
Cleveland State University
EngagedScholarship@CSU

ETD Archive

2014

Byzantine Fault Tolerance for Distributed Systems
Honglei Zhang
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

Part of the Electrical and Computer Engineering Commons
How does access to this work benefit you? Let us know!

This Dissertation is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an
authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Recommended Citation
Zhang, Honglei, "Byzantine Fault Tolerance for Distributed Systems" (2014). ETD Archive. 320.
https://engagedscholarship.csuohio.edu/etdarchive/320

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EngagedScholarship @ Cleveland State University

https://core.ac.uk/display/301546866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/320?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

BYZANTINE FAULT TOLERANCE FOR DISTRIBUTED SYSTEMS

HONGLEI ZHANG

Master of Science in Electrical Engineering

Cleveland State University

Dec 2007

submitted in partial fulfillment of requirements for the degree

DOCTOR OF ENGINEERING

at the

CLEVELAND STATE UNIVERSITY

April, 2014

 ii

We hereby approve the dissertation

of

Honglei Zhang

Candidate for the Doctor of Engineering degree.

This dissertation has been approved for the Department of

 Electrical and Computer Engineering g

and CLEVELAND STATE UNIVERSITY

College of Graduate Studies by

__
Wenbing Zhao, Dissertation Committee Chairperson Department & Date

__
Nigamanth Sridhar, Dissertation Committee Member Department & Date

__
Yongjian Fu, Dissertation Committee Member Department & Date

__
Lili Dong, Dissertation Committee Member Department & Date

__
Janche Sang, Dissertation Committee Member Department & Date

__
Student’s Date of Defense

This student has fulfilled all requirements for the Doctor of Engineering degree.

__
Dan Simon, Doctoral Program Director

To my beloved wife Shuqiong...

ACKNOWLEDGEMENTS

Many thanks go to my advisor, Dr. Wenbing Zhao, for making me do this

research, for all his abundantly help and full-of-insight support, for guidance as my

supervisor, and for the virtues I learned from him.

Express my gratitude is also due to Dr. Lili Dong, Dr. Yongjian Fu, Dr.

Nigamanth Sridhar, and Dr. Janche Sang for agreeing to be on my committee and for all

of their assistance.

Special thanks to Dr. Ye Zhu, Dr. Pong P. Chu, Dr. William L. Schultz and Dr.

Dan Simon for their elaborately prepared lectures which provide very helpful knowledge

to enhance my view.

Thanks to all my friends for their kind help and friendship, and also for sharing

the literature and invaluable assistance.

I would also thank my wife, my daughter, my mom and all my relatives. They

stand by me and support me all the time.

 v

BYZANTINE FAULT TOLERANCE FOR DISTRIBUTED SYSTEMS

HONGLEI ZHANG

ABSTRACT

The growing reliance on online services imposes a high dependability

requirement on the computer systems that provide these services. Byzantine fault

tolerance (BFT) is a promising technology to solidify such systems for the much needed

high dependability. BFT employs redundant copies of the servers and ensures that a

replicated system continues providing correct services despite the attacks on a small

portion of the system. In this dissertation research, I developed novel algorithms and

mechanisms to control various types of application nondeterminism and to ensure the

long-term reliability of BFT systems via a migration-based proactive recovery scheme. I

also investigated a new approach to significantly improve the overall system throughput

by enabling concurrent processing using Software Transactional Memory (STM).

Controlling application nondeterminism is essential to achieve strong replica consistency

because the BFT technology is based on state-machine replication, which requires

deterministic operation of each replica. Proactive recovery is necessary to ensure that the

fundamental assumption of using the BFT technology is not violated over long term, i.e.,

less than one-third of replicas remain correct. Without proactive recovery, more and more

replicas will be compromised under continuously attacks, which would render BFT

 vi

ineffective. STM based concurrent processing maximized the system throughput by

utilizing the power of multi-core CPUs while preserving strong replication consistency.

 vii

TABLE OF CONTENTS

 Page

ACRONYMS .. XI

LIST OF TABLES ... XIII

LIST OF FIGURES ... XIV

CHAPTER

I. INTRODUCTION .. 1

II. BACKGROUND .. 4

2.1 Byzantine Fault Tolerance .. 4

2.1.1 Byzantine Fault ... 4

2.1.2 Byzantine Fault Tolerance .. 5

2.2 Strong Replica Consistency .. 7

2.3 Software Transactional Memory ... 8

2.4 Concurrent and Speculative Execution ... 9

III. RELATED WORK ... 12

3.1 Related Work of Byzantine Fault Tolerance 12

3.2 Related Work of BFT for Nondeterministic Applications 14

3.3 Related Work of Proactive Recovery ... 16

3.4 Related Work of Concurrent Speculative BFT 18

 viii

IV. CONTROLLING REPLICA NONDETERMINISM FOR BFT 20

4.1 Classification of Replica Nondeterminism 21

4.2 System Model ... 24

4.3 Controlling Nondeterminism .. 25

4.3.1 Controlling VPRE Nondeterminism 25

4.3.2 Controlling NPRE Nondeterminism 28

4.3.3 Controlling VPOST Nondeterminism 31

4.3.4 Controlling NPOST Nondeterminism 34

4.4 View Change ... 36

4.5 Implementation, Optimization, and Performance Evaluation 39

4.5.1 Optimizations .. 40

4.5.2 Basic Performance Evaluation .. 41

4.5.3 Stress Tests .. 44

4.5.4 Impact on End-to-End Latency during View Changes 46

4.6 Conclusion .. 47

V. PROACTIVE RECOVERY.. 49

5.1 System Model ... 50

5.2 Proactive Service Migration Mechanisms 52

5.2.1 Standby Nodes Registration .. 52

 ix

5.2.2 Proactive Recovery ... 54

5.2.3 New Membership Notification .. 60

5.2.4 On-Demand Migration .. 60

5.3 Performance Evaluation .. 61

5.3.1 Runtime Cost of Service Migration 62

5.3.2 Dynamic Adjustment of Migration Interval 64

5.4 Conclusion .. 67

VI. CONCURRENT BFT ... 69

6.1 Conflicts Model .. 70

6.2 Speculative Concurrent BFT ... 73

6.2.1 Commit Barrier ... 74

6.2.2 Multi-Version Speculation with Commit Barrier.............. 76

6.2.3 Speculative Concurrent BFT ... 81

6.3 Concurrent BFT Framework ... 82

6.4 Implementation and Performance Evaluation 85

6.5 Conclusion .. 98

VII. CONCLUSIONS AND FUTURE WORK ... 100

7.1 Conclusions ... 101

7.2 Future Work .. 103

 x

7.2.1 Conflicts Model Revisit .. 104

7.2.2 Improved Concurrent Speculative BFT 108

BIBLIOGRAPHY ... 110

 xi

ACRONYMS

BFT: Byzantine Fault Tolerance

PBFT: Practical Byzantine Fault Tolerance

STM: Software Transactional Memory

Q/U: Query/Update

HQ: Hybrid Quorum

ND: Nondeterminism

VPRE: Verifiable pre-determinable nondeterminism

NPRE: Non-verifiable pre-determinable nondeterminism

VPOST: Verifiable post-determinable nondeterminism

NPOST: Non-verifiable post-determinable nondeterminism

VNPRE: Composite type with both VPRE and NPRE

VPRE-NPOST: Composite type with both VPRE and NPOST

NPRE-NPOST: Composite type with both NPRE and NPOST

VNPRE-NPOST: Composite type with VPRE, NPRE, and NPOST

ndet: Nondeterminism value

postnd: Post nondeterministic value

C-BFT: Concurrent Byzantine Fault Tolerance

 xii

S-BFT: Sequential Byzantine Fault Tolerance

 : Transaction with sequence number i

 xiii

LIST OF TABLES

Table Page

I. End-to-end Latency during View Changes ... 47

 xiv

LIST OF FIGURES

Figure Page

1. Normal Operation of the BFT Algorithm () .. 6

2. Classification of Nondeterminism .. 23

3. Normal Operation of the Modified BFT Algorithm for VPRE 27

4. Normal Operation of the Modified BFT Algorithm for NPRE 30

5. Normal Operation of the Modified BFT Algorithm for VPOST 33

6. Normal Operation of the Modified BFT Algorithm for NPOST 35

7. View Change ... 38

8. End-to-End Latency for Different Types of Nondeterminism under Normal

Operations .. Error! Bookmark not defined.

9. Average Throughput for Different Types of Nondeterminism under Normal

Operations ... 43

10. End-to-end Latency for Multiple Clients with Different Types of Replica

Nondeterminism under Normal Operation ... 45

11. Throughput for Requests with Different Types of Replica Nondeterminism under

Normal Operation ... 46

12. Standby Nodes Registration Protocol ... 53

13. Proactive Service Migration Protocol ... 58

 xv

14. Service Migration Latency for Different State Sizes .. 63

15. Service Migration Latency with Respect to the System Load 64

16. Dynamic Adaption of Migration Interval for Different State Size 65

17. Corresponding Migration Interval with Respect to the Number of Concurrent

Clients ... 67

18. Concurrent Execution in a Client-Server Application .. 71

19. Conflict Model 1 – Update Shared Data in the Wrong Order 72

20. Conflict Model 2 – Early Transaction Forced to Abort and Restart 73

21. Normal Read and Write Conflicts Example ... 73

22. The Commit Barrier Solution for our Conflict Models .. 75

23. Commit Barrier Performance Issue .. 76

24. Multi-Version with Commit Barrier ... 78

25. Multi-Version Speculation with Provider Restart ... 79

26. Multi-Version Speculation with Tentative Data Re-written 80

27. BFT Framework with Strict Sequential Execution of all Transactions (S-BFT) and

Concurrent BFT Framework (C-BFT) with an Example of How Out-of-order

Situations are Handled .. 82

28. The Proposed Byzantine Fault Tolerance Framework .. 83

29. Application Server Infrastructure ... 84

 xvi

30. Throughput versus the Number of Concurrent Clients for C-BFT Fixed

Configurations... 88

31. Throughput versus the Number of Concurrent Clients for C-BFT Poisson

Configurations... 89

32. Average Throughput versus Different Data Sharing Rates. 90

33. Peak Throughput versus Different Data Sharing Rates. 90

34. Throughput versus the Number of Concurrent Clients for Comparing Fixed and

Poisson Distribution Processing Time. ... 91

35. Concurrent BFT with Fixed Processing Time under Normal Operations 92

36. Concurrent BFT with Poisson Distributed Processing Time under Normal

Operations ... 92

37. Conflict Rate in Terms of Average Number of Conflicts per Transaction versus

Different Number of Concurrent Clients. ... 94

38. Abort Rate in Terms of Average Number of Aborts per Transaction versus

Different Number of Concurrent Clients. ... 94

39. Conflict Rate in Terms of Average Number of Conflicts per Transaction versus

Different Number of Concurrent Clients. ... 95

40. Abort Rate in Terms of Average Number of Aborts per Transaction versus

Different Number of Concurrent Clients. ... 95

41. Abort Rates Observed for Different Sharing Rate .. 96

 xvii

42. Abort Rates Observed for 10 Concurrent Clients with Different Data Sharing

Rates .. 97

43. Write/History Related Write ... 106

44. Write/History Unrelated Write ... 107

45. A Complicated Example with Improved Speculative Concurrent BFT 108

 1

CHAPTER I

INTRODUCTION

In today's society, Internet has become an irreplaceable part in people’s life and

online services are playing a more and more important role. Naturally, the services are

expected to be highly available despite arbitrary faults (referred to as Byzantine faults

[34]). To achieve high availability, the system should always be ready to provide correct

services to its clients even if a small portion becomes Byzantine faulty.

Byzantine fault tolerance (BFT) is a promising state-machine based replication

technique. However, existing BFT algorithms, proposed so far in [13, 14, 15, 16, 20, 68],

can only deal with applications with deterministic operations or those with the simplest

types of replica nondeterminism. To handle replica nondeterminism found in practical

applications, the BFT algorithm has to be improved in order to prevent the system from

being exploited due to the presence of replica nondeterminism. In chapter 3, we introduce

a set of mechanisms to control different types of nondeterminism for Byzantine fault

tolerance.

2

BFT algorithms assume that less than one-third of the replicas can be faulty.

Without additional mechanisms, this assumption could not hold over long-run because

adversaries would continue trying to compromise more and more replicas. To prevent

this from happening, various proactive recovery schemes [13, 15, 48, 53, 54, 55] for BFT

have been proposed. Common to all such schemes, the replicas are proactively restarted

before it is known that they have become faulty. After analyzing the existing proactive

recovery schemes, we noticed three issues. First, rebooting with a refreshed state may not

be effective in repairing a replica if there are hardware damages. Second, even if a

compromised replica can be repaired by rebooting, it usually is a prolonged process,

which may cause the system to be unavailable during the recovery period. Third, all

active replicas need to coordinate such that only a small portion of the replicas are

undergoing recovery at any given time to ensure the completion of the recovery. In

chapter 4, we present an alternative way for proactive recovery based on service

migration. Our objective is to provide proactive recovery for long-running BFT systems

while effectively controlling of all three issues.

With the combination of BFT and proactive recovery, distributed applications can

be made more trustworthy. However, in existing BFT algorithms, all application requests

have to be executed sequentially to ensure strong replica consistency. This inevitably

imposes a severe limitation on the performance of BFT systems. In particular, they

cannot fully exploit the power of modern multi-core processors which is pervasively

available today. This issue has been addressed by a number of researchers [28, 19, 17,

60]. This limitation can be lifted by enabling concurrent execution by incorporating the

software transactional memory (STM) technique into BFT systems. By using the

3

software transactional memory model for processing, it is possible to delivery multiple

requests for concurrent execution as long as the commit order is controlled such that the

order conforms to the total ordering of the requests that triggered the transactions. The

software transactional memory technique can be further used to work with the speculative

BFT algorithm [68]. With commit barrier and multi-version support, a request is

delivered for speculative processing even if there are some conflicts. While most of the

time the speculation works, it would require an abort and restart if the speculation is

wrong. In chapter 6, we present our STM based speculative concurrent BFT framework

which significantly improved the overall performance.

Finally, the conclusion and future work are described in chapter 7.

 4

CHAPTER II

BACKGROUND

This chapter provides an overview of a number of topics that this dissertation

research has been involved with, including Byzantine fault tolerance (BFT), strong

replica consistency, software transitional memory (STM), concurrent and speculative

execution, and concurrency control.

2.1 Byzantine Fault Tolerance

2.1.1 Byzantine Fault

The term "Byzantine fault" was coined by Lamport [34] as part of the classic

coordination problem known as the Byzantine Generals Problems. A Byzantine fault

refers to an arbitrary fault that may occur during the execution of a distributed system

which may lead the system to an arbitrary failure state. A Byzantine fault may make the

5

system respond to a client's request in an unpredictable way, such as crash, executing

incorrect instructions, or processing the right instructions with wrong order. Compared

with fail-stop faults, Byzantine faults are much harder to detect and, even worse,

Byzantine faulty components may collude together, which could make the detection of

such faults much harder.

2.1.2 Byzantine Fault Tolerance

Byzantine fault tolerance refers to the capability of a system to tolerate Byzantine

faults. It can be achieved by replicating the service and ensuring all service replicas to

reach Byzantine agreement on all state transitions. Byzantine agreement refers to the

procedure that ensures all correct components reaching a consensus despite the presence

of Byzantine failures.

The first highly efficient Byzantine agreement algorithm was introduced by

Castro and Liskov [13, 14] (referred to as the BFT algorithm or Byzantine Agreement).

This algorithm requires at least replicas to tolerate up to Byzantine faulty

replicas (refers to the number of faulty nodes). During anytime of the execution, one

replica is designated as the primary while the rests are played as backups. The BFT

algorithm includes two modes of operations: normal operation, used to reach Byzantine

agreement, and view change, used to handle the primary failures.

The normal operation involves three phases executed sequentially, followed by

the execution order, they are called pre-prepare phase, prepare phase, and commit phase.

In the pre-prepare phase, the primary multicasts a pre-prepare message to all backups as

6

its proposal. If a backup accepts the message, it starts the second phase, i.e. prepare

phase, by multicasting a prepare message. When a replica has collected matching

prepare messages from different replicas, it concludes the prepare phase. Then the replica

goes into the commit phase by multicasting a commit message to other replicas. The third

phase ends when a replica has received matching commit messages from

different replicas. Figure 1 shows the details of BFT algorithm in the normal operations

with .

Client

Replica 1

Replica 2

Replica 3

Pre-Prepare

Phase

R
equest

Pre-Prepare

Primary

Prepare Commit

Prepare Phase Commit Phase

R
ep

ly

Execution

Figure 1 Normal Operation of the BFT Algorithm ()

If a replica cannot complete the three-phase algorithm by a predefined time or it

receives an invalid message from the primary, it initiates a view change by sending out a

view change request to all replicas to try to select a new primary in a round-robin fashion.

If a correct replica receives view change requests, it will join in even it is in normal

operation state. The view change can be concluded when replicas agree on the

view change requests and then a new view will be established with a new primary. View

change is necessary to guarantee Byzantine agreement can eventually be reached among

all correct replicas.

7

2.2 Strong Replica Consistency

The BFT algorithm described previously ensures the consistency of all correct

replicas despite Byzantine faults only when the replicas behave deterministically.

However, many practical distributed systems exhibit nondeterministic behaviors.

The antagonistic terms determinism and nondeterminism are from philosophy and

have been extensively used in different areas. The following definition of determinism is

from Wikipedia

“Determinism is the philosophical position that for every event exist conditions that

could cause no other event.”[30]

In computer science, an operation is said to be deterministic only when with the

same input from an initial state, in absence of any failures, it always concludes to the

same output. Deterministic operations are predictable. No matter how many times they

are repeated, the results of a deterministic operation should always be consistent. In the

domain of distributed systems, the term “replica determinism” means that when the same

sequence of operations are applied at the replicas in the absence of failures, all server

replicas should produce identical outcomes and move from the same initial state to the

next consistent state. Replica determinism is a system wide property which is used to

ensure all service replicas behave correctly even when they are running on completely

different machines.

Replica nondeterminism, on the other hand, is not predictable. Even start from the

same initial state in a failure free environment, server replicas still might perform

differently with applying the same set of requests in exactly the same order. Nowadays,

8

nondeterminism plays more and more important roles in web applications or services. For

example, many online gaming applications contain nondeterminism whose values

proposed by one replica and cannot be verified by others (e.g., random numbers that

determine the state of the applications). As another example, multi-threaded applications

may exhibit nondeterminism (e.g., the thread interleaving) whose values cannot be

determined prior to the execution of a request (without losing concurrency). All

nondeterminism or replica nondeterminism should be carefully handled in web

applications and services to ensure strongly consistence in the Byzantine fault tolerance

system.

2.3 Software Transactional Memory

Software Transactional Memory (STM), as an alternative way to lock-based

synchronization, is a concurrent control mechanism to protect the critical sections and

guarantee transaction atomicity during concurrent processing in the multi-thread

environments.

Lock-based synchronization mechanisms require the key to grant access to the

protected section. A processing thread acquires the key before entering and releases the

key after it finishes the operations in the protected section. If the key has been granted by

a transaction, all later transactions will be blocked until the key has been released. Then

the next transaction can request the key. In this way, the system is protected with mutual

exclusions on critical sections. STM, on the other hand, allows concurrent access and

9

resolves the dependence problem dynamically. A thread can tentatively read or write the

same shared memory regardless of what other threads might be doing and only makes the

changes permanent after the validation is done during the commit phase. Otherwise, if

conflicts have been detected, related transactions might be aborted and restarted until

there is no more conflict.

There is no absolute sense of which solution is better between lock-based

synchronization and STM since they thrive in different environments. STM enables

optimistic concurrency, but adds the validation and retry overhead. This overhead highly

depends on the number of shared objects the transaction has read, and grows linearly with

the increases of the number of shared objects. With simpler and less error prone, STM is

a better choice in the normal situation and it allows multiple threads to work on same

pieces of data simultaneously. In the worst case, theoretically, the time complexity of

STM is linear which will be the total time of all transactions plus the overhead associated

with them.

2.4 Concurrent and Speculative Execution

In the last decade, the microprocessor technology has made tremendous advances.

Now, it is very common that servers are equipped with multi-core Central Processing

Units (CPUs) and sometimes with even multiple CPUs with great power of executing

program instructions simultaneously. Parallel (concurrent) computing and concurrency

10

control are widely used in all areas in computer science to improve overall system

performance.

Concurrent execution (concurrent computing) becomes a form of computing for

which the programs are designed as collections of process units that can be executed

simultaneously. Concurrent execution can be enabled on a single core CPU machine by

interleaving the executions in a time-slicing or priority ordering way, but more ideally, it

should be run on a multi-core machine with real parallelism at multiple cores by

assigning the different process units to different computational cores. Parallel computing

programs are much harder to design than the sequential programs. The challenges in

concurrent execution design include not only making the processing more efficient, but

also performing sound concurrency control, such as controlling the correct sequence of

the interactions, accesses to shared resources. Concurrent executions are also hard to

verify because they introduce several new obstacles that only exists in parallel computing

such as race conditions, and these bugs are hard to detect since they only happens on

special conditions. With concurrent execution and appropriately control, the overall

system performance is optimized to a new level.

Speculative execution further extends the idea of optimization, where the system

pre-executes the programs to utilize the CPU power more efficient. The pre-executed

tasks might not even be actually needed. Speculation is using CPU idle time to pre-do

work before the work is confirmed to be necessary, so as to prevent a delay for executing

time after usage confirmation. The pre-execution takes risk. If it turns out that the work is

not needed after all, the pre-execution will be wasted and totally ignored. The objective

of speculative execution is to further improve the performance by utilizing extra

11

resources beyond the requirements. It is being widely used in optimistic concurrent

computing. However, if the unnecessary speculation takes mandatory resources, it, will

slow down the whole process and waste the time and resources.

12

CHAPTER III

RELATED WORK

3.1 Related Work of Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance (PBFT) [13, 14] by Castro and Liskov

ensures both safety and liveness provided that less than one third of the replicas become

faulty. Since this seminal work of BFT [13, 14] is published, a number of alternative BFT

algorithms [1, 20, 32] have been proposed.

Query/Update (Q/U) [1] is a BFT protocol that requires the use of

replicas to tolerate up to faults, which is more than that is required for PBFT [13, 14].

Clients broadcast the cached histories and their requests to the server replicas and all the

replicas optimistically execute the requests without inter-replica communication. With

Q/U, the performance of the system can be significantly improved in the fault-free

situation since the requests can be accomplished within a single round of communication

13

between the client and server replicas. On the other hand, if the client gets conflicting

results, it will inform the replicas and drive them back to a consistent state. Then the

request will be re-executed again. With more service replicas, Q/U can process the

requests with fewer message exchanges during normal operations. However, it does not

work well in the presence of concurrent update requests.

Hybrid Quorum (HQ) [20] combines both the quorum and agreement approaches.

The same as PBFT, it only requires different replicas. In contention free cases,

replicas choose the ordering in the first round and process requests in the second round

based on the quorum from replicas. If any conflicts are detected, HQ relies on

the Byzantine agreement to order and execute the requests. Compared with Q/U, HQ

requires fewer replicas, but needs more rounds during normal execution. However, both

Q/U and HQ cannot batch concurrent requests and have high latency when conflict

happens as pointed out in [50].

Zyzzyva [32] is a speculative Byzantine Fault Tolerance protocol. Unlike other

BFT algorithms, such as [13, 14, 16], it does not require replicas to reach the agreement

before processing the requests. Zyzzyva protocol executes and responds to the clients

immediately with the speculative results. If all replicas produce the same results, clients

will conclude the requests and accept the results. Otherwise, the correct replicas might be

temporarily inconsistent and reply with different answers. Nonetheless, all correct

replicas, with the help of clients, will reach final agreement, and the replies will

guarantee to be committed eventually. Although Zyzzyva significantly improves the

performance during normal fault-free operations, it demands a more complicated

recovery scheme.

14

Furthermore, in all three algorithms (Q/U, HQ, and Zyzzyva [1, 20, 32]), the

replicas need the help from the clients to achieve agreements. We are concerned about

this approach because if the client is faulty, it may endanger the integrity of the replicated

service.

3.2 Related Work of BFT for Nondeterministic Applications

Replica nondeterminism has been studied extensively under the benign fault

model [4, 6, 5, 39, 40, 41, 44, 46, 48, 56, 67]. However, there is no systematic

classification of common types of replica nondeterminism, and even less so on the

unified handling of such nondeterminism. [5, 46, 48] did provide a classification of some

types of replica nondeterminism. However, they largely fall within the types of

wrappable nondeterminism and verifiable pre-determinable nondeterminism, with the

exception of nondeterminism caused by asynchronous interrupts, which we do not

address in this dissertation.

The replica nondeterminism caused by multithreading has been studied separately

from other types of nondeterminism, again, under the benign fault mode only, in [4, 6, 39,

40, 41, 44, 51]. These studies provided valuable insight on how to approach the problem

of ensuring consistent replication of multithreaded applications.

It is realized that what matters in achieving replica consistency is to control the

ordering of different threads on access of the same shared data. The mechanisms to

record and to replay such ordering have been developed. So do those for checkpointing

15

and restoring the state of multithreaded applications (for example, [31]). Even though

these mechanisms alone are not sufficient to achieve Byzantine fault tolerance for

multithreaded applications, they can be adapted and used towards this goal. In this

dissertation, we show when to record and (partially) verify the ordering, how to

propagate the ordering, and how to provision for problems encountered when replaying

the ordering, all using the Byzantine fault model.

As mentioned previously, the mechanisms developed in other research work

regarding replica nondeterminism for Byzantine fault tolerance are limited to control a

small subset of common replica nondeterminism, which we refer to as wrappable and

verifiable pre-determinable replica nondeterminism [13, 14, 15, 16]. In BASE [16], it was

recognized that a BFT system can be made more robust (to minimize deterministic

software errors) by adopting a common abstract specification for the service to be

replicated. A conformance wrapper for each distinct implementation is then developed to

ensure that it behaves according to the common specification. Furthermore, an

abstraction function and one of its inverses are needed to map between the concrete state

of each implementation and the common abstract state.

In [14], Castro and Liskov provided a brief guideline on how to deal with the type

of nondeterminism that requires collective determination of the nondeterministic values.

The guideline is very important and useful, as we have followed in this dissertation

research. However, the guideline is applicable to only a subset of the problems we have

addressed. The problem of having to deal with non-verifiable nondeterminism is unique

to the Byzantine fault model.

16

3.3 Related Work of Proactive Recovery

Ensuring Byzantine fault tolerance for long-running systems is an extremely

challenging task. The pioneering work in the context of Byzantine fault tolerance is

carried out by Castro and Liskov [13, 15, 52]. Our work is inspired by their work.

However, the proactive recovery scheme in [13, 15] has a number of issues as we

mentioned briefly in introduction.

First, it assumes that a simple reboot (i.e., power cycle of the computing node)

can be the basis for repairing a compromised node, which might not be the case because

some attacks might cause hardware damages, as pointed out in [52].

Second, even if a compromised node can be repaired by a reboot, it is often a

prolonged process (typically over 30s for modern operating systems). During the

rebooting step, the BFT service might not be available to its clients (e.g., if the rebooting

node happens to be a non-faulty replica needed for the replicas to reach a Byzantine

agreement).

Third, there lacks coordination among replicas to ensure that no more than a small

portion of the replicas (i.e., no more than replicas in a system of replicas to

tolerate up to faults) are undergoing proactive recovery at any given time, otherwise,

the service may be unavailable for extended period of time. The static watchdog timeout

used in [13, 15] also contributes to the problem because it cannot automatically adapt to

various system loads, which means that the timeout value must be set to a conservative

value based on the worst-case scenario. The staggered proactive recovery scheme in [13,

17

15] is not sufficient to prevent this problem from happening if the timeout value is set too

short.

Recognizing these issues, a number of researchers have proposed various methods

to enhance the original proactive recovery scheme.

The issue of uncoordinated proactive recovery due to system asynchrony has been

studied by Sousa et al. [53, 54]. They resort to the use of a synchronous sub-system to

ensure the timeliness of each round of proactive recovery. In particular, the proactive

recovery period is determined a priori based on the worst case execution time so that

even under heavy load, there will be no more than replicas going through proactive

recovery. The impact of proactive recovery schemes on the system availability has also

been studied by Sousa et al. [55] and by Reiser and Kapitza [48].

In the former scheme, extra replicas are introduced to the system and they actively

participate message ordering and execution so that the system is always available when

some replicas are undergoing proactive recovery. However, the recovering replicas are

regarded as failed, and therefore, higher degree of replication is needed to tolerate the

same number of Byzantine faults and all the replicas would have to participate the

Byzantine agreement process. In the latter scheme [48], a new replica is launched in a

different virtual machine by the hypervisor on the same node when an existing replica is

to be rebooted for proactive recovery so that the availability reduction is minimized.

However, if an attack has caused physical damage on the node that hosts the replica to be

recovered, or it has compromised the hypervisor of the node [58], the new replica

launched in the same node in the scheme [48] is likely to malfunction.

18

Proactive recovery for intrusion tolerance has been studied in [2, 38] with the

emphasis of confidentiality protection using proactive threshold cryptography [11].

Reboot is also used as the basis to recover compromised replicas, which suggests such

schemes may also suffer from similar problems as those in [13, 14]. The idea of moving

expensive operations off the critical execution path is a well-known system design

strategy, and it has been exploited in other fault-tolerant systems, such as [37, 45, 48].

3.4 Related Work of Concurrent Speculative BFT

The current approach to enable concurrent execution in BFT systems is by

exploiting application semantics. In PBFT [13, 14], it is noted that read-only requests can

be delivered without the need of total ordering.

In [28], Kotla and Dahlin proposed to exploit application semantics for higher

throughput by parallelizing the execution of independent requests. They outlined a

method to track the dependency among the requests using application specific rules. In

[19], Distler and Kapitza further extended Kotla and Dahlin’s work by introducing a

scheme to execute a request on only a selected subset of replicas. This scheme assumes

that the state variables accessed by each request are known, and that the state object

distribution and object access are uniform.

In prior work [17, 60], we proposed to rely on deeper application semantics to not

only enable more requests (such as those that are commutative) to be executed

19

concurrently, but also minimize the number of Byzantine agreement steps used in an

application (particularly for session-oriented applications).

This research takes a drastically different approach from those mentioned above.

Rather than resorting to the application semantics, which may be expensive to acquire

accurately and hard to reuse, we rely on the use of software transactional memory to

dynamically capture the dependency of concurrent operations automatically. This

approach is inspired by the work of Brito, Fetzer, and Felber [33], where a similar idea

was used to ensure multithreaded execution for actively-replicated event stream

processing systems. Our work applies the idea in a different context (i.e., Byzantine fault

tolerance instead of crash fault tolerance) and furthermore, we carry out detailed

experiments and analysis on the level of concurrency that can be achieved under various

conditions.

 20

CHAPTER IV

CONTROLLING REPLICA NONDETERMINISM FOR BFT

State-machine based Byzantine fault tolerant replication requires the replicas to

operate deterministically, i.e., given the same request issued by a client, all replicas

should produce the same reply provided that the replicas are in the same state prior to

processing the request. However, all practical applications contain some degrees of

nondeterminisms. When such applications are replicated to achieve fault tolerance, the

nondeterministic operations must be controlled to reach strong replica consistency.

Otherwise, an adversary may be exploiting the potential inconsistency to compromise the

integrity of the replicated services.

In this chapter, we introduce our classification of common types of replica

nondeterminism and present the system models and mechanisms for controlling these

types of replica nondeterminism for distributed Byzantine fault tolerance (BFT) systems.

21

4.1 Classification of Replica Nondeterminism

To better understand and handle nondeterminism in distributed systems, we

classify the replica nondeterminisms based on different properties.

First, we introduce a special type of nondeterminism termed as wrappable

nondeterminism.

 Wrappable nondeterminism. A type of nondeterminism whose effects can be

mapped into some pre-specified abstract operations and states which are

deterministic.

Wrappable nondeterminism can be easily controlled by using an infrastructure-

provided or application-provided wrapper function, without explicit runtime inter-replica

coordination. For example, replica-specific identifiers, such as hostnames, process ids,

and file descriptors, can be determined group-wise before the application is started.

Another situation is when all replicas are implemented according to the same abstract

specification, in which case, a wrapper function can be used to translate between the local

state and the group-wise abstract state, as described in [16].

In this dissertation, we do not provide further discussion on the wrappable

nondeterminism since it can be dealt with by a deterministic wrapper function without

inter-replica coordination, and also because it has been thoroughly studied in [16].

Besides wrappable nondeterminism, we distinguish the rest of replica

nondeterminisms based on two properties, determinable or verifiable.

22

Determinable is a property of nondeterminism based on the time when a particular

operation will know the nondeterministic values. Using this as the criterion, we have pre-

determinable nondeterminism and post-determinable nondeterminism:

 Pre-determinable nondeterminism. A type of replica nondeterminism whose

values can be known prior to the execution of a request and it requires inter-

replica coordination to ensure replica consistency.

 Post-determinable nondeterminism. A type of replica nondeterminism whose

values can only be recorded after the request is submitted for execution and

the nondeterministic values won’t be complete until the end of the execution.

It also requires inter-replica coordination to ensure replica consistency.

Nondeterminism verifiability is another criterion for classification. It is on

whether a replica can verify the nondeterministic values proposed (or recorded) by

another replica. According to this criterion, the nondeterminism can be divided into two

different categories termed as verifiable nondeterminism and non-verifiable

nondeterminism:

 Verifiable nondeterminism. A type of replica nondeterminism whose values

can be verified by other replicas.

 Non-verifiable nondeterminism. A type of replica nondeterminism whose

values cannot be completely verified by other replicas. Note that a replica

might be able to partially verify some nondeterministic values proposed by

another replica. This would help reduce the impact of a faulty replica.

23

Application

Nondeterminism

Pre-Determinable

Nondeterminism

Post-Determinable

Nondeterminism

Verifiable

Nondeterminism

Non-Verifiable

Nondeterminism

Verifiable

Pre-Determinable

Nondeterminism (VPRE)

Non-Verifiable

Pre-Determinable

Nondeterminism (NPRE)

Verifiable

Post-Determinable

Nondeterminism (VPOST)

Non-Verifiable

Post-Determinable

Nondeterminism (NPOST)

Based on determinable

Based on verifiable

Wrappable

Nondeterminism

Figure 2 Classification of Nondeterminism

By using both criteria, as shown in Figure 2, we have four types of replica

nondeterminisms of our interest:

 Verifiable pre-determinable nondeterminism (VPRE). In the past, clock-

related operations have been treated as this type of operations. However,

strictly speaking, it is not possible for a replica to verify deterministically the

proposal sent by another replica for the current clock value without imposing

stronger restriction on the synchrony of the distributed system (e.g., bounds on

message propagation, request execution, and the clock drifts).

 Non-verifiable pre-determinable nondeterminism (NPRE). Online gaming

applications, such as Blackjack and Texas Hold'em, exhibit this type of

nondeterminism. The integrity of services provided by such applications

depends on the use of good secure random number generators. For the best

security, it is essential to make one's choice of a random number unpredictable,

let alone verifiable by other replicas.

24

 Verifiable post-determinable nondeterminism (VPOST). We have yet to

identify a commonly used application that exhibits this type of

nondeterminism. We include this type for completeness.

 Non-verifiable post-determinable nondeterminism (NPOST). In general, all

multithreaded applications exhibit this type of nondeterminism. For such

applications, it is virtually impossible to determine which thread ordering

should be used prior to the execution of a request without losing concurrency.

All four types of nondeterminisms have to be carefully controlled to guarantee

system consistence. We will introduce our mechanisms to handle each of them later in

this chapter.

4.2 System Model

The system model we considered is a client-server based application in an

asynchronous network. Certain synchrony is necessary, similar to [13, 14], to achieve

liveness which means the upper bound of the message transmission and processing delay

has been asymptotic limited. We dynamically set this bound explored in the BFT

algorithm as every time a view change occurs the timeout for the next view change is

doubled.

Most frequently, both the client and the server, we believe, should be under

normal operations. However, in very little cases, both of them could fall into Byzantine

faults. We replicate the application server on different nodes to tolerant up to

25

 failures and each of replicas is modeled as a state machine. All servers are required to

run or rendered to run deterministically even with some level of nondeterminisms, as we

clarified before. To handle nondeterminisms, two critical issues to be resolved in the

state-machine replicated system: the total ordering of requests and the required

nondeterministic values. We are using BFT framework developed in [13, 14] to achieve

the total ordering of the requests.

In the next section, we describe how we integrate our mechanisms into the BFT

algorithm to control replica nondeterminisms so that all correct replicas will reach strong

consistence on both the message ordering and the nondeterministic values.

4.3 Controlling Nondeterminism

Now, we introduce our mechanisms to handle common types of nondeterminisms.

4.3.1 Controlling VPRE Nondeterminism

If an operation contains Verifiable pre-determinable nondeterminism (VPRE), the

primary replica proposes the nondeterministic values in the ndet parameter. Then both the

nondeterminism type and obtained value are multicast in the PRE-PREPARE message to

backups.

A replica verifies two critical parts when it receives a PRE-PREPARE message,

the type and the values of nondeterminism. The nondeterminism type in clients’ request

26

should be consistent with the one reported by the primary, and the nondeterministic

values proposed by the primary is consistent with the replicas’. If both of validation

process success, the backup replica accepts the PRE-PREPARE message from primary

with ordering information and the nondeterministic values, and multicasts a PREPARE

message to all other replicas. Otherwise, the replica suspects the primary and initializes a

view change. From now on, the rest of the algorithm works the same as the original BFT

algorithm, with the digest of the nondeterministic values included in both the PREPARE

and the COMMIT messages. Figure 3 illustrats the details on how to control VPRE

nondeterminism.

27

Primary (0) Replica (1) Replica (3)

Request

Reply

Replica (2)

PREPARE

Prepared

Committed-local

COMMIT

Commited (m, v, n)

PRE-PREPARE

Phase

PREPARE

Phase

COMMIT

Phase

Verify the ND

type and value

ND Type is VPRE

Propose ND value

PRE-PREPARE

Execute Request with

Nondeterministic value

Figure 3 Normal Operation of the Modified BFT Algorithm for VPRE

28

4.3.2 Controlling NPRE Nondeterminism

If the nondeterminism for the operation at the primary is of type non-verifiable

pre-determinable nondeterminism (NPRE), an extra phase, pre-prepare-update phase, is

added to handle the nondeterminism. The idea behind it is to let every replica contributes

its share of nondeterministic values which can prevent potential damage from any faulty

replicas injecting the predicable value as nondeterminism.

When the primary gets the request with the type of NPRE nondeterminism, it

proposes its share of nondeterministic values and multicasts the PRE-PREPARE message

which includes both the type and the values of the nondeterminism to all backup replicas.

On receiving the PRE-PREPARE message, on top of original BFT, a backup

replica only verifies the type of nondeterminism supplied by the primary is the same as

the one included in the original request from clients. If the verification is successful, the

backup replica builds a PRE-PREPARE-UPDATE message including its own share of

NPRE nondeterministic values, and sends the PRE-PREPARE-UPDATE message back

to the primary. Also the backup retrieves the nondeterministic values from primary and

save it for later usage.

The primary expects PRE-PREPARE-UPDATE messages from different

replicas for a single request. These PRE-PREPARE-UPDATE messages contain

different sets of contributions for NPRE nondeterministic values. Including the one from

primary, set of contributions with proposer’s digital signature protection will be

sent from primary to backup replicas in a PRE-PREPARE-UPDATE message. When a

replica gets the valid PRE-PREPARE-UPDATE message from the primary, it will

29

replace the old nondeterministic value with the new one it calculated based on all

contributions. From now on, the BFT algorithm operates as the traditional way, except

that both the PREPARE and COMMIT messages, the same as VPRE, also carry the

digest of the nondeterministic values, and the sets of nondeterministic values are

delivered to the application layer as parameters of the execution. The normal operation of

the modified BFT algorithm for NPRE nondeterminism is illustrated in Figure 4.

30

Primary (0) Replica (1) Replica (3)

Request

Reply

Replica (2)

PREPARE

Prepared

Committed-local

COMMIT

Commited (m, v, n)

PRE-PREPARE

Phase

PREPARE

Phase

COMMIT

Phase

Execute Request with

Nondeterministic value

Verify the ND type

Propose ND value

ND Type is NPRE

Propose ND value

PRE-PREPARE

PRE-PREPARE-UPDATE

PRE-PREPARE-UPDATE
Replace the ND value

in the Pre-prepare

Replace the ND value

in the Pre-prepare

PRE-PREPARE-

UPDATE

Phase

Figure 4 Normal Operation of the Modified BFT Algorithm for NPRE

31

4.3.3 Controlling VPOST Nondeterminism

In section 4.3.3 and section 4.3.4, we introduce the mechanisms to deal with

POST-determinable nondeterminisms. To handle either verifiable post-determinable

nondeterminism (VPOST) or non-Verifiable post-determinable nondeterminism

(NPOST), the post-commit phase is necessary. Different from the pre-prepare-update

phase for controlling NPRE, the post-commit phase involves the whole life-cycle of the

Byzantine fault tolerance algorithm for correct replicas to reach an agreement on the

nondeterministic values, which means that three rounds of control message exchanges are

required similar to the way to determine the total ordering of requests under normal

operation.

For VPOST, the primary, in the first round of Byzantine Agreement, includes

only the nondeterminism type along with the ordering information in the PRE-PREPARE

message without any nondeterministic values. The PRE-PREPARE message is multicast

to all backup replicas to start the BFT algorithm. On receiving the PRE-PREPARE

message, a backup replica checks the nondeterminism type after verification of the

client’s request and the ordering information. If the validation succeeds, the process will

proceeds as usual to the prepare and the commit phases.

When an agreement is reached on the total ordering and nondeterminism type, the

request message is delivered for execution at primary. As Post-determinable

nondeterminism, a recorded nondeterministic value is expected as well as reply message.

Once the primary returns from the execution, it sends the reply back to the client and

builds a postnd log including nondeterministic values and the digest of the reply. This

32

postnd log will be send to backup replicas to verify whether the primary has actually

generated the reply with the corresponding nondeterministic values. This starts the post-

commit phase.

In the post-commit phase, the focus will be the nondeterministic values as well as

the reply message, since we are not worrying about ordering information any more. With

another round of BFT algorithm, all correct backup replicas should agree on the same set

of nondeterministic values from primary and the values will be used in their own

execution. Then the backup replicas produce a reply and compare the digest with the one

from primary. If either second Byzantine Agreement cannot be reached or message digest

mismatch, the primary will be suspected. However, the request will still be delivered for

execution if the agreement reached on the nondeterministic values and the replica will

send the reply back to client regardless of digest comparison result. This is because,

replicas believe, the client will get the expected replies if all correct replicas execute the

request with the same nondeterministic values, even different then the primary. Figure 5

shows the details about the normal operation of the modified BFT algorithm we used to

handle VPOST.

33

Primary (0) Replica (1) Replica (3)

Request

Reply

Replica (2)

PREPARE

Prepared

Committed-local

COMMIT

Commited (m, v, n)

PRE-PREPARE

Phase

PREPARE

Phase

COMMIT

Phase

Execute Request with

Nondeterministic value

Verify the ND type

ND Type is VPOST

PRE-PREPARE

Reply

Byzantine Agreement on ND data

with verification

POST-

COMMIT

Phase

Execute Request and

Collect ND value

Verify Reply

Figure 5 Normal Operation of the Modified BFT Algorithm for VPOST

34

4.3.4 Controlling NPOST Nondeterminism

To handle the non-verifiable post-determinable nondeterminism (NPOST), we use

the same strategy as described in the previous subsection for controlling VPOST until a

backup replica is ready to deliver the request to the application layer, as shown in Figure

6.

In contrast to VPOST, we have one more concern here. A faulty primary may

disseminate some unexpected nondeterministic values to try to either confuse the backup

replicas, or block them from providing useful services to the clients. For example, if the

nondeterministic values are about thread interleaving, a faulty primary might provide the

information in such a way to lead the backup replicas to deadlock or racing condition

which might make the system crash. This is because the replicas, in general, cannot

completely verify the correctness of the nondeterministic values until it actually executes

the request. To prevent the system from crashing, we lunch a monitoring thread, as

governance, separately with the main execution thread. And this monitoring thread can

recover the replica when it runs into crash failures.

On the other hand, if the main thread can successfully complete the execution,

then the backup replicas performs the same reply verification procedure as that described

in the previous subsection.

35

Primary (0) Replica (1) Replica (3)

Request

Reply

Replica (2)

PREPARE

Prepared

Committed-local

COMMIT

Commited (m, v, n)

PRE-PREPARE

Phase

PREPARE

Phase

COMMIT

Phase

Execute Request with

Nondeterministic value

Verify the ND type

ND Type is VPOST

PRE-PREPARE

Reply

Byzantine Agreement on ND data
POST-

COMMIT

Phase

Execute Request and

Collect ND value

Verify Reply

Lunch a

Monitoring Thread

Figure 6 Normal Operation of the Modified BFT Algorithm for NPOST

36

4.4 View Change

A faulty primary might prevent a non-faulty replica from reaching a Byzantine

agreement on either the ordering information and/or the associated nondeterministic

values. When the backup replicas suspect the primary by any reason, they will start a

view change to select a new primary. It might take more than one round of view changes

for the whole process to select a new non-faulty primary and reach the Byzantine

agreement in the new view. Moreover, during the view change, it is very important to

carry over the adequate information from one view to another so that replicas could reach

agreement on the same ordering information and nondeterministic values in different

views.

The view change mechanism involves three control messages, consisting of

VIEW-CHANGE, VIEW-CHANGE-ACK, and NEW-VIEW. A non-faulty replica

initializes the view change if one of the following cases is true: (1) its view change timer

expires; (2) it suspects either the ordering information or the nondeterministic values (for

verifiable nondeterminism); (3) backups generate a different reply with primary (for post

nondeterminism); (4) it receives view change requests from other replicas. The

basic view change flow we are using is the same as view change mechanism from

original BFT algorithm. Besides we add the sets of information about states of post-pre-

prepared and post-prepared in previous views (for Byzantine agreement on post-

determinable nondeterminism).

To initialize view change, a replica updates all associated data in the log and then,

based on records in its log, constructs a VIEW-CHANGE message. Upon multicasting

37

the VIEW-CHANGE messages, the replica cleans the log files since they are no longer

useful. A replica accepts the VIEW-CHANGE message and replies a VIEW-CHANGE-

ACK to the new primary of next view if the VIEW-CHANGE has all the information for

current or an earlier view.

If the new primary in next view collects a VIEW-CHANGE message and

corresponding VIEW-CHANGE-ACK messages, it stores them as an entry with each

entry is for a different replica. When the new primary has entries for replicas, it

builds a NEW-VIEW message by using the data in the entries and broadcasts it to all

other replicas. The NEW-VIEW message contains the start state of the new view as

checkpoint, all requests with the sequence number start from the checkpoint to the most

recent, and the associated nondeterministic values. All the information in NEW-VIEW is

required to reach the agreement across different views. The new primary chooses the

checkpoint from the information in the entries that the sequence number greater or equal

to its own low water marker with support from at least non-faulty replicas. If any

requests, nondeterministic values, or checkpoints are missing from local, the new primary

may fetch the state from other replicas. Start from the checkpoint, all requests later will

once again go through the Byzantine agreement determination procedure as the way we

introduced in section 4.3. For post-determinable nondeterminism, as an exception, if only

ordering information is built in previous views without post-nondeterministic values, the

NULL value will be included in NEW-VIEW message and the new primary will be

responsible to propose new values to be used during the requests re-execution, which also

requires the post commit phase to reach agreement.

38

When a backup replica, in the new view, receives a NEW-VIEW message, it

validates the view change by comparing the proof in NEW-VIEW message with its own

collection of VIEW-CHANGE messages. If a VIEW-CHANGE message missing locally,

the replica requires a proof of correctness from new primary including the original

VIEW-CHANGE message and acknowledgements associated. Then, after validation

is confirmed, the replica rebuilds a NEW-VIEW message with local information and

compares it with the one received from new primary. If the verification passes, the

normal operation resumes, otherwise, another view change is initialized immediately

until successful. Figure 7 shows the details of view change.

Primary (0) Replica (1) Replica (3)Replica (2)

VIEW-CHANGE

View Change Timer starts

VIEW-CHANGE-ACK

NEW-VIEW

Primary (1)Replica (0) Replica (3)Replica (2)

Figure 7 View Change

39

4.5 Implementation, Optimization, and Performance Evaluation

The implementation of mechanisms described in previous sections has been done

in C++ and integrated into the BFT framework [13, 14, 15, 16]. A comprehensive

experimental study has been carried out on the platform consists of 14 HP blade servers

with each of them has two Quad-Core Intel Xeon 2GHz CPUs and 5GB memories. All

blade servers are running Ubuntu Server 9 and are connected by Cisco Catalyst Blade

3020 Gigabit Ethernet Switch.

In performance evaluation, we focus on the overhead for providing controls on

nondeterminisms in the BFT layer. The application layer work, such as cost associated

with recording and verifying nondeterministic values, is not studied.

Furthermore, in practical applications, a request may involve more than one type

of nondeterminism. Thus, we considered the possibility of composite types of

nondeterminisms. Because we have yet identified any practical applications with VPOST,

this type is omitted. The only types of nondeterminisms will be included in basic

performance evaluations are listed as following.

 VPRE: Single type with verifiable pre-determinable nondeterminism

 NPRE: Single type with non-verifiable pre-determinable nondeterminism

 NPOST: Single type with non-verifiable post-determinable nondeterminism

 VNPRE: Composite type with both verifiable pre-determinable

nondeterminism and non-verifiable pre-determinable nondeterminism

 VPRE-NPOST: Composite type with both verifiable pre-determinable

nondeterminism and non-verifiable post determinable nondeterminism

40

 NPRE-NPOST: Composite type with both non-verifiable pre-determinable

nondeterminism and non-verifiable post-determinable nondeterminism

 VNPRE-NPOST: Composite type with verifiable pre-determinable non-

determinism, non-verifiable pre-determinable nondeterminism, and non-

verifiable post-determinable nondeterminism.

In following sections, we first present, before performance evaluation, several

optimizations we did to the mechanisms described previously. Then in basic performance

evaluation, we use a single client with respect to all 7 types of nondeterminism listed

above and various sizes of nondeterministic data (for clarity, we refer nondeterministic

data as the set of nondeterministic values associated with each type of nondeterminism).

Next, stress test, we present experiment results under various numbers of concurrent

clients. In the final part, we report the impact of our mechanisms on the end-to-end

latency during view changes.

4.5.1 Optimizations

All the results shown in following sections are obtained after optimization works,

with which, the performance is significantly improved.

We optimized our mechanisms to handle NPRE nondeterminism. In pre-prepare-

update phase, the primary will collect contributions of nondeterministic data from at least

 replicas and re-calculate a new one based on them. In PRE-PREPARE-UPDATE

message from primary to replicas, the primary provides the proof of correctness including

the collection of nondeterministic data used in re-calculation. Instead of multicasting the

41

whole nondeterministic data set, the primary disseminates the collection of digests, which

will sharply reduce the message size especially when the data is large. Then the backup

replicas could verify the digests from primary with its local copies. If a replica recognizes

one or more missing proposed nondeterministic data locally, the retransmissions are

required.

Another optimization we introduced is in the post-commit phase, which is used to

handle NPOST nondeterminism. When we have multiple requests to process, we

piggybacked the postn log, instead of a totally separate Byzantine agreement phase, with

the PRE-PREPARE message of next request. In this way, we combine the Byzantine

agreement for nondeterminism data of current request with the total ordering information

of next request, which reduces the number of control message exchanges needed. Even

though, the end-to-end latency for a particular request slightly increases, as a result, the

overall throughput is significantly improved. If there is only a single request, as normal

operation when the number of client is one, the post-commit phase still has to be done

separately.

4.5.2 Basic Performance Evaluation

Error! Reference source not found. and Figure 9 show the summary of the end-

to-end latency and throughput measurements for a client-server application under normal

operation for different types of replica nondeterminism. For each iteration, a client issues

a 1KB request to the server replicas and waits for the reply which will also be 1KB fixed

size. When the client gets the valid reply, it sends out another request with no waiting

42

time between. For each run, we measure the total elapsed time for 100,000 consecutive

iterations at client side, and calculate the average end-to-end latency and throughput.

The handling of different types of nondeterminism, except for VPRE, involves

extra phases of message exchanges to reach agreements on both the ordering information

and the nondeterministic data. As such, as shown in Error! Reference source not found.

and Figure 9, the end-to-end latency is noticeably larger and the throughput is smaller,

than that of VPRE. Furthermore, with larger size of nondeterministic data, the

performance difference is more significant.

Figure 8 End-to-End Latency for Different Types of Nondeterminism under Normal

Operations

43

Figure 9: Average Throughput for Different Types of Nondeterminism under Normal

Operations

With a closer look, one may notice a surprising scenario. There is a crossover for

NPRE and NPOST in end-to-end latency. When the nondeterministic data size is small,

the end-to-end latency of NPRE is smaller compared with NPOST. However, the latency

for requests with NPRE grows rapidly when the nondeterministic data size increasing and

becomes higher than that for the requests with NPOST eventually. This is because the

pre-prepare-update phase, even with the optimization above, still involves at least two

large messages while the post-commit phase has only one. For NPOST, it has a full

Byzantine agreement loop including two more rounds of message exchanges than for

NPRE, and this leads to a relatively large end-to-end latency when the nondeterministic

data is small. However, following by increasing the size of nondeterminism data, the

transmission delay for messages that contain large size of data takes dominate, it results

44

in much faster grow of end-to-end latency for NPRE, and eventually surpasses that for

NPOST. The crossover for the throughput results shown in Figure 9 is due to the same

reason.

4.5.3 Stress Tests

So far we did the experiments for normal operation with single client. In this

section, as summarized in Figure 10 and Figure 11, we present the performance reports

on stress tests with various numbers of concurrent requests from different clients. We use

multiple clients issue the requests to the replicated server at the same time. Each of

clients sends 100,000 requests consecutively, where the size of the nondeterministic data

is kept at 256 Bytes.

With multiple concurrent requests, batching mechanism is enabled, which

improves the overall throughput of the system. However, with larger number of clients,

the waiting time increases. For a particular request, the latency becomes larger, as shown

in Figure 10 and Figure 11.

Interestingly, there are other crossovers contained in the multi-clients

performance diagram which also happens between NPRE and NPOST nondeterminisms.

When the number of concurrent clients is less than 7, the type of NPRE is faster than

NPOST. However, starting with 8 clients, the latency of NPOST becomes smaller. The

reason for this phenomenon is because of the optimization we introduced previously. For

NPOST nondeterminism, when there are sufficient number of concurrent clients, virtually

all post-commit phase are combined with following requests. So it improves the

45

throughput for requests with NPOST nondeterminism when the number of clients

increasing.

Figure 10 End-to-end Latency for Multiple Clients with Different Types of Replica

Nondeterminism under Normal Operation

46

Figure 11 Throughput for Requests with Different Types of Replica Nondeterminism

under Normal Operation

4.5.4 Impact on End-to-End Latency during View Changes

Until now, both basic performance and stress tests focus on the normal operations.

In this section, we experience the impact of our mechanisms on the performance of view

changes. In the experiment, a single client issues the requests to the replicated service.

And some requests are instrumented so that they will crash the primary which will lead to

a view change. We set the view change timer as 5-second, message retransmission timer

as 150-millisecond and choose to use client side end-to-end latency, including the round-

trip time of communication, the time used to detect the primary failure, and the view

change latency, as the metric. Furthermore, a view change always succeeds and no

message is lost during the view change.

47

Table 1 End-to-end Latency during View Changes

ND Data Size End-to-End Latency (seconds)

ND Data Type 128 Bytes 256 Bytes 512 Bytes 1024 Bytes 2048 Bytes 4096 Bytes

BFT with no ND 5.303915

VPRE 5.303713 5.303834 5.304212 5.304548 5.30449 5.304659

NPRE 5.304126 5.304294 5.304016 5.303665 5.30423 5.304159

NPOST 5.304225 5.304572 5.304388 5.304486 5.304382 5.304593

The view change experimental results are summarized in

Table 1. As can be seen, the end-to-end latency, for various scenarios, remains

virtually equal, including the one without nondeterminism. This is what we expected

since the mechanisms to handle different types of nondeterminism have very minimum

impact on the view change. According to section 4.4, in modified view change

mechanism, only the digest of nondeterministic data is piggybacked in the VIEW-

CHANGE and NEW-VIEW messages. Furthermore, in our experiments, we assume there

is no message lost during transactions. Therefore, from the performance point of view, it

has virtually no negative effect.

4.6 Conclusion

In this chapter, we presented our mechanisms for handling common types of

nondeterminism in a systematic and efficient manner based on the classification we

introduced. The implementation of these mechanisms is carried out by extending the

well-known BFT framework developed by Castro, Rodrigues, and Liskov [13, 16], which

had very limited support for replica nondeterminism. Furthermore, we conducted

48

extensive experiments to evaluate the performance of our framework. And we show that

our mechanisms only incur moderate runtime overhead.

49

CHAPTER V

PROACTIVE RECOVERY

State-machine based Byzantine fault tolerance (BFT) algorithms, including those

designed to control replica nondeterminism described in the previous chapter, assume the

availability of replicas to tolerate up to faulty replicas. However, over the

lifetime of a system, the number of faulty replicas may eventually exceed in the

presence of persistent adversaries. To ensure the reliability and the availability over

extended period of time (typically 24x7 and all year long), proactive recovery [48, 53, 54,

55], where replicas are periodically restarted and repaired before they are detected to be

faulty, becomes essential.

In this chapter, we present our proactive recovery scheme for BFT. Compared

with the proactive recovery scheme proposed by Castro and Liskov [13, 15], the primary

benefit of our scheme is a reduced vulnerability window under normal operation. This is

achieved by two means. First, the time-consuming reboot step is removed from the

critical path of proactive recovery. Second, the response time and the service migration

latency are continuously profiled and an optimal service migration interval is dynamically

50

determined during runtime based on the observed system load and the user-specified

availability requirement.

5.1 System Model

Our proactive recovery scheme partially relies on the synchrony of the system,

i.e., the round of proactive recovery should be completed within a bounded time.

However, all Byzantine agreement needed in the proactive recovery is guaranteed to be

safe without any synchrony assumption.

Our service migration-based proactive recovery scheme includes three main

components:

1. A pool of nodes for active server replicas. To tolerate up to Byzantine faulty

replicas, service replicas are needed in the active pool and they do all

the operations as we discussed in the previous chapter.

2. A pool of standby nodes. The size of standby pool should be large enough

() to repair damaged nodes while enabling frequent service migration for

proactive recovery.

3. A trusted configuration manager (similar to what has been described in [52]).

This trusted configuration manager is to manage the pool of standby nodes,

and to assist service migration. i.e., it is frequently probing and monitoring the

health of each standby node, and repairing any faulty nodes detected.

51

Three main components are separated to different subnets which are connected by

an advanced managed switch (i.e., Cisco Catalyst 6500) for faults isolation. Each node,

either in active pool or standby pool, has three network interfaces NIC1, NIC2, and

NIC3. We use NIC1 for connection to external network, NIC2 to connect between active

and standby pools, and NIC3 for connection to the configuration manager. Although each

node installs three network interfaces, only the ones in active pool have all three enabled.

In standby pool, we disable NIC1 to make the nodes only accessible internally. Trusted

configuration manager can dynamically control NIC1 and NIC2 of any node through

NIC3, e.g., it can disable NIC1 on a node to remove it from active pool and switch NIC2

of the same node to add it in standby pool.

All server replicas may be subject to malicious faults in both active and standby

pools. However, the majority attacks, we assume, are imposed from external networks.

So the successful attacks on the standby nodes, which are isolated from external

environment, should be much less likely than those on the nodes in the active pool.

Similar to [54, 55], we assume only fail-stop model failures are on the trusted

configuration manager and, to ensure high availability, the trusted configuration manager

is replicated using the Paxos algorithm [35]. Other assumptions regarding the system still

hold as we mentioned in the previous chapter.

52

5.2 Proactive Service Migration Mechanisms

The proactive service migration mechanisms ensure long term reliability and

availability. The detailed objectives including:

 Ensure a consistent membership view for available standby nodes on each

active replica;

 Determine the time and the method to start a migration;

 Select the source and the target nodes for migration;

 Transfer the correct state to the new active replicas;

 Notify the clients with the new membership after each proactive recovery.

5.2.1 Standby Nodes Registration

The nodes in the standby pool are controlled by the trusted configuration

manager. Probing and sanitization procedures are applied on standby nodes periodically

to ensure that they are not compromised. To ensure all the correct active replicas have the

consistent membership of the available standby nodes, a refreshed standby node needs to

notify all active replicas when the sanitization procedure are finished successfully.

Otherwise, if the trusted configuration manager cannot repair the faulty nodes, a system

administrator will be called to manually fix the problem.

53

BFT Algorithm for JOIN-REQUEST

Pool of Active Server Replicas

Primary (0) Replica (1) Replica (3)

JOIN-REQUEST

JOIN-APPROVED

Replica (2)

Update Standby

Nodes Membership

Pool of Standby Nodes

Standby Node (0)

Sanitization

Procedure

pre-prepare for JOIN-REQUEST with timestamp

Figure 12 Standby Nodes Registration Protocol

The registration protocol is illustrated in Figure 12. A node in standby pool

multicasts the JOIN-REQUEST, including a counter maintained by the secure

coprocessor, to all active service replicas. An active replica will accept the JOIN-

REQUEST if the request is the one with highest counter from the same standby node.

When the primary gets the valid JOIN-REQUEST, it will assign a timestamp to the

request as the join time and initialize a Byzantine agreement process. This process is

important, so that all active nodes have the consistent membership view of the standby

nodes. The significance of the join time will be elaborated later. When the JOIN-

REQUEST has been committed, the correct active replicas will update its own standby

nodes membership and send the JOIN-APPROVED reply back. The registration process

completes if the requesting standby node gets matched JOIN-APPROVED

messages from different active replicas.

54

A standby node might have gone through multiple rounds of proactive

sanitization before it is selected to enter active pool and run an active replica. Every time

the repairing procedure completes, a new registration is triggered to reconfirm the

membership. The active replicas subsequently update the join time of the standby node if

the registration process completes successfully.

Although standby nodes are much less likely to be compromised, it is still

possible. When the configuration manager deems a registered standby node as faulty, an

on-demand service repair will be initialized and the standby node is deregistered from the

active replicas by sending a LEAVE-REQUEST. The LEAVE-REQUEST is handled in a

similar way as that for JOIN-REQUEST.

5.2.2 Proactive Recovery

Proactive recovery will be triggered if either one of the two scenarios becomes

true:

 The software-based recovery timer expires, or

 An on-demand service recovery is invoked by the trusted configuration

manager.

A proactive recovery timer is started at the beginning of the service and is reset at

the end of each round of migration. One of the advantages of our proactive service

migration is that the recovery timer can be adjusted dynamically based on the synchrony

of the system and the workload on the system. This benefit can prevent harmful excessive

concurrent proactive recoveries and a potentially large window of vulnerability.

55

The migration timer is initialized when we start the replicated service and it

requires several user specified parameters, including:

1. The target system availability — the most important parameter.

2. The minimum number of requests served during a single round of

proactive service migration.

Furthermore, to elaborate our algorithm on how to adjust the proactive recovery

timer, we define some symbols here:

1. The response time to order and execute a request . Please note, does not

include the queuing delay for the request being ordered.

2. The latency to carry out a service migration, i.e., the time it takes to swap

out an active replica and replace it with a clean standby replica.

The timeout value is initialized to , and during runtime, we continuously

measure the average response time for the most recent
 requests and the service

migration latency . A notification is sent to the system administrator if either the

response time or the service migration latency exceeds the worst-case values.

Based on the availability, we can calculate the service migration timeout value by

the following equation:

 (4.1)

The parameter
 is defined by user. The migration timeout value is

dynamically adjusted to , if

 . So to satisfy both the requirements on

56

the minimum number of requests served in each migration period and the target system

availability, the migration timeout is set as following:

 (4.2)

On expiration of the migration timer, a replica chooses a set of active replicas,

and a set of standby nodes to initialize the proactive recovery. active replicas are

selected based on the reverse order of their identifiers. For example, since we have

 active replicas, so in the fourth round, we have only one left which is required to

be recovered next round. Then we select other active replicas with identifiers

from to . So replicas with id 0, , …, are selected. The set of

standby nodes is selected on the timestamp of the registration, the younger the better. We

choose the ones with the latest timestamp because of the least probability of these nodes

to have been compromised at the time of migration (assuming brute-force attacks by

adversaries).

After making the decisions on the service migration sets, the replica multicasts an

INIT-MIGRATION request to all others. There is a migration number contained in the

initial migration request, which is determined by the number of successful migration

rounds recorded by the replica. A correct replica accepts an INIT-MIGRATION message

if all three conditions are hold:

(1) The INIT-MIGRATION message carries a valid authenticator;

(2) The receiver has not accepted another INIT-MIGRATION message from the

same replica in the same view with the equal or higher migration number;

57

(3) Selected set of active replicas and set of standby replicas are consistent with

the sets determined by the receiver according to the same migration set

selection algorithm.

When a replica gets consistent INIT-MIGRATION from different replicas, it

will construct the MIGRATION-REQUEST message. The most important requirement of

the proactive recovery is to ensure a consistent up-to-date state for service migration,

which can be done by Sync-Point Determination Phase. In the Sync-Point Determination

Phase, the migration requests are totally ordered with respect to normal requests, and the

one with top priority will be processed immediately without queuing. The primary orders

the MIGRATION-REQUEST in the same way as that for a normal request, except that

(1) It does not batch the MIGRATION-REQUEST message with normal requests,

and

(2) It piggybacks the MIGRATION-REQUEST and INIT-MIGRATION

messages, as proof of validity, with the PRE-PREPARE message. The reason

for ordering the MIGRATION-REQUEST is to ensure a consistent

synchronization point for migration at all replicas.

An illustration of the migration initiation protocol is shown in Figure 13.

58

BFT Algorithm for

MIGRATION-REQUEST

Pool of Active Server Replicas

Primary (0) Replica (1) Replica (3)

MIGRATION-NOW

(with checkpoint)

Replica (2)

Pool of Standby Nodes

Standby Node (0)

pre-prepare for MIGRATION-REQUEST

Migration

Timer Expires

Init-Migration

Phase
Construct

MIGRATION-

REQUEST

Sync-Point

Determination

Phase

State Transfer

Phase

INIT-MIGRATION

Figure 13 Proactive Service Migration Protocol

Each replica starts a view change timer after the MIGRATION-REQUEST

message has been constructed. If it cannot receive the PRE-PREPARE message from

current primary before the timer expiration, a view change will be initiated. The new

primary should resume the proactive service migration.

Again, the MIGRATION-REQUEST message is totally ordered to ensure that all

correct active replicas reach the same synchronization point when performing the service

migration. The only difference with the normal requests ordering is that the replica must

have all INIT-MIGRATION messages the primary used to construct the

59

MIGRATION-REQUEST, and verify the active node set and standby node set match

those in the INIT-MIGRATION messages.

When a correct replicas reach the synchronization point, it takes the checkpoint of

its state, including both the application and the BFT middleware state, and multicasts a

MIGRATE-NOW message to the standby nodes to be migrated and all replicas of the

configuration manager. The MIGRATE-NOW message contains a set of tuples to

identify the pair of source-node and target-node. The standby node that is designated as

the target node will replace the active node indicated as the source node, once it

completes the proactive recovery procedure.

A replica sends the actual checkpoint, together with all queued request messages

if it is the primary, to the target nodes in separate messages. If a replica is to be

recovered, its NIC1 interface is expected to be disabled and it stops accepting any new

requests. However, this holds for correct replicas only. If the replica is faulty, it might not

do so. This is the reason why the trusted configuration manager must be informed of the

migration by all correct active replicas. When there are MIGRATE-NOW

notifications, the configuration manager changes the switch configuration to forcefully

disable the NIC1 interface from the switch end and performs other sanitizing operations

on the faulty nodes.

When a standby node collects matched MIGRATE-NOW requests, it is

promoted to run as an active replica and then applies the checkpoint to its state. From

now on, this node starts to participate in the normal operation and becomes a new valid

active replica.

60

5.2.3 New Membership Notification

A faulty or potential faulty replica can be recovered by our alternative proactive

recovery scheme. However, there is a lag between when a faulty replica has been

migrated and when it has been sanitized by the configuration manager. In the meantime,

the faulty replica still can send messages to the active replicas and the clients. Hence it is

very important to inform the clients with the new membership of the active replicas so

that they will ignore the messages received from the current active pool during the

transition period.

To improve the performance, the NEW-MEMBERSHIP notification is performed

in a lazy manner after the first request of the service migration has been processed.

However, if the primary replica has been selected to be replaced, the notification should

be sent immediately so the clients could send their requests to the new primary instead of

the old one. Furthermore, the notification is sent only from original active replicas, not

the new ones, because the clients do not know them yet.

5.2.4 On-Demand Migration

On-demand migration is invoked when one or more faulty nodes have been

detected by either the trusted configuration manager or by a replica with the solid

evidence. The mechanism is very similar for both the timer based service migration and

the on-demand service migration, except the trigger itself and the faulty nodes selection,

since for on-demand migration, the nodes to be sanitized are already decided. The

61

migration process is the same and both should start with the INIT-MIGRATION

message.

5.3 Performance Evaluation

We implemented the proactive service migration mechanisms described in this

chapter and integrated into the Byzantine fault tolerance (BFT) framework developed by

Castro, Rodrigues and Liskov [13, 15, 16]. All the related operations are simulated in

software. And furthermore, we didn’t fully implement the trusted configuration manager

since we lack the sophisticated hardware equipment to facilitate the subnet dynamic

control.

The testbed of the experiments consists of a set of Dell SC440 servers with a

Pentium dual-core 2.8GHz CPU and 1GB RAM. They are running SuSE Linux 10.2.

Similar to [13], those are general-purpose servers without hardware coprocessors. All the

components including the configuration manager, the three pools of replicas, and the

clients are located in the same physical local area network connected with a 100 Mbps

switch.

The motivation of the experiments is to evaluate the runtime performance of the

proactive service migration scheme. The micro-benchmarking example included in the

original BFT framework is adapted as the test application. Both the request and the reply

messages are set to 1KB fixed length, and each client generates requests consecutively

62

without any think time. We are using a 1ms processing delay by busy loop to simulate

some actual workload before it echoes back the payload to the client.

Due to the potential large state, we employed the following optimization: only

one node sends the full checkpoint to the target node and the others send the digest of the

checkpoint instead. The target node can verify the checkpoint by comparing the digest

generated from the full copy with the ones received from other replicas.

We present two sets of experiments. First, the runtime cost of the service

migration mechanism with a fixed migration timer. Second, characteristics on

dynamically adjusted migration period with various conditions.

5.3.1 Runtime Cost of Service Migration

We present the runtime cost of the service migration schema by measuring the

recovery time on a single node with various service state sizes. In each run, the service

migration interval is kept at 10s. The recovery time is determined by measuring the time

elapsed between the following two events:

(1) The primary sending the PRE-PREPARE message for the MIGRATION-

REQUEST, and

(2) The primary receiving a notification from the target standby node indicating

that it has collected and applied the latest stable checkpoint.

We refer to this time interval as the service migration latency. Figure 14

summarizes the service migration latency with respect to various state sizes and the

number of concurrent clients. It is not surprising to see that the cost of migration is

63

limited by available bandwidth (100Mbps) since the time to take a local checkpoint and

restore one is negligible in our experiments (memory operation). This is intentional for

two reasons:

(1) The check point taking and restoration cost is very application dependent, and

(2) Such cost is the same regardless of the proactive recovery schemes used.

Figure 14 Service Migration Latency for Different State Sizes

Furthermore, we measure the migration latency as a function of the system load in

terms of the number of concurrent clients. As can be seen in Figure 15, the migration

latency increases more significantly for larger state when the system load is higher. When

there are eight concurrent clients, the migration latency for a state size of 50MB is close

to 10s. This observation suggests that if a fixed watchdog timer is used, the watchdog

timeout must be set to a very conservative worst-case value. If the watchdog timeout is

64

too short for the system to go through four rounds of proactive recovery (of replicas at

a time), there will be more than replicas going through proactive recoveries

concurrently, which will decrease the system availability, even without any fault.

Figure 15 Service Migration Latency with Respect to the System Load

5.3.2 Dynamic Adjustment of Migration Interval

The objective of this set of experiments is to demonstrate the capability of

dynamic migration interval adjustment. The results present how the migration interval

changes under different system loads due to various concurrent clients and state sizes.

We provide following parameters as user specified:

1. Target system availability

65

2. Minimum number of requests served during a round of proactive service

migration

3. Initial value of the service migration interval

Figure 16 shows the results of the dynamic adaptation of migration interval in the

presence of a single client. As expected, when the state size is relatively small, 20MB or

below, is used because the migration latency is small and the user specified

minimum requests needed to meet. As the state size increases, larger migration latency is

needed to meet the availability requirement. Again, we show that the migration interval

dynamically determined are much smaller than the worst-case value except when the

state size is very large.

Figure 16 Dynamic Adaption of Migration Interval for Different State Size

66

Figure 17 shows us the migration interval with various numbers of concurrent

clients. It may be surprising to note that the migration timeout value actually decreases

when the number of concurrent clients increases for state sizes of 5MB and 10MB. This

might appear to be counterintuitive. However, it can be easily explained. This is an

artifact caused by the aggressive batching mechanism in the BFT framework [13] we

used. With batching, the cost of ordering a single request is reduced. Consequently, the

response time per request is reduced, which results in a smaller migration timeout value.

(Recall that does not include the queuing delay of the request being ordered.)

Another interesting observation is that the migration timeout values determined at

runtime are much smaller than the worst-case value except when the state size is large

and the number of concurrent clients is significant. For many applications, their state size

might gradually increase over time as they process more application requests. A larger

state would mean larger migration latency, as indicated in equation 4.2.

67

Figure 17 Corresponding Migration Interval with Respect to the Number of Concurrent

Clients

5.4 Conclusion

In this chapter, we introduced a novel proactive recovery scheme based on service

migration for long-running Byzantine fault tolerant systems. We described in detail the

challenges and mechanisms needed for our migration-based proactive recovery to work.

The primary benefit of our migration-based recovery scheme is a smaller vulnerability

window during normal operation. When the system load is light, the migration interval

can be dynamically adapted to a smaller value from the initial conservative value, which

is usually set based on the worst-case scenario, and hence, resulting in a smaller

vulnerability window. Our scheme also shifts the time consuming repairing step out of

68

the critical execution path, which also contributes to a less chance to compromise and a

smaller vulnerability window. We demonstrated the benefits of our scheme

experimentally with a working prototype.

69

CHAPTER VI

CONCURRENT BFT

In existing Byzantine Fault Tolerance (BFT) algorithms, application requests are

executed one after another according to the established total ordering to ensure strong

replica consistency. This inevitably limits the performance of the system without fully

exploiting the multi-core processors that are pervasively available today. To lift the

limitation, we incorporate the Software Transaction Memory (STM) technique into BFT

systems. By using STM, it is possible to delivery multiple requests for concurrent

execution as long as the commit order is controlled such that the order conforms to the

total ordering of the requests that triggered the transactions, which is referred to as the

ordering rule in this chapter. Furthermore, we can use the multi-version and commit

barrier approaches to enable speculation to further improve the performance by pre-

executing the requests and hold the result temporarily until the execution is validated. If,

by any chance, the speculation is wrong, the system will rollback and re-execute the

requests based on the correct order.

70

In this chapter, we introduce our concurrent and speculative BFT algorithm that

could bring the performance of BFT system to a new level.

6.1 Conflicts Model

Conflicts management is a very important task during the concurrent execution of

multiple transactions. To better understand it, we introduce the conflicts model in web

applications first with examples. We do not discuss basic read/write or write/write

conflicts in our conflicts model because they can be easily controlled. We only focus on

conflicting operations that can pass the validation test, but may lead to the violation of the

ordering rule.

For example, in a simple client-server application, each client sends a request to

start a transaction and wait for a reply. If concurrent execution is not enabled, the

transactions will be created and executed one after another sequentially, and requests may

have to wait for their terns in a waiting queue. If the server has the capabilities of

concurrent executing, multiple transactions, requested by different clients, can be

triggered and processed at the same time. Figure 18 illustrates the basic idea.

71

Client Client Client
Server

Request
Request
Request

Start Transaction
Start Transaction
Start Transaction

T
ra

n
s
a

c
tio

nTransaction Done

Transaction Done

Transaction Done
Reply

Reply

Reply

Request
Request
Request

Start Transaction
Start Transaction
Start Transaction

T
ra

n
s
a

c
tio

nTransaction Done

Transaction Done

Transaction Done
Reply

Reply

Reply

Figure 18 Concurrent Execution in a Client-Server Application

Concurrent execution is a double-edged sword. On the one hand, it might speed

up the whole system performance in optimal conditions. On the other hand, concurrent

transactions may have to be aborted when conflicts arise. Conflicts may be unavoidable

when concurrent transaction processing is enabled. Some conflicts may be difficult to

discover. In a stateful web application, concurrent transactions must be made equivalent

to a sequential execution, and some transactions may have to be aborted when conflicts

are detected. In the following, we elaborate several common types of conflicts.

The first type of conflicts: A transaction with higher timestamp concludes before

another transaction with lower timestamp, and both transactions update the same piece of

data successfully but in the wrong order. As shown in Figure 19, transaction starts

before transaction , (i.e., , where is the timestamp of the

72

transaction). They both update a shared data item. It may happen that updates the

shared data item after has already committed cause by unexpected delay. In this

case, although the execution of the two transactions is linearizable, the commit order of

the two transactions violates the ordering rule because the transaction that has smaller

timestamp is committed later than the one that has bigger timestamp. If uncontrolled, this

conflict may cause replica inconsistency because it may happen that some replicas

commit Ti ahead of Ti+1 while some other replicas commit Ti+1 ahead of Ti.

Transaction i

Time

Transaction i+1

Write Oi, v+1 → Oi, v+2

Validate Success

Transaction i

committed

Transaction i+1

committed

Write Oi, v+2 → Oi, v+3

Figure 19 Conflict Model 1 – Update Shared Data in the Wrong Order

The second type of conflicts: STM uses commit timestamp to verify the

transaction, and the one with lower timestamp is forced to re-execute due to the

read/write conflicts. In the following example, we consider two concurrent transactions,

transaction and transaction with . accesses the shared data item

earlier than . When finishes its work and tries to commit, it detects the write/write

conflicts with and this would force be re-executed. Again, although the two

transactions are executed according to some lienarizable order, the actual order violates

our ordering rule because it may cause replica inconsistency.

73

Transaction i

Time

Transaction i+1

Write Oi, v+1 → Oi, v+2

Validate Success

Transaction i

committed

Transaction i+1

committed

Write Oi, v+1 → Oi, v+3

Conflict

Transaction i

Restart Write Oi, v+2 → Oi, v+3

Figure 20 Conflict Model 2 – Early Transaction Forced to Abort and Restart

Note that for normal read and write conflicts, the conflict resolution rule defined

by STM to ensure linearizable execution of concurrent transactions is adequate. Figure 21

below shows an example.

Transaction i

Time

Transaction i+1

Write Oi, v+1 → Oi, v+3

Validate Success

Transaction i

committed

Transaction i+1

committed

Write Oi, v+1 → Oi, v+2

Conflict

Transaction i+1

Restart

Write Oi, v+2 → Oi, v+3

Figure 21 Normal Read and Write Conflicts Example

6.2 Speculative Concurrent BFT

The execution of concurrent transactions makes conflict unavoidable and we have

introduced different types of conflicts in the previous section. The basic read/write and

write/write conflicts have already been discovered and handled dynamically by STM.

74

And the most difficult part left for us is to add additional mechanism in the validation

step to detect the violation of our ordering rule.

In this section, we introduce speculative concurrent BFT based on two strategies,

namely, commit barrier, and multi-version speculation with commit barrier.

6.2.1 Commit Barrier

We impose the following rule to detect the conflicts in concurrent stateful

systems:

“When a conflict is detected, the transaction with the smaller timestamp or

sequence number should be committed and, if necessary, the one with the larger

timestamp or sequence number must be aborted and restarted.”

This rule must be abide by no matter how complicated the situation is. The reason

why some transactions are valid for STM but violate our ordering rule is because STM

doesn’t track a specific relative ordering among the transactions. The transactions with

higher sequence number could be committed earlier according to the STM conflict

resolution rule. To prevent this from happening, we introduce a commit barrier, an extra

stage of validation during the commit phase. With the commit barrier, the transaction can

commit only when all transactions with lower sequence numbers have already been

committed, otherwise, it has to wait.

We will reuse the two examples introduced in the previous section to see how to

use the commit barrier to solve the problem. The two conflict models are handled in the

same way during the commit barrier. The transaction with higher timestamp or

75

sequence number reaches the commit point first, however, it cannot commit since we

have a barrier now and transaction has not committed yet, as shown in Figure 22. In

this scenario, has to wait. On the other hand, transaction continues processing

and, if the validation is successful, it can commit. After has fully completed, the

commit barrier releases . However, when is validated, a conflict will be

detected. This would force transaction to abort and to restart. In second try,

would be able to commit.

Transaction i

Time

Transaction i+1

Write Oi, v+1 → Oi, v+2

Validate Success

Transaction i

committed

Transaction i+1

committed

Write Oi, v+1 → Oi, v+2'

Commit

Barrier

Conflict

Transaction i+1 Validation

Failed and Restart

Write Oi, v+2' → Oi, v+3

Validate Success

Figure 22 The Commit Barrier Solution for our Conflict Models

76

6.2.2 Multi-Version Speculation with Commit Barrier

Combining STM with commit barrier, we can guarantee the basic rule cannot be violated.

violated. However, the use of the commit barrier may negatively impact the performance.

As the example shows in

Figure 23, when transaction touches the shared data the very first time, we

know there will be a conflict. With commit barrier, the problem can be solved but in

efficiently. Hence, we propose another approach – Multi-version.

Transaction i

Time

Transaction i+1

Write Oi, v+1 → Oi, v+2'

Validate Success

Transaction i

committed

Transaction i+1

committed

Write Oi, v+1 → Oi, v+2

Commit

Barrier

Conflict

Transaction i+1 Validation

Failed and Restart

Write Oi, v+2 → Oi, v+3

Validate Success

Figure 23 Commit Barrier Performance Issue

Multi-version has been used in different places. The basic idea is that we keep

multiple versions for shared data instead of a single static one. The multiple versions will

include the last committed and the tentative versions. The last committed version is the

permanent data that has been committed successfully by a transaction. The tentative

version, on the other hand, is the version produced when a data item is updated by

another active transaction that has yet to be committed. Every time the transaction

requires a shared data item, it fetches the most recent version of the data item, even it is

the tentative version. Then the fetched latest version is used in the following operations.

77

During the validation step, the transaction has to confirm that the tentative data has

already been committed. If that is not the case, the transaction has to be aborted and

restarted.

Multi-version breaks the isolation property and exposes uncommitted data to all

other active transactions. In our system, we store tentative data associated with the

corresponding sequence number assigned to the transaction. When a transaction accesses

the shared data, it prefers to use the one with the highest sequence number that is lower

than that of the current transaction. If the transaction that produced the tentative version

has been aborted, all transactions that are using the tentative version would also have to

be aborted. Note that the multi-version approach must be used in conjunction with

commit barrier validation to guarantee that the tentative version, if it is used, is

committed before the transactions that accessed the tentative version.

Figure 24 illustrates how to apply the multi-version mechanism to an example

scenario. Transaction executes normally and it updates the shared data first. When

transaction accesses the same piece of data, there are two versions and transaction

 fetches the tentative version from , even though it is not permanent. The tentative

version of data will be used in operations of . Since takes less time to finish, it

reaches the commit point before transaction but is blocked by the commit barrier. In

the mean time, transaction continues its processing and commits after validation which

releases the commit barrier of . Now instead of normal validation, also needs to

verify the data version it used to finally commit. After has committed successfully, the

tentative version becomes permanent. So can also be committed directly without

restart. By using multi-version, transaction can commit right after the and the

78

ordering rule will hold. Any conflict would be handled nicely with almost no negative

performance impact.

Transaction i

Time

Transaction i+1

Write Oi, v+2 → Oi, v+3

Validate Success

Transaction i

committed

Write Oi, v+1 → Oi, v+2

Commit

Barrier Validate Success

Transaction i+1

committed

Figure 24 Multi-Version with Commit Barrier

We believe any conflict resolution mechanism must strive to allow transactions to

be committed successfully under normal operations. So that, by applying the multi-

version approach, the tentative data used in the following transactions (referred to as

consumer transactions) will eventually be made permanent so that the consumer

transactions can proceed to being committed. This would help increase the system

throughput.

79

Transaction i

Time

Transaction i+1

Write Oi, v+1 → Oi, v+2'

Validation Failed &

Transaction i Restart
Transaction i

committed

Transaction i+1

committed

Write Oi, v+1 → Oi, v+2

Conflict

Transaction i+1 Validation

Failed and Restart

Write Oi, v+2' → Oi, v+3

Validate Success

Write Oi, v+1' → Oi, v+2'

Validate Success

Transaction i

Time

Transaction i+1

Validation Failed &

Transaction i Restart
Transaction i

committed

Transaction i+1

committed

Write Oi, v+1 → Oi, v+2

Invalid data

Transaction i+1 Validation

Failed & Restart

Validate Success

Write Oi, v+1' → Oi, v+2'

Validate Success

Write Oi, v+2 → Oi, v+3
Write Oi, v+2'

→ Oi, v+3'

Commit

Barrier

(a)

(b)

Commit Barrier

Commit

Barrier

Figure 25 Multi-Version Speculation with Provider Restart

However, in some cases, the transaction that produced the tentative version

(referred to as the provider transaction) may have to be aborted and restarted, and the

tentative data would become invalid. This would force the dependent consumer

transactions to be rolled back and restarted as well. However, we still can, during the

retry of the transactions, use the new tentative data. The performance would still be much

better compared with the single version based approach. Figure 25 (a) and (b) show an

example with a comparison between the two approaches: (1) When only the commit

barrier is enabled and, (2) when both the commit barrier and the multi-version

mechanisms are enabled. In Figure 25 (b), we can see that the transaction still can

commit right after . The only different is that has to rollback and restart due to

abort of .

80

The multi-version approach could make concurrent transaction processing more

efficient provided that the tentative data is generated by the right transaction. If the

tentative data is from a wrong transaction or it has been re-written to, the consumer

transaction would have to be aborted and restarted, as shown in Figure 26. Transaction

and both utilize the tentative data generated by . may take the advantage of

using the tentative version from Ti-1. However, transaction would have to be

restarted since the data is overwritten by .

Transaction i

Time

Transaction i+1
Write Oi, v+0

→ Oi, v+1'

Transaction i

committed

Transaction i+1

committed

Write Oi, v+0

→ Oi, v+1

Commit

Barrier

Conflict

Transaction i+1 Validation

Failed and Restart

Write Oi, v+1

→ Oi, v+2

Validate Success

Validate Success

Transaction i-1

Transaction i-1

committed
Write Oi, v+0

Validate Success

Figure 26 Multi-Version Speculation with Tentative Data Re-written

These cases show the basic rules how the commit barrier and multi-version

approach works to solve the conflicts. In the next section, we describe how to implement

them in our BFT framework.

81

6.2.3 Speculative Concurrent BFT

The combination of commit barrier and multi-version speculation, as described in

previous sections, can solve the conflicts and enable efficient concurrent transaction

processing. We now describe how to implement them in our BFT framework and focus

on system wide scenarios.

In practical systems, we may encounter more complicated scenarios than the

examples shown before. It is possible that a transaction accesses a data item out of order,

such as transaction Ti-1 arrives later than transaction Ti and both of them reads a shared

data item, in which case, the transaction with higher sequence number, transaction Ti

here, would have to be aborted and retried as soon as the out-of-order conflicting

operation is detected. Figure 27 shows an example of how out-of-order situations are

handled by our concurrent BFT framework (denoted as C-BFT) and by a BFT framework

with strict sequential execution of all transactions (denoted as S-BFT). Please note that

the commit barrier ensures that all transactions commit following a total ordering

typically determined based on the order of request arrival. If transactions arrive out of the

order or try to commit out of the order, they have to wait until all transactions with lower

sequence numbers have been committed.

82

Transaction i+1

Transaction i+1 is

aborted and retried

Out-of-order conflicting

data access detected

Transaction i+1 committed

after retry

Transaction i+2

Transaction i+2 completed
Commit is delayed until previous

transaction is committed

Transaction i

Transaction i started later

than transaction i+1

Transaction i+1 started

Transaction i+2 started

Transaction i

committed

Time

Hold Transaction i+2

Transaction i started Transaction i committed

Transaction i+1 started Transaction i+1 committed

Transaction i+2 started Transaction i+2 committed

S-BFT

C-BFT

Time

Figure 27 BFT Framework with Strict Sequential Execution of all Transactions (S-BFT)

and Concurrent BFT Framework (C-BFT) with an Example of How Out-of-order

Situations are Handled

6.3 Concurrent BFT Framework

Our concurrent Byzantine fault tolerance (BFT) framework, as shown in Figure

28, supports client-server applications where the server is constructed with software

transactional memory (STM). To take the advantages of separation of agreement and

execution [68], we built the agreement agent and application server separately as a

standalone cluster, so that only server replicas are needed to tolerate up to

83

faulty replicas on the application side. The total ordering of the requests from clients is

ensured by the UpRight agreement cluster [19]. The application servers, in our

implementation, are built on top of the LSA-STM open source library [64] to enable

software transaction memory.

Clients

Agreement Cluster

Server Replica

Server Replica

Server Replica

Application Server Cluster

STM Runtime

STM Runtime

STM Runtime

Figure 28 The Proposed Byzantine Fault Tolerance Framework

Client sends their requests to the agreement cluster. And then the agreement

cluster totally orders the requests and dispatches ordered requests to the application

server replicas. The agreement cluster will be responsible to assign a sequence number to

each batch of requests. Hence, the sequence number cannot be directly used on the

application server side due to the fact that sequence number is based on batches instead

of requests (multiple requests in the same batch will have an identical sequence number).

We use a deterministic algorithm to assign a multi-dimensional monotonically increasing

timestamp to each request and the corresponding transaction. And this timestamp is then

84

used to ensure the ordering of each request as well as the transaction triggered by the

request.

The batches of requests are disassembled at each server replica. And the request is

delivered immediately once it is known that it has been totally ordered. We assume that

each request will trigger one and only one transaction at the server replicas. We pre-

allocate a thread pool with the size equals to the number of CPU cores. Each thread in the

pool will handle a request at a time. Since we have fixed number of threads in the pool,

we also build a waiting queue for extra requests. Whenever a thread completes a request,

it will fetch the next one in the queue. This approach could significantly increase the

system performance for servers equipped with multi-core processors. Figure 29

demonstrates the infrastructure in detail.

Client Request 1

Client Request 2

Client Request 3

Client Request 4

Client Request 5

Agreement

Cluster

Server Infrastructure

Ordered Batch of Requests Disassemble

Batch

Append Requests in

the Queue

Application

T
h

re
ad

 1

T
h

re
ad

 2

T
h

re
ad

 3

T
h

re
ad

 4

T
h

re
ad

 5

Reply

Thread Pool

Figure 29 Application Server Infrastructure

85

6.4 Implementation and Performance Evaluation

The proposed concurrent Byzantine fault tolerance system is implemented in

Java. We build our agreement cluster based on the UpRight framework [19] for total

ordering the requests from the clients. And on the application server cluster side, we use

the LSA-STM library to enable software transactional memory. A comprehensive

experimental study has been carried out using our research prototype in a Local-Area

Network connected by a Cisco switch. The testbed consists of 14 HP BL460c blade

servers and 18 HP ProLiant DL320 G6 servers. Each BL460c server has two Xeon E5405

2.0GHz quad-core processor and 5GB RAM. Each DL320 G6 server is equipped with

one Xeon E5620 2.4GHz quad-core processor and 8GB RAM. All servers are running the

64-bit Ubuntu Server Linux operating system.

The basic structure of the test application is a client-server module where the

server is supported by our concurrent BFT framework. The agreement server is replicated

with replicas and the application server is replicated with replicas to

tolerate up to faulty replicas in each cluster. Each replica is deployed at a different node

in our testbed. In our experiments, we use because of limited resources, i.e., 3

application server replicas and 4 agreement replicas. All the server replicas are deployed

on the BL460c blade server nodes, and the clients are deployed on the DL320 server

nodes.

A pre-allocated pool of 8 threads is used to perform concurrent execution. This is

to match two quad-core CPUs of each application server replica. The transactions may be

aborted and retried; however, it will eventually be committed.

86

The server maintains a shared data pool with 100 data items, and each transaction

accesses 10 data items and perform write operations on them. The data items are selected

pseudo-randomly according to a predefined sharing rate. For example, a 20% sharing rate

means a transaction will only access 2 items in the shared data pool and another 8 from

its private data items. To characterize non-trivial processing load, a finite processing

delay is artificially introduced at the server for each transaction in the form of busy loops,

i.e., the server executes an empty while loop until the predefined timeout has fired. We

use two types of processing load in our experiments: (1) fixed length, and (2) random

processing delays with a Poisson distribution.

Furthermore, to explain the performance results, we define some symbols here:

 C-BFT: Concurrent Byzantine fault tolerance system

 S-BFT: Sequential Byzantine fault tolerance system (original BFT system

with all requests processed sequentially one after another)

 Fixed-i%: Fixed processing time for each transaction in our BFT framework

(C-BFT) with i% data sharing rate

 Poisson-i%: Random processing time with Poisson distribution for each

transaction in our BFT framework (C-BFT) with i% data sharing rate

During the first part of the experiments, we set the fixed processing time for 5ms

and the Poisson distribution with a mean of 5ms. The following scenarios are shown in

Figure 30.

87

(1) C-BFT (Fixed-i%): Concurrent BFT with 5ms fixed processing time where i

varies from 0 to 100 with 20 increment. For comparison purpose, S-BFT with

5ms processing time is included.

(2) C-BFT (Poisson-i%): Concurrent BFT with random processing time with the

Poisson distribution with a mean of 5ms. Same as the first test, i changes from

0 to 100 with five equal steps.

The throughput test results are summarized in several figures. Figure 30 shows

the average throughput with respect to different number of concurrent clients under

various C-BFT Fixed scenarios, and the S-BFT scenarios for comparison. Figure 31

shows the throughput performance with respect to different number of concurrent clients

under different C-BFT Poisson scenarios. As expected, the lowest throughput is for the

sequential BFT with no concurrent execution and the highest throughput is observed for

concurrent BFT with 0 percent data sharing rate, owning to the fact that there is no shared

data among transactions. Without shared data, transactions will only work on their own

data and it won’t cause any conflicts. So the best performance is expected in this

scenario. For all other scenarios, the larger sharing rate, the more possibility of getting

conflicts during the operations, which leads to a worse throughput.

88

Figure 30 Throughput versus the Number of Concurrent Clients for C-BFT Fixed

Configurations

89

Figure 31 Throughput versus the Number of Concurrent Clients for C-BFT Poisson

Configurations.

Figure 32 and Figure 33 show the average and the peak throughput dependency

on the data sharing rate for the three sets of scenarios. It can be seen that the throughput

decreases with a reasonable amount with larger data sharing rates. We use S-BFT as

references in the figure, whose results show as a horizontal line. It makes sense since the

data sharing rate has no impact for sequential processing.

90

Figure 32 Average Throughput versus Different Data Sharing Rates.

Figure 33 Peak Throughput versus Different Data Sharing Rates.

91

Figure 34 shows the throughput results with the fixed processing time and Poisson

distribution processing time for two scenarios with 0% and 100% sharing rates. As

expected, the scenario with the fixed processing time has better performance. The

performance of the system with Poisson distribution processing times is worse because

the commit barrier causes all transactions to wait for the previous ones to complete. For

the fixed processing time situation, the later one can commit immediately if there is no

conflicts detected. However, for dynamic processing time, if one transaction takes longer

time, all the followings transactions would be impacted, as shown in Figure 35 and

Figure 36.

Figure 34 Throughput versus the Number of Concurrent Clients for Comparing Fixed and

Poisson Distribution Processing Time.

92

Transaction i+1

Transaction i+1 committed

after retry

Transaction i+2

Transaction i

Transaction i started later

than transaction i+1

Transaction i+1

started

Transaction i+2

started

Transaction i

committed

C-BFT Fixed

Time

Transaction i

committed

Figure 35 Concurrent BFT with Fixed Processing Time under Normal Operations

Transaction i+1

Transaction i+1 committed

after retry

Transaction i+2

Transaction i+2

completed

Commit is delayed until previous

transaction is committed

Transaction i

Transaction i started later

than transaction i+1

Transaction i+1 started

Transaction i+2

started

Transaction i

committed

C-BFT Poisson

Time

Figure 36 Concurrent BFT with Poisson Distributed Processing Time under Normal

Operations

To study the inner workings of the system, we profile the number of conflicts and

aborts, in addition to the number of commits in each run. Each of clients sends 100,000

requests consecutively with a pre-defined data sharing rate. We recorded the total number

of commits, conflicts and aborts, and then calculated the conflict rate and abort rate. The

93

profiling results of abort rate and conflict rate for C-BFT fixed scenarios are shown in

Figure 37 and Figure 38. And the profiling results for C-BFT Poisson scenarios are

shown in Figure 39 and Figure 40. From the figures, we can see that the conflict and

abort rates increase exponentially with the number of concurrent clients, and with the

sharing rates. This makes sense since both the larger data sharing rate and the more

concurrent clients are dedicated more chances of conflicts.

94

Figure 37 Conflict Rate in Terms of Average Number of Conflicts per Transaction versus

Different Number of Concurrent Clients.

Figure 38 Abort Rate in Terms of Average Number of Aborts per Transaction versus

Different Number of Concurrent Clients.

95

Figure 39 Conflict Rate in Terms of Average Number of Conflicts per Transaction versus

Different Number of Concurrent Clients.

Figure 40 Abort Rate in Terms of Average Number of Aborts per Transaction versus

Different Number of Concurrent Clients.

96

Furthermore, as shown in Figure 41 and Figure 42, the abort rate for dynamic

processing time is higher than that for the fixed processing time regardless of sharing rate

and number of concurrent clients, which are already explained in Figure 35 and Figure

36.

Figure 41 Abort Rates Observed for Different Sharing Rate

97

Figure 42 Abort Rates Observed for 10 Concurrent Clients with Different Data Sharing

Rates

The test results shown above confirm that indeed the performance is significantly

improved with our proposed concurrent BFT system compared with sequential BFT in all

circumstances tested. The throughput improvement ranges from 28%, when data sharing

rate is 100%, to 125%, when data sharing rate is 0%. From the performance evaluation

results, we can make the following conclusions:

(1) Smaller data sharing rates lead to better throughput;

(2) Fixed processing time for each transaction leads to better throughput.

Both can be easily explained. When the data sharing rate gets higher, it is more

likely that some transactions will involve conflicting operations and some of the

transactions will be aborted and retried. Furthermore, if a transaction is aborted and

98

retried, all others with higher sequence numbers would have to be delayed, or possibly be

aborted and retried also, until the current one is committed eventually. Therefore, the

performance of the system with smaller data sharing rate will be better than the one with

a larger sharing rate. It also makes sense that the throughput is better when all

transactions take similar amount of time to complete. When the processing time to

complete a transaction follows the Poisson distribution, the wait-to-commit time will be

impacted by a slow transaction. All later transactions would have to wait for the slowest

transaction to complete before they can commit. Hence, the performance is reduced. On

the other hand, when transactions take the same amount of time to complete, the next

one, if there is no conflict, can be committed immediately with minimized overhead.

In Figure 32, it is also interesting to see that the reduction in throughput with

more concurrent clients and higher data sharing rates is less than one would have

expected. This is because when the aborted transactions are retried, they are still

processed concurrently.

6.5 Conclusion

In this chapter, we presented our software transactional memory (STM) based

concurrent Byzantine fault tolerance (BFT) framework to maximize the performance by

allowing concurrent processing. The strategies are based on two ideas: (1) commit

barrier, which is used to commit concurrent transactions according to a assigned total

order, and (2) multi-version speculation (works with commit barrier), which allows the

99

tentative data to be used in later transactions. In essence, the dependencies between

concurrent transactions can be discovered and handled dynamically by using the software

transactional memory during runtime. If there is no conflict, transactions will be

processed concurrently and committed according to the total order of the requests. When

conflicts re detected, some transactions may have to be aborted and retried. And

eventually, all transactions will be committed successfully. Furthermore, some of the

conflicts can in fact be resolved without aborting transactions in the multi-version

approach.

A comprehensive performance evaluation of our proposed speculative and

concurrent BFT framework is carried out to characterize the effectiveness and limitations.

The results show that the overall system performance is significantly increased even in

the worst case with every transaction has 100% data from shared data pool. Furthermore,

we observed that the throughput not only depends on the data sharing rate, but also the

distribution of the processing time.

100

CHAPTER VII

CONCLUSION AND FUTURE WORK

In this chapter, I summarize my main research contributions in this dissertation

and outline some future work. My main contributions include:

 The classification of common types of replica nondeterminism and a set of

mechanisms to control replica nondeterminism in the context of Byzantine

fault tolerance computing,

 A migration-based proactive service recovery scheme to support long-running

Byzantine fault tolerance systems and,

 A set of mechanisms to enable concurrent Byzantine fault tolerant execution

of requests based on the software transactional memory model.

The future work will focus on extending my current mechanisms to further reduce

the probability of conflicts among concurrent operations and hence facilitate even higher

system throughput.

101

7.1 Conclusion

BFT algorithm is a promising technique to utilize redundancy resources to

tolerance Byzantine faults for stateful system. However, the existing BFT algorithms [13,

14, 15, 16, 20, 68] lack the mechanisms to deal with many common types of

nondeterministic operations. Such algorithms also require the requests to be executed

sequentially to achieve strong replica consistency. Additionally, the assumption of only

one-third of the service replicas can be faulty is impossible to hold without additional

mechanisms because an adversary would continuously attempt to compromise more

replicas over time. To address this concern, several proactive recovery schemes have

been proposed [13, 15, 48, 53, 54, 55]. However, they all have the following issues:

 They rely on the rebooting to repair a replica, which may not be effective if

hardware components are damaged;

 They may introduce artificial unavailability during a round of proactive

recovery;

 They lack mechanisms to coordinate the replicas during a round of proactive

replica such that only a small portion of replicas can undergo recovery at any

time.

 In this dissertation research, we aimed to address all the issues identified above.

First, we provided a classification of common types of replica nondeterminism, and

introduced a set of mechanisms to handle these types of nondeterminism systematically.

If the type of nondeterminism is non-verifiable pre-determinable (NPRE), an extra phase,

which we refer to as the pre-prepare-update phase, is used to control the nondeterminism.

102

The idea is to let every replica contributes its share of nondeterministic values to prevent

a faulty replica from dominating the final value, which could compromise the system

integrity. For verifiable post-determinable nondeterminism (VPOST) and non-Verifiable

post-determinable nondeterminism (NPOST), we have to add a whole round of Byzantine

agreement in the post-commit phase to ensure that correct replicas could reach an

agreement on the nondeterministic values. Additionally, to prevent the system from

crashing, we provisioned a separate monitoring thread for NPOST as governance just in

case the main execution thread crashes or hangs.

Second, we presented a service migration based proactive recovery approach. The

three issues we pointed out earlier are resolved by the following means: (1) remove the

time-consuming recovery step out of the critical path and involve system administrator, if

necessary, to fix the problems manually; (2) use a dynamically adjustable service

migration interval based on the observed system load and system availability

requirements; (3) provide extra resources as standby node pool and use a registration

protocol for replica coordination on the membership of standby nodes.

Third, we proposed to use software transaction memory based concurrent

execution to lift the limitation of sequential processing and significantly improved the

system performance. In our approach, multiple requests are executed concurrently and

the commit order is controlled based on the total ordering of incoming requests.

Furthermore, multi-version is utilized to pre-execute the requests and hold the result

temporarily until the execution is validated. This scheme may significantly reduce the

conflict rate of concurrent operations, which is essential to achieve better system

throughput.

103

7.2 Future Work

We have shown that speculative concurrent BFT indeed can significantly improve

the performance of the replicated system. However, if we can further classify the write

operations, we can make it even better.

The idea hinges on the write operations. We observe that the write operations can

different impact based on their relationship with operation history. If we further classify

the write operations to history related and history unrelated. It will reduce the possibility

of conflicts, which would lead to further performance improvement.

The number of conflicts is the key factor of STM performance. Fewer conflicts,

with no doubt, will lead to better throughput. After further classification, even if a history

unrelated write operation is followed by any other writes, it won’t cause write/write

conflict, which will decrease the number of conflicts and hence further improve the

performance of whole system. We call it the improved STM solution.

We still use the multi-version based approach similar to LSA-STM [60] and make

a tentative value transparent. Later operations can see a tentative value and will use it for

its own. When multiple transactions access the same piece of data concurrently, improved

STM will resolve the conflicts and guarantee the most important rule of concurrence

serializability.

Based on the history relationship, we define two types of write operations, history

related write and history unrelated write. The read operations are as usual.

104

 Read: Based on the sequence number, the read operation should always return

the most up-to-date value of the data accessed.

 History Related Write: The write operation relies on the previous data value.

This type of operations needs the data values from previous transactions and

must be executed in the order as determined by the sequence number. A

history related write is always preceded with a read operation on the same

data item.

 History Unrelated Write: A write operation simply writes a new value to the

data item, regardless of the previous value. A history unrelated write may be

executed immediately after the commit barrier, even though there might be

unrelated conflicts. Although the value of the previous operation may be

overwritten immediately, that operation still have to be carried out since other

operations in between may access the data. History unrelated writes can be

identified when there is no prior read operation on the same data item in the

same transaction.

7.2.1 Conflicts Model Revisited

We have already discussed the conflicts model in section 6.1 and knew that

conflicts management plays a very import role during concurrent control. Now let’s get

into details about how we will take advantage of the classification of the write operations.

In the following description, the symbol ‘/’, is used as a separator to indicate which

operation happens first with no concern about the sequence number assigned to the

105

transaction. For example, read/write means read happens before write. This read

operation may or may not come with a lower sequence number.

When we have write/write scenarios, we focus on the one with higher sequence

number and will take different actions based different types of write operations it.

 History Related Write: If the history related write comes with higher sequence

number and happens after the other write operation, the read operation, in read

and write pair, will take the tentative value from the cache and use it in the

following history related write. As normal transaction, the commit has to wait

until all previous transactions have completed. If the write with a lower

sequence number is executed later, write/write conflict occurs and the

transaction with history related write operation has to be aborted and restarted

as shown in Figure 43.

106

Transaction i

Time

Write Oi, v+1

Transaction i+1

No Conflicts

History Related Write

Oi, v+1 → Oi, v+2

Validate Success

Transaction i

committed

Transaction i+1

committed

Transaction i

Time

Write Oi, v+1

Transaction i+1

Conflict

History Related Write

Oi, v → Oi, v+2

Validate Success

Transaction i

committed

Transaction i+1

committedTransaction i+1

Restart

Validate Success

History Related Write

Oi, v+1 → Oi, v+2'

Transaction i

Time

Write Oi, v+1

Transaction i+1

Conflict

History Related Write

Oi, v → Oi, v+2

Validate Success

Transaction i

committed

Transaction i+1

committed

History Related Write

Oi, v+1 → Oi, v+2'

Read Oi, v+1

Read Oi, v Read Oi, v+1

Read Oi, v Read Oi, v+1

Commit

Barrier

Transaction i+1 Validation

Failed and Restart

Figure 43 Write/History Related Write

 History Unrelated Write: Two history unrelated writes do not conflict with

each other. If a write with a lower sequence number happens first, the history

unrelated write can simply re-write with a new version of the data item. On

the other hand, if the history unrelated write comes with a larger sequence

number but executes first, it will write to the tentative cache value until the

validation is succeeded. This is an unrelated conflict which doesn’t need to

107

abort the later transaction. Please note that all transactions with lower

sequence numbers that are executed later than the history unrelated write must

still be committed first.

Transaction i

Time

Write Oi, v+1

Transaction i+1

No Conflicts

History Unrelated Write

Oi, v+2

Validate Success

Transaction i

committed

Transaction i+1

committed

Transaction i

Time

Write Oi, v+1

Transaction i+1

Unrelated Conflict

History Unrelated

Write Oi, v+2

Validate Success

Transaction i

committed

Transaction i+1

committed

Figure 44 Write/History Unrelated Write

108

7.2.2 Improved Concurrent Speculative BFT

In previous section, we revisited the conflicts model and outlined a solution that

could further reduce the conflicts. By further classifying the write operations, we can see

that some conflicts originally exist are gone. Now let’s apply this approach to a more

complicated case as shown in Figure 45.

Transaction i

Time

Read Oi, v

Transaction i+1

History Related Write

Oi, v → Oi, v+1

Transaction i+2

Ti committed

Ti+1 committed

Ti+2 committed

History Related Write

Oi, v → Oi, v+2

Conflicts

Restart

History Related Write

Oi, v+1 → Oi, v+2'

Transaction i+3

Read Oi, v+2

Ti+3 committed
Tentative value

Read Oi, v+2'

Tentative value

History Related Write

Oi, v+2' → Oi, v+3

Transaction i+5 Ti+5 committed

History Unrelated Write

Oi, v+4

Transaction i+4

Read Oi, v+3

Ti+4 committed

Transaction i+6

Read Oi, v+2

Ti+6 committed

Tentative value

Tentative value

Conflicts
Restart

Read Oi, v+4

Tentative value

Unrelated

Conflicts

Commit Barrier

Commit Barrier

Figure 45 A Complicated Example with Improved Speculative Concurrent BFT

There are 7 current transactions with sequence numbers range from to .

Transaction only contains a read operation. Transaction involves a history related

write to the data and updates it to version . This transaction could be committed

without any problem. Transaction also performs a history related write on the same

data and happens before transaction . It causes a conflict and transaction have

109

to be aborted and restarted, which would also affect transaction since it reads the

tentative data from transaction . Both transactions are eventually committed after

they are restarted. Transaction has only a read operation using the tentative value

from transaction , and it can be committed successfully. Transaction gets

executed earlier than transaction . Transaction involves a history unrelated

write operation. Although the transaction with a lower sequence number i+3 wrote to the

same data later than the transaction with , the unrelated conflict wouldn’t cause

transaction abort. The only thing is that transaction is blocked at the commit

barrier until transaction is committed. The last transaction came even earlier

than , and it reads the invalid data initially, and hence, it must be aborted and

restarted. During the re-execution of the transaction, it accessed the correct value. As can

be seen, with the write operations further classified, transaction is committed

without having to be restarted.

Although we believe this improved speculative concurrent BFT will further

improve the performance. More investigation is necessary to establish its theoretical

foundation and to demonstrate its effectiveness for practical applications in the future

work.

110

BIBLIOGRAPHY

[1] Abd-El-Malek, M., Ganger, G. R., Goodson, G. R., Reiter, M., and Wylie, J. J.:

Fault-scalable Byzantine fault-tolerant services. In Proceedings of ACM

Symposium on Operating System Principles (SOSP), 39(5): pp. 59-74, Brighton,

UK, October 2005.

[2] Arkin, B., Hill, F., Marks, S., Schmid, M., and Walls, T. J.: How we learned to

cheat at online poker: A study in software security.

http://www.developer.com/java/other/article.php/10936_616221_1, September

1999.

[3] Basile, C., Whisnant, K., and Iyer, R.: A preemptive deterministic scheduling

algorithm for multithreaded replicas. In Proceedings of the IEEE International

Conference on Dependable Systems and Networks, pp. 149-158, San Francisco,

CA, June 2003.

[4] Basile, C., Whisnant, K., Kalbarczyk, Z., and Iyer, R.: Loose synchronization of

multithreaded replicas. In Proceedings of the International Symposium on

Reliable Distributed Systems, pp. 250-255, Suita, Japan, October 2002.

[5] Bressoud, T. and Schneider, F.: Hypervisor-based fault tolerance. ACM

Transactions on Computer Systems, 14(1): pp. 80-107, February 1996.

[6] Bressoud, T.: TFT: A software system for application-transparent fault tolerance.

In Proceedings of the IEEE 28th International Conference on Fault-Tolerant

Computing, pp. 128-137, Munich, Germany, June 1998.

http://www.developer.com/java/other/article.php/10936_616221_1

111

[7] Brito, A., Fetzer, C., and Felber, P.: Minimizing latency in fault-tolerant

distributed stream processing systems. In The 29th Int'l Conference on

Distributed Computing Systems (ICDCS 2009). Los Alamitos, CA, USA: IEEE

Computer Society, June 2009.

[8] Brito, A., Fetzer, C., and Felber, P.: Multithreading-Enabled Active Replication

for Event Stream Processing Operators. In Proceedings of the 2009 28th IEEE

International Symposium on Reliable Distributed Systems, pp. 22-31, IEEE

Computer Society, Washington, DC, USA.

[9] Brito, A., Fetzer, C., Sturzrehm, H., and Felber, P.: Speculative out-of-order event

processing with software transaction memory In DEBS '08: Proceedings of the

second international conference on Distributed event-based systems, pp. 265-275,

New York, NY, USA: ACM, 2008.

[10] Cachin, C., Kursawe, K., and Shoup, V.: Random oracles in Constantinople:

Practical asynchronous Byzantine agreement using cryptography. In Proceedings

of the 19th ACM Symposium on Principles of Distributed Computing, pp. 123-132,

June 2000.

[11] Cachin, C., Kursawe, K., Lysyanskaya, A., and Strobl, R.: Asynchronous

verifiable secret sharing and proactive cryptosystems. In Proceedings of the 9th

ACM Conference on Computer and Communications Security, pp. 88-97,

Washington, DC, 2002.

[12] Castro, M. and Liskov, B.: Authenticated Byzantine fault tolerance without

public-key cryptography. Technical Report MIT-LCS-TM-589, MIT, June 1999.

112

[13] Castro, M., and Liskov. B.: Practical Byzantine fault tolerance and proactive

recovery. ACM Transactions on Computer Systems, 20(4): pp. 398–461,

November 2002.

[14] Castro, M., and Liskov. B.: Practical Byzantine fault tolerance. In Proceedings of

the Third Symposium on Operating Systems Design and Implementation, pp. 173-

186, New Orleans, LA, February 1999.

[15] Castro, M., and Liskov. B.: Proactive recovery in a Byzantine-fault-tolerant

system. In Proceedings of the Third Symposium on Operating Systems Design and

Implementation, page 19, San Diego, CA, October 2000.

[16] Castro, M., Rodrigues, R., and Liskov. B.: BASE: Using abstraction to improve

fault tolerance. ACM Transactions on Computer Systems, 21(3): pp. 236-269,

August 2003.

[17] Chai, H., Zhang, H., Zhao, W., Melliar-Smith, P. M., Moser, L. E.: Toward

trustworthy coordination for web service business activities. IEEE Transactions

on Services Computing, 2012. 6(2): pp. 276-288, 2013.

[18] Chen, B. and Morris, R.: Certifying program execution with secure processors. In

Proceedings of the 9th Workshop on Hot Topics in Operating Systems, pp. 133-

138, Lihue, HI, May 2003.

[19] Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M., and Riche,

T.: Upright cluster services. Proceedings of the ACM SIGOPS 22nd symposium

on Operating systems principles, pp. 277-290, 2009.

113

[20] Cowling, J., Myers, D., Liskov, B., Rodrigues, R., and Shrira, L.: Hq replication:

A hybrid quorum protocol for Byzantine fault tolerance. In Proceedings of the

Seventh Symposium on Operating Systems Design and Implementations, pp. 177-

190, Seattle, WA, November 2006.

[21] Dai, Y., Levitin, G., and Trivedi, K.: Performance and reliability of tree-

structured grid services considering data dependence and failure correlation. IEEE

Transactions on Computers, 56(7): pp. 925-936, July 2007.

[22] Dai, Y., Pan, Y., and Zou, X.: A hierarchical modeling and analysis for grid

service reliability. IEEE Transactions on Computers, 56(5): pp. 681-691, 2007.

[23] Dai, Y., Xie, M., and Poh, K.: Modeling and analysis of correlated software

failures of multiple types. IEEE Transactions on Reliability, 54(1): pp. 100-106,

2005.

[24] Dai, Y., Xie, M., and Wang, X.: Heuristic algorithm for reliability modeling and

analysis of grid systems. IEEE Transactions on Systems, Man, and Cybernetics,

Part A, 37(2): pp. 189-200, 2007.

[25] Dai, Y., Xie, M., Long, Q., and Ng, S.: Uncertainty analysis in software reliability

modeling by bayesian analysis with maximum- entropy principle. IEEE

Transactions on Software Engineering, 33(11): pp. 781-795, 2007.

[26] Defago, X., Schiper, A., and Sergent, N.: Semi-passive replication, In

Proceedings of the 17th IEEE Symposium on Reliable Distributed Systems, pp.

43-50, 1998.

114

[27] Dieter, W. R. and Lumpp, J. E.: User-level checkpointing for LinuxThreads

programs. In Proceedings of the USENIX Technical Conference, Boston,

Massachusetts, June 2001.

[28] Distler, T. and Kapitza, R.: Increasing performance in byzantine fault-tolerant

systems with on-demand replica consistency. Proceedings of the sixth Eurosys

conference, pp. 91-106, 2011.

[29] Fischer, M., Lynch, N., and Paterson, M.: Impossibility of distributed consensus

with one faulty process. Journal of the ACM, 32(2): pp. 374-382, April 1985.

[30] http://en.wikipedia.org/wiki/Determinism

[31] Jimenez-Peris, R., Patino-Martinez, M. and Arevalo, S.: Deterministic scheduling

for transactional multithreaded replicas. In Proceedings of the IEEE 19th

Symposium on Reliable Distributed Systems, pp. 164-173, Nurnberg, Germany,

October 2000.

[32] Kotla, R., Alvisi, L., Dahlin, M., Clement, A., and Wong, E.: Zyzzyva:

speculative Byzantine fault tolerance. In Proceedings of ACM Symposium on

Operating System Principles (SOSP), pp. 45-58, New York, NY, October 2007.

[33] Kotla, R. and Dahlin, M.: High throughput byzantine fault tolerance. Proceedings

of International Conference on Dependable Systems and Networks, pp. 575-584,

June 28 –July 1, 2004.

[34] Lamport, L., Shostak, R., and Pease, M.: The Byzantine general’s problem, ACM

Transactions on Programming Languages and Systems, 4(3): pp. 382-401, 1982.

http://en.wikipedia.org/wiki/Determinism

115

[35] Lamport, L.: Paxos made simple. ACM SIGACT News (Distributed Computing

Column), 32: pp. 18-25, 2001.

[36] Malek, M., Polze, A., and Werner, W.: A framework for responsive parallel

computing in network-based systems. In Proceedings of International Workshop

on Advanced Parallel Processing Technologies, pp. 335-343, Bejing, China,

September 1995.

[37] Marsh, M. A. and Schneider, F. B.: Codex: A robust and secure secret distribution

system. IEEE Transactions on Dependable and Secure Computing, 1(1): pp. 34-

47, January 2004.

[38] Martin, J. and Alvisi, L.: Fast Byzantine consensus. IEEE Transactions on

Dependable and Secure Computing, 3(3): pp. 202-215, July-September 2006.

[39] Moser, L. and Melliar-Smith, M.: Consistent asynchronous checkpointing of

multithreaded application programs based on semi-active or passive replication.

US Patent Application No. 20050034014, 2005.

[40] Moser, L. and Melliar-Smith, M.: Transparent consistent semi-active and passive

replication of multithreaded application programs. US Patent Application No.

20040078618, 2004.

[41] Narasimhan, P., Moser, L. E., and Melliar-Smith, P. M.: Enforcing determinism

for the consistent replication of multithreaded CORBA applications. In

Proceedings of the IEEE 18th Symposium on Reliable Distributed Systems, pp.

263-273, Lausanne, Switzerland, October 1999.

116

[42] Ostrovsky, R. and Yung, M.: How to withstand mobile virus attacks. In

Proceedings of the ACM Symposium on Principles of Distributed Computing,

pages 51-59, Montreal, Quebec, Canada, 1991.

[43] Polze, A., Schwarz, J., and Malek, M.: Automatic generation of fault-tolerant

corba-services. In Proceedings of Technology of Object-Oriented Languages and

Systems, pp. 205-213, Santa Barbara, CA, 2000. IEEE Computer Society Press.

[44] Powell, D.: Delta-4: A Generic Architecture for Dependable Distributed

Computing. Springer-Verlag, 1991.

[45] Reiser, H. P. and Kapitza, R.: Hypervisor-based efficient proactive recovery. In

Proceedings of the IEEE Symposium on Reliable Distributed Systems, pp. 83-92,

2007.

[46] Reiser, H., Domaschka, J., Hauck, F., Kapitza, R., and Schroder-Preikschat, W.:

Consistent replication of multithreaded distributed objects. In Proceedings of the

25th IEEE Symposium on Reliable Distributed Systems, pp. 257-266, Leeds, UK,

October 2006.

[47] Riegel, T., Felber, P., and Fetzer, C.: A lazy snapshot algorithm with eager

validation. Proceedings of the 20th International Symposium on Distributed

Computing, pp. 284-298, 2006.

[48] Rodrigues, R. and Liskov, B.: Byzantine fault tolerance in long-lived systems. In

Proceedings of the 2nd Workshop on Future Directions in Distributed Computing,

June 2004.

117

[49] Schneider, F.: Implementing fault-tolerant services using the state machine

approach: A tutorial, ACM Computing Surveys, 22(4): pp. 299-319, 1990.

[50] Singh, A., Maniatis, P., Druschel, P. and Roscoe, T.: Conflict-free quorum-based

BFT protocols. Technical Report 2007-1, Max Planck Institute for Software

Systems, August 2007.

[51] Slember, J. and Narasimhan, P.: Living with nondeterminism in replicated

middleware applications. In Proceedings of the ACM/IFIP/USENIX 7th

International Middleware Conference, pp. 81-100, Melbourne, Australia, 2006.

[52] Sousa, P., Bessani, A. N., Correia, M., Neves, N. F., and Verissimo, P.: Resilient

intrusion tolerance through proactive and reactive recovery. In Proceedings of the

IEEE Pacific Rim Dependable Computing Conference, pp. 373-380, 2007.

[53] Sousa, P., Neves, N. F., and Verissimo, P.: Proactive resilience through

architectural hybridization. In ACM Symposium on Applied Computing, pp. 686-

690, Dijon, France, 2006.

[54] Sousa, P., Neves, N. F., Verissimo, P., and Sanders, W. H.: Proactive resilience

revisited: The delicate balance between resisting intrusions and remaining

available. In Proceedings of the IEEE Symposium on Reliable Distributed Systems,

pp. 71-82, October 2006.

[55] Vaughan-Nichols, S. J.: Virtualization sparks security concerns. Computer, 41(8):

pp. 13-15, August 2008.

[56] Viega, J. and McGraw, G.: Building Secure Software. Addison-Wesley, 2002.

118

[57] Yin, J., Martin, J.-P., Venkataramani, A., Alvisi, L. and Dahlin, M.: Separating

agreement from execution for byzantine fault tolerant services. In Proceedings of

the ACM Symposium on Operating Systems Principles, pp. 253-267, Bolton

Landing, NY, USA, 2003.

[58] Young, A. and Yung, M.: Malicious Cryptography: Exposing Cryptovirology.

Wiley Publishing, 2004.

[59] Zhang, H. and Zhao, W.: Concurrent Byzantine Fault Tolerance for Software-

Transactional-Memory Based Applications. International Journal of Future

Computer and Communication, 1(1): pp. 47-50, 2012.

[60] Zhang, H., Chai, H., Zhao, W., Melliar-Smith, P. M., and Moser, L. E.:

Trustworthy coordination for web service atomic transactions. IEEE Transactions

on Parallel and Distributed Systems, 2012.

[61] Zhang, H., Zhao, W., Moser, L. E., and Melliar-Smith, P. M.: Design and

Implementation of a Byzantine Fault Tolerance Framework for Non-Deterministic

Applications. IET Software, 5(3): pp. 342-356, 2011.

[62] Zhao, W. and Zhang, H.: Byzantine Fault Tolerant Coordination for Web Services

Business Activities. Proceedings of the IEEE International Conference on

Services Computing, pp. 407-414, Honolulu, Hawaii, July 8-11, 2008.

[63] Zhao, W. and Zhang, H.: Proactive Service Migration for Long-Running

Byzantine Fault Tolerant Systems. IET Software, 3(2): pp. 154-164, April 2009.

119

[64] Zhao, W., Melliar-Smith, P. M., and Moser, L. E.: Fault tolerance middleware for

cloud computing, Proceedings of the IEEE Cloud Computing, pp. 67-74, Miami,

FL, USA, July 2010.

[65] Zhao, W., Moser, L. E., and Melliar-Smith, P. M.: Deterministic scheduling for

multithreaded replicas. In Proceedings of the IEEE International Workshop on

Object-oriented Real-time Dependable Systems, pp. 74-81, Sedona, Arizona,

February 2005.

[66] Zhao, W., Moser, L. E., and Melliar-Smith, P. M.: Transparent fault tolerance for

distributed and networked applications, In Encyclopedia of Information Science

and Technology, pp. 1190-1197, Idea Group Publishing, 2005.

[67] Zhao, W.: Byzantine fault tolerance for nondeterministic applications. In

Proceedings of the 3rd IEEE International Symposium on Dependable,

Autonomic and Secure Computing, pp. 74-81, Loyola College Graduate Center,

Columbia, MD, USA, September 2007.

[68] Zhou, L., Schneider, F., and Renesse, R. van: Coca: A secure distributed on-line

certification authority. ACM Transactions on Computer Systems, 20(4): pp. 329-

368, November 2002.

	Cleveland State University
	EngagedScholarship@CSU
	2014

	Byzantine Fault Tolerance for Distributed Systems
	Honglei Zhang
	Recommended Citation

	Thesis Template

