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ABSTRACT 

The growing reliance on online services imposes a high dependability 

requirement on the computer systems that provide these services. Byzantine fault 

tolerance (BFT) is a promising technology to solidify such systems for the much needed 

high dependability. BFT employs redundant copies of the servers and ensures that a 

replicated system continues providing correct services despite the attacks on a small 

portion of the system. In this dissertation research, I developed novel algorithms and 

mechanisms to control various types of application nondeterminism and to ensure the 

long-term reliability of BFT systems via a migration-based proactive recovery scheme. I 

also investigated a new approach to significantly improve the overall system throughput 

by enabling concurrent processing using Software Transactional Memory (STM). 

Controlling application nondeterminism is essential to achieve strong replica consistency 

because the BFT technology is based on state-machine replication, which requires 

deterministic operation of each replica. Proactive recovery is necessary to ensure that the 

fundamental assumption of using the BFT technology is not violated over long term, i.e., 

less than one-third of replicas remain correct. Without proactive recovery, more and more 

replicas will be compromised under continuously attacks, which would render BFT 
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ineffective. STM based concurrent processing maximized the system throughput by 

utilizing the power of multi-core CPUs while preserving strong replication consistency. 
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CHAPTER I 

INTRODUCTION 

In today's society, Internet has become an irreplaceable part in people’s life and 

online services are playing a more and more important role. Naturally, the services are 

expected to be highly available despite arbitrary faults (referred to as Byzantine faults 

[34]). To achieve high availability, the system should always be ready to provide correct 

services to its clients even if a small portion becomes Byzantine faulty. 

Byzantine fault tolerance (BFT) is a promising state-machine based replication 

technique. However, existing BFT algorithms, proposed so far in [13, 14, 15, 16, 20, 68], 

can only deal with applications with deterministic operations or those with the simplest 

types of replica nondeterminism. To handle replica nondeterminism found in practical 

applications, the BFT algorithm has to be improved in order to prevent the system from 

being exploited due to the presence of replica nondeterminism. In chapter 3, we introduce 

a set of mechanisms to control different types of nondeterminism for Byzantine fault 

tolerance. 
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BFT algorithms assume that less than one-third of the replicas can be faulty. 

Without additional mechanisms, this assumption could not hold over long-run because 

adversaries would continue trying to compromise more and more replicas. To prevent 

this from happening, various proactive recovery schemes [13, 15, 48, 53, 54, 55] for BFT 

have been proposed. Common to all such schemes, the replicas are proactively restarted 

before it is known that they have become faulty. After analyzing the existing proactive 

recovery schemes, we noticed three issues. First, rebooting with a refreshed state may not 

be effective in repairing a replica if there are hardware damages. Second, even if a 

compromised replica can be repaired by rebooting, it usually is a prolonged process, 

which may cause the system to be unavailable during the recovery period. Third, all 

active replicas need to coordinate such that only a small portion of the replicas are 

undergoing recovery at any given time to ensure the completion of the recovery. In 

chapter 4, we present an alternative way for proactive recovery based on service 

migration. Our objective is to provide proactive recovery for long-running BFT systems 

while effectively controlling of all three issues. 

With the combination of BFT and proactive recovery, distributed applications can 

be made more trustworthy. However, in existing BFT algorithms, all application requests 

have to be executed sequentially to ensure strong replica consistency. This inevitably 

imposes a severe limitation on the performance of BFT systems. In particular, they 

cannot fully exploit the power of modern multi-core processors which is pervasively 

available today. This issue has been addressed by a number of researchers [28, 19, 17, 

60]. This limitation can be lifted by enabling concurrent execution by incorporating the 

software transactional memory (STM) technique into BFT systems. By using the 
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software transactional memory model for processing, it is possible to delivery multiple 

requests for concurrent execution as long as the commit order is controlled such that the 

order conforms to the total ordering of the requests that triggered the transactions. The 

software transactional memory technique can be further used to work with the speculative 

BFT algorithm [68]. With commit barrier and multi-version support, a request is 

delivered for speculative processing even if there are some conflicts. While most of the 

time the speculation works, it would require an abort and restart if the speculation is 

wrong. In chapter 6, we present our STM based speculative concurrent BFT framework 

which significantly improved the overall performance.  

Finally, the conclusion and future work are described in chapter 7. 
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CHAPTER II 

BACKGROUND 

This chapter provides an overview of a number of topics that this dissertation 

research has been involved with, including Byzantine fault tolerance (BFT), strong 

replica consistency, software transitional memory (STM), concurrent and speculative 

execution, and concurrency control. 

2.1 Byzantine Fault Tolerance 

2.1.1 Byzantine Fault 

The term "Byzantine fault" was coined by Lamport [34] as part of the classic 

coordination problem known as the Byzantine Generals Problems. A Byzantine fault 

refers to an arbitrary fault that may occur during the execution of a distributed system 

which may lead the system to an arbitrary failure state. A Byzantine fault may make the 
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system respond to a client's request in an unpredictable way, such as crash, executing 

incorrect instructions, or processing the right instructions with wrong order. Compared 

with fail-stop faults, Byzantine faults are much harder to detect and, even worse, 

Byzantine faulty components may collude together, which could make the detection of 

such faults much harder. 

2.1.2 Byzantine Fault Tolerance 

Byzantine fault tolerance refers to the capability of a system to tolerate Byzantine 

faults. It can be achieved by replicating the service and ensuring all service replicas to 

reach Byzantine agreement on all state transitions. Byzantine agreement refers to the 

procedure that ensures all correct components reaching a consensus despite the presence 

of Byzantine failures. 

The first highly efficient Byzantine agreement algorithm was introduced by 

Castro and Liskov [13, 14] (referred to as the BFT algorithm or Byzantine Agreement). 

This algorithm requires at least      replicas to tolerate up to   Byzantine faulty 

replicas (  refers to the number of faulty nodes). During anytime of the execution, one 

replica is designated as the primary while the rests are played as backups. The BFT 

algorithm includes two modes of operations: normal operation, used to reach Byzantine 

agreement, and view change, used to handle the primary failures.  

The normal operation involves three phases executed sequentially, followed by 

the execution order, they are called pre-prepare phase, prepare phase, and commit phase. 

In the pre-prepare phase, the primary multicasts a pre-prepare message to all backups as 
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its proposal. If a backup accepts the message, it starts the second phase, i.e. prepare 

phase, by multicasting a prepare message. When a replica has collected   matching 

prepare messages from different replicas, it concludes the prepare phase. Then the replica 

goes into the commit phase by multicasting a commit message to other replicas. The third 

phase ends when a replica has received        matching commit messages from 

different replicas. Figure 1 shows the details of BFT algorithm in the normal operations 

with    . 

Client

Replica 1

Replica 2

Replica 3

Pre-Prepare 

Phase

R
equest

Pre-Prepare

Primary

Prepare Commit

Prepare Phase Commit Phase

R
ep

ly

Execution

 

Figure 1 Normal Operation of the BFT Algorithm (   ) 

If a replica cannot complete the three-phase algorithm by a predefined time or it 

receives an invalid message from the primary, it initiates a view change by sending out a 

view change request to all replicas to try to select a new primary in a round-robin fashion. 

If a correct replica receives     view change requests, it will join in even it is in normal 

operation state. The view change can be concluded when        replicas agree on the 

view change requests and then a new view will be established with a new primary. View 

change is necessary to guarantee Byzantine agreement can eventually be reached among 

all correct replicas.  
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2.2 Strong Replica Consistency 

The BFT algorithm described previously ensures the consistency of all correct 

replicas despite Byzantine faults only when the replicas behave deterministically. 

However, many practical distributed systems exhibit nondeterministic behaviors. 

The antagonistic terms determinism and nondeterminism are from philosophy and 

have been extensively used in different areas. The following definition of determinism is 

from Wikipedia 

“Determinism is the philosophical position that for every event exist conditions that 

could cause no other event.”[30] 

In computer science, an operation is said to be deterministic only when with the 

same input from an initial state, in absence of any failures, it always concludes to the 

same output. Deterministic operations are predictable. No matter how many times they 

are repeated, the results of a deterministic operation should always be consistent. In the 

domain of distributed systems, the term “replica determinism” means that when the same 

sequence of operations are applied at the replicas in the absence of failures, all server 

replicas should produce identical outcomes and move from the same initial state to the 

next consistent state. Replica determinism is a system wide property which is used to 

ensure all service replicas behave correctly even when they are running on completely 

different machines.  

Replica nondeterminism, on the other hand, is not predictable. Even start from the 

same initial state in a failure free environment, server replicas still might perform 

differently with applying the same set of requests in exactly the same order. Nowadays, 



 

8 

 

nondeterminism plays more and more important roles in web applications or services. For 

example, many online gaming applications contain nondeterminism whose values 

proposed by one replica and cannot be verified by others (e.g., random numbers that 

determine the state of the applications). As another example, multi-threaded applications 

may exhibit nondeterminism (e.g., the thread interleaving) whose values cannot be 

determined prior to the execution of a request (without losing concurrency). All 

nondeterminism or replica nondeterminism should be carefully handled in web 

applications and services to ensure strongly consistence in the Byzantine fault tolerance 

system. 

2.3 Software Transactional Memory 

Software Transactional Memory (STM), as an alternative way to lock-based 

synchronization, is a concurrent control mechanism to protect the critical sections and 

guarantee transaction atomicity during concurrent processing in the multi-thread 

environments.  

Lock-based synchronization mechanisms require the key to grant access to the 

protected section. A processing thread acquires the key before entering and releases the 

key after it finishes the operations in the protected section. If the key has been granted by 

a transaction, all later transactions will be blocked until the key has been released. Then 

the next transaction can request the key. In this way, the system is protected with mutual 

exclusions on critical sections.  STM, on the other hand, allows concurrent access and 
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resolves the dependence problem dynamically. A thread can tentatively read or write the 

same shared memory regardless of what other threads might be doing and only makes the 

changes permanent after the validation is done during the commit phase. Otherwise, if 

conflicts have been detected, related transactions might be aborted and restarted until 

there is no more conflict.  

There is no absolute sense of which solution is better between lock-based 

synchronization and STM since they thrive in different environments. STM enables 

optimistic concurrency, but adds the validation and retry overhead. This overhead highly 

depends on the number of shared objects the transaction has read, and grows linearly with 

the increases of the number of shared objects. With simpler and less error prone, STM is 

a better choice in the normal situation and it allows multiple threads to work on same 

pieces of data simultaneously. In the worst case, theoretically, the time complexity of 

STM is linear which will be the total time of all transactions plus the overhead associated 

with them. 

2.4 Concurrent and Speculative Execution 

In the last decade, the microprocessor technology has made tremendous advances. 

Now, it is very common that servers are equipped with multi-core Central Processing 

Units (CPUs) and sometimes with even multiple CPUs with great power of executing 

program instructions simultaneously. Parallel (concurrent) computing and concurrency 
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control are widely used in all areas in computer science to improve overall system 

performance. 

Concurrent execution (concurrent computing) becomes a form of computing for 

which the programs are designed as collections of process units that can be executed 

simultaneously. Concurrent execution can be enabled on a single core CPU machine by 

interleaving the executions in a time-slicing or priority ordering way, but more ideally, it 

should be run on a multi-core machine with real parallelism at multiple cores by 

assigning the different process units to different computational cores. Parallel computing 

programs are much harder to design than the sequential programs. The challenges in 

concurrent execution design include not only making the processing more efficient, but 

also performing sound concurrency control, such as controlling the correct sequence of 

the interactions, accesses to shared resources. Concurrent executions are also hard to 

verify because they introduce several new obstacles that only exists in parallel computing 

such as race conditions, and these bugs are hard to detect since they only happens on 

special conditions. With concurrent execution and appropriately control, the overall 

system performance is optimized to a new level. 

Speculative execution further extends the idea of optimization, where the system 

pre-executes the programs to utilize the CPU power more efficient. The pre-executed 

tasks might not even be actually needed. Speculation is using CPU idle time to pre-do 

work before the work is confirmed to be necessary, so as to prevent a delay for executing 

time after usage confirmation. The pre-execution takes risk. If it turns out that the work is 

not needed after all, the pre-execution will be wasted and totally ignored. The objective 

of speculative execution is to further improve the performance by utilizing extra 
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resources beyond the requirements. It is being widely used in optimistic concurrent 

computing. However, if the unnecessary speculation takes mandatory resources, it, will 

slow down the whole process and waste the time and resources. 
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CHAPTER III 

RELATED WORK 

3.1 Related Work of Byzantine Fault Tolerance 

Practical Byzantine Fault Tolerance (PBFT) [13, 14] by Castro and Liskov 

ensures both safety and liveness provided that less than one third of the replicas become 

faulty. Since this seminal work of BFT [13, 14] is published, a number of alternative BFT 

algorithms [1, 20, 32] have been proposed. 

Query/Update (Q/U) [1] is a BFT protocol that requires the use of       

replicas to tolerate up to   faults, which is more than that is required for PBFT [13, 14]. 

Clients broadcast the cached histories and their requests to the server replicas and all the 

replicas optimistically execute the requests without inter-replica communication. With 

Q/U, the performance of the system can be significantly improved in the fault-free 

situation since the requests can be accomplished within a single round of communication 
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between the client and server replicas. On the other hand, if the client gets conflicting 

results, it will inform the replicas and drive them back to a consistent state. Then the 

request will be re-executed again. With more service replicas, Q/U can process the 

requests with fewer message exchanges during normal operations. However, it does not 

work well in the presence of concurrent update requests. 

Hybrid Quorum (HQ) [20] combines both the quorum and agreement approaches. 

The same as PBFT, it only requires        different replicas. In contention free cases, 

replicas choose the ordering in the first round and process requests in the second round 

based on the quorum from        replicas. If any conflicts are detected, HQ relies on 

the Byzantine agreement to order and execute the requests. Compared with Q/U, HQ 

requires fewer replicas, but needs more rounds during normal execution. However, both 

Q/U and HQ cannot batch concurrent requests and have high latency when conflict 

happens as pointed out in [50]. 

Zyzzyva [32] is a speculative Byzantine Fault Tolerance protocol. Unlike other 

BFT algorithms, such as [13, 14, 16], it does not require replicas to reach the agreement 

before processing the requests. Zyzzyva protocol executes and responds to the clients 

immediately with the speculative results. If all replicas produce the same results, clients 

will conclude the requests and accept the results. Otherwise, the correct replicas might be 

temporarily inconsistent and reply with different answers. Nonetheless, all correct 

replicas, with the help of clients, will reach final agreement, and the replies will 

guarantee to be committed eventually. Although Zyzzyva significantly improves the 

performance during normal fault-free operations, it demands a more complicated 

recovery scheme. 
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Furthermore, in all three algorithms (Q/U, HQ, and Zyzzyva [1, 20, 32]), the 

replicas need the help from the clients to achieve agreements. We are concerned about 

this approach because if the client is faulty, it may endanger the integrity of the replicated 

service. 

3.2 Related Work of BFT for Nondeterministic Applications 

Replica nondeterminism has been studied extensively under the benign fault 

model [4, 6, 5, 39, 40, 41, 44, 46, 48, 56, 67]. However, there is no systematic 

classification of common types of replica nondeterminism, and even less so on the 

unified handling of such nondeterminism. [5, 46, 48] did provide a classification of some 

types of replica nondeterminism. However, they largely fall within the types of 

wrappable nondeterminism and verifiable pre-determinable nondeterminism, with the 

exception of nondeterminism caused by asynchronous interrupts, which we do not 

address in this dissertation. 

The replica nondeterminism caused by multithreading has been studied separately 

from other types of nondeterminism, again, under the benign fault mode only, in [4, 6, 39, 

40, 41, 44, 51]. These studies provided valuable insight on how to approach the problem 

of ensuring consistent replication of multithreaded applications. 

It is realized that what matters in achieving replica consistency is to control the 

ordering of different threads on access of the same shared data. The mechanisms to 

record and to replay such ordering have been developed. So do those for checkpointing 
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and restoring the state of multithreaded applications (for example, [31]). Even though 

these mechanisms alone are not sufficient to achieve Byzantine fault tolerance for 

multithreaded applications, they can be adapted and used towards this goal. In this 

dissertation, we show when to record and (partially) verify the ordering, how to 

propagate the ordering, and how to provision for problems encountered when replaying 

the ordering, all using the Byzantine fault model. 

As mentioned previously, the mechanisms developed in other research work 

regarding replica nondeterminism for Byzantine fault tolerance are limited to control a 

small subset of common replica nondeterminism, which we refer to as wrappable and 

verifiable pre-determinable replica nondeterminism [13, 14, 15, 16]. In BASE [16], it was 

recognized that a BFT system can be made more robust (to minimize deterministic 

software errors) by adopting a common abstract specification for the service to be 

replicated. A conformance wrapper for each distinct implementation is then developed to 

ensure that it behaves according to the common specification. Furthermore, an 

abstraction function and one of its inverses are needed to map between the concrete state 

of each implementation and the common abstract state. 

In [14], Castro and Liskov provided a brief guideline on how to deal with the type 

of nondeterminism that requires collective determination of the nondeterministic values. 

The guideline is very important and useful, as we have followed in this dissertation 

research. However, the guideline is applicable to only a subset of the problems we have 

addressed. The problem of having to deal with non-verifiable nondeterminism is unique 

to the Byzantine fault model. 
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3.3 Related Work of Proactive Recovery 

Ensuring Byzantine fault tolerance for long-running systems is an extremely 

challenging task. The pioneering work in the context of Byzantine fault tolerance is 

carried out by Castro and Liskov [13, 15, 52]. Our work is inspired by their work. 

However, the proactive recovery scheme in [13, 15] has a number of issues as we 

mentioned briefly in introduction.  

First, it assumes that a simple reboot (i.e., power cycle of the computing node) 

can be the basis for repairing a compromised node, which might not be the case because 

some attacks might cause hardware damages, as pointed out in [52].  

Second, even if a compromised node can be repaired by a reboot, it is often a 

prolonged process (typically over 30s for modern operating systems). During the 

rebooting step, the BFT service might not be available to its clients (e.g., if the rebooting 

node happens to be a non-faulty replica needed for the replicas to reach a Byzantine 

agreement).  

Third, there lacks coordination among replicas to ensure that no more than a small 

portion of the replicas (i.e., no more than   replicas in a system of       replicas to 

tolerate up to   faults) are undergoing proactive recovery at any given time, otherwise, 

the service may be unavailable for extended period of time. The static watchdog timeout 

used in [13, 15] also contributes to the problem because it cannot automatically adapt to 

various system loads, which means that the timeout value must be set to a conservative 

value based on the worst-case scenario. The staggered proactive recovery scheme in [13, 



 

17 

 

15] is not sufficient to prevent this problem from happening if the timeout value is set too 

short.  

Recognizing these issues, a number of researchers have proposed various methods 

to enhance the original proactive recovery scheme. 

The issue of uncoordinated proactive recovery due to system asynchrony has been 

studied by Sousa et al. [53, 54]. They resort to the use of a synchronous sub-system to 

ensure the timeliness of each round of proactive recovery. In particular, the proactive 

recovery period is determined a priori based on the worst case execution time so that 

even under heavy load, there will be no more than   replicas going through proactive 

recovery. The impact of proactive recovery schemes on the system availability has also 

been studied by Sousa et al. [55] and by Reiser and Kapitza [48].  

In the former scheme, extra replicas are introduced to the system and they actively 

participate message ordering and execution so that the system is always available when 

some replicas are undergoing proactive recovery. However, the recovering replicas are 

regarded as failed, and therefore, higher degree of replication is needed to tolerate the 

same number of Byzantine faults and all the replicas would have to participate the 

Byzantine agreement process. In the latter scheme [48], a new replica is launched in a 

different virtual machine by the hypervisor on the same node when an existing replica is 

to be rebooted for proactive recovery so that the availability reduction is minimized. 

However, if an attack has caused physical damage on the node that hosts the replica to be 

recovered, or it has compromised the hypervisor of the node [58], the new replica 

launched in the same node in the scheme [48] is likely to malfunction. 
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Proactive recovery for intrusion tolerance has been studied in [2, 38] with the 

emphasis of confidentiality protection using proactive threshold cryptography [11]. 

Reboot is also used as the basis to recover compromised replicas, which suggests such 

schemes may also suffer from similar problems as those in [13, 14]. The idea of moving 

expensive operations off the critical execution path is a well-known system design 

strategy, and it has been exploited in other fault-tolerant systems, such as [37, 45, 48].  

3.4 Related Work of Concurrent Speculative BFT 

The current approach to enable concurrent execution in BFT systems is by 

exploiting application semantics. In PBFT [13, 14], it is noted that read-only requests can 

be delivered without the need of total ordering.  

In [28], Kotla and Dahlin proposed to exploit application semantics for higher 

throughput by parallelizing the execution of independent requests. They outlined a 

method to track the dependency among the requests using application specific rules. In 

[19], Distler and Kapitza further extended Kotla and Dahlin’s work by introducing a 

scheme to execute a request on only a selected subset of replicas. This scheme assumes 

that the state variables accessed by each request are known, and that the state object 

distribution and object access are uniform.  

In prior work [17, 60], we proposed to rely on deeper application semantics to not 

only enable more requests (such as those that are commutative) to be executed 
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concurrently, but also minimize the number of Byzantine agreement steps used in an 

application (particularly for session-oriented applications).  

This research takes a drastically different approach from those mentioned above. 

Rather than resorting to the application semantics, which may be expensive to acquire 

accurately and hard to reuse, we rely on the use of software transactional memory to 

dynamically capture the dependency of concurrent operations automatically. This 

approach is inspired by the work of Brito, Fetzer, and Felber [33], where a similar idea 

was used to ensure multithreaded execution for actively-replicated event stream 

processing systems. Our work applies the idea in a different context (i.e., Byzantine fault 

tolerance instead of crash fault tolerance) and furthermore, we carry out detailed 

experiments and analysis on the level of concurrency that can be achieved under various 

conditions. 
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CHAPTER IV 

CONTROLLING REPLICA NONDETERMINISM FOR BFT 

State-machine based Byzantine fault tolerant replication requires the replicas to 

operate deterministically, i.e., given the same request issued by a client, all replicas 

should produce the same reply provided that the replicas are in the same state prior to 

processing the request. However, all practical applications contain some degrees of 

nondeterminisms. When such applications are replicated to achieve fault tolerance, the 

nondeterministic operations must be controlled to reach strong replica consistency. 

Otherwise, an adversary may be exploiting the potential inconsistency to compromise the 

integrity of the replicated services. 

In this chapter, we introduce our classification of common types of replica 

nondeterminism and present the system models and mechanisms for controlling these 

types of replica nondeterminism for distributed Byzantine fault tolerance (BFT) systems. 
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4.1 Classification of Replica Nondeterminism 

To better understand and handle nondeterminism in distributed systems, we 

classify the replica nondeterminisms based on different properties. 

First, we introduce a special type of nondeterminism termed as wrappable 

nondeterminism. 

 Wrappable nondeterminism. A type of nondeterminism whose effects can be 

mapped into some pre-specified abstract operations and states which are 

deterministic. 

Wrappable nondeterminism can be easily controlled by using an infrastructure-

provided or application-provided wrapper function, without explicit runtime inter-replica 

coordination. For example, replica-specific identifiers, such as hostnames, process ids, 

and file descriptors, can be determined group-wise before the application is started. 

Another situation is when all replicas are implemented according to the same abstract 

specification, in which case, a wrapper function can be used to translate between the local 

state and the group-wise abstract state, as described in [16].  

In this dissertation, we do not provide further discussion on the wrappable 

nondeterminism since it can be dealt with by a deterministic wrapper function without 

inter-replica coordination, and also because it has been thoroughly studied in [16]. 

Besides wrappable nondeterminism, we distinguish the rest of replica 

nondeterminisms based on two properties, determinable or verifiable.  
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Determinable is a property of nondeterminism based on the time when a particular 

operation will know the nondeterministic values. Using this as the criterion, we have pre-

determinable nondeterminism and post-determinable nondeterminism: 

 Pre-determinable nondeterminism. A type of replica nondeterminism whose 

values can be known prior to the execution of a request and it requires inter-

replica coordination to ensure replica consistency. 

 Post-determinable nondeterminism. A type of replica nondeterminism whose 

values can only be recorded after the request is submitted for execution and 

the nondeterministic values won’t be complete until the end of the execution. 

It also requires inter-replica coordination to ensure replica consistency. 

Nondeterminism verifiability is another criterion for classification. It is on 

whether a replica can verify the nondeterministic values proposed (or recorded) by 

another replica. According to this criterion, the nondeterminism can be divided into two 

different categories termed as verifiable nondeterminism and non-verifiable 

nondeterminism: 

 Verifiable nondeterminism. A type of replica nondeterminism whose values 

can be verified by other replicas. 

 Non-verifiable nondeterminism. A type of replica nondeterminism whose 

values cannot be completely verified by other replicas. Note that a replica 

might be able to partially verify some nondeterministic values proposed by 

another replica. This would help reduce the impact of a faulty replica. 
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Figure 2 Classification of Nondeterminism 

By using both criteria, as shown in Figure 2, we have four types of replica 

nondeterminisms of our interest: 

 Verifiable pre-determinable nondeterminism (VPRE). In the past, clock-

related operations have been treated as this type of operations. However, 

strictly speaking, it is not possible for a replica to verify deterministically the 

proposal sent by another replica for the current clock value without imposing 

stronger restriction on the synchrony of the distributed system (e.g., bounds on 

message propagation, request execution, and the clock drifts). 

 Non-verifiable pre-determinable nondeterminism (NPRE). Online gaming 

applications, such as Blackjack and Texas Hold'em, exhibit this type of 

nondeterminism. The integrity of services provided by such applications 

depends on the use of good secure random number generators. For the best 

security, it is essential to make one's choice of a random number unpredictable, 

let alone verifiable by other replicas. 
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 Verifiable post-determinable nondeterminism (VPOST). We have yet to 

identify a commonly used application that exhibits this type of 

nondeterminism. We include this type for completeness. 

 Non-verifiable post-determinable nondeterminism (NPOST). In general, all 

multithreaded applications exhibit this type of nondeterminism. For such 

applications, it is virtually impossible to determine which thread ordering 

should be used prior to the execution of a request without losing concurrency. 

All four types of nondeterminisms have to be carefully controlled to guarantee 

system consistence. We will introduce our mechanisms to handle each of them later in 

this chapter. 

4.2 System Model 

The system model we considered is a client-server based application in an 

asynchronous network. Certain synchrony is necessary, similar to [13, 14], to achieve 

liveness which means the upper bound of the message transmission and processing delay 

has been asymptotic limited. We dynamically set this bound explored in the BFT 

algorithm as every time a view change occurs the timeout for the next view change is 

doubled. 

Most frequently, both the client and the server, we believe, should be under 

normal operations. However, in very little cases, both of them could fall into Byzantine 

faults. We replicate the application server on        different nodes to tolerant up to 
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  failures and each of replicas is modeled as a state machine. All servers are required to 

run or rendered to run deterministically even with some level of nondeterminisms, as we 

clarified before. To handle nondeterminisms, two critical issues to be resolved in the 

state-machine replicated system: the total ordering of requests and the required 

nondeterministic values. We are using BFT framework developed in [13, 14] to achieve 

the total ordering of the requests.  

In the next section, we describe how we integrate our mechanisms into the BFT 

algorithm to control replica nondeterminisms so that all correct replicas will reach strong 

consistence on both the message ordering and the nondeterministic values. 

4.3 Controlling Nondeterminism 

Now, we introduce our mechanisms to handle common types of nondeterminisms.  

4.3.1 Controlling VPRE Nondeterminism 

If an operation contains Verifiable pre-determinable nondeterminism (VPRE), the 

primary replica proposes the nondeterministic values in the ndet parameter. Then both the 

nondeterminism type and obtained value are multicast in the PRE-PREPARE message to 

backups. 

A replica verifies two critical parts when it receives a PRE-PREPARE message, 

the type and the values of nondeterminism. The nondeterminism type in clients’ request 
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should be consistent with the one reported by the primary, and the nondeterministic 

values proposed by the primary is consistent with the replicas’. If both of validation 

process success, the backup replica accepts the PRE-PREPARE message from primary 

with ordering information and the nondeterministic values, and multicasts a PREPARE 

message to all other replicas. Otherwise, the replica suspects the primary and initializes a 

view change. From now on, the rest of the algorithm works the same as the original BFT 

algorithm, with the digest of the nondeterministic values included in both the PREPARE 

and the COMMIT messages. Figure 3 illustrats the details on how to control VPRE 

nondeterminism. 
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Figure 3 Normal Operation of the Modified BFT Algorithm for VPRE 
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4.3.2 Controlling NPRE Nondeterminism 

If the nondeterminism for the operation at the primary is of type non-verifiable 

pre-determinable nondeterminism (NPRE), an extra phase, pre-prepare-update phase, is 

added to handle the nondeterminism. The idea behind it is to let every replica contributes 

its share of nondeterministic values which can prevent potential damage from any faulty 

replicas injecting the predicable value as nondeterminism.  

When the primary gets the request with the type of NPRE nondeterminism, it 

proposes its share of nondeterministic values and multicasts the PRE-PREPARE message 

which includes both the type and the values of the nondeterminism to all backup replicas. 

On receiving the PRE-PREPARE message, on top of original BFT, a backup 

replica only verifies the type of nondeterminism supplied by the primary is the same as 

the one included in the original request from clients. If the verification is successful, the 

backup replica builds a PRE-PREPARE-UPDATE message including its own share of 

NPRE nondeterministic values, and sends the PRE-PREPARE-UPDATE message back 

to the primary. Also the backup retrieves the nondeterministic values from primary and 

save it for later usage.  

The primary expects    PRE-PREPARE-UPDATE messages from different 

replicas for a single request. These    PRE-PREPARE-UPDATE messages contain    

different sets of contributions for NPRE nondeterministic values. Including the one from 

primary,      set of contributions with proposer’s digital signature protection will be 

sent from primary to backup replicas in a PRE-PREPARE-UPDATE message. When a 

replica gets the valid PRE-PREPARE-UPDATE message from the primary, it will 
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replace the old nondeterministic value with the new one it calculated based on all 

contributions. From now on, the BFT algorithm operates as the traditional way, except 

that both the PREPARE and COMMIT messages, the same as VPRE, also carry the 

digest of the nondeterministic values, and the        sets of nondeterministic values are 

delivered to the application layer as parameters of the execution. The normal operation of 

the modified BFT algorithm for NPRE nondeterminism is illustrated in Figure 4. 
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Figure 4 Normal Operation of the Modified BFT Algorithm for NPRE 
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4.3.3 Controlling VPOST Nondeterminism 

In section 4.3.3 and section 4.3.4, we introduce the mechanisms to deal with 

POST-determinable nondeterminisms. To handle either verifiable post-determinable 

nondeterminism (VPOST) or non-Verifiable post-determinable nondeterminism 

(NPOST), the post-commit phase is necessary. Different from the pre-prepare-update 

phase for controlling NPRE, the post-commit phase involves the whole life-cycle of the 

Byzantine fault tolerance algorithm for correct replicas to reach an agreement on the 

nondeterministic values, which means that three rounds of control message exchanges are 

required similar to the way to determine the total ordering of requests under normal 

operation. 

For VPOST, the primary, in the first round of Byzantine Agreement, includes 

only the nondeterminism type along with the ordering information in the PRE-PREPARE 

message without any nondeterministic values. The PRE-PREPARE message is multicast 

to all backup replicas to start the BFT algorithm. On receiving the PRE-PREPARE 

message, a backup replica checks the nondeterminism type after verification of the 

client’s request and the ordering information. If the validation succeeds, the process will 

proceeds as usual to the prepare and the commit phases.  

When an agreement is reached on the total ordering and nondeterminism type, the 

request message is delivered for execution at primary. As Post-determinable 

nondeterminism, a recorded nondeterministic value is expected as well as reply message. 

Once the primary returns from the execution, it sends the reply back to the client and 

builds a postnd log including nondeterministic values and the digest of the reply. This 
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postnd log will be send to backup replicas to verify whether the primary has actually 

generated the reply with the corresponding nondeterministic values. This starts the post-

commit phase. 

In the post-commit phase, the focus will be the nondeterministic values as well as 

the reply message, since we are not worrying about ordering information any more. With 

another round of BFT algorithm, all correct backup replicas should agree on the same set 

of nondeterministic values from primary and the values will be used in their own 

execution. Then the backup replicas produce a reply and compare the digest with the one 

from primary. If either second Byzantine Agreement cannot be reached or message digest 

mismatch, the primary will be suspected. However, the request will still be delivered for 

execution if the agreement reached on the nondeterministic values and the replica will 

send the reply back to client regardless of digest comparison result. This is because, 

replicas believe, the client will get the expected replies if all correct replicas execute the 

request with the same nondeterministic values, even different then the primary. Figure 5 

shows the details about the normal operation of the modified BFT algorithm we used to 

handle VPOST. 
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Figure 5 Normal Operation of the Modified BFT Algorithm for VPOST 
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4.3.4 Controlling NPOST Nondeterminism 

To handle the non-verifiable post-determinable nondeterminism (NPOST), we use 

the same strategy as described in the previous subsection for controlling VPOST until a 

backup replica is ready to deliver the request to the application layer, as shown in Figure 

6. 

In contrast to VPOST, we have one more concern here. A faulty primary may 

disseminate some unexpected nondeterministic values to try to either confuse the backup 

replicas, or block them from providing useful services to the clients. For example, if the 

nondeterministic values are about thread interleaving, a faulty primary might provide the 

information in such a way to lead the backup replicas to deadlock or racing condition 

which might make the system crash. This is because the replicas, in general, cannot 

completely verify the correctness of the nondeterministic values until it actually executes 

the request. To prevent the system from crashing, we lunch a monitoring thread, as 

governance, separately with the main execution thread. And this monitoring thread can 

recover the replica when it runs into crash failures. 

On the other hand, if the main thread can successfully complete the execution, 

then the backup replicas performs the same reply verification procedure as that described 

in the previous subsection. 
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Figure 6 Normal Operation of the Modified BFT Algorithm for NPOST 
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4.4 View Change 

A faulty primary might prevent a non-faulty replica from reaching a Byzantine 

agreement on either the ordering information and/or the associated nondeterministic 

values. When the backup replicas suspect the primary by any reason, they will start a 

view change to select a new primary. It might take more than one round of view changes 

for the whole process to select a new non-faulty primary and reach the Byzantine 

agreement in the new view. Moreover, during the view change, it is very important to 

carry over the adequate information from one view to another so that replicas could reach 

agreement on the same ordering information and nondeterministic values in different 

views. 

The view change mechanism involves three control messages, consisting of 

VIEW-CHANGE, VIEW-CHANGE-ACK, and NEW-VIEW. A non-faulty replica 

initializes the view change if one of the following cases is true: (1) its view change timer 

expires; (2) it suspects either the ordering information or the nondeterministic values (for 

verifiable nondeterminism); (3) backups generate a different reply with primary (for post 

nondeterminism); (4) it receives     view change requests from other replicas. The 

basic view change flow we are using is the same as view change mechanism from 

original BFT algorithm. Besides we add the sets of information about states of post-pre-

prepared and post-prepared in previous views (for Byzantine agreement on post-

determinable nondeterminism).  

To initialize view change, a replica updates all associated data in the log and then, 

based on records in its log, constructs a VIEW-CHANGE message. Upon multicasting 
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the VIEW-CHANGE messages, the replica cleans the log files since they are no longer 

useful. A replica accepts the VIEW-CHANGE message and replies a VIEW-CHANGE-

ACK to the new primary of next view if the VIEW-CHANGE has all the information for 

current or an earlier view.  

If the new primary in next view collects a VIEW-CHANGE message and    

corresponding VIEW-CHANGE-ACK messages, it stores them as an entry with each 

entry is for a different replica. When the new primary has entries for      replicas, it 

builds a NEW-VIEW message by using the data in the entries and broadcasts it to all 

other replicas. The NEW-VIEW message contains the start state of the new view as 

checkpoint, all requests with the sequence number start from the checkpoint to the most 

recent, and the associated nondeterministic values. All the information in NEW-VIEW is 

required to reach the agreement across different views. The new primary chooses the 

checkpoint from the information in the entries that the sequence number greater or equal 

to its own low water marker with support from at least     non-faulty replicas. If any 

requests, nondeterministic values, or checkpoints are missing from local, the new primary 

may fetch the state from other replicas. Start from the checkpoint, all requests later will 

once again go through the Byzantine agreement determination procedure as the way we 

introduced in section 4.3. For post-determinable nondeterminism, as an exception, if only 

ordering information is built in previous views without post-nondeterministic values, the 

NULL value will be included in NEW-VIEW message and the new primary will be 

responsible to propose new values to be used during the requests re-execution, which also 

requires the post commit phase to reach agreement. 
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When a backup replica, in the new view, receives a NEW-VIEW message, it 

validates the view change by comparing the proof in NEW-VIEW message with its own 

collection of VIEW-CHANGE messages. If a VIEW-CHANGE message missing locally, 

the replica requires a proof of correctness from new primary including the original 

VIEW-CHANGE message and    acknowledgements associated. Then, after validation 

is confirmed, the replica rebuilds a NEW-VIEW message with local information and 

compares it with the one received from new primary. If the verification passes, the 

normal operation resumes, otherwise, another view change is initialized immediately 

until successful. Figure 7 shows the details of view change. 

Primary (0) Replica (1) Replica (3)Replica (2)

VIEW-CHANGE

View Change Timer starts

VIEW-CHANGE-ACK

NEW-VIEW

Primary (1)Replica (0) Replica (3)Replica (2)

 

Figure 7 View Change 
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4.5 Implementation, Optimization, and Performance Evaluation 

The implementation of mechanisms described in previous sections has been done 

in C++ and integrated into the BFT framework [13, 14, 15, 16]. A comprehensive 

experimental study has been carried out on the platform consists of 14 HP blade servers 

with each of them has two Quad-Core Intel Xeon 2GHz CPUs and 5GB memories. All 

blade servers are running Ubuntu Server 9 and are connected by Cisco Catalyst Blade 

3020 Gigabit Ethernet Switch. 

In performance evaluation, we focus on the overhead for providing controls on 

nondeterminisms in the BFT layer. The application layer work, such as cost associated 

with recording and verifying nondeterministic values, is not studied. 

Furthermore, in practical applications, a request may involve more than one type 

of nondeterminism. Thus, we considered the possibility of composite types of 

nondeterminisms. Because we have yet identified any practical applications with VPOST, 

this type is omitted. The only types of nondeterminisms will be included in basic 

performance evaluations are listed as following. 

 VPRE: Single type with verifiable pre-determinable nondeterminism 

 NPRE: Single type with non-verifiable pre-determinable nondeterminism 

 NPOST: Single type with non-verifiable post-determinable nondeterminism 

 VNPRE: Composite type with both verifiable pre-determinable 

nondeterminism and non-verifiable pre-determinable nondeterminism 

 VPRE-NPOST: Composite type with both verifiable pre-determinable 

nondeterminism and non-verifiable post determinable nondeterminism 
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 NPRE-NPOST: Composite type with both non-verifiable pre-determinable 

nondeterminism and non-verifiable post-determinable nondeterminism 

 VNPRE-NPOST: Composite type with verifiable pre-determinable non-

determinism, non-verifiable pre-determinable nondeterminism, and non-

verifiable post-determinable nondeterminism. 

In following sections, we first present, before performance evaluation, several 

optimizations we did to the mechanisms described previously. Then in basic performance 

evaluation, we use a single client with respect to all 7 types of nondeterminism listed 

above and various sizes of nondeterministic data (for clarity, we refer nondeterministic 

data as the set of nondeterministic values associated with each type of nondeterminism). 

Next, stress test, we present experiment results under various numbers of concurrent 

clients. In the final part, we report the impact of our mechanisms on the end-to-end 

latency during view changes. 

4.5.1 Optimizations 

All the results shown in following sections are obtained after optimization works, 

with which, the performance is significantly improved. 

We optimized our mechanisms to handle NPRE nondeterminism. In pre-prepare-

update phase, the primary will collect contributions of nondeterministic data from at least 

     replicas and re-calculate a new one based on them. In PRE-PREPARE-UPDATE 

message from primary to replicas, the primary provides the proof of correctness including 

the collection of nondeterministic data used in re-calculation. Instead of multicasting the 
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whole nondeterministic data set, the primary disseminates the collection of digests, which 

will sharply reduce the message size especially when the data is large. Then the backup 

replicas could verify the digests from primary with its local copies. If a replica recognizes 

one or more missing proposed nondeterministic data locally, the retransmissions are 

required. 

Another optimization we introduced is in the post-commit phase, which is used to 

handle NPOST nondeterminism. When we have multiple requests to process, we 

piggybacked the postn log, instead of a totally separate Byzantine agreement phase, with 

the PRE-PREPARE message of next request. In this way, we combine the Byzantine 

agreement for nondeterminism data of current request with the total ordering information 

of next request, which reduces the number of control message exchanges needed. Even 

though, the end-to-end latency for a particular request slightly increases, as a result, the 

overall throughput is significantly improved. If there is only a single request, as normal 

operation when the number of client is one, the post-commit phase still has to be done 

separately. 

4.5.2 Basic Performance Evaluation 

Error! Reference source not found. and Figure 9 show the summary of the end-

to-end latency and throughput measurements for a client-server application under normal 

operation for different types of replica nondeterminism. For each iteration, a client issues 

a 1KB request to the server replicas and waits for the reply which will also be 1KB fixed 

size. When the client gets the valid reply, it sends out another request with no waiting 
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time between. For each run, we measure the total elapsed time for 100,000 consecutive 

iterations at client side, and calculate the average end-to-end latency and throughput. 

The handling of different types of nondeterminism, except for VPRE, involves 

extra phases of message exchanges to reach agreements on both the ordering information 

and the nondeterministic data. As such, as shown in Error! Reference source not found. 

and Figure 9, the end-to-end latency is noticeably larger and the throughput is smaller, 

than that of VPRE. Furthermore, with larger size of nondeterministic data, the 

performance difference is more significant. 

 

Figure 8 End-to-End Latency for Different Types of Nondeterminism under Normal 

Operations 
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Figure 9: Average Throughput for Different Types of Nondeterminism under Normal 

Operations 

With a closer look, one may notice a surprising scenario. There is a crossover for 

NPRE and NPOST in end-to-end latency. When the nondeterministic data size is small, 

the end-to-end latency of NPRE is smaller compared with NPOST. However, the latency 

for requests with NPRE grows rapidly when the nondeterministic data size increasing and 

becomes higher than that for the requests with NPOST eventually. This is because the 

pre-prepare-update phase, even with the optimization above, still involves at least two 

large messages while the post-commit phase has only one. For NPOST, it has a full 

Byzantine agreement loop including two more rounds of message exchanges than for 

NPRE, and this leads to a relatively large end-to-end latency when the nondeterministic 

data is small. However, following by increasing the size of nondeterminism data, the 

transmission delay for messages that contain large size of data takes dominate, it results 
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in much faster grow of end-to-end latency for NPRE, and eventually surpasses that for 

NPOST. The crossover for the throughput results shown in Figure 9 is due to the same 

reason. 

4.5.3 Stress Tests 

So far we did the experiments for normal operation with single client. In this 

section, as summarized in Figure 10 and Figure 11, we present the performance reports 

on stress tests with various numbers of concurrent requests from different clients. We use 

multiple clients issue the requests to the replicated server at the same time. Each of 

clients sends 100,000 requests consecutively, where the size of the nondeterministic data 

is kept at 256 Bytes.  

With multiple concurrent requests, batching mechanism is enabled, which 

improves the overall throughput of the system. However, with larger number of clients, 

the waiting time increases. For a particular request, the latency becomes larger, as shown 

in Figure 10 and Figure 11.  

Interestingly, there are other crossovers contained in the multi-clients 

performance diagram which also happens between NPRE and NPOST nondeterminisms. 

When the number of concurrent clients is less than 7, the type of NPRE is faster than 

NPOST. However, starting with 8 clients, the latency of NPOST becomes smaller. The 

reason for this phenomenon is because of the optimization we introduced previously. For 

NPOST nondeterminism, when there are sufficient number of concurrent clients, virtually 

all post-commit phase are combined with following requests. So it improves the 
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throughput for requests with NPOST nondeterminism when the number of clients 

increasing. 

 

Figure 10 End-to-end Latency for Multiple Clients with Different Types of Replica 

Nondeterminism under Normal Operation  
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Figure 11 Throughput for Requests with Different Types of Replica Nondeterminism 

under Normal Operation 

4.5.4 Impact on End-to-End Latency during View Changes 

Until now, both basic performance and stress tests focus on the normal operations. 

In this section, we experience the impact of our mechanisms on the performance of view 

changes. In the experiment, a single client issues the requests to the replicated service. 

And some requests are instrumented so that they will crash the primary which will lead to 

a view change. We set the view change timer as 5-second, message retransmission timer 

as 150-millisecond and choose to use client side end-to-end latency, including the round-

trip time of communication, the time used to detect the primary failure, and the view 

change latency, as the metric. Furthermore, a view change always succeeds and no 

message is lost during the view change. 
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Table 1 End-to-end Latency during View Changes 

ND Data Size End-to-End Latency (seconds) 

ND Data Type 128 Bytes 256 Bytes 512 Bytes 1024 Bytes 2048 Bytes 4096 Bytes 

BFT with no ND 5.303915 

VPRE 5.303713 5.303834 5.304212 5.304548 5.30449 5.304659 

NPRE 5.304126 5.304294 5.304016 5.303665 5.30423 5.304159 

NPOST 5.304225 5.304572 5.304388 5.304486 5.304382 5.304593 

 

The view change experimental results are summarized in  

Table 1. As can be seen, the end-to-end latency, for various scenarios, remains 

virtually equal, including the one without nondeterminism. This is what we expected 

since the mechanisms to handle different types of nondeterminism have very minimum 

impact on the view change. According to section 4.4, in modified view change 

mechanism, only the digest of nondeterministic data is piggybacked in the VIEW-

CHANGE and NEW-VIEW messages. Furthermore, in our experiments, we assume there 

is no message lost during transactions. Therefore, from the performance point of view, it 

has virtually no negative effect. 

4.6 Conclusion 

In this chapter, we presented our mechanisms for handling common types of 

nondeterminism in a systematic and efficient manner based on the classification we 

introduced. The implementation of these mechanisms is carried out by extending the 

well-known BFT framework developed by Castro, Rodrigues, and Liskov [13, 16], which 

had very limited support for replica nondeterminism. Furthermore, we conducted 
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extensive experiments to evaluate the performance of our framework. And we show that 

our mechanisms only incur moderate runtime overhead. 
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CHAPTER V 

PROACTIVE RECOVERY 

State-machine based Byzantine fault tolerance (BFT) algorithms, including those 

designed to control replica nondeterminism described in the previous chapter, assume the 

availability of      replicas to tolerate up to   faulty replicas. However, over the 

lifetime of a system, the number of faulty replicas may eventually exceed   in the 

presence of persistent adversaries. To ensure the reliability and the availability over 

extended period of time (typically 24x7 and all year long), proactive recovery [48, 53, 54, 

55], where replicas are periodically restarted and repaired before they are detected to be 

faulty, becomes essential.  

In this chapter, we present our proactive recovery scheme for BFT. Compared 

with the proactive recovery scheme proposed by Castro and Liskov [13, 15], the primary 

benefit of our scheme is a reduced vulnerability window under normal operation. This is 

achieved by two means. First, the time-consuming reboot step is removed from the 

critical path of proactive recovery. Second, the response time and the service migration 

latency are continuously profiled and an optimal service migration interval is dynamically 
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determined during runtime based on the observed system load and the user-specified 

availability requirement. 

5.1 System Model 

Our proactive recovery scheme partially relies on the synchrony of the system, 

i.e., the round of proactive recovery should be completed within a bounded time. 

However, all Byzantine agreement needed in the proactive recovery is guaranteed to be 

safe without any synchrony assumption. 

Our service migration-based proactive recovery scheme includes three main 

components: 

1. A pool of nodes for active server replicas. To tolerate up to   Byzantine faulty 

replicas,        service replicas are needed in the active pool and they do all 

the operations as we discussed in the previous chapter. 

2. A pool of standby nodes. The size of standby pool should be large enough 

(  ) to repair damaged nodes while enabling frequent service migration for 

proactive recovery. 

3. A trusted configuration manager (similar to what has been described in [52]). 

This trusted configuration manager is to manage the pool of standby nodes, 

and to assist service migration. i.e., it is frequently probing and monitoring the 

health of each standby node, and repairing any faulty nodes detected. 
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Three main components are separated to different subnets which are connected by 

an advanced managed switch (i.e., Cisco Catalyst 6500) for faults isolation. Each node, 

either in active pool or standby pool, has three network interfaces NIC1, NIC2, and 

NIC3. We use NIC1 for connection to external network, NIC2 to connect between active 

and standby pools, and NIC3 for connection to the configuration manager. Although each 

node installs three network interfaces, only the ones in active pool have all three enabled. 

In standby pool, we disable NIC1 to make the nodes only accessible internally. Trusted 

configuration manager can dynamically control NIC1 and NIC2 of any node through 

NIC3, e.g., it can disable NIC1 on a node to remove it from active pool and switch NIC2 

of the same node to add it in standby pool.  

All server replicas may be subject to malicious faults in both active and standby 

pools. However, the majority attacks, we assume, are imposed from external networks. 

So the successful attacks on the standby nodes, which are isolated from external 

environment, should be much less likely than those on the nodes in the active pool. 

Similar to [54, 55], we assume only fail-stop model failures are on the trusted 

configuration manager and, to ensure high availability, the trusted configuration manager 

is replicated using the Paxos algorithm [35]. Other assumptions regarding the system still 

hold as we mentioned in the previous chapter. 
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5.2 Proactive Service Migration Mechanisms 

The proactive service migration mechanisms ensure long term reliability and 

availability. The detailed objectives including:  

 Ensure a consistent membership view for available standby nodes on each 

active replica;  

 Determine the time and the method to start a migration;  

 Select the source and the target nodes for migration;  

 Transfer the correct state to the new active replicas;  

 Notify the clients with the new membership after each proactive recovery. 

5.2.1 Standby Nodes Registration 

The nodes in the standby pool are controlled by the trusted configuration 

manager. Probing and sanitization procedures are applied on standby nodes periodically 

to ensure that they are not compromised. To ensure all the correct active replicas have the 

consistent membership of the available standby nodes, a refreshed standby node needs to 

notify all active replicas when the sanitization procedure are finished successfully. 

Otherwise, if the trusted configuration manager cannot repair the faulty nodes, a system 

administrator will be called to manually fix the problem.  
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BFT Algorithm for JOIN-REQUEST

Pool of Active Server Replicas

Primary (0) Replica (1) Replica (3)

JOIN-REQUEST

JOIN-APPROVED

Replica (2)

Update Standby 

Nodes Membership

Pool of Standby Nodes

Standby Node (0)

Sanitization 

Procedure

pre-prepare for JOIN-REQUEST with timestamp

 

Figure 12 Standby Nodes Registration Protocol 

The registration protocol is illustrated in Figure 12. A node in standby pool 

multicasts the JOIN-REQUEST, including a counter maintained by the secure 

coprocessor, to all active service replicas. An active replica will accept the JOIN-

REQUEST if the request is the one with highest counter from the same standby node. 

When the primary gets the valid JOIN-REQUEST, it will assign a timestamp to the 

request as the join time and initialize a Byzantine agreement process. This process is 

important, so that all active nodes have the consistent membership view of the standby 

nodes. The significance of the join time will be elaborated later. When the JOIN-

REQUEST has been committed, the correct active replicas will update its own standby 

nodes membership and send the JOIN-APPROVED reply back. The registration process 

completes if the requesting standby node gets        matched JOIN-APPROVED 

messages from different active replicas. 
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A standby node might have gone through multiple rounds of proactive 

sanitization before it is selected to enter active pool and run an active replica. Every time 

the repairing procedure completes, a new registration is triggered to reconfirm the 

membership. The active replicas subsequently update the join time of the standby node if 

the registration process completes successfully. 

Although standby nodes are much less likely to be compromised, it is still 

possible. When the configuration manager deems a registered standby node as faulty, an 

on-demand service repair will be initialized and the standby node is deregistered from the 

active replicas by sending a LEAVE-REQUEST. The LEAVE-REQUEST is handled in a 

similar way as that for JOIN-REQUEST. 

5.2.2 Proactive Recovery 

Proactive recovery will be triggered if either one of the two scenarios becomes 

true:  

 The software-based recovery timer expires, or  

 An on-demand service recovery is invoked by the trusted configuration 

manager. 

A proactive recovery timer is started at the beginning of the service and is reset at 

the end of each round of migration. One of the advantages of our proactive service 

migration is that the recovery timer can be adjusted dynamically based on the synchrony 

of the system and the workload on the system. This benefit can prevent harmful excessive 

concurrent proactive recoveries and a potentially large window of vulnerability. 
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The migration timer is initialized when we start the replicated service and it 

requires several user specified parameters, including: 

1. The target system availability   — the most important parameter. 

2. The minimum number of requests    served during a single round of 

proactive service migration. 

Furthermore, to elaborate our algorithm on how to adjust the proactive recovery 

timer, we define some symbols here: 

1. The response time to order and execute a request    . Please note,     does not 

include the queuing delay for the request being ordered. 

2. The latency    to carry out a service migration, i.e., the time it takes to swap 

out an active replica and replace it with a clean standby replica. 

The timeout value is initialized to      , and during runtime, we continuously 

measure the average response time     for the most recent   
 requests and the service 

migration latency   . A notification is sent to the system administrator if either the 

response time or the service migration latency exceeds the worst-case values. 

Based on the availability, we can calculate the service migration timeout value by 

the following equation: 

   
    
    

 (4.1) 

The parameter   
 is defined by user. The migration timeout value    is 

dynamically adjusted to      , if       
    

    . So to satisfy both the requirements on 
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the minimum number of requests served in each migration period and the target system 

availability, the migration timeout    is set as following: 

               
    
    

  (4.2) 

On expiration of the migration timer, a replica chooses a set of   active replicas, 

and a set of   standby nodes to initialize the proactive recovery.   active replicas are 

selected based on the reverse order of their identifiers. For example, since we have 

      active replicas, so in the fourth round, we have only one left which is required to 

be recovered next round. Then we select other       active replicas with identifiers 

from    to       . So replicas with id 0,   , …,        are selected. The set of   

standby nodes is selected on the timestamp of the registration, the younger the better. We 

choose the ones with the latest timestamp because of the least probability of these nodes 

to have been compromised at the time of migration (assuming brute-force attacks by 

adversaries). 

After making the decisions on the service migration sets, the replica multicasts an 

INIT-MIGRATION request to all others. There is a migration number contained in the 

initial migration request, which is determined by the number of successful migration 

rounds recorded by the replica. A correct replica accepts an INIT-MIGRATION message 

if all three conditions are hold:  

(1) The INIT-MIGRATION message carries a valid authenticator;  

(2) The receiver has not accepted another INIT-MIGRATION message from the 

same replica in the same view with the equal or higher migration number;  
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(3) Selected set of active replicas and set of standby replicas are consistent with 

the sets determined by the receiver according to the same migration set 

selection algorithm. 

When a replica gets    consistent INIT-MIGRATION from different replicas, it 

will construct the MIGRATION-REQUEST message. The most important requirement of 

the proactive recovery is to ensure a consistent up-to-date state for service migration, 

which can be done by Sync-Point Determination Phase. In the Sync-Point Determination 

Phase, the migration requests are totally ordered with respect to normal requests, and the 

one with top priority will be processed immediately without queuing. The primary orders 

the MIGRATION-REQUEST in the same way as that for a normal request, except that  

(1) It does not batch the MIGRATION-REQUEST message with normal requests, 

and 

(2) It piggybacks the MIGRATION-REQUEST and        INIT-MIGRATION 

messages, as proof of validity, with the PRE-PREPARE message. The reason 

for ordering the MIGRATION-REQUEST is to ensure a consistent 

synchronization point for migration at all replicas.  

An illustration of the migration initiation protocol is shown in Figure 13. 
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Figure 13 Proactive Service Migration Protocol 

Each replica starts a view change timer after the MIGRATION-REQUEST 

message has been constructed. If it cannot receive the PRE-PREPARE message from 

current primary before the timer expiration, a view change will be initiated. The new 

primary should resume the proactive service migration. 

Again, the MIGRATION-REQUEST message is totally ordered to ensure that all 

correct active replicas reach the same synchronization point when performing the service 

migration. The only difference with the normal requests ordering is that the replica must 

have all        INIT-MIGRATION messages the primary used to construct the 
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MIGRATION-REQUEST, and verify the active node set and standby node set match 

those in the INIT-MIGRATION messages. 

When a correct replicas reach the synchronization point, it takes the checkpoint of 

its state, including both the application and the BFT middleware state, and multicasts a 

MIGRATE-NOW message to the   standby nodes to be migrated and all replicas of the 

configuration manager. The MIGRATE-NOW message contains a set of tuples to 

identify the pair of source-node and target-node. The standby node that is designated as 

the target node will replace the active node indicated as the source node, once it 

completes the proactive recovery procedure.  

A replica sends the actual checkpoint, together with all queued request messages 

if it is the primary, to the target nodes in separate messages. If a replica is to be 

recovered, its NIC1 interface is expected to be disabled and it stops accepting any new 

requests. However, this holds for correct replicas only. If the replica is faulty, it might not 

do so. This is the reason why the trusted configuration manager must be informed of the 

migration by all correct active replicas. When there are       MIGRATE-NOW 

notifications, the configuration manager changes the switch configuration to forcefully 

disable the NIC1 interface from the switch end and performs other sanitizing operations 

on the faulty nodes. 

When a standby node collects       matched MIGRATE-NOW requests, it is 

promoted to run as an active replica and then applies the checkpoint to its state. From 

now on, this node starts to participate in the normal operation and becomes a new valid 

active replica. 
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5.2.3 New Membership Notification 

A faulty or potential faulty replica can be recovered by our alternative proactive 

recovery scheme. However, there is a lag between when a faulty replica has been 

migrated and when it has been sanitized by the configuration manager. In the meantime, 

the faulty replica still can send messages to the active replicas and the clients. Hence it is 

very important to inform the clients with the new membership of the active replicas so 

that they will ignore the messages received from the current active pool during the 

transition period. 

To improve the performance, the NEW-MEMBERSHIP notification is performed 

in a lazy manner after the first request of the service migration has been processed. 

However, if the primary replica has been selected to be replaced, the notification should 

be sent immediately so the clients could send their requests to the new primary instead of 

the old one. Furthermore, the notification is sent only from original active replicas, not 

the new ones, because the clients do not know them yet. 

5.2.4 On-Demand Migration 

On-demand migration is invoked when one or more faulty nodes have been 

detected by either the trusted configuration manager or by a replica with the solid 

evidence. The mechanism is very similar for both the timer based service migration and 

the on-demand service migration, except the trigger itself and the faulty nodes selection, 

since for on-demand migration, the nodes to be sanitized are already decided. The 
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migration process is the same and both should start with the INIT-MIGRATION 

message. 

5.3 Performance Evaluation 

We implemented the proactive service migration mechanisms described in this 

chapter and integrated into the Byzantine fault tolerance (BFT) framework developed by 

Castro, Rodrigues and Liskov [13, 15, 16]. All the related operations are simulated in 

software. And furthermore, we didn’t fully implement the trusted configuration manager 

since we lack the sophisticated hardware equipment to facilitate the subnet dynamic 

control. 

The testbed of the experiments consists of a set of Dell SC440 servers with a 

Pentium dual-core 2.8GHz CPU and 1GB RAM. They are running SuSE Linux 10.2. 

Similar to [13], those are general-purpose servers without hardware coprocessors. All the 

components including the configuration manager, the three pools of replicas, and the 

clients are located in the same physical local area network connected with a 100 Mbps 

switch.  

The motivation of the experiments is to evaluate the runtime performance of the 

proactive service migration scheme. The micro-benchmarking example included in the 

original BFT framework is adapted as the test application. Both the request and the reply 

messages are set to 1KB fixed length, and each client generates requests consecutively 
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without any think time. We are using a 1ms processing delay by busy loop to simulate 

some actual workload before it echoes back the payload to the client. 

Due to the potential large state, we employed the following optimization: only 

one node sends the full checkpoint to the target node and the others send the digest of the 

checkpoint instead. The target node can verify the checkpoint by comparing the digest 

generated from the full copy with the ones received from other replicas. 

We present two sets of experiments. First, the runtime cost of the service 

migration mechanism with a fixed migration timer. Second, characteristics on 

dynamically adjusted migration period with various conditions. 

5.3.1 Runtime Cost of Service Migration 

We present the runtime cost of the service migration schema by measuring the 

recovery time on a single node with various service state sizes. In each run, the service 

migration interval is kept at 10s. The recovery time is determined by measuring the time 

elapsed between the following two events:  

(1) The primary sending the PRE-PREPARE message for the MIGRATION-

REQUEST, and  

(2) The primary receiving a notification from the target standby node indicating 

that it has collected and applied the latest stable checkpoint.  

We refer to this time interval as the service migration latency. Figure 14 

summarizes the service migration latency with respect to various state sizes and the 

number of concurrent clients. It is not surprising to see that the cost of migration is 
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limited by available bandwidth (100Mbps) since the time to take a local checkpoint and 

restore one is negligible in our experiments (memory operation). This is intentional for 

two reasons:  

(1) The check point taking and restoration cost is very application dependent, and  

(2) Such cost is the same regardless of the proactive recovery schemes used. 

 

Figure 14 Service Migration Latency for Different State Sizes 

Furthermore, we measure the migration latency as a function of the system load in 

terms of the number of concurrent clients. As can be seen in Figure 15, the migration 

latency increases more significantly for larger state when the system load is higher. When 

there are eight concurrent clients, the migration latency for a state size of 50MB is close 

to 10s. This observation suggests that if a fixed watchdog timer is used, the watchdog 

timeout must be set to a very conservative worst-case value. If the watchdog timeout is 
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too short for the system to go through four rounds of proactive recovery (of   replicas at 

a time), there will be more than   replicas going through proactive recoveries 

concurrently, which will decrease the system availability, even without any fault. 

 

Figure 15 Service Migration Latency with Respect to the System Load 

5.3.2 Dynamic Adjustment of Migration Interval 

The objective of this set of experiments is to demonstrate the capability of 

dynamic migration interval adjustment. The results present how the migration interval 

changes under different system loads due to various concurrent clients and state sizes. 

We provide following parameters as user specified: 

1. Target system availability          
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2. Minimum number of requests served during a round of proactive service 

migration           

3. Initial value of the service migration interval   
      

Figure 16 shows the results of the dynamic adaptation of migration interval in the 

presence of a single client. As expected, when the state size is relatively small, 20MB or 

below,       is used because the migration latency is small and the user specified 

minimum requests needed to meet. As the state size increases, larger migration latency is 

needed to meet the availability requirement. Again, we show that the migration interval 

dynamically determined are much smaller than the worst-case value except when the 

state size is very large. 

 

 

Figure 16 Dynamic Adaption of Migration Interval for Different State Size 
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Figure 17 shows us the migration interval with various numbers of concurrent 

clients. It may be surprising to note that the migration timeout value actually decreases 

when the number of concurrent clients increases for state sizes of 5MB and 10MB. This 

might appear to be counterintuitive. However, it can be easily explained. This is an 

artifact caused by the aggressive batching mechanism in the BFT framework [13] we 

used. With batching, the cost of ordering a single request is reduced. Consequently, the 

response time per request is reduced, which results in a smaller migration timeout value. 

(Recall that     does not include the queuing delay of the request being ordered.)  

Another interesting observation is that the migration timeout values determined at 

runtime are much smaller than the worst-case value except when the state size is large 

and the number of concurrent clients is significant. For many applications, their state size 

might gradually increase over time as they process more application requests. A larger 

state would mean larger migration latency, as indicated in equation 4.2. 
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Figure 17 Corresponding Migration Interval with Respect to the Number of Concurrent 

Clients 

5.4 Conclusion 

In this chapter, we introduced a novel proactive recovery scheme based on service 

migration for long-running Byzantine fault tolerant systems. We described in detail the 

challenges and mechanisms needed for our migration-based proactive recovery to work. 

The primary benefit of our migration-based recovery scheme is a smaller vulnerability 

window during normal operation. When the system load is light, the migration interval 

can be dynamically adapted to a smaller value from the initial conservative value, which 

is usually set based on the worst-case scenario, and hence, resulting in a smaller 

vulnerability window. Our scheme also shifts the time consuming repairing step out of 
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the critical execution path, which also contributes to a less chance to compromise and a 

smaller vulnerability window. We demonstrated the benefits of our scheme 

experimentally with a working prototype. 
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CHAPTER VI 

CONCURRENT BFT 

In existing Byzantine Fault Tolerance (BFT) algorithms, application requests are 

executed one after another according to the established total ordering to ensure strong 

replica consistency. This inevitably limits the performance of the system without fully 

exploiting the multi-core processors that are pervasively available today. To lift the 

limitation, we incorporate the Software Transaction Memory (STM) technique into BFT 

systems. By using STM, it is possible to delivery multiple requests for concurrent 

execution as long as the commit order is controlled such that the order conforms to the 

total ordering of the requests that triggered the transactions, which is referred to as the 

ordering rule in this chapter. Furthermore, we can use the multi-version and commit 

barrier approaches to enable speculation to further improve the performance by pre-

executing the requests and hold the result temporarily until the execution is validated. If, 

by any chance, the speculation is wrong, the system will rollback and re-execute the 

requests based on the correct order. 
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In this chapter, we introduce our concurrent and speculative BFT algorithm that 

could bring the performance of BFT system to a new level. 

6.1 Conflicts Model 

Conflicts management is a very important task during the concurrent execution of 

multiple transactions. To better understand it, we introduce the conflicts model in web 

applications first with examples. We do not discuss basic read/write or write/write 

conflicts in our conflicts model because they can be easily controlled. We only focus on 

conflicting operations that can pass the validation test, but may lead to the violation of the 

ordering rule.  

For example, in a simple client-server application, each client sends a request to 

start a transaction and wait for a reply. If concurrent execution is not enabled, the 

transactions will be created and executed one after another sequentially, and requests may 

have to wait for their terns in a waiting queue. If the server has the capabilities of 

concurrent executing, multiple transactions, requested by different clients, can be 

triggered and processed at the same time. Figure 18 illustrates the basic idea.  
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Figure 18 Concurrent Execution in a Client-Server Application 

Concurrent execution is a double-edged sword. On the one hand, it might speed 

up the whole system performance in optimal conditions.  On the other hand, concurrent 

transactions may have to be aborted when conflicts arise. Conflicts may be unavoidable 

when concurrent transaction processing is enabled. Some conflicts may be difficult to 

discover. In a stateful web application, concurrent transactions must be made equivalent 

to a sequential execution, and some transactions may have to be aborted when conflicts 

are detected. In the following, we elaborate several common types of conflicts.  

The first type of conflicts: A transaction with higher timestamp concludes before 

another transaction with lower timestamp, and both transactions update the same piece of 

data successfully but in the wrong order. As shown in Figure 19, transaction    starts 

before transaction     , (i.e.,            , where    is the timestamp of the 



 

72 

 

transaction). They both update a shared data item. It may happen that    updates the 

shared data item after      has already committed cause by unexpected delay. In this 

case, although the execution of the two transactions is linearizable, the commit order of 

the two transactions violates the ordering rule because the transaction that has smaller 

timestamp is committed later than the one that has bigger timestamp. If uncontrolled, this 

conflict may cause replica inconsistency because it may happen that some replicas 

commit Ti ahead of Ti+1 while some other replicas commit Ti+1 ahead of Ti. 
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Write Oi, v+1 → Oi, v+2
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Transaction i 

committed

Transaction i+1 

committed
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Figure 19 Conflict Model 1 – Update Shared Data in the Wrong Order 

The second type of conflicts: STM uses commit timestamp to verify the 

transaction, and the one with lower timestamp is forced to re-execute due to the 

read/write conflicts. In the following example, we consider two concurrent transactions, 

transaction    and transaction      with            .      accesses the shared data item 

earlier than   . When      finishes its work and tries to commit, it detects the write/write 

conflicts with    and this would force    be re-executed. Again, although the two 

transactions are executed according to some lienarizable order, the actual order violates 

our ordering rule because it may cause replica inconsistency. 
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Figure 20 Conflict Model 2 – Early Transaction Forced to Abort and Restart 

Note that for normal read and write conflicts, the conflict resolution rule defined 

by STM to ensure linearizable execution of concurrent transactions is adequate. Figure 21 

below shows an example. 
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Figure 21 Normal Read and Write Conflicts Example 

6.2 Speculative Concurrent BFT 

The execution of concurrent transactions makes conflict unavoidable and we have 

introduced different types of conflicts in the previous section. The basic read/write and 

write/write conflicts have already been discovered and handled dynamically by STM. 
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And the most difficult part left for us is to add additional mechanism in the validation 

step to detect the violation of our ordering rule.  

In this section, we introduce speculative concurrent BFT based on two strategies, 

namely, commit barrier, and multi-version speculation with commit barrier. 

6.2.1 Commit Barrier 

We impose the following rule to detect the conflicts in concurrent stateful 

systems: 

“When a conflict is detected, the transaction with the smaller timestamp or 

sequence number should be committed and, if necessary, the one with the larger 

timestamp or sequence number must be aborted and restarted.”  

This rule must be abide by no matter how complicated the situation is. The reason 

why some transactions are valid for STM but violate our ordering rule is because STM 

doesn’t track a specific relative ordering among the transactions. The transactions with 

higher sequence number could be committed earlier according to the STM conflict 

resolution rule. To prevent this from happening, we introduce a commit barrier, an extra 

stage of validation during the commit phase. With the commit barrier, the transaction can 

commit only when all transactions with lower sequence numbers have already been 

committed, otherwise, it has to wait.  

We will reuse the two examples introduced in the previous section to see how to 

use the commit barrier to solve the problem. The two conflict models are handled in the 

same way during the commit barrier. The transaction      with higher timestamp or 
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sequence number reaches the commit point first, however, it cannot commit since we 

have a barrier now and transaction    has not committed yet, as shown in Figure 22. In 

this scenario,      has to wait. On the other hand, transaction    continues processing 

and, if the validation is successful, it can commit. After    has fully completed, the 

commit barrier releases     . However, when      is validated, a conflict will be 

detected. This would force transaction      to abort and to restart. In second try,      

would be able to commit.  
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Figure 22 The Commit Barrier Solution for our Conflict Models 
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6.2.2 Multi-Version Speculation with Commit Barrier 

Combining STM with commit barrier, we can guarantee the basic rule cannot be violated. 

violated. However, the use of the commit barrier may negatively impact the performance. 

As the example shows in  

Figure 23, when transaction      touches the shared data the very first time, we 

know there will be a conflict. With commit barrier, the problem can be solved but in 

efficiently. Hence, we propose another approach – Multi-version. 

Transaction i

Time

Transaction i+1

Write Oi, v+1 → Oi, v+2'

Validate Success

Transaction i 

committed

Transaction i+1 

committed

Write Oi, v+1 → Oi, v+2

Commit 

Barrier

Conflict

Transaction i+1 Validation 

Failed and Restart

Write Oi, v+2 → Oi, v+3

Validate Success

 

Figure 23 Commit Barrier Performance Issue 

Multi-version has been used in different places. The basic idea is that we keep 

multiple versions for shared data instead of a single static one. The multiple versions will 

include the last committed and the tentative versions. The last committed version is the 

permanent data that has been committed successfully by a transaction. The tentative 

version, on the other hand, is the version produced when a data item is updated by 

another active transaction that has yet to be committed. Every time the transaction 

requires a shared data item, it fetches the most recent version of the data item, even it is 

the tentative version. Then the fetched latest version is used in the following operations. 
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During the validation step, the transaction has to confirm that the tentative data has 

already been committed. If that is not the case, the transaction has to be aborted and 

restarted. 

Multi-version breaks the isolation property and exposes uncommitted data to all 

other active transactions. In our system, we store tentative data associated with the 

corresponding sequence number assigned to the transaction. When a transaction accesses 

the shared data, it prefers to use the one with the highest sequence number that is lower 

than that of the current transaction. If the transaction that produced the tentative version 

has been aborted, all transactions that are using the tentative version would also have to 

be aborted. Note that the multi-version approach must be used in conjunction with 

commit barrier validation to guarantee that the tentative version, if it is used, is 

committed before the transactions that accessed the tentative version. 

Figure 24 illustrates how to apply the multi-version mechanism to an example 

scenario. Transaction    executes normally and it updates the shared data first. When 

transaction      accesses the same piece of data, there are two versions and transaction 

     fetches the tentative version from   , even though it is not permanent. The tentative 

version of data will be used in operations of     . Since      takes less time to finish, it 

reaches the commit point before transaction    but is blocked by the commit barrier. In 

the mean time, transaction    continues its processing and commits after validation which 

releases the commit barrier of     . Now instead of normal validation,      also needs to 

verify the data version it used to finally commit. After    has committed successfully, the 

tentative version becomes permanent. So      can also be committed directly without 

restart. By using multi-version, transaction      can commit right after the    and the 
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ordering rule will hold. Any conflict would be handled nicely with almost no negative 

performance impact. 
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Figure 24 Multi-Version with Commit Barrier 

We believe any conflict resolution mechanism must strive to allow transactions to 

be committed successfully under normal operations. So that, by applying the multi-

version approach, the tentative data used in the following transactions (referred to as 

consumer transactions) will eventually be made permanent so that the consumer 

transactions can proceed to being committed. This would help increase the system 

throughput. 
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Figure 25 Multi-Version Speculation with Provider Restart 

However, in some cases, the transaction that produced the tentative version 

(referred to as the provider transaction) may have to be aborted and restarted, and the 

tentative data would become invalid. This would force the dependent consumer 

transactions to be rolled back and restarted as well. However, we still can, during the 

retry of the transactions, use the new tentative data. The performance would still be much 

better compared with the single version based approach. Figure 25 (a) and (b) show an 

example with a comparison between the two approaches: (1) When only the commit 

barrier is enabled and, (2) when both the commit barrier and the multi-version 

mechanisms are enabled. In Figure 25 (b), we can see that the transaction      still can 

commit right after    . The only different is that       has to rollback and restart due to 

abort of   . 
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The multi-version approach could make concurrent transaction processing more 

efficient provided that the tentative data is generated by the right transaction. If the 

tentative data is from a wrong transaction or it has been re-written to, the consumer 

transaction would have to be aborted and restarted, as shown in Figure 26. Transaction    

and      both utilize the tentative data generated by     .    may take the advantage of 

using the tentative version from Ti-1. However, transaction      would have to be 

restarted since the data is overwritten by   . 
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Figure 26 Multi-Version Speculation with Tentative Data Re-written 

These cases show the basic rules how the commit barrier and multi-version 

approach works to solve the conflicts. In the next section, we describe how to implement 

them in our BFT framework. 
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6.2.3 Speculative Concurrent BFT 

The combination of commit barrier and multi-version speculation, as described in 

previous sections, can solve the conflicts and enable efficient concurrent transaction 

processing. We now describe how to implement them in our BFT framework and focus 

on system wide scenarios.  

In practical systems, we may encounter more complicated scenarios than the 

examples shown before. It is possible that a transaction accesses a data item out of order, 

such as transaction Ti-1 arrives later than transaction Ti and both of them reads a shared 

data item, in which case, the transaction with higher sequence number, transaction Ti 

here, would have to be aborted and retried as soon as the out-of-order conflicting 

operation is detected. Figure 27 shows an example of how out-of-order situations are 

handled by our concurrent BFT framework (denoted as C-BFT) and by a BFT framework 

with strict sequential execution of all transactions (denoted as S-BFT). Please note that 

the commit barrier ensures that all transactions commit following a total ordering 

typically determined based on the order of request arrival. If transactions arrive out of the 

order or try to commit out of the order, they have to wait until all transactions with lower 

sequence numbers have been committed. 
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Figure 27 BFT Framework with Strict Sequential Execution of all Transactions (S-BFT) 

and Concurrent BFT Framework (C-BFT) with an Example of How Out-of-order 

Situations are Handled 

6.3 Concurrent BFT Framework 

Our concurrent Byzantine fault tolerance (BFT) framework, as shown in Figure 

28, supports client-server applications where the server is constructed with software 

transactional memory (STM). To take the advantages of separation of agreement and 

execution [68], we built the agreement agent and application server separately as a 

standalone cluster, so that only        server replicas are needed to tolerate up to   



 

83 

 

faulty replicas on the application side. The total ordering of the requests from clients is 

ensured by the UpRight agreement cluster [19]. The application servers, in our 

implementation, are built on top of the LSA-STM open source library [64] to enable 

software transaction memory. 

Clients

Agreement Cluster

Server Replica

Server Replica

Server Replica

Application Server Cluster

STM Runtime
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STM Runtime

 

Figure 28 The Proposed Byzantine Fault Tolerance Framework 

Client sends their requests to the agreement cluster. And then the agreement 

cluster totally orders the requests and dispatches ordered requests to the application 

server replicas. The agreement cluster will be responsible to assign a sequence number to 

each batch of requests. Hence, the sequence number cannot be directly used on the 

application server side due to the fact that sequence number is based on batches instead 

of requests (multiple requests in the same batch will have an identical sequence number). 

We use a deterministic algorithm to assign a multi-dimensional monotonically increasing 

timestamp to each request and the corresponding transaction. And this timestamp is then 
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used to ensure the ordering of each request as well as the transaction triggered by the 

request.  

The batches of requests are disassembled at each server replica. And the request is 

delivered immediately once it is known that it has been totally ordered. We assume that 

each request will trigger one and only one transaction at the server replicas. We pre-

allocate a thread pool with the size equals to the number of CPU cores. Each thread in the 

pool will handle a request at a time. Since we have fixed number of threads in the pool, 

we also build a waiting queue for extra requests. Whenever a thread completes a request, 

it will fetch the next one in the queue. This approach could significantly increase the 

system performance for servers equipped with multi-core processors. Figure 29 

demonstrates the infrastructure in detail. 

Client Request 1

Client Request 2

Client Request 3

Client Request 4

Client Request 5

Agreement 

Cluster

Server Infrastructure

Ordered Batch of Requests Disassemble 

Batch

Append Requests in 

the Queue

Application

T
h

re
ad

 1

T
h

re
ad

 2

T
h

re
ad

 3

T
h

re
ad

 4

T
h

re
ad

 5

Reply

Thread Pool

 

Figure 29 Application Server Infrastructure 
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6.4 Implementation and Performance Evaluation 

The proposed concurrent Byzantine fault tolerance system is implemented in 

Java. We build our agreement cluster based on the UpRight framework [19] for total 

ordering the requests from the clients. And on the application server cluster side, we use 

the LSA-STM library to enable software transactional memory. A comprehensive 

experimental study has been carried out using our research prototype in a Local-Area 

Network connected by a Cisco switch. The testbed consists of 14 HP BL460c blade 

servers and 18 HP ProLiant DL320 G6 servers. Each BL460c server has two Xeon E5405 

2.0GHz quad-core processor and 5GB RAM. Each DL320 G6 server is equipped with 

one Xeon E5620 2.4GHz quad-core processor and 8GB RAM. All servers are running the 

64-bit Ubuntu Server Linux operating system. 

The basic structure of the test application is a client-server module where the 

server is supported by our concurrent BFT framework. The agreement server is replicated 

with      replicas and the application server is replicated with      replicas to 

tolerate up to   faulty replicas in each cluster. Each replica is deployed at a different node 

in our testbed. In our experiments, we use     because of limited resources, i.e., 3 

application server replicas and 4 agreement replicas. All the server replicas are deployed 

on the BL460c blade server nodes, and the clients are deployed on the DL320 server 

nodes. 

A pre-allocated pool of 8 threads is used to perform concurrent execution. This is 

to match two quad-core CPUs of each application server replica. The transactions may be 

aborted and retried; however, it will eventually be committed. 
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The server maintains a shared data pool with 100 data items, and each transaction 

accesses 10 data items and perform write operations on them. The data items are selected 

pseudo-randomly according to a predefined sharing rate. For example, a 20% sharing rate 

means a transaction will only access 2 items in the shared data pool and another 8 from 

its private data items. To characterize non-trivial processing load, a finite processing 

delay is artificially introduced at the server for each transaction in the form of busy loops, 

i.e., the server executes an empty while loop until the predefined timeout has fired. We 

use two types of processing load in our experiments: (1) fixed length, and (2) random 

processing delays with a Poisson distribution.  

Furthermore, to explain the performance results, we define some symbols here: 

 C-BFT: Concurrent Byzantine fault tolerance system 

 S-BFT: Sequential Byzantine fault tolerance system (original BFT system 

with all requests processed sequentially one after another) 

 Fixed-i%: Fixed processing time for each transaction in our BFT framework 

(C-BFT) with i% data sharing rate 

 Poisson-i%: Random processing time with Poisson distribution for each 

transaction in our BFT framework (C-BFT) with i% data sharing rate 

During the first part of the experiments, we set the fixed processing time for 5ms 

and the Poisson distribution with a mean of 5ms. The following scenarios are shown in 

Figure 30. 
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(1) C-BFT (Fixed-i%): Concurrent BFT with 5ms fixed processing time where i 

varies from 0 to 100 with 20 increment. For comparison purpose, S-BFT with 

5ms processing time is included. 

(2) C-BFT (Poisson-i%): Concurrent BFT with random processing time with the 

Poisson distribution with a mean of 5ms. Same as the first test, i changes from 

0 to 100 with five equal steps.  

The throughput test results are summarized in several figures. Figure 30 shows 

the average throughput with respect to different number of concurrent clients under 

various C-BFT Fixed scenarios, and the S-BFT scenarios for comparison. Figure 31 

shows the throughput performance with respect to different number of concurrent clients 

under different C-BFT Poisson scenarios. As expected, the lowest throughput is for the 

sequential BFT with no concurrent execution and the highest throughput is observed for 

concurrent BFT with 0 percent data sharing rate, owning to the fact that there is no shared 

data among transactions. Without shared data, transactions will only work on their own 

data and it won’t cause any conflicts. So the best performance is expected in this 

scenario. For all other scenarios, the larger sharing rate, the more possibility of getting 

conflicts during the operations, which leads to a worse throughput. 
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Figure 30 Throughput versus the Number of Concurrent Clients for C-BFT Fixed 

Configurations 
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Figure 31 Throughput versus the Number of Concurrent Clients for C-BFT Poisson 

Configurations. 

Figure 32 and Figure 33 show the average and the peak throughput dependency 

on the data sharing rate for the three sets of scenarios. It can be seen that the throughput 

decreases with a reasonable amount with larger data sharing rates. We use S-BFT as 

references in the figure, whose results show as a horizontal line. It makes sense since the 

data sharing rate has no impact for sequential processing. 
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Figure 32 Average Throughput versus Different Data Sharing Rates.  

 

 

Figure 33 Peak Throughput versus Different Data Sharing Rates.  
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Figure 34 shows the throughput results with the fixed processing time and Poisson 

distribution processing time for two scenarios with 0% and 100% sharing rates. As 

expected, the scenario with the fixed processing time has better performance. The 

performance of the system with Poisson distribution processing times is worse because 

the commit barrier causes all transactions to wait for the previous ones to complete. For 

the fixed processing time situation, the later one can commit immediately if there is no 

conflicts detected. However, for dynamic processing time, if one transaction takes longer 

time, all the followings transactions would be impacted, as shown in Figure 35 and 

Figure 36. 

 

Figure 34 Throughput versus the Number of Concurrent Clients for Comparing Fixed and 

Poisson Distribution Processing Time. 
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Figure 35 Concurrent BFT with Fixed Processing Time under Normal Operations 
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Figure 36 Concurrent BFT with Poisson Distributed Processing Time under Normal 

Operations 

To study the inner workings of the system, we profile the number of conflicts and 

aborts, in addition to the number of commits in each run. Each of clients sends 100,000 

requests consecutively with a pre-defined data sharing rate. We recorded the total number 

of commits, conflicts and aborts, and then calculated the conflict rate and abort rate. The 
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profiling results of abort rate and conflict rate for C-BFT fixed scenarios are shown in 

Figure 37 and Figure 38. And the profiling results for C-BFT Poisson scenarios are 

shown in Figure 39 and Figure 40. From the figures, we can see that the conflict and 

abort rates increase exponentially with the number of concurrent clients, and with the 

sharing rates. This makes sense since both the larger data sharing rate and the more 

concurrent clients are dedicated more chances of conflicts.  
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Figure 37 Conflict Rate in Terms of Average Number of Conflicts per Transaction versus 

Different Number of Concurrent Clients.  

 

Figure 38 Abort Rate in Terms of Average Number of Aborts per Transaction versus 

Different Number of Concurrent Clients. 
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Figure 39 Conflict Rate in Terms of Average Number of Conflicts per Transaction versus 

Different Number of Concurrent Clients.  

 

Figure 40 Abort Rate in Terms of Average Number of Aborts per Transaction versus 

Different Number of Concurrent Clients.  
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Furthermore, as shown in Figure 41 and Figure 42, the abort rate for dynamic 

processing time is higher than that for the fixed processing time regardless of sharing rate 

and number of concurrent clients, which are already explained in Figure 35 and Figure 

36.  

 

Figure 41 Abort Rates Observed for Different Sharing Rate  
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Figure 42 Abort Rates Observed for 10 Concurrent Clients with Different Data Sharing 

Rates 

The test results shown above confirm that indeed the performance is significantly 

improved with our proposed concurrent BFT system compared with sequential BFT in all 

circumstances tested. The throughput improvement ranges from 28%, when data sharing 

rate is 100%, to 125%, when data sharing rate is 0%. From the performance evaluation 

results, we can make the following conclusions: 

(1) Smaller data sharing rates lead to better throughput; 

(2) Fixed processing time for each transaction leads to better throughput. 

Both can be easily explained. When the data sharing rate gets higher, it is more 

likely that some transactions will involve conflicting operations and some of the 

transactions will be aborted and retried. Furthermore, if a transaction is aborted and 
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retried, all others with higher sequence numbers would have to be delayed, or possibly be 

aborted and retried also, until the current one is committed eventually. Therefore, the 

performance of the system with smaller data sharing rate will be better than the one with 

a larger sharing rate. It also makes sense that the throughput is better when all 

transactions take similar amount of time to complete. When the processing time to 

complete a transaction follows the Poisson distribution, the wait-to-commit time will be 

impacted by a slow transaction. All later transactions would have to wait for the slowest 

transaction to complete before they can commit. Hence, the performance is reduced. On 

the other hand, when transactions take the same amount of time to complete, the next 

one, if there is no conflict, can be committed immediately with minimized overhead. 

In Figure 32, it is also interesting to see that the reduction in throughput with 

more concurrent clients and higher data sharing rates is less than one would have 

expected. This is because when the aborted transactions are retried, they are still 

processed concurrently. 

6.5 Conclusion 

In this chapter, we presented our software transactional memory (STM) based 

concurrent Byzantine fault tolerance (BFT) framework to maximize the performance by 

allowing concurrent processing. The strategies are based on two ideas: (1) commit 

barrier, which is used to commit concurrent transactions according to a assigned total 

order, and (2) multi-version speculation (works with commit barrier), which allows the 
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tentative data to be used in later transactions. In essence, the dependencies between 

concurrent transactions can be discovered and handled dynamically by using the software 

transactional memory during runtime. If there is no conflict, transactions will be 

processed concurrently and committed according to the total order of the requests. When 

conflicts re detected, some transactions may have to be aborted and retried. And 

eventually, all transactions will be committed successfully. Furthermore, some of the 

conflicts can in fact be resolved without aborting transactions in the multi-version 

approach.  

A comprehensive performance evaluation of our proposed speculative and 

concurrent BFT framework is carried out to characterize the effectiveness and limitations. 

The results show that the overall system performance is significantly increased even in 

the worst case with every transaction has 100% data from shared data pool. Furthermore, 

we observed that the throughput not only depends on the data sharing rate, but also the 

distribution of the processing time.  
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CHAPTER VII 

CONCLUSION AND FUTURE WORK 

In this chapter, I summarize my main research contributions in this dissertation 

and outline some future work. My main contributions include:  

 The classification of common types of replica nondeterminism and a set of 

mechanisms to control replica nondeterminism in the context of Byzantine 

fault tolerance computing,  

 A migration-based proactive service recovery scheme to support long-running 

Byzantine fault tolerance systems and,  

 A set of mechanisms to enable concurrent Byzantine fault tolerant execution 

of requests based on the software transactional memory model.  

The future work will focus on extending my current mechanisms to further reduce 

the probability of conflicts among concurrent operations and hence facilitate even higher 

system throughput. 
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7.1 Conclusion 

BFT algorithm is a promising technique to utilize redundancy resources to 

tolerance Byzantine faults for stateful system. However, the existing BFT algorithms [13, 

14, 15, 16, 20, 68] lack the mechanisms to deal with many common types of 

nondeterministic operations. Such algorithms also require the requests to be executed 

sequentially to achieve strong replica consistency. Additionally, the assumption of only 

one-third of the service replicas can be faulty is impossible to hold without additional 

mechanisms because an adversary would continuously attempt to compromise more 

replicas over time. To address this concern, several proactive recovery schemes have 

been proposed [13, 15, 48, 53, 54, 55]. However, they all have the following issues:  

 They rely on the rebooting to repair a replica, which may not be effective if 

hardware components are damaged;  

 They may introduce artificial unavailability during a round of proactive 

recovery;  

 They lack mechanisms to coordinate the replicas during a round of proactive 

replica such that only a small portion of replicas can undergo recovery at any 

time. 

 In this dissertation research, we aimed to address all the issues identified above. 

First, we provided a classification of common types of replica nondeterminism, and 

introduced a set of mechanisms to handle these types of nondeterminism systematically. 

If the type of nondeterminism is non-verifiable pre-determinable (NPRE), an extra phase, 

which we refer to as the pre-prepare-update phase, is used to control the nondeterminism. 
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The idea is to let every replica contributes its share of nondeterministic values to prevent 

a faulty replica from dominating the final value, which could compromise the system 

integrity. For verifiable post-determinable nondeterminism (VPOST) and non-Verifiable 

post-determinable nondeterminism (NPOST), we have to add a whole round of Byzantine 

agreement in the post-commit phase to ensure that correct replicas could reach an 

agreement on the nondeterministic values. Additionally, to prevent the system from 

crashing, we provisioned a separate monitoring thread for NPOST as governance just in 

case the main execution thread crashes or hangs.  

Second, we presented a service migration based proactive recovery approach. The 

three issues we pointed out earlier are resolved by the following means: (1) remove the 

time-consuming recovery step out of the critical path and involve system administrator, if 

necessary, to fix the problems manually; (2) use a dynamically adjustable service 

migration interval based on the observed system load and system availability 

requirements; (3) provide extra resources as standby node pool and use a registration 

protocol for replica coordination on the membership of standby nodes. 

Third, we proposed to use software transaction memory based concurrent 

execution to lift the limitation of sequential processing and significantly improved the 

system performance. In our approach, multiple requests are executed concurrently and 

the commit order is controlled based on the total ordering of incoming requests. 

Furthermore, multi-version is utilized to pre-execute the requests and hold the result 

temporarily until the execution is validated. This scheme may significantly reduce the 

conflict rate of concurrent operations, which is essential to achieve better system 

throughput.  
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7.2 Future Work 

We have shown that speculative concurrent BFT indeed can significantly improve 

the performance of the replicated system. However, if we can further classify the write 

operations, we can make it even better. 

The idea hinges on the write operations. We observe that the write operations can 

different impact based on their relationship with operation history. If we further classify 

the write operations to history related and history unrelated. It will reduce the possibility 

of conflicts, which would lead to further performance improvement.   

The number of conflicts is the key factor of STM performance. Fewer conflicts, 

with no doubt, will lead to better throughput. After further classification, even if a history 

unrelated write operation is followed by any other writes, it won’t cause write/write 

conflict, which will decrease the number of conflicts and hence further improve the 

performance of whole system. We call it the improved STM solution. 

We still use the multi-version based approach similar to LSA-STM [60] and make 

a tentative value transparent. Later operations can see a tentative value and will use it for 

its own. When multiple transactions access the same piece of data concurrently, improved 

STM will resolve the conflicts and guarantee the most important rule of concurrence 

serializability.  

Based on the history relationship, we define two types of write operations, history 

related write and history unrelated write. The read operations are as usual.  
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 Read: Based on the sequence number, the read operation should always return 

the most up-to-date value of the data accessed.  

 History Related Write: The write operation relies on the previous data value. 

This type of operations needs the data values from previous transactions and 

must be executed in the order as determined by the sequence number. A 

history related write is always preceded with a read operation on the same 

data item. 

 History Unrelated Write: A write operation simply writes a new value to the 

data item, regardless of the previous value. A history unrelated write may be 

executed immediately after the commit barrier, even though there might be 

unrelated conflicts. Although the value of the previous operation may be 

overwritten immediately, that operation still have to be carried out since other 

operations in between may access the data. History unrelated writes can be 

identified when there is no prior read operation on the same data item in the 

same transaction. 

7.2.1 Conflicts Model Revisited 

We have already discussed the conflicts model in section 6.1 and knew that 

conflicts management plays a very import role during concurrent control. Now let’s get 

into details about how we will take advantage of the classification of the write operations. 

In the following description, the symbol ‘/’, is used as a separator to indicate which 

operation happens first with no concern about the sequence number assigned to the 
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transaction. For example, read/write means read happens before write. This read 

operation may or may not come with a lower sequence number.  

 

When we have write/write scenarios, we focus on the one with higher sequence 

number and will take different actions based different types of write operations it. 

 History Related Write: If the history related write comes with higher sequence 

number and happens after the other write operation, the read operation, in read 

and write pair, will take the tentative value from the cache and use it in the 

following history related write. As normal transaction, the commit has to wait 

until all previous transactions have completed. If the write with a lower 

sequence number is executed later, write/write conflict occurs and the 

transaction with history related write operation has to be aborted and restarted 

as shown in Figure 43. 
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Figure 43 Write/History Related Write 

 History Unrelated Write: Two history unrelated writes do not conflict with 

each other. If a write with a lower sequence number happens first, the history 

unrelated write can simply re-write with a new version of the data item. On 

the other hand, if the history unrelated write comes with a larger sequence 

number but executes first, it will write to the tentative cache value until the 

validation is succeeded. This is an unrelated conflict which doesn’t need to 
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abort the later transaction. Please note that all transactions with lower 

sequence numbers that are executed later than the history unrelated write must 

still be committed first. 
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Write Oi, v+1

Transaction i+1
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History Unrelated Write 

Oi, v+2

Validate Success

Transaction i 

committed

Transaction i+1 

committed
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Transaction i+1

Unrelated Conflict

History Unrelated 

Write Oi, v+2

Validate Success

Transaction i 

committed

Transaction i+1 

committed  

Figure 44 Write/History Unrelated Write 
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7.2.2 Improved Concurrent Speculative BFT 

In previous section, we revisited the conflicts model and outlined a solution that 

could further reduce the conflicts. By further classifying the write operations, we can see 

that some conflicts originally exist are gone. Now let’s apply this approach to a more 

complicated case as shown in Figure 45. 
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Time
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Transaction i+1
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Transaction i+2

Ti committed

Ti+1 committed

Ti+2 committed

History Related Write 
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Transaction i+4
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Conflicts
Restart

Read Oi, v+4
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Unrelated 

Conflicts
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Figure 45 A Complicated Example with Improved Speculative Concurrent BFT 

There are 7 current transactions with sequence numbers range from   to    . 

Transaction   only contains a read operation. Transaction     involves a history related 

write to the data    and updates it to version    . This transaction could be committed 

without any problem. Transaction     also performs a history related write on the same 

data and happens before transaction    . It causes a conflict and transaction     have 
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to be aborted and restarted, which would also affect transaction     since it reads the 

tentative data from transaction    . Both transactions are eventually committed after 

they are restarted. Transaction     has only a read operation using the tentative value 

from transaction    , and it can be committed successfully. Transaction     gets 

executed earlier than transaction    . Transaction     involves a history unrelated 

write operation.  Although the transaction with a lower sequence number i+3 wrote to the 

same data later than the transaction with    , the unrelated conflict wouldn’t cause 

transaction     abort. The only thing is that transaction     is blocked at the commit 

barrier until transaction     is committed. The last transaction     came even earlier 

than    , and it reads the invalid data initially, and hence, it must be aborted and 

restarted. During the re-execution of the transaction, it accessed the correct value. As can 

be seen, with the write operations further classified, transaction     is committed 

without having to be restarted.  

Although we believe this improved speculative concurrent BFT will further 

improve the performance. More investigation is necessary to establish its theoretical 

foundation and to demonstrate its effectiveness for practical applications in the future 

work. 
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