNPs in that region. These “informative” 

SNPs are known as Tagged SNPs (Project, 2003). In our study, we identified 10 

regions of LD based on data available through the Human Genome project and 

then chose 10 tagged SNPs for analysis from each region based on the criterion 

of at least 5% frequency of the minor allele.  

 We then used these ten tagged SNPs to genotype 567 unrelated subjects 

who presented to the Cleveland Clinic Cardiac Catheterization lab for 

cardiovascular complaints. SNP analysis revealed that 3 SNPs were significantly 

associated with CD36 levels. Interestingly, both the minor alleles of these 3 

SNPs were associated with low CD36 expression.  

Polymorphisms can affect the protein expression levels by several 

mechanisms. An unstable protein can result if the polymorphism is within the 

coding region of the gene. These mutant proteins are often mistargeted and 

degraded, for example, CD36 null mutation C478T. Such polymorphisms could 

result in single amino acid changes or could cause a frame shift, generating a 
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missense and /or translation stop codon and reduce transcripts (as seen in some 

CD36 null mutations). Polymorphisms can also occur in non-coding exons that 

can affect the mRNA stability or mRNA translational efficacy. SNPs located at the 

intron-exon splice site could alter protein structure or expression by altering 

splicing. SNPs in the gene promoter/ enhancer regions could affect transcription 

factor binding and thus influence mRNA transcription. Recently, mutations/ 

polymorphisms in regulatory micro RNA binding sites have been described and 

related to transcriptional activity. 

SNPs can be either synonymous (silent) or non-synonymous (a change in 

the protein). While non-synonymous SNPs are associated with most single gene 

diseases, most SNPs are non-coding and most SNPs identified in genetic 

association studies of complex multigenic diseases are non-coding.  Most CD36 

SNPs identified to date are in the non-coding region. In our study, all 10 tag 

SNPs were non-coding. They were mostly intronic, although one of them was in 

the 5’ untranslated region of the mRNA coding region (rs9918586). All the 3 

SNPs significantly associated with low CD36 expression levels in our study were 

intronic. Although we have shown an association between these 3 SNPs and 

CD36 levels, it does not imply that these SNPs are responsible for reduced CD36 

protein expression. These tag SNPs probably predict the presence of other SNPs 

which are in LD and these are equally or more likely to be responsible for the 

change in CD36 protein expression. 

There have been several studies in the past on polymorphisms of platelet 

receptors and their functional impact. The most clinically relevant platelet 
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polymorphisms involve surface glycoprotein molecules that play a key role in 

platelet adhesion, activation and aggregation. These include, α3a, α2b, GPIbα, 

GPIbβ and integrin α2. For example the PlA2 polymorphism (leu/pro 33, 

1565T/C), first shown by Kunicki and Aster (Kunicki and Aster, 1978) is a T→C 

substitution at position1565 in Exon 2 of α2bβ3 gene (Newman et al., 1989). 

There is conflicting evidence, however about whether this mutation could affect 

platelet function. The same group also identified a Sra polymorphism in α3a 

(Arg636→cys) (Santoso et al., 1994) but this was not associated with any change 

in platelet expression of α2bβ3 on the platelet nor with any platelet adhesive 

function. Afshar-Kharghan identified a Kozak-sequence polymorphism in GP1bα 

(-5C→T) where the -5C allele is associated with increased surface expression of 

GP1bα on platelets or cell lines expressing these mutants (Afshar-Kharghan et 

al., 1999). Kozak sequence consensus states that translation is most efficient 

with C at -5 position of the start codon ATG (Kozak, 1984) In the same lines, the 

Bra polymorphism (Br 1648G→A) was associated with lower platelet expression 

levels of integrin α2β1 (Kunicki et al., 1997), and in the -807C→T polymorphism, 

the T allele was associated with higher levels of α2β1 (Corral et al., 1999a; Corral 

et al., 1999b). 

The present study structure does not give us enough information about 

CD36 inheritance in general. This draws our attention to the fact that the 

population under discussion is a mixed population in terms of health and disease 

including hypertension, obesity, smoking and atherosclerosis. Also, there has 

been considerable evidence that hydroxylmethyl-glutaryl CoA inhibitors or statins 
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can actually reduce the platelet surface expression of CD36 and thus reduce 

platelet reactivity to oxLDL, thereby contributing towards anti-thrombotic risk 

(Bruni et al., 2005; Puccetti et al., 2002; Puccetti et al., 2003; Puccetti et al., 

2005). Our sample group is heterogenous, some of patients may or may not 

have been on statins, and this may mask some of the genetic effects. We 

therefore need to repeat the study in a large normal healthy population who are 

not on any medication and without any risk factors for atherosclerotic diseases to 

address this issue. 
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APPENDIX 

Association of CD36 tagged SNPs with other phenotypes: 

Although not included in the initial proposal, accessibility to other phenotypic data 

(Table 4, Chapter V) for the patient population through Gene Bank allowed us to 

do association analyses between these phenotypes and CD36 genotypes. Pilot 

studies revealed that CD36 SNPs were associated with BMI (body mass index). 

Considering all patients, G allele in the SNP rs3211864 was significantly 

associated with lower BMI (body mass index) (P value= 0.001). Interestingly, the 

minor allele of the same SNP was also associated with lower levels of CD36 

expression (Chapter IV). Similar results were obtained with analysis of the data in 

Caucasian patients (data not shown). Haplotype analyses also revealed an 

association of CD36 with BMI (Table 2). This association is probably relevant 

because our group in collaboration with others have shown that body weight of 

CD36 null male (less so in female) mice were lower than their age matched wild 

type controls (Goudriaan et al., 2002). We also showed that the daily food intake 

was also lower in CD36 null mice compared to the wild types. Interestingly, 

Laugerette et al demonstrated that CD36 was present at the apex of taste buds 

and acted as “oral sensor” of fat. CD36 null mice were less attracted by fatty diet 

(Laugerette et al., 2005) suggesting that this could contribute towards less body 

weight and BMI. Recently, a study of 219 Korean patients with severe coronary 

artery disease revealed that homozygosity of the polymorphism (TG repeat in 

intron 3) was significantly associated with higher BMI in men compared to control 

male subjects (Min Yun et al., 2007).  We show here that CD36 SNPs could 
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associate with BMI, however further analysis with a large number of normal 

control subjects is required to conclude anything definitive. 

 
Table 1: SNP analysis for BMI in all patients 

 

 

Table 1: SNPs associated with BMI. Two SNPs were significantly associated 
with BMI. The p value is supplemented with (FDR). Odds Ratio with 95%CI for 
each SNP was calculated. 
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Table 2: Haplotype analysis in all patients: BMI 

 

Table 2: Haplotypes associated with BMI. Haplotype analysis revealed several 
haplotypes to be associated with BMI. P value and TPPFP for each haplotype 
combination are shown. OR with 95% CI are also shown. 
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