
Cleveland State University
EngagedScholarship@CSU

ETD Archive

2008

Convolutional Coded Generalized Direct
Sequence Spread Spectrum
Madan Venn
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

Part of the Electrical and Computer Engineering Commons
How does access to this work benefit you? Let us know!

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an
authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Recommended Citation
Venn, Madan, "Convolutional Coded Generalized Direct Sequence Spread Spectrum" (2008). ETD Archive. 462.
https://engagedscholarship.csuohio.edu/etdarchive/462

https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/462?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

CONVOLUTIONAL CODED GENERALIZED DIRECT SEQUENCE

SPREAD SPECTRUM

MADAN VENN

Bachelor of Electrical Engineering

Jawaharlal Nehru Technological University, India

May, 2004

Submitted in partial fulfillment of requirements for the degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

At the

CLEVELAND STATE UNIVERSITY

May, 2008

This thesis has been approved

For the Department of ELECTRICAL AND COMPUTER ENGINEERING

And the College of Graduate Studies by

__

Dr. Fuqin Xiong, Thesis Committee Chairperson

Department/Date

__

Dr. Murad Hizlan, Thesis Advisor

Department/Date

__

Dr. Ana Stankovic, Thesis Committee Member

Department/Date

__

Dr. Chansu Yu, Thesis Committee Member

Department/Date

ACKNOWLEDGEMENTS

Many thanks go to my advisor, Dr. Murad Hizlan, for giving me an opportunity to

work with him, and for his helpful guidance and technical advice, without which much of

this work would not have been possible. I would also like to thank all the professors with

whom I have taken classes during my masters program.

I am grateful to the department of Electrical and Computer Engineering and

Professor Eugenio Villaseca for providing financial support during my masters program.

I am thankful to my family and friends for standing by me while I went crazy and

stayed up nights at the end trying to finish this on time. I also thank my lab mates and

colleagues, especially Vijay Nomula and Indrasena Parayatham for their support.

 iv

CONVOLUTIONAL CODED GENERALIZED DIRECT SEQUENCE

SPREAD SPECTRUM

MADAN VENN

ABSTRACT

In this thesis we investigate the worst-case performance of coded ordinary and

coded generalized direct sequence spread spectrum (DSSS) systems in a communication

channel corrupted by an unknown and arbitrary interfering signal of bounded power. We

consider convolutional codes with Viterbi decoding in order to compare the performance

of coded ordinary and coded generalized DSSS systems. For the generalized DSSS

system, we use a pulse stream of +1,-1 and 0 as the spreading sequence, which is

different from ordinary DSSS system which uses the typical sequence with pulse values

of +1 and -1.

A C program for performing Monte-Carlo simulations is written in order to

evaluate and compare the performance of coded ordinary and coded generalized DSSS

systems. Plots of the worst-case error probability versus signal-to-interference ratio are

presented for different code rates and constraint lengths of the convolutional code.

Simulation results of the worst-case performance of ordinary and generalized DSSS show

that generalized DSSS consistently performs appreciably better than ordinary DSSS.

Simulation is performed for various code rates, various constraint lengths of the

convolutional code and various lengths of the convolutional interleaver. Over all these

 v

simulations, it is observed that the difference between ordinary and generalized DSSS

gets more pronounced as the channel gets worse.

 vi

TABLE OF CONTENTS

 Page

LIST OF TABLES .. IX

LIST OF FIGURES ..XI

I INTRODUCTION... 1

1.1 Background... 1

1.2 Motivation... 3

1.3 Related Work .. 5

1.4 Thesis Structure .. 7

II SPREAD SPECTRUM COMMUNICATION SYSTEM... 9

2.1 A Digital Communication System.. 9

2.2 Channel Coding .. 10

2.3 Interleaving ... 12

2.4 Modulation.. 14

2.5 Direct Sequence Spread Spectrum System... 16

2.6 Generalized Direct Sequence Spread Spectrum 27

2.7 Channel Assumptions ... 31

III CHANNEL MODEL.. 35

3.1 Communication System Model... 35

 vii

IV INTRODUCTION TO CONVOLUTIONAL CODES ... 43

4.1 Convolutional Codes... 43

4.2 Convolutional Codes with Higher Inputs ... 47

4.3 Systematic vs. Non-systematic Convolutional Code 48

4.4 Encoder Design... 50

4.5 Encoder Representation .. 52

4.6 Decoding ... 59

4.7 Hard and Soft-Quantization .. 71

V SIMULATION OF COMMUNICATION SYSTEM MODEL 73

5.1 Monte-Carlo Simulation for BER Measurement 73

5.2 Generating the Message Data ... 76

5.3 Simulation of Convolutional Encoder .. 76

5.4 Pseudonoise Sequence and Energy Normalization................................... 78

5.5 Simulation of Channel .. 79

5.6 Integration and Hard Quantization.. 80

5.7 Simulation of Viterbi Decoder.. 81

5.8 Simulation of Coded Generalized DSSS Communication System........... 82

VI NUMERICAL RESULTS.. 86

6.1 Convolutional Codes with Same Constraint Length................................. 88

 viii

6.2 Convolutional Codes with Same Code Rate... 93

6.3 Same Code Rate and Constraint Length with Varying Chip Length........ 97

6.4 Same Code Rate and Constraint Length with Varying Interleaver......... 114

6.5 Same Code Rate and Constraint Length with Varying Decoder Depth.. 137

6.6 Same Code Rate, Constraint Length with Varying Interleaver Rows 138

VII CONCLUSIONS AND FUTURE WORK.. 140

REFERENCES.. 143

APPENDICES... 145

APPENDIX A... 146

APPENDIX B ... 169

 ix

LIST OF TABLES

Table Page

TABLE I: Look-up Table for the encoder of code (rate 1/2, K = 3)........................ 50

TABLE II: Each branch has a Hamming metric depending on what was received and the

valid codewords at that state... 62

TABLE III: Next state table.. 76

TABLE IV: Output table... 77

TABLE V: Generator Polynomials of various codes .. 78

TABLE VI: Varying code rate (r)... 88

TABLE VII: Varying constraint length (K) ... 93

TABLE VIII: Varying chip length for K = 3 and r = 1/2 .. 97

TABLE IX: Varying chip length for K = 3 and r = 1/3 .. 97

TABLE X: Varying chip length for K = 3 and r = 1/5 .. 102

TABLE XI: Varying chip length for K = 3 and r = 1/7 .. 102

TABLE XII: Varying chip length for K = 3 and r = 1/2 .. 113

TABLE XIII: Varying chip length for K = 5 and r = 1/2 .. 113

TABLE XIV: Varying chip length for K = 7 and r = 1/2 .. 113

TABLE XV: Varying interleaver for K = 3 and r = 1/2 ... 114

 x

TABLE XVI: Varying interleaver for K = 3 and r = 1/3 ... 121

TABLE XVII: Varying interleaver for K = 3 and r = 1/5 ... 121

TABLE XVIII: Varying interleaver for K = 3 and r = 1/7 121

TABLE XIX: Varying interleaver for K = 3 and r = 1/2 ... 124

TABLE XX: Varying interleaver for K = 5 and r = 1/2 ... 124

TABLE XXI: Varying interleaver for K = 7 and r = 1/2 ... 137

TABLE XXII: Varying decoding depth.. 138

TABLE XXIII: Varying convolutional interleaver rows.. 139

 xi

LIST OF FIGURES

Figure Page

Figure 2.1: Model of direct sequence spread spectrum digital communication system ... 21

Figure 2.2: Spreading code with pulse values +1,-1... 22

Figure 2.3: The spectrum spreading.. 23

Figure 2.4: Transmission vector distribution for DSSS.. 28

Figure 2.5: Transmission vector generalization for DSSS.. 29

Figure 2.6: Transmission vector distribution on sphere for DSSS 30

Figure 2.7: Spreading sequence with pulse values -1, 0, +1... 32

Figure 2.8: Channel Model ... 34

Figure 3.1: System Model... 38

Figure 4.1: Convolutional Encoder (rate 1/2, K = 3) .. 45

Figure 4.2: A (rate 2/3, K = 8) convolutional code... 48

Figure 4.3: The systematic version of the (rate 1/2, K = 3) convolutional code............... 49

Figure 4.4: Encoder state diagram (rate 1/2, K = 3). .. 54

Figure 4.5: Tree representation of encoder (rate 1/2, K = 3) .. 55

Figure 4.6: Encoder trellis diagram (rate 1/2, K = 3).. 57

Figure 4.7: Trellis Diagram, Input sequence (1101), Output sequence (11, 01, 01, 00). . 58

 xii

Figure 4.8: Decoder trellis diagram (rate 1/2, K = 3). .. 64

Figure 4.9a: Survivors at T1 .. 66

Figure 4.9b: Survivors at T2 .. 67

Figure 4.9c: Survivors at T3 .. 68

Figure 4.9d: Path Deciding at T3... 69

Figure 4.9e: Survivors at T4... 70

Figure 4.9f: Final Path at T4. ... 71

Figure 5.1: Simulated System Model.. 83

Figure 6.1: Code Rate, r = 1/2 .. 89

Figure 6.2: Code Rate, r = 1/3 .. 90

Figure 6.3: Code Rate, r = 1/5.. 91

Figure 6.4: Code Rate, r = 1/7 .. 92

Figure 6.5: Constraint length, K = 3 ... 94

Figure 6.6: Constraint length, K = 5 ... 95

Figure 6.7: Constraint length, K = 7 ... 96

Figure 6.8: Chip Length, N = 10... 98

Figure 6.9: Chip Length, N = 20... 99

Figure 6.10: Chip Length, N = 10... 100

Figure 6.11: Chip Length, N = 20... 101

 xiii

Figure 6.12: Chip Length, N = 10... 103

Figure 6.13: Chip Length, N = 20... 104

Figure 6.14: Chip Length, N = 10... 105

Figure 6.15: Chip Length, N = 20... 106

Figure 6.16: Chip Length, N = 10... 107

Figure 6.17: Chip length, N = 20 .. 108

Figure 6.18: Chip length, N = 10 .. 109

Figure 6.19: Chip Length, N = 20... 110

Figure 6.20: Chip Length, N = 10... 111

Figure 6.21: Chip Length, N = 20... 112

Figure 6.22: Convolutional Interleaver... 115

Figure 6.23: Random Interleaver .. 116

Figure 6.24: Convolutional Interleaver... 117

Figure 6.25: Random Interleaver .. 118

Figure 6.26: Convolutional Interleaver... 119

Figure 6.27: Random Interleaver .. 120

Figure 6.28: Convolutional Interleaver... 122

Figure 6.29: Random Interleaver .. 123

Figure 6.30: Convolutional Interleaver... 125

 xiv

Figure 6.31: Random Interleaver .. 126

Figure 6.32: Convolutional Interleaver... 127

Figure 6.33: Random Interleaving .. 128

Figure 6.34: Convolutional Interleaver... 129

Figure 6.35: Random Interleaving .. 130

Figure 6.36: Decoding depth = 3K.. 131

Figure 6.37: Decoding Depth = 5K... 132

Figure 6.38: Decoding Depth = 7K... 133

Figure 6.39: Convolutional Interleaver rows = 5.. 134

Figure 6.40: Convolutional Interleaver Rows = 8 .. 135

Figure 6.41: Convolutional Interleaver Rows = 10 .. 136

 1

CHAPTER I

INTRODUCTION

1.1 Background

It all started when Guglielmo Marconi invented wireless telegraph. From then on

wireless communications has gone through lots of inventions. Particularly during the

past twenty years, the mobile radio communications industry has grown by orders of

magnitude, fueled by digital and RF circuit fabrication improvements, new large-scale

circuit integration, and other miniaturization technologies which make portable radio

equipment smaller, cheaper, and more reliable. Digital switching techniques have

enabled the large scale deployment of affordable, easy-to-use radio communication

networks. The innovations will continue at an even greater pace in the coming years.

In our daily life we come across a wide array of communication devices, the most

common being the cellular phone, GPS, radio, television and wireless internet. Although

 2

there is rapid growth in wired communications, the biggest challenges lie in developing

wireless systems. Research is being done to improve the robustness of the channel and

provide error free transmission in a wireless communication system.

With the inventions in wireless personal communications field over the last

several years, the method of communication known as spread spectrum has gained a great

deal of importance. Spread spectrum involves the spreading of the desired signal over a

bandwidth much larger than the minimum bandwidth necessary to send the information

signal. It was originally developed by the military as a method of communication that is

less sensitive to intentional interference or jamming by third parties, but has become very

popular in the realm of personal communications recently. Spread spectrum methods can

be combined with multiple access methods to create code division multiple access

(CDMA) systems for multi-user communications with very good interference

suppression. Two very common types of spread spectrum schemes that are in use today

are direct sequence spread spectrum (DSSS) and frequency hopping spread spectrum

(FHSS). Usually FHSS devices use less power and are cheaper, but DSSS systems have

better performance and are more reliable. In this thesis we will also consider a newer,

more robust class of proposed spread spectrum systems called generalized spread

spectrum. Detailed description of a spread spectrum communication system is presented

in Chapter 2 of this thesis.

Channel coding is used to reduce the errors caused during transmission. Block

codes and convolutional codes are the two widely used methods for channel coding.

Detailed description of channel coding and its applications are presented in Chapter 2 of

 3

this thesis. The work in this thesis relates to applying convolutional codes to ordinary

and generalized DSSS in order to compare their worst-case performance.

1.2 Motivation

The work in this thesis relates to the simulation of worst-case performance of

ordinary and generalized direct sequence spread spectrum using convolutional codes with

a Viterbi decoder in order to compare coded ordinary and coded generalized direct

sequence spread spectrum.

Most often spread spectrum is used in situations where we would like to suppress

some type of interference in the channel other than additive white Gaussian noise.

Information regarding the nature of such interference is not available or it changes with

time in a random manner, which causes the correct estimation of channel properties

unrealistic. The usual approach to this particular problem is to assume a precise

statistical description of the channel and evaluate the performance of communication

system based on such assumptions. A much better approach when considering a robust

communication system is to make no statistical assumptions about the channel and

perform a worst-case analysis based on no more than an average power limit on the

interference. In this thesis we follow this particular approach.

Significant amount of research has been performed over a long time in the field of

direct sequence spread spectrum by applying the above interference, called the arbitrarily

varying channel, by Dr. Hizlan and Dr. Hughes. In [1] they have shown that the

 4

asymptotically optimal benchmark communication system in such situations consists of a

random modulator that uniformly distributes any given message vector on the surface of

an N-dimensional sphere, and a correlation receiver. They have also shown that spread

spectrum is only a special suboptimal instance of the family of such modems. Since the

asymptotically optimal system provides only a theoretical and impractical benchmark,

later Hizlan [2] has proposed a practical generalized direct sequence spread spectrum

system which improves upon ordinary direct sequence spread spectrum in the direction

of the benchmark result. In [3], Hizlan described the performance analysis of coded

ordinary DSSS in the arbitrarily varying channel. In [4] Vellala used block codes to

show that coded generalized spread spectrum performed consistently better than coded

ordinary direct sequence spread spectrum in the worst-case. Our aim in this thesis is to

use convolutional codes in order compare the worst-case coded performance of

generalized and ordinary direct sequence spread spectrum systems.

Consequently, in this thesis we consider coded ordinary and generalized direct

sequence spread spectrum systems with a convolutional encoder and a Viterbi decoder.

The spreading sequence used in the generalized system is a pulse stream with pulse

values of +1, -1 and 0, which are different from the usual sequence with pulse values of

+1 or -1 used in ordinary system.

 5

1.3 Related Work

In [1] Hizlan and Hughes derive a random linear modem and detector that

asymptotically minimize the transmitted power for a given encoder as the block length of

the encoder becomes large. The optimal modem turns out to be independent of the

encoder and the optimal detector is the standard correlation receiver. The asymptotically

optimal modem is a random modem that distributes a codeword uniformly on the surface

of an N-dimensional sphere. An upper bound to the performance of any encoder used

with the optimal modem and detector is derived. It is shown that the coding gain

achieved on the arbitrarily varying channel is larger than that of the comparable Gaussian

channel. The results given in [1] provide a benchmark for robust communications against

which a variety of spread spectrum modems and robust detectors could be compared. In

[1] the authors show that DSSS, which is referred to as ordinary DSSS in this thesis, is

only a special case of random modulation, and that random modulation becomes

asymptotically optimal as N gets larger, minimizing the signal-to-interference ratio

required to guarantee a given worst-case performance level, when the message symbol is

uniformly distributed on the surface of N-dimensional sphere. This is only a theoretical

benchmark of what could possibly be achieved and is difficult to implement in practice.

The communication system in [2] is inspired by [1] and it talks about a

generalization of uncoded DSSS. Generalization improves upon ordinary DSSS by

allowing the transmitted vector to more closely approximate a uniform distribution on the

surface of an N-dimensional sphere while still being practical to implement. As detailed

in section 2.6, along with the vertices for ordinary DSSS, midpoints of the edges and

 6

faces of the cube are considered as possible transmitted vectors, and these points are

projected radially onto the surface of a 3-D sphere. This idea, when extended to N-

dimensional signal space is called generalized DSSS. Though uniform distribution on the

surface of the sphere may not necessarily be optimal for finite N, and is impractical to

implement, it does provide a benchmark against which worst-case performance of

generalized DSSS can be compared. Bounds to the worst-case error probability of this

generalized DSSS system are obtained and they show an improvement in worst-case

performance over ordinary DSSS.

In [3], Hizlan described the performance analysis of coded ordinary DSSS in the

arbitrarily varying channel. He derived a simple upper bound to the worst-case error

probability incurred by the communication system including a binary block code,

pseudorandom interleaving and a correlation receiver, operating on a channel corrupted

by thermal noise and by an unknown interfering signal of bounded power. He also found

that the derived upper bound for this channel is exponentially tight as the block length of

the code became large. In comparing the performance of coded ordinary DSSS with

coded optimal random modem and detector, Hizlan found that for low-rate codes, there

was a significant performance difference between ordinary DSSS and the optimal system,

while the difference subsided for high-rate codes.

In [4] Vellala described the performance of coded ordinary and coded generalized

direct sequence spread spectrum systems with various cyclic, BCH and burst error

correcting codes. His simulation results of the worst-case performance of ordinary and

generalized DSSS for several block codes showed that generalized DSSS consistently

performed better than ordinary DSSS. In [5], Ranga Kalakuntla considered further

 7

generalization of uncoded DSSS to 5 levels. In [6], Hariharan Ramaswamy worked on

theoretical properties of 3- and 5-level sequences, and considered software and hardware

methods for their generation.

[1], [2], [3] and [4] talk about ordinary DSSS, generalization, performance

analysis of ordinary DSSS and performance analysis of coded generalized DSSS using

block codes only. The performance analysis of coded generalized DSSS using

convolutional coding is not considered, so we step ahead and simulate the worst-case

performance of coded generalized DSSS using convolutional codes with a Viterbi

decoder for different code rates and constraint lengths, and compare the performance of

coded generalized DSSS with ordinary DSSS in this thesis.

1.4 Thesis Structure

This thesis considers the worst-case performance of a coded generalized direct

sequence spread spectrum system in comparison to that of a coded ordinary direct

sequence spread spectrum system, both using convolutional codes with Viterbi decoding

and operating in the arbitrarily varying channel. Chapter 2 contains a description of the

spread spectrum communication system, both ordinary and generalized. Channel model

and a measure of the worst-case system performance are described in Chapter 3. An

introduction to convolutional codes and their decoding techniques are discussed in

Chapter 4. The simulation of the communication system is talked about in Chapter 5.

 8

Chapter 6 includes numerical results and observations. Chapter 7 talks about conclusions

and future work. Also, simulation codes used in this thesis are found in Appendices.

 9

CHAPTER II

SPREAD SPECTRUM COMMUNICATION SYSTEM

2.1 A Digital Communication System

Communication systems are mainly classified into analog and digital. The most

important feature of a digital communication system is that it deals with a finite set of

discrete messages, in contrast to an analog communication system in which the messages

are continuous. In a digital communication system, the message to be transmitted,

whether analog or discrete, is processed in a digital form, i.e. as a sequence of binary

digits obtained after source encoding. A basic communication system consists of a

transmitter, receiver and a channel through which the information is transmitted. The

main objective at the receiver of the digital system is not to reproduce a waveform with

precision but instead determine from a noise-perturbed signal which of the finite set of

waveforms had been sent by the transmitter. The channel characteristics generally affect

 10

the design of the basic elements of the system, a description of which is given in this

section.

A digital communication system may have components such as channel coding,

interleaving, modulation and spreading techniques, which will be discussed in detail in

the coming sections.

2.2 Channel Coding

When information is transmitted over a channel in the presence of noise, errors

will occur. The task of channel coding is to represent the source information in a manner

that minimizes the error probability in decoding. Channel coding refers to the class of

signal transformations designed to improve communications performance by enabling the

transmitted signals to better combat the effects of various channel impairments, such as

noise, interference, and fading as described in [7]. The main purpose of channel coding

is to reduce the probability of bit error at the cost of expanding the bandwidth. In a coded

digital system, each information sequence is first passed to a channel encoder which

introduces some carefully designed structure to a data word in order to protect it from

transmission errors. This process is also termed as forward error correction, which

improves the capacity of a channel by adding some carefully designed redundant

information to the data being transmitted through the channel.

Convolutional coding and block coding are the two major forms of channel

coding as described in [8]. We choose convolutional codes in this thesis. A block code

 11

is described by two integers, n and k, and a generator matrix or polynomial. The integer k

is the number of data bits that form an input to a block encoder. The integer n is the total

number of bits in the associated codeword out of the encoder. A characteristic of linear

block codes is that each codeword n-tuple is uniquely determined by the input message k-

tuple. The ratio k/n is called the rate of the code and gives a measure of the added

redundancy. A convolutional code is characterized by three integers, n, k, and K, where

the ratio k/n has the same code rate significance as that for block codes. However n does

not define a block or codeword length as in the case of block codes. The integer K is

termed as constraint length and it represents the number of k-tuple stages in the encoding

shift register. An important feature of convolutional codes is that the encoder has

memory, i.e. the n-tuple emitted by the convolutional encoding procedure is not only a

function of an input k-tuple but is also a function of the previous K-1 input k-tuples.

Convolutional codes operate on serial data, one or a few bits at a time whereas block

codes operate on relatively large (typically, up to a couple of hundred bytes) message

blocks. There are a variety of useful convolutional codes, and a variety of algorithms for

decoding the received coded information sequences to recover the original data. In

practice, n and k are small integers and K is varied usually between three and eight to

control the redundancy. A detailed description of convolutional codes is presented in

chapter four of this thesis. In this thesis we consider convolutional codes with different

values of n and K while keeping k a constant equal to one.

 12

2.3 Interleaving

A memoryless channel is characterized with random errors but a channel with

memory such as fading and multi-path exhibits mutually dependent signal transmission

impairments. Also, some channels suffer from switching noise and other burst noise. All

of these time-correlated impairments result in statistical dependence among successive

symbol transmissions. Hence, the disturbances tend to cause errors that occur in bursts,

instead of isolated events. Most block or convolutional codes are designed to combat

random independent errors. By applying these codes to channels with memory causes

degradation in error performance. A technique which requires knowledge of the duration

of the channel memory and not the exact channel statistical characterization is the use of

time diversity or interleaving. Interleaving the coded message before transmission and

deinterleaving after reception causes bursts of channel errors to be spread out in time and

thus to be handled by the decoder as if they were random errors. So in many applications

data is interleaved just before transmission. Most error control codes work much better

when error in the received sequence is spread far apart.

There are a number of interleavers to choose from for the system described in this

thesis. We use convolutional and pseudorandom interleavers in this thesis and compare

their performance by keeping other parameters constant. In order to reduce the

complexity of using a deinterlever at the receiver end, we used interleaving over the

interference for the purpose of system simulation, i.e. interference is interleaved before

adding it to the channel symbols.

 13

2.3.1 Convolutional Interleavers

A convolutional interleaver has memory and its operation depends not only on

current symbols but also on previous symbols. In a convolutional interleaver the code

symbols are sequentially shifted into the bank of N registers. The first send the data

directly through, after that each successive register provides J symbols more storage than

the preceding one did. The data is sequentially entered into each bank, one per symbol.

The data is read out in the same manner using a commutator switch. The deinterleaver

performs the inverse operation, therefore the input and output commutators for both

interleaving and deinterleving must be synchronized. The symbol depth of the

interleaver is, of course, chosen to match the symbol length of the convolutional encoder.

The performance of a convolutional interleaver is very similar to that of a block

interleaver. It is more complicated than a simple row vs. column block interleaver. The

most important advantage of this structure over block interleavers is a reduction by two in

the memory and end-to-end throughput delay.

2.3.2 Pseudorandom Interleavers

The pseudorandom interleaver uses a fixed random permutation and maps the

input sequence according to the permutation order. They are generated by using a

random number generator to produce permutations map of integers from 1 to N. To

create the pseudorandom interleaver map, generate n random numbers and rearrange

them in ascending order or descending order. Therefore every permutation involving a

 14

block size of N is achieved. Pseudorandom interleaving is a random mapping between

input and output positions, generated by means of a pseudorandom number generator.

2.3.3 Block Interleavers

The block interleaver is the most commonly used interleaver in a communication

system. It writes in column wise from top to bottom and left to right and reads out row

wise from left to right and top to bottom. A block interleaver basically accepts the coded

symbols in blocks from the encoder and rearranges them without repeating or omitting

any of the symbols in the block. The number of symbols in each block is fixed for a

given interleaver. Block interleavers tend to give poor performance because they do not

break apart certain input sequences which result in low weight code words.

2.4 Modulation

Modulation is the process by which symbols are transformed into waveforms that

are compatible with the characteristics of the channel. It is the process of varying a

periodic waveform in order to use that signal to convey a message. Normally a high-

frequency sinusoid waveform is used as carrier signal. The three key parameters of a sine

wave are its amplitude, its phase and its frequency, all of which can be modified in

accordance with a low frequency information signal to obtain the modulated signal.

 15

The frequency of the carrier signal is usually much greater than the highest

frequency of the input message signal. According to Nyquist sampling theorem the

simulation sampling rate Fs must be greater than two times the sum of the carrier

frequency and the highest frequency of the modulated signal in order to recover the

message correctly. There are two different modulation techniques available: one is

baseband and the other is bandpass. In this thesis we use baseband modulation for the

purpose of simulation, also known as the low pass equivalent method, since it requires

less computation.

A device that performs modulation is known as a modulator and a device that

performs the inverse operation of modulation is known as a demodulator. Analog and

digital modulation facilitate frequency division multiplexing (FDM), where several low

pass information signals are transferred simultaneously over the same shared physical

medium, using separate band pass channels. Modulation can also be used to minimize

the effects of interference. A class of such modulation schemes, known as spread-

spectrum modulation, requires a system bandwidth much larger than the information

bandwidth for interference rejection, and is studied in detail in the further sections of this

thesis.

2.4.1 Analog Modulation

The aim of analog modulation is to transfer an analog low pass signal, for

example an audio signal or TV signal, over an analog band pass channel, for example a

limited radio frequency band or a cable TV network channel.

 16

2.4.2 Digital Modulation

The aim of digital modulation is to transfer a digital bit stream over an analog

band pass channel, for example a public switched telephone network or a limited radio

frequency band.

In this thesis we assume a linear modulation scheme such as phase shift keying

(PSK) or quadriphase shift keying (QPSK).

2.5 Direct Sequence Spread Spectrum System

2.5.1 Spread-Spectrum Communication Systems

Spread spectrum communications is one of the widely used data communication

schemes nowadays. These techniques are used for a variety of reasons, including the

establishment of secure communications, increasing resistance to natural interference and

jamming, and to prevent detection. It has many features that make it suitable for secure

communications, multiple access scenarios, and many other properties that are desirable

in a modern communication system.

Spread Spectrum is a method of transmission in which the signal occupies a

bandwidth in excess of the minimum necessary to send the information. It employs

direct sequence, frequency hopping or a hybrid of these, which can be used for multiple

 17

access and/or multiple functions. This technique decreases the potential interference to

other receivers while achieving privacy. Spread spectrum generally makes use of a

sequential noise-like signal structure to spread the normally narrowband information

signal over a relatively wide band of frequencies. The receiver correlates the received

signals to retrieve the original information signal. The band spread is accomplished by

means of a code which is independent of the data and synchronized reception with the

code at the receiver is used for de-spreading.

In spread spectrum the signal that has a limited defined bandwidth is spread to

occupy a higher bandwidth, with its power spread over a wide range, by multiplying that

signal with a higher frequency sequence. The spreading will significantly reduce the

possibility of corrupting the data, intentionally or unintentionally. This is one of the main

features of spread spectrum, the interference suppression capability. When the spread

signal is interfered by additive white Gaussian noise (AWGN), we will not notice any

significant improvement if we choose spread spectrum. But, when an intentional noise is

applied, it is usually band limited to the range we are using. When we spread the signal,

the intentional noise (usually termed the jammer) will make one of two choices. It will

either spread its band limited power spectral density over the new bandwidth, which will

reduce its effect on our signal, or stay at its original bandwidth, which will cause it to

affect only a portion of our data. Such effect might be further reduced by error correction

coding at the receiver end. This means that in both cases, the choice of spreading will

reduce the jammer’s effect significantly. While the typical interference encountered by a

modern spread spectrum signal will not be arising from a jammer, the idea of a jammer

has been historically used to illustrate the interference suppression capability of spread

 18

spectrum. Some of the more interesting and desirable properties of spread spectrum can

be summarized as:

• Good anti jamming performance.

• Low power spectral density.

• Interference limited operation, i.e. the whole frequency spectrum is used.

• Multi path effects are reduced considerably with spread spectrum applications.

• Random access probabilities, i.e. users can start their transmission at any time.

• Privacy due to the use of unknown random codes.

• Multiple access, i.e. more than one user can share the same bandwidth at the same

time.

Spread spectrum systems are classified according to the ways that the original

data is modulated by the PN code. The most commonly employed spread spectrum

techniques are the following:

Direct Sequence Spread Spectrum (DSSS): In DSSS, the baseband signal is

multiplied by a pseudorandom code or pseudonoise (PN) signal, which has a higher bit

rate than the original signal. This will spread the spectrum of the baseband signal. In next

section, DSSS technique is described in detail.

 Frequency Hopping Spread Spectrum (FHSS): Frequency-hopping spread

spectrum (FHSS) is a method of transmitting radio signals by rapidly switching a carrier

among many frequency channels, using a pseudorandom sequence known to both the

transmitter and the receiver. This will result in modulating different portions of the data

 19

signal with different carrier frequencies. This technique makes the data signal hop from

one frequency to another over a wide range and this hopping rate is a function of the

information rate of the signal. The specific order in which frequencies are occupied is a

function of a code sequence. The transmitted spectrum of a frequency hopping is

different from that of the direct sequence system.

Hybrid System (DS/FFH): This is a combination of both the direct sequence and

frequency hopping techniques. Here, one data bit is divided over frequency hop channels

i.e. carrier frequencies. In each frequency hop channel one complete PN code is

multiplied with the data signal.

In this thesis, the emphasis is going to be on the DSSS System. A detailed

description of DSSS system is given in next section.

2.5.2 Direct Sequence Spread Spectrum Digital Communication Systems

Direct sequence spread spectrum is one of the most widely used spread spectrum

techniques. The basic elements of DSSS digital communication system are illustrated in

Figure 2.1. We observe that in addition to the basic elements of a conventional digital

communication system, a spread spectrum system includes two identical pseudorandom

sequence generators, one interfacing with the modulator and the other with the

demodulator. As with all spread spectrum schemes, DSSS uses a unique code to spread

the baseband signal, allowing it to have all the advantages of spread spectrum techniques.

A random or pseudonoise signal is used to spread the baseband signal, causing fast phase

transitions in the carrier frequency that contains data. The basic method for

 20

accomplishing spreading is shown in Figure 2.2. The spreading sequence is a pulse

stream with pulse values of +1, -1. After spreading the base-band signal, the resulting

spread signal is then modulated and transmitted through the specified medium. Binary

phase shift keying (BPSK) is a widely used digital modulation scheme for spread

spectrum systems and we use the same in this thesis.

When the modulated data is received at the demodulator port, the signal is de-

modulated using a BPSK demodulator that has a synchronized carrier frequency with the

transmitter one. The spread signal will be at the output of the demodulator. This is then

multiplied with the locally generated PN sequence. If the locally generated PN sequence

is correlated with the one that was used in transmitter, the signal is de-spread, yielding

the original signal. The spectrum spreading is illustrated in Figure 2.3, which shows the

convolution of two spectra, the narrow spectrum corresponding to the message signal and

the wide spectrum corresponding to the signal from the PN generator.

Spreading factor of the spread spectrum is an important parameter which defines

the overall gain of the system. It is also termed as processing gain, which is defined by:

i

t
p BW

BWG =

is the ratio of the transmission bandwidth tBW and the information bandwidth iBW . It

helps in determining the number of users that can be allowed in a multiple access system,

the amount of multi-path effect reduction and the difficulty to jam or detect signals. For

spread spectrum systems, it is always better to choose a high processing gain. But this

comes as a trade off with system complexity.

 21

 Figure 2.1: Model of direct sequence spread spectrum digital communication system

Channel

Encoder

Channel

Decoder

Modulator Channel Demodulator

Pseudorandom

Sequence Generator

Input

Message

Pseudorandom

Sequence Generator

Output

Data

 22

 Figure 2.2: Spreading code with pulse values +1,-1

 23

 Figure 2.3: The spectrum spreading

 24

A DSSS digital communication system can be classified into four major parts,

which are: pseudo noise sequence generator, spreading and modulation (transmitter),

demodulation and de-spreading (receiver), PN synchronization. Each part of the DSSS

communication system is described in detail as follows.

Pseudo Noise Sequence Generator:

Pseudo Noise (PN) signals play a key role in DSSS systems, as they are the ones

responsible for the spreading and de-spreading of the baseband signal. These signals are

generated in a deterministic way but appear to be random or noise-like. PN sequences

are considered to have noise like properties for an outsider, but they are known to the two

devices using them. They are considered pseudo random because the sequences are

actually deterministic and are known to both the transmitter and the receiver.

There are three basic properties that can be applied to a periodic binary sequence

as a test of the appearance of randomness. They are balance property, run property and

correlation property. One of the well known and easy to generate PN sequences are the

maximum length sequences (MLS). MLS satisfy all three PN properties. An MLS is

generated by the use of shift registers and some logic circuitry in its feedback path. A

feedback shift register is said to be linear if its feedback logic circuit consists entirely of

modulo-2 adders (XOR gates).

DSSS Transmitter:

In DSSS the baseband waveform is multiplied by the PN sequence. The PN is

produced using a PN generator. This generator consists of a shift register, and a logic

circuit that determines the PN signal. After spreading, the signal is modulated and

 25

transmitted. The most widely used modulation scheme is binary phase shift keying

(BPSK).

In BPSK a transition from a one state to a zero state (or the other way around)

will cause a 180 degree phase shift in the carrier signal. A BPSK modulator consists of a

multiplier circuit that directly multiplies the incoming signal with the carrier frequency

generated by the local oscillator. Other transmitter schemes also exist. Some of them use

the PN spreading after the baseband signal is modulated using BPSK. This will spread

the passband signal. In the receiver, the de-spreading takes part before the signal gets

demodulated. Based on the system architecture, one might decide which scheme to use.

DSSS Receiver:

In the demodulator section, we simply reverse the process. We demodulate the

BPSK signal first, pass it through a low pass filter, and then de-spread the filtered signal,

to obtain the original message. The receiver carrier frequency should be synchronized

with the transmitter one for data detection.

As for the PN sequence in the receiver, it should be an exact replica of the one

used in the transmitter, with no delays, otherwise it might cause severe errors in the

incoming message. Usually a delay locked loop is used to overcome this issue, and lock

the timing of the transmitted PN sequence with the one locally generated. Once the

incoming PN code is correlated with the locally generated one, we can de-spread the

signal.

After the signal gets multiplied with the PN sequence, the signal de-spreads, and

we obtain the original bit signal that was transmitted. The signal is then applied to a

 26

decision device that will take care of the signal shaping, and leveling. The original data

signal is then obtained. In the presence of noise, extra circuitry is needed to compensate

the signal degradation that affects the transmitted signal.

PN Synchronization:

In a spread spectrum system, the generated PN code at the receiver end must be

aligned to the received PN sequence, otherwise, the PN code misalignment will result in

ineffective de-spreading of the signal. Synchronization is usually accomplished first by

an acquisition of the initial PN code alignment and then followed by a tracking process to

eliminate a possible new phase shift introduced to the received signal during the signal

reception process. Without synchronization, the spread spectrum will appear as noise and

ineffective de-spreading will be achieved at the receiver end. Therefore, synchronization

of the PN code is crucial for data reception.

Interference is added to the spread spectrum signal during transmission through

the channel. The characteristics of the interference depend to a large extent on its origin.

Usually the interference is categorized as being either broadband or narrowband relative

to the bandwidth of the information bearing signal, and either continuous in time or

pulsed in time. In this thesis we don’t apply any specific constraints or statistical

meanings to the interference except a fundamental power limitation on the interfering

signal.

 27

2.6 Generalized Direct Sequence Spread Spectrum

It is shown in [2] that ordinary DSSS can be improved by allowing the transmitted

vector to more closely approximate a uniform distribution on the surface of an N-

dimensional sphere. In [1] it is shown that ordinary DSSS is only a special case of

random modulation, and that random modulation becomes asymptotically optimum (as N

gets large), minimizing the signal-to-interference ratio required to guarantee a given

worst-case performance level, when the message symbol is uniformly distributed on the

surface of an N-dimensional sphere.

Figure 2.4 shows all the possible transmitted vectors for ordinary DSSS as black

dots when modeled as a 3-dimensional signal. When ordinary DSSS is modeled in the

N–dimensional signal space, all the message symbols are randomly distributed on the

vertices of an N-dimensional cube space using a random chipping sequence of {-1, +1},

where N is the number of chips per symbol. Now in generalizing ordinary DSSS, along

with the vertices of ordinary DSSS the midpoints of the edges and faces of the 3-D cube

are considered cube as possible transmitted same energy vectors and these points are

projected radially onto the surface of a 3-D sphere as shown in Figures 2.5 and 2.6.

 28

 Figure 2.4: Transmission vector distribution for DSSS

The resulting transmitted vectors for N = 3 can be expressed as

()aaa
a

±±± ,
3
1 for the vertices, ()0,,

2
1 aa

a
±± , ()aa

a
±± ,0,

2
1 and

()aa
a

±± ,,0
2
1 for the edges, and ()0,0,1 a

a
± , ()0,,01 a

a
± and ()a

a
±,0,01 for the faces,

for a total of 26 possible unit-energy vectors.

Generalized DSSS can be viewed as the use of a novel chipping sequence where a

0 is allowed in the chip sequence in addition to {-1, +1}. This method has a transmitted

vector distribution which more closely approximates a uniform distribution on the surface

of an N-dimensional sphere than ordinary DSSS, with a slight increase in system

complexity. As shown in [2] when extended to the N-dimensional signal space, this

 29

would produce 3N-1 possible unit energy vectors of all hamming weights 1 through N for

a generalized DSSS.

N
N

j
j

aa
a

},0,{1

1

2
+−

∑
=

The spreading sequence for a generalized DSSS is a pulse stream with pulse

values of +1, -1 or 0, a deviation from the usual sequence of +1 or -1. The spreading

technique for generalized DSSS is shown in Figure 2.7. The baseband message signal is

a rectangular pulse of duration Tb. This signal gets multiplied by the PN sequence

generator, which has the PN code sequence of -1, +1, 0. Therefore the bandwidth of the

message signal is spread into the wider bandwidth occupied by PN generator signal.

 Figure 2.5: Transmission vector generalization for DSSS

 30

 Figure 2.6: Transmission vector distribution on sphere for DSSS

 31

2.7 Channel Assumptions

For most communication systems, importance is given to channels whose

accurate statistical models are known. However, in many practical communication

situations the communicator does not have access to a complete statistical description of

the interfering signals in the channel. The channel statistics may change with time in an

unknown and arbitrary way, making to it impractical to predict the channel properties,

such as hostile jamming or multiple access interference from other non-cooperative

transmitters.

For the analyses of robust communication systems, highly optimistic models of

the interfering signal are commonly used while channel modeling. In case of anti-jam

applications, several models for the interfering signal have been proposed. Among these,

pulse jamming, where the jammer transmits at full power for a fraction of the time and

keeps silent for the remainder, was considered to be one of the worst forms of

interference. Broadband and partial-band noise jamming have also been considered.

Multi-tone and repeat-back jamming has also been investigated in many contexts.

Continuous wave jamming and blades system have been employed in different

communication systems. Gaussian approximation has also been employed as a model for

a large number of transmitters. For multiple access applications, performance analysis is

usually based on exact error probability using fixed signature sequences for the

transmitters.

 32

 Figure 2.7: Spreading sequence with pulse values -1, 0, +1

 33

Any communication system which assumes a fixed statistical description for

interfering signal suffers from a weakness that it is being highly optimistic. Since a

jammer has the same design options as a transmitter the most damaging signal that the

jammer can produce may not necessarily be from these simple models. Hence the worst-

case performance analysis of a communication system should consider all the possible

models for the interference. The definition of a robust communication requires a worst-

case analysis over all possible interference situations in order to guarantee a minimum

level of reliability in information transfer.

In modeling the channel, as mentioned by Hizlan in [3], we choose to be on the

side of excessive pessimism thus consider a channel model in which nothing is known

about the interference except that it is bounded in power. Furthermore, it is also

independent of the transmitted signal and thermal noise. Therefore, our measure of

reliability is the worst-case error probability over all such unknown signals.

Figure 2.8 describes the basic channel model considered in this thesis. Looking

into the model, basically an integer message { }Mm ,...,1∈ is sent over a waveform

channel in a time period of duration T seconds. The transmitted signal)(tx is corrupted

by two independent interference signals resulting in a received signal which is given by:

Τ≤≤++≅ ttStWtxtY 0),()()()((2.1)

 34

 Figure 2.8: Channel Model

Making use of correlation the receiver guesses m̂ from)(tY . The signal)(tW represents

white Gaussian noise process with one-side power spectral density N0 W/Hz. The signal

)(tS represents different sources of interference with partially unknown statistics, such as

jammers, non-cooperative transmitters, etc. Here, no such restrictions are imposed on

)(tS except that it is independent of m and)(tW , and also its time-averaged power does

not exceed JΡ :

∫ ≤
T

JPdttS
T 0

2)(1 (2.2)

The important feature of this channel is that the interfering signal can change with time in

an arbitrary way, subject only to the fundamental limitation of bounded power.

Therefore)(tS can have arbitrary, time-varying, non-Gaussian statistics and it may also

possess memory.

Receiver Transmitter m

)(tx

)(tY

Interference

)(tS

)(tW

Noise

m̂

 35

CHAPTER III

CHANNEL MODEL

3.1 Communication System Model

Spread spectrum techniques and especially direct sequence modulation have long

been employed as a means of achieving good communication when the statistical

description of the channel interference is at least partially unknown. In this chapter we

consider a communication system composed of a convolutional encoder,

convolutional/pseudorandom interleaving, direct sequence modulation and Viterbi

decoder, operating on a channel corrupted by thermal noise and by an unknown

interfering signal of bound power. The channel model used by Hizlan and Hughes in [1]

considers a much broader class of interference signals than has previously been

considered. Our aim is to simulate the worst-case error probability of this coded

generalized DSSS communication system and compare results with ordinary DSSS for

different code rates and constraint lengths of convolutional codes.

 36

3.1.1 Waveform Model

The communication system block diagram is shown in Figure 3.1. The data

generator gives out 5 × K bits, where K is the constraint length of the convolutional

encoder. We have chosen the message length as 5 × K since it is the decoding depth of

the Viterbi decoder used in this thesis as described in chapter 4. The convolutional

encoder coverts these bits into L =
r
K×5 encoded symbols by adding some redundancy

for error checking at the receiver, where r is the code rate of convolutional encoder. The

transmitter generates L coded symbols every T seconds. The encoded symbols are then

transmitted by DS modulation with N pseudo-noise chips per code symbol.

The N pseudonoise chips are generated randomly using a PN generator and the

sequence generated is from {-1, 0, +1} for generalized DSSS and from {-1, +1} for

ordinary DSSS. These randomly generated chips are then multiplied with a

normalization factor (equal to 1 for ordinary DSSS) in order to account for the energy

lost due to the “0” chip in the generalized sequence. Assume that a given transmitted

message of length L is called message m. The basic channel model is illustrated in Figure

3.1 and a detailed description is given in section 2.5. Here we replace ()tx by ()txm to

show the dependence of the transmitted signal on the message m. During transmission,

()txm is corrupted by two independent, additive noise processes so that

() () () () TttStWtxtY m <≤++≅ 0,

is received. Here ()tW is a white Gaussian noise process with one-sided power spectral

density 0N W/Hz and ()tS is an arbitrary signal independent of m and ()tW .

 37

The codeword associated with message m are ()m
L

mm xxx 10 ,..., −= for convolutional

coded generalized direct-sequence spread spectrum. The symbols are convolutional or

pseudorandom interleaved to form an interleaved code waveform

() () TtTJtuxtZ
L

l
Sl

m
l

m <≤−≅ ∑
−

=

0,
1

0

 (3.1)

where u(t) = 1 in the interval [0, TS) and vanishes outside, and TS = T/L is the symbol

duration. In equation (3.1) the index sequence {J0, …., JL-1} represents interleaving of

the symbols, where {J0, …., JL-1} = {C0, …., CL-1} for convolutional interleaving and

{J0, …., JL-1} = {P0, …., PL-1} for pseudorandom interleaving.

The interleaved code word is binary phase-shift (BPSK) modulated and DS

spread by the PN sequence.

() () () TttZtCwtTEctX mm <≤≅ 0),(cos2 (3.2)

where E is the energy per code word at the receiver, NTT SC = is the chip duration, w is

the carrier frequency with 12 −> cTw π , and ()tC is the spreading waveform

() ()∑
−

=

<≤−≅
1

0

.0,
NL

i
Ci TtiTtvAtC

Here, ()tv is a low-pass chip waveform that satisfies ()∫ =
CT

CTdttv
0

2 and vanishes outside

the interval [0, CT).

The pseudo-noise sequence }{ iA is modeled as an independent identically

distributed sequence of random variables which satisfy Pr{Ai= +1} = Pr{Ai= 0} = Pr{Ai=

 38

-1} = 1/3 for generalized DSSS and Pr{Ai= +1} = Pr{Ai= -1} = 1/2 for ordinary DSSS,

and they are independent of {J0, ……, JL-1}. Therefore, the energy normalization constant

 Figure 3.1: System Model

Data

Generator

Interleaver

PN Sequence and

Energy Normalization

PN Code

Generator

)(tX m

)(tY

)(tW

Thermal Noise

De-interleaver

BER

Calculation

Convolutional

Encoder

m

m̂

Integration &

Quantization

Viterbi

Decoder

Interference

)(tS

 39

c takes the form as shown in [2, equation 2] with
u

NLc = , where u represents the total

number of non-zero chips per L encoded symbols in the PN sequence.

The deinterleaver at the receiver end can be represented as

() TtTBtuxtZ
L

l
sl

m
l

m <≤−≅ ∑
−

=

0,)(
1

0

ˆ (3.3)

where u(t) = 1 in the interval [0, TS) and vanishes outside, and TS = T/L is the symbol

duration. In equation (3.3) the index sequence {B0, …., BL-1} represents deinterleaving of

the symbols, where {B0, …., BL-1} = {D0, …., DL-1} for convolutional deinterleaving and

{B0, …., BL-1} = {Q0, …., QL-1} for pseudorandom de-interleaving.

During channel simulation in order to avoid the overhead of interleaving and

deinterleaving, we directly interleave the interference in the channel while adding it to the

signal as described in Figure 5.1 of Chapter 5. In such a situation the deinterleaved signal

at the receiver end can be represented as

() () () () TttStWtxtY m <≤++≅ 0,ˆ (3.4)

Where ()tW is a zero-mean white Gaussian noise process with one-sided power spectral

density ,/0 HzWN , and ()tS is an interleaved unknown and arbitrary interfering signal.

The signal ()tS represents interference from sources with unknown statistics, such as

multiple-access interference, jamming and impulsive noise. In this thesis, we consider a

communication situation in which nothing is known about ()tS except that it is

independent of {Ai}, ()tW , {J0, …., JL-1}, {B0, …., BL-1} and that its energy is

 40

constrained. Therefore ()tS may be random or deterministic, narrow-band or wide-band,

stationary or time-varying, Gaussian or non-Gaussian.

In order to bound the error probability of a receiver for (3.4), we must place some

constraint on the interference energy ()∫
T

dttS
0

2 . Here the interference energy is strictly

bounded, i.e.

()∫ ≤
T

ITPdttS
0

2 . (3.5)

At the receiver end, the same normalized PN code sequence used at the

transmitter end is multiplied with the received noisy chips before any hard decision is

performed over the received signal. After the multiplication the chips are converted to

symbols and then fed to decision box. In our case the decision box will compare the

input signal to zero threshold and output +1 if it is greater than zero and -1 if it is less

than zero. Once the symbols are out of the decision box, they are fed to a Viterbi decoder

to get back the original message bits.

At the receiver end first we integrate all the received bits described as

() ∫ <≤≅
sT

s
m TtwttCtYtX

0

ˆ 0),cos()()(ˆ (3.6)

and later fed to decision box to perform hard quantization, whose function is described as

 ()txm̂ = 1 if ()tX m̂ < 0

 ()txm̂ = 0 if ()tX m̂ > 0.

 41

3.1.2 Worst-Case Probability of Error

In this section we investigate the worst-case performance of the system described

above, following the development in [3]. As discussed in [3], we convert the waveform

channel described above into an equivalent vector channel representation which is easier

for simulation.

Given S = s, the conditional probability of error of the receiver as given in [3,

equation 8] is

() }ˆPr{1,
1

2 sSmm
NL

vs
NL

m
=≠≅ ∑

=

ε (3.7)

where 0
2 2 NLNEv ≅ is the chip signal-to-noise power ratio.

We calculate error probability when nothing is known about S except a constraint

on the energy of ()tS . Note that the energy constraint (3.5) implies that S [3, equation 9]

satisfies

() ∑
−

=

≤≅
1

0

221 NL

i
i NLES

NL
SP σ (3.8)

for the vector channel representation. The interference energy over L symbols is

therefore limited to a maximum of

2

1

0

2

σNL
NLES

NL

i
i =∑

−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i

b

N
E

NLE (3.9)

 42

with signal-to-interference ratio as

2. σNL
R
W

TP
E

N
E

ii

b =≅

where CTW 1= is the system bandwidth, TR 1= is the data rate and iPTE=2σ is the

signal-to-interference power ratio.

For the purpose of simulating the worst-case performance of the system, we

assume a canonical distribution for the interference and consider D chips out of the NL

chips to be affected by interference at maximum power, where NLD ≤≤1 . Now the

interference energy vector over D chips is defined as

1,....1,0, −=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= Dj

N
ED

NLES

i

b
j

1,...1,0 −−== NLDjS j

We obtain the worst-case error probability by maximizing the simulated error probability

over D as it varies from 1 to NL chips, thus maximizing over the interference.

 43

CHAPTER IV

INTRODUCTION TO CONVOLUTIONAL CODES

The history of error-correction coding began in 1948 with the publication of a

landmark paper from Claude Shannon “A mathematical theory of communication” [9].

Since Shannon’s work, much effort has been devoted to the implementation for

controlling errors in noisy environment. In this chapter we speak about the codes that are

used in this thesis.

Convolutional and block codes are the most widely used codes today. In this

thesis we choose convolutional codes with Viterbi decoding as error control codes.

4.1 Convolutional Codes

Convolutional codes are usually described using two parameters: the code rate

and the constraint length. The ratio of k/n is called the code rate (r) where n denotes the

number of channel symbols output by the convolutional encoder and k denotes the

 44

number of input bits fed to the convolutional encoder in a given encoder cycle. The code

rate of the encoder is a measure of the efficiency of the code. Usually k and n parameters

range from 1 to 8 and the code rate from 1/8 to 7/8.

The constraint length parameter, K, denotes the "length" of the convolutional

encoder, i.e. how many k-bit stages are available to feed the combinatorial logic that

produces the output symbols. The quantity K is defined by

)1(+= MkK

Closely related to K is the parameter M, which indicates how many encoder

cycles an input bit is retained and used for encoding after it first appears at the input to

the convolutional encoder. The M parameter can be thought of as the memory length of

the encoder.

4.1.1 Structure of the convolutional code

A binary convolutional code is generated by passing the information sequence to

be transmitted through a linear finite-state shift register. The convolutional code structure

is easy to draw from its parameters. First draw the M boxes to represent the M memory

registers. Then draw n modulo-2 adders to represent the n output bits. Now connect the

memory registers to the adders using the generator polynomial. For a (rate k/n, K)

convolutional code, the shift register consists of K-1 stages and n linear modulo-2

function generators. The input data is shifted into and along the shift registers a single bit

at a time producing a n-tuple output for each shift. To illustrate the working of a

convolutional encoder, consider the (rate 1/2, K = 3) convolutional encoder shown in

 45

Figure 4.1 where the output U = [Ui1, Ui2] at instant i is obtained from the message bit xi at

instant i and the previous (K − 1) (which equals 2 in our example) message bits xi−1 and

xi−2.

 Figure 4.1: Convolutional Encoder (rate 1/2, K = 3)

The operator ⊕ is the modulo-2 adder operator. Initially, the shift registers are assumed

to be in the all zero state. Suppose the first input bit is a 1. At the next clock cycle, the

initial content of the registers is moved towards the right by one bit and the message bit

occupies the leftmost register. The registers are therefore set to states 1, 0, and 0, i.e., xi

= 1, xi-1 = 0, and xi−2 = 0. The value of the two output bits Uij, for i = 1 and 1 ≤ j ≤ 2, are

given by

22 −⊕= iii xxU

xi−1

xi−2

Ui1

Ui2

 xi

Input bit

Output branch

word

First code

Symbol

Second code

Symbol

 46

221 −− ⊕⊕= iiii xxxU

Suppose now that the second bit is a 1. The registers are set to 1, 1, and 0 at the

next clock cycle and the codeword U1 is 11. By following this procedure, the code-

word’s Ui can be generated for the remaining message bits. The selection of which bits

are to be added to produce the output bit is called the generator polynomial (g) for that

output bit. The polynomials give the code its unique error protection quality. The

generator polynomials for the above encoder are g1 = [111] and g2 = [101]. One code can

have completely different properties from another one depending on the polynomials

chosen.

4.1.2 States of Convolutional Code

Convolutional encoders will exist in different states at different times. Some

complex encoders have long constraint lengths and simple ones have short in deciding the

number of states they can be in. The (rate 1/2, K = 3) code in Figure 4.1 has a constraint

length of 3. The number of combinations of bits in the memory are called the states of

the code and are defined by

Number of states = 2K -1

where K = the constraint length of the code.

Let us examine the states of the code (rate 1/2, K = 3) shown above. This code

outputs 2 bits for every one input bit. It is a rate 1/2 code. Its constraint length is 3 and

 47

memory length is 2. The total number of states is equal to 4. The four states of this (rate

1/2, K = 3) code are: .11,10,01,00

4.2 Convolutional Codes with Higher Inputs

We can also create codes where k is more than one such as the (rate 2/3, K = 8)

code. This code takes in 2 bits and outputs 3 bits. The number of memory registers is 4.

The constraint length is 5 x 2 = 10. The code has 16 states.

The procedure for drawing the structure of a (rate k/n, K) code where k is greater

than 1 is as follows. First draw k sets of M boxes. Then draw n adders. Now connect n

adders to the memory registers using the coefficients of the nth (kM) degree polynomial.

What you will get is a structure like the one in Figure 4.2 for code (rate 2/3, K = 8), It has 3

memory registers, 2 input bits and 3 output bits.

 48

 Figure 4.2: A (rate 2/3, K = 8) convolutional code.

4.3 Systematic vs. Non-systematic Convolutional Code

A systematic convolutional code is one in which the input k-tuple appears as part

of the output branch word n-tuple associated with that k-tuple. In a systematic

convolutional code the output bits contain an easily recognizable sequence of the input bits.

The systematic version of the above (rate 1/2, K = 3) code of Figure 4.1 is shown in Figure

4.3, It has the same number of memory registers, and one input bit and two output bits.

The output bits consist of the original two bits and a third parity bit. Looking at the code

we see that of the two output bits, one is exactly the same as the one input bit. The second

 U3

x2

x1

U2

U1

 49

bit is similar to a parity bit produced from a combination of three bits using a single

polynomial.

 Figure 4.3: The systematic version of the (rate 1/2, K = 3) convolutional code.

Systematic codes are often preferred over the non-systematic codes because they

allow quick look. Another important property of systematic codes is that they are non

catastrophic, which means that errors can not propagate catastrophically. All these

properties make them very desirable. But transforming a non-systematic convolutional

code into a systematic code reduces the maximum possible free distance for a given

constraint length and rate. However the error protection properties of systematic codes

are the same as those non-systematic codes. In this thesis, we considered non-systematic

codes.

 xx−1 xi−2 Ui1

Ui2

 xi
 Output

First code

Symbol

 Second code

 Symbol

Input bit

m

 50

4.4 Encoder Design

The hardware of the encoder is much simpler than that of the decoder because the

encoder does no math. The encoder for convolutional code uses a table look up to do the

encoding. The look up table consists of four items:

• Input bit.

• The State of the encoder, which is one of the 4 possible states for the

example (rate 1/2, K = 3) code.

• The output bits. For the code (rate 1/2, K = 3), since two bits are output,

the choices are .11,10,01,00

• The output state which will be the input state for the next bit.

For the code (rate 1/2, K = 3) the look-up table is shown below in table I.

TABLE I: LOOK-UP TABLE FOR THE ENCODER OF CODE (RATE 1/2, K = 3)

This look up table uniquely describes the code (rate 1/2, K = 3). It is different for

each code depending on the parameters and the polynomials used.

I1 S1 S2 O1 O2 S1 S2

1 0 0 0 0 0 0

1 0 0 1 1 1 0

0 0 0 1 1 0 0

1 0 0 0 0 1 0

0 0 1 1 0 0 0

0 0 1 0 1 1 0

 51

Flushing Bits

Now if we are only going to send the data bits given above, in order for the last

bit to affect three (K = 3) pairs of output symbols, we need to output two more pairs of

symbols. This is accomplished in our example encoder by clocking the convolutional

encoder two (M) more times, while holding the input at zero. This is called flushing the

encoder, and results in two more pairs of output symbols. If we don't perform the

flushing operation, the last M bits of the message have less error-correction capability

than the first through (M-1) bits had. This is a pretty important thing to remember if

you're going to use this Forward Error Correction technique in a burst-mode

environment. So there should be a step of clearing the shift register at the beginning of

each burst. The encoder must start in a known state and end in a known state for the

decoder to be able to reconstruct the input data sequence properly.

 52

4.5 Encoder Representation

The encoder can be represented in several different but equivalent ways. They are

• Generator Representation

• State Diagram Representation

• Tree Diagram Representation

• Trellis Diagram Representation

4.5.1 Generator Representation

Generator representation shows the hardware connection of the shift register taps

to the modulo-2 adders. A generator vector represents the position of the taps for an

output. A “1” represents a connection and a “0” represents no connection. For example,

the two generator vectors for the encoder in Figure 1 are g1 = [111] and g2 = [101] where

the subscripts 1 and 2 denote the corresponding output terminals.

4.5.2 State Diagram Representation

The state of a rate 1/n convolutional encoder is defined as the contents of the

rightmost K – 1 stages. In order to determine the next output it is sufficient to know the

 53

present state and the next input. The state diagram shows the state information of a

convolutional encoder. The state information of a convolutional encoder is stored in the

shift registers. In the state diagram, the state information of the encoder is shown in the

rectangular boxes. Each new input information bit causes a transition from one state to

another. The path information between the states, denoted as x/U, represents input

information bit x and output encoded bits U. It is customary to begin convolutional

encoding from the all zero state. The state diagram for the convolutional encoder of Figure

4.1 is shown is Figure 4.4.

For example, the input information sequence x= {1101} (begin from the all zero

state) leads to the state transition sequence S = {10, 11, 01, 10} and produces the output

encoded sequence U = {11, 01, 01, 00}.

4.5.3 Tree Diagram Representation

Although the state diagram completely describes the encoder, it is not easy to

track encoder transitions as a function of time since the diagram cannot represent time

history. The tree diagram representation shows all possible information and encoded

sequences for the convolutional encoder. It is somewhat better than a state diagram but

still not the preferred approach for representing convolutional codes.

Here instead of jumping from one state to another, we go down branches of the

tree depending on whether a 1 or 0 is received. Figure 4.5 shows the tree diagram for the

encoder in Figure 4.1 for four input bit intervals.

 54

 Figure 4.4: Encoder state diagram (rate 1/2, K = 3).

 11

 10 01

 00 11

01

00

11

01

10

00

10

 Output

Encoder

Legend

____ Input bit 0

------ Input bit 1

 55

 Figure 4.5: Tree representation of encoder (rate 1/2, K = 3)

1

0

11

10

01

10

01
00

00

11

10

11

00

00

01

10

11

00

10

11

11

00

00

01

11

01

01

10

10

01

T1 T2 T3 T4

Codeword

00

11

 56

In the tree diagram, a solid line represents input information bit 0 and a dashed

line represents input information bit 1. The corresponding output encoded bits are shown

on the branches of the tree. An input information sequence defines a specific path

through the tree diagram from left to right. For example, the input information sequence

x= {1101} produces the output encoded sequence U = {11, 01, 01, 00}. Each input

information bit corresponds to branching either upward (for input information bit 0) or

downward (for input information bit 1) at a tree node.

4.5.4 Trellis Diagram Representation

Trellis diagrams are generally preferred over both the tree and the state diagrams

because they represent linear time sequencing of events. The x-axis is represented by

discrete time and all possible states are shown on the y-axis. We move horizontally through

the trellis with the passage of time. Each transition means new bits have arrived.

The trellis diagram is drawn by lining up all the possible states (2K-1) in the

vertical axis. Then we connect each state to the next state by the allowable code words

for that state. There are only two choices possible at each state. These are determined by

the arrival of either a 0 or a 1 bit. The lines show the input bit and the output bits are

shown on top of the line. The trellis diagram is unique to each code, same as both the

state and tree diagrams are. We can draw the trellis for as many periods as we want.

Each period repeats the possible transitions.

We always begin at state 00. Starting from here, the trellis expands and in K bits

becomes fully populated such that all transitions are possible. The transitions then repeat

 57

from this point on. This means that any two nodes having the same state label, at the

same time Ti, can be merged since all the succeeding paths will be indistinguishable. The

trellis diagram provides a more manageable encoder description than the tree diagram as

it exploits the repetitive structure of the encoder. For this particular reason trellis

representation is used while decoding a particular sequence. The trellis diagram for the

convolutional encoder of Figure 4.1 is shown is Figure 4.6.

 Figure 4.6: Encoder trellis diagram (rate 1/2, K = 3).

State 00

10

01

11

T3 T4 T5

Codeword

00 00 00 00

11

10

11 11 11

01 01

10

11

01

10

01

00

10

11

10

00

01

T1 T2

Legend

____ Input bit 0

------ Input bit 1

 58

Encoding using the trellis diagram

In drawing trellis diagram, we use the same convention that we used with the state

diagram that a solid line represents the output generated by an input bit, 0, and a dashed

line represents the output generated by an input bit, 1. We can only start at point 1. At

each unit of time the trellis requires 2K-1 nodes to represent 2K-1 possible encoder states.

The trellis in our example assumes a fixed periodic structure after trellis depth 3 is

reached. The path taken by the bits of the example sequence (1101) is shown by the lines

shown is Figure 4.7. The corresponding output branch words are shown as labels on the

trellis branches. We see that the trellis diagram gives exactly the same output sequence as the

other three methods, which are graphical, state and the tree diagram. Though all of these

diagrams look similar, we should recognize that they are unique to each code.

 Figure 4.7: Trellis Diagram, Input sequence (1101), Output sequence (11, 01, 01, 00).

State 00

10

01

11

Legend

____ Input bit 0

------ Input bit 1

T3 T4 T5

Codeword

11

01

01

00

T1 T2

 59

4.6 Decoding

There are several different approaches to decoding of convolutional codes. These

are grouped in two basic categories.

a) Sequential Decoding --- Fano algorithm.

b) Maximum likelyhood decoding --- Viterbi decoding.

These methods represent two different approaches to the same basic idea behind

decoding. In this thesis, we use Viterbi decoding to decode the convolutional encoded

sequence.

Basic Decoding Principle

Let’s assume that four bits were sent via a rate 1/2 code and we receive eight bits.

Now the received eight bits may or may not have errors. However we know from the

encoding process that all these bits map uniquely. So a 4-bit sequence will have a unique

8-bit output. But due to errors, we can receive any and all possible combinations of the

eight bits.

The permutation of four input bits results in sixteen possible input sequences.

Each of these has a unique mapping to an eight bit output sequence by the code. These

form the set of permissible sequences and the decoder’s task is to determine which one was

sent.

Let’s say we received 11010101. In order to decode the received sequence we can

use one of the following two methods,

 60

• We can compare this received sequence to all permissible sequences and pick the

one with the smallest Hamming distance (or bit disagreement).

• We can do a correlation and pick the sequences with the best correlation.

The first method is basically what is behind hard decision decoding and the

second is the soft-decision decoding. The bit disagreements show that we still get an

ambiguous answer and do not know what was sent. As the number of bits increase, the

number of calculations required to do decoding in this brute force manner increases such

that it is no longer practical to do decoding this way. We need to find a more efficient

method that does not examine all options and has a way of resolving ambiguity such as

here where we have two possible answers.

If a message of length q bits is received, then the number of total possible

codewords is q2 . The basic idea behind decoding is to decode the received sequence

without checking each and everyone of these q2 codewords.

4.6.1 Sequential Decoding

Sequential decoding was one of the first methods proposed for decoding a

convolutionally encoded bit stream. Sequential decoding has the advantage that it can

perform very well with long constraint length convolutional codes, but it has a variable

decoding time.

In sequential decoding you are dealing with just one path at a time. You may give

up that path at any time and turn back to follow another path but the important thing is

 61

that only one path is followed at any one time. This method also allows both forward and

backward movement through the trellis. The decoder keeps track of its decisions each

time it makes an ambiguous decision. But if the tally increases faster than some

threshold value, decoder gives up that path and retraces the path back to the last fork

where the tally was below the threshold. Since Viterbi decoding is used in this thesis, we

will not discuss sequential decoding in depth.

4.6.2 The Viterbi Convolutional Decoding Algorithm

Viterbi decoding as described in [10] by Andrew J Viterbi is the best known

implementation of maximum likelihood decoding. It reduces the computational load by

taking advantage of the special structure in the encoder trellis. In this thesis we have

chosen 5 × K as the decoding depth of the Viterbi decoder as described in [7], and also

research has shown that a decoding depth of 5 × K is sufficient for Viterbi decoding with

the type of codes used during simulation. Any deeper traceback increases decoding delay

and decoder memory requirements, while not significantly improving the performance of

the decoder. Viterbi decoding has the advantage that it has a fixed decoding time. It is

well suited to hardware decoder implementation. The advantage of Viterbi decoding

over other decoding is that the complexity of a Viterbi decoder is not a function of the

number of symbols in the codeword sequence.

First the Viterbi decoder examines an entire received sequence of a given length.

The decoder computes a metric for each path and makes a decision based on this metric.

The Viterbi algorithm removes from consideration those trellis paths that could not

 62

possibly be candidates for the maximum likelihood choice. All paths are followed until

two paths converge on one node. Then the path with the higher metric is kept and the

one with lower metric is discarded, this path is called the surviving path. This selection

of surviving paths is performed for all the states. Following this pattern, the decoder

advances deeper into the trellis, making decisions by eliminating the least likely paths.

For a q -bit sequence, the total number of possible received sequences are q2 ,

however, of these only 2K are valid. The Viterbi algorithm applies the maximum-

likelihood principles to limit the comparison to 2 to the power of K surviving paths

instead of checking all paths. The early rejection of the unlikely paths reduces the

decoding complexity.

The most common metric used is the Hamming distance metric. This is just the

degree of similarity between the received codeword and the allowable codeword. All

these metrics are added together so that the path with the smallest total metric is the

correct sequence. Table II describes the hamming metric for a (rate 1/2, K = 3) code.

TABLE II: EACH BRANCH HAS A HAMMING METRIC DEPENDING ON WHAT WAS RECEIVED
AND THE VALID CODEWORDS AT THAT STATE

Received Valid Valid Hamming Hamming

Bits Codeword 1 Codeword 2 Metric 1 Metric 2

00 00 11 0 2

10 00 11 1 1

01 10 01 2 0

 63

4.6.3 An Example of Viterbi Convolutional Decoding

In this example we consider Hamming distance for finding the path metric. The

encoder in this example is shown in Figure 4.1 and the encoder trellis diagram is shown

in Figure 4.6. A similar trellis can be used to represent the decoder, which is shown in

Figure 4.8. The principle idea behind decoding procedure can be best understood by

comparing the Figure 4.6 encoder trellis with the Figure 4.8 decoder trellis. In the

decoder trellis each branch at Ti is labeled with the hamming distance between the

received code symbols and the corresponding branch codeword from the encoder trellis.

The example in Figure 4.8 shows a message sequence, x, the corresponding codeword

sequence, U, and a noise corrupted received sequence R. The branch words seen on the

encoder trellis branches are for the encoder in Figure 4.1. These branch words are known

to the encoder and the decoder prior to transmission. As the code symbols are received,

each branch of the decoded trellis is labeled with a metric of similarity (Hamming

distance) between the received code symbols and each of the branch words at that time

interval. To label the decoder branches at time T1 with the appropriate hamming distance

metric, we look at the encoder trellis in Figure 4.6. Here we see that a state 00 to 00

transition yields an output branch word of 00 and we received 11, therefore on the

decoder trellis for state 00 to 00 transitions we get the branch metric 2. Similarly for 00

to 01 transition, we get the branch metric as 0 and continuing this approach we can fill

the decoder trellis with the corresponding branch metrics. The decoding algorithm will

use these Hamming distance metrics in order to find the minimum distance path through

the trellis.

 64

The principle behind Viterbi decoding is that of two paths merging to a single

state in the trellis, one of them can always be eliminated by deciding the optimum path

among them. The cumulative Hamming path metric of a given path at time Ti is defined

as the sum of the branch Hamming distance metrics along the path up to time Ti.

 Figure 4.8: Decoder trellis diagram (rate 1/2, K = 3).

When two paths try to merge at the same node then the one with smallest path metric is

chosen as the optimum path. At any time Ti there are 2K-1 states in the trellis and each

state can be entered by means of two paths. Viterbi decoding consists of computing the

metrics for the two paths entering each state and eliminating one of them. The decoder

State 00

10

01

11

Legend

 Input bit 0

------ Input bit 1

T3 T4 T5

Branch

2 1 2 0

0

2

1 1 2

0

1

1

0

1

1

1

2

1

2

1

0

1

T1 T2

Message sequence x:

Received sequence R:

Transmitted codeword U:

1

11

11

1

01

01

0

01

11

1

00

00

 65

does this computation for each of the 2K-1 nodes at time Ti. Then the decoder moves to

time Ti+1 and repeats the same process. With Viterbi decoder the first bit is not decoded

until the path metric computation has proceeded to a much greater depth into the trellis.

This leads to a decoding delay which can be as much as five times the constraint length in

bits for a particular decoder.

To illustrate the algorithm, let us decode a received sequence 11 10 11 00 using

the Viterbi algorithm.

a) At time T1, we have received bit 11. The decoder always starts at state 00.

From this point it has two paths available, either 00 or 10. The decoder

computes the branch metric for both of these and will continue

simultaneously along both of these branches in contrast to the sequential

decoding where a choice is made at every decision point. The branch metric

for state 00 to 00 is 2 and for state 00 to 10 is 0 as shown in Figure 4.9a.

 66

 Figure 4.9a: Survivors at T1

b) At time T2 as shown in Figure 4.9b, the decoder fans out from these two

possible states to four states. The branch metrics for these branches are

computed by looking at the agreement with the codeword and the

incoming bits which are 10. The new path metric is shown on the right of

the trellis.

State 00

10

01

11

T3 T4 T5 T1 T2

0

2
2

0

Path Metric

 67

 Figure 4.9b: Survivors at T2

c) At time T3 as shown in Figure 4.9c, there are again two branches diverging

from each state. As a result there are two paths entering each state at T4.

The path metrics are calculated for bits 01 and added to pervious metrics

from T2.

State 00

10

01

11

T3 T4 T5

0

T1 T2 2 1

1

2

0

3

3

Path Metric

2

0

 68

 Figure 4.9c: Survivors at T3

As noted previously, one path entering each state can be eliminated by choosing the one

having the larger cumulative path metric. If the metrics of the two entering paths are equal

then one path is chosen for elimination by arbitrary rule. The surviving paths at this stage

are shown in Figure 4.9d. At this point in the decoding process there is only a single

surviving path between T1 and T2. Therefore, the decoder can now decide that the state

transition which occurred between T1 and T2 was 00 to 10. Since this transition is produced

by input bit 1, the decoder gives out 1 as the first decoded bit.

Stat 00

10

01

11

T3 T4 T5 2 1 2

0

2

1 1

0

1

1

0

1

2

1

T1 T2

 69

 Figure 4.9d: Path Deciding at T3

d) At time T4 as shown in Figure 4.9e, the received bits are 00. Again the

metrics are computed for all paths. We discard all larger metrics but keep

both if they are equal. Figure 4.9e shows the survivors at time T4.

State 00

10

01

11

T3 T4 T5

1

T1 T2

1

1

2

0

0

2

4

3

1

1

Path Metric

 70

 Figure 4.9e: Survivors at T4.

The 4-step trellis is complete. We now look at the path with the lowest metric. We have

a winner and it is the one which has a path metric 1 as shown in Figure 4.9f. The path

traced by states 10, 11, 01, 10 and corresponding to bits 1101 is the decoded sequence.

The decoded path is indicated by the dark line in Figure 4.9f.

State 00

10

01

11

T3 T4 T5

1

T1 T2

1

1

2

0

0

2

0

2

1

1

2

1

0

1

 71

 Figure 4.9f: Final Path at T4.

4.7 Hard and Soft-Quantization

An ideal Viterbi decoder would work with infinite precision, or at least with

floating-point numbers. In practical systems, we quantize the received channel symbols

with one or a few bits of precision in order to reduce the complexity of the Viterbi

decoder. If the received channel symbols are quantized to one-bit precision (< 0V = 1, >

0V = 0), the result is called hard-decision data. If the received channel symbols are

quantized with more than one bit of precision, the result is called soft-decision data. A

Viterbi decoder with soft decision data inputs quantized to three or four bits of precision

State 00

10

01

11

T3 T4 T5

1

T1 T2

1

1

2

0

0

2

3

1

4

2

Path Metric

 72

can perform about 2 dB better than one working with hard-decision inputs. The usual

quantization precision is three bits. More bits provide little additional improvement.

In this thesis, hard decision decoding is used since our aim is only to compare the

performance of ordinary and generalized DSSS.

 73

CHAPTER V

SIMULATION OF COMMUNICATION SYSTEM MODEL

Simulation of a convolutional coded DSSS communication system involves a

significant amount of computation and it is therefore very time consuming. This chapter

describes the constraints involved in simulation and also talks about Monte Carlo

simulation, data generator, convolutional encoder, convolutional interleaver, PN

generator and Viterbi decoder.

C platform was used to simulate the communication system and the data collected

was plotted for analysis. The graphs shown in Chapter 6 are the graphs obtained from

simulation results for different constraint lengths and code rates.

5.1 Monte-Carlo Simulation for BER Measurement

For any communication system bit error rate (BER) gives a good measure of its

performance. There are two methods to measure BER. First method is called error

 74

counting, which counts a pre-determined number of symbols and trials, then makes a note

of the total number of errors incurred. The second is called symbol counting, which

counts a pre-determined number of errors, and then makes a note of the total number of

symbols required to produce these errors. In this thesis we use error counting for all the

simulations.

The signal and noise sources used in the communication system are random in

nature and therefore the results obtained in terms of BER are also random. Usually the

errors on the measurement of BER arise because it is impossible to have infinite number

of trials to make the estimate. When the probability of bit error is calculated by taking

the ratio of the number of errors to a given number of trials, then the measurement could

be in error because of the fact that underlying probability of error is small compared to

the infinite number of trials.

In order to obtain the desired “true” result we have to perform “infinite number”

of simulation runs, which is impossible to achieve in reality. Instead, the reliability of the

measurement could be determined, i.e. one can be confident in a quantifiable way that the

resulting BER is a good representation of the “true” result. To know more about the

theory involved with the reliability of BER measurements refer to [11]. In order to avoid

confusion it is always better to express BER in terms of a degree of confidence. Thus the

results from a Monte Carlo simulation should always be quoted in the form of confidence

intervals with an associated probability. For example: “there is a 96% probability that the

actual BER is between 0.003 and 0.0035”, where 96% is known as the confidence level,

and the difference between 0.003 and 0.0035 is the confidence interval. The confidence

interval decreases as the number of trials increases by keeping the confidence level

 75

constant, whereas the confidence level increases with the increase in number of trials by

keeping the confidence interval constant. A simple formula is used to determine the

confidence limits for a given confidence level. Let N be the number of trials and n be

the number of errors. Let p be the estimated bit error rate. Then, from [11]

[] β−=≤≤ −+ 1xpxP (5.1)

where

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+±+=± 141

2
1 2

2

β

β

d
n

n
d

N
nx (5.2)

and βd is given by

β
π

β

β

−=∫
−

− 1
2
1 22

dte
d

d

t (5.3)

Now for a confidence level of Y%, we can set

100
1 Y
−=β (5.4)

Using the above given formula the necessary length of the simulation runs can be

determined. We consider 05.0=β resulting in 96.1=βd in this thesis. However for

many practical measurements, “the rule of thumb” that counting 10 errors gives a BER

within a factor of 2 with 95% confidence is used. In order to obtain a smaller spread in

BER we need to count more errors. We consider 10000 trials for all the simulations

presented in this thesis.

 76

5.2 Generating the Message Data

Generating the data to be transmitted through the channel can be accomplished

quite simply by using a random number generator. C language provides rand() function

which produces a uniform distribution of numbers on the interval from 0 to a maximum

value. Here, we use rand() function to generate random numbers as described in [12].

Using this function, we can say that any value less than half of the maximum value is a

zero; any value greater than or equal to half of the maximum value is a one.

5.3 Simulation of Convolutional Encoder

The encoder is simulated by first filling the two tables. They are the next state

and output symbol for the convolutional encoder. A detailed description of convolutional

encoder functionality is described in Chapter 4. The table III given below is often called a

state transition table. We will refer to it as the next state table.

TABLE III: NEXT STATE TABLE
 Next State, if

Current State Input = 0: Input = 1:

00 00 10

01 00 10

10 01 11

11 01 11

 77

Now let us look at table IV given below that lists the channel output symbols,

given the current state and the input data, we will refer to as the output table:

TABLE IV: OUTPUT TABLE
 Output Symbols, if

Current State Input = 0: Input = 1:

00 00 11

01 11 00

10 10 01

11 01 10

You should now see that with these two tables, you can completely describe the

behavior of the example (rate 1/2, K = 3) convolutional encoder. Note that both of these

tables have 2(K - 1) rows and 2k columns, where K is the constraint length and k is the

number of bits input to the encoder for each cycle. These two tables will come in handy

when we start discussing the Viterbi decoder algorithm.

In a convolutional encoder, generator polynomial represents the shift register

connections to the modulo-two adders. They are usually denoted as gi = [101] where the

subscript i=1, 2, 3, etc. denote the corresponding output terminals. A “1” represents a

connection and a “0” represents no connection. Choice of generator polynomials does

influence the performance of convolutional codes. We considered the generator

polynomials listed in [5]. Table V describes all the generator polynomials used in this

thesis for different codes.

 78

TABLE V: GENERATOR POLYNOMIALS OF VARIOUS CODES

Code
Rate
(r)

Constraint
Length

(K)

g1 g2 g3 g4 g5 g6 g7

1/2 3 111 101 - - - - -

1/2 5 11111 10101 - - - - -

1/2 7 1111111 1101101 - - - - -

1/3 3 111 101 110 - - - -

1/5 3 111 101 110 011 010 - -

1/7 3 111 101 110 011 010 111 101

Mapping the one/zero output of the convolutional encoder onto an antipodal

baseband signaling scheme is simply a matter of translating zeroes to +1s and ones to -1s.

This can be accomplished by performing the operation y = 1 – 2x on each convolutional

encoder output symbol.

5.4 Pseudonoise Sequence and Energy Normalization

The spreading sequence used in the simulation of coded generalized DSSS is

different from the ordinary sequence. The sequence used is {–1, 0, +1} instead of {–1,

+1} and it is generated using a random number generator with some arbitrary seed. The

random number generators used for this purpose in this thesis are ran0() and ran2()

described in [12]. They produce uniform deviates which are random numbers which lie

within a specific range from 0 to 100, each number with equal probability of occurring.

 79

Now the generated number is divided by 3 and if the remainder is equal to 0 we consider

1 to be generated, if the remainder is 1 we consider 0 to be generated and if the remainder

is 2 then we consider -1 to be generated. For each symbol we calculate total number of -

1, 0 and +1 chips generated.

In order to account for the energy lost due to the extra 0-valued chip in the

generalized sequence we need to normalize the PN generated chips before they are

transmitted across the noisy channel. The normalization factor will consolidate the

energy lost due to the “0” chip in the {1, 0, +1} sequence. At the receiver end the same

normalized PN sequence is multiplied with the received noisy chips before hard decision

is performed. The normalization factor is given by
u

NLc = , where u represents the total

number of non-zero chips per L encoded symbols in the PN sequence.

5.5 Simulation of Channel

We consider a channel model in which nothing is known about the interference

except that it is bounded in power. Furthermore, it is also independent of the transmitted

signal and thermal noise. In order to avoid the overhead of interleaving and

deinterleaving, we directly interleave the interference in the channel while adding it to the

signal which is described in Figure 5.1. Our measure of reliability is the worst-case error

probability over all such unknown signals. In order to simulate the worst-case

performance, first we distribute the interference over D chips out of total NL chips using

 80

convolutional or pseudorandom interleaving and later we maximize the simulated BER

for any given D over all values of D to get the worst-case performance. We use chip-

level interleaving in this thesis as it performs better than symbol-level interleaving as

described in [3].

Adding noise to the transmitted channel symbols produced by the convolutional

encoder involves generating Gaussian random numbers, scaling the numbers according to

the desired energy per chip to noise density ratio and adding the scaled Gaussian random

numbers to the channel symbol values. However, in this thesis we did not add Gaussian

noise to better emphasize the performance due to the presence of arbitrary interference.

5.6 Integration and Hard Quantization

At the receiver end, the same normalized PN code sequence used at the

transmitter end is multiplied with the received noisy chips before any hard decision is

performed over the received signal. A waveform channel would require an integrator for

the correlation operation whereas the vector representation, which we are using for

simulation purposes, requires only vector correlations i.e. chip by chip multiplication.

After the multiplication the chips are converted to symbols and then fed to decision box.

In our case the decision box will compare the input signal to zero threshold and output +1

if it is greater than zero and –1 if it is less than zero. Once the symbols are out of the

decision box, they are fed to Viterbi decoder to get back the original message bits.

 81

5.7 Simulation of Viterbi Decoder

A detailed description of the Viterbi decoder functionality is given in Chapter 4.

Here we talk about various steps involved in simulating it in software. In this thesis we

have chosen 5 × K as the decoding depth of the Viterbi decoder as described in [7], and

also research has shown that a decoding depth of 5 × K is sufficient for Viterbi decoding

with the type of codes used in this thesis. Any deeper traceback increases decoding delay

and decoder memory requirements, while not significantly improving the performance of

the decoder. To implement a Viterbi decoder in software, the first step is to build some

data structures around which the decoder algorithm will be implemented. These data

structures are best implemented as arrays. The primary six arrays that we need for the

Viterbi decoder are as follows:

 A copy of the convolutional encoder next state table, the state transition

table of the encoder. The dimensions of this table (rows × columns) are

2(K–1) × 2k. This array needs to be initialized before starting the decoding

process.

 A copy of the convolutional encoder output table. The dimensions of this

table are 2(K–1) × 2k. This array needs to be initialized before starting the

decoding process.

 An array or table showing for each convolutional encoder current state and

next state, what input value (0 or 1) would produce the next state, given

the current state. This array is called the input table. Its dimensions are

 82

2(K–1) × 2(K–1). This array needs to be initialized before starting the

decoding process.

 An array to store state predecessor history for each encoder state for up to

K×5 + 1 received channel symbol pairs. We'll call this table the state

history table. The dimensions of this array are 2(K–1) × (K×5 + 1). This

array does not need to be initialized before starting the decoding process.

 An array to store the accumulated error metrics for each state computed

using the add-compare-select operation. This array will be called the

accumulated error metric array. The dimensions of this array are 2(K–1) ×

2. This array does not need to be initialized before starting the decoding

process.

 An array to store a list of states determined during trace back. It is called

the state sequence array. The dimensions of this array are K×5 + 1. This

array does not need to be initialized before starting the decoding process.

5.8 Simulation of Coded Generalized DSSS Communication System

 In order to avoid the overhead of interleaving and de-interleaving process as

described in Figure 3.1, we directly interleave the interference in the channel while

adding it to the signal which is described in Figure 5.1. The steps involved in simulating

a spread spectrum communication system using convolutional coding and Viterbi

decoding are as follows:

 83

 Figure 5.1: Simulated System Model

Data

Generator

Convolutional

Encoder

PN Sequence and

Energy Normalization

PN Code

Generator

)(tX m

)(tW

Thermal Noise BER

Calculation

m

m̂
Hard Decision Viterbi

Decoder

Interference

Interleaver

Interference

)(tS

Interference

Generator

)(ˆ tY

 84

 Generate the data to be transmitted through the channel. In our case it is

always in blocks of 5 × (constraint length) i.e. 5 × K binary data bits.

 Convolutionally encode the data and map the one/zero channel symbols

onto an antipodal baseband signal, producing transmitted channel symbols

i.e. L =
r
K×5 symbols where r is the code rate of encoder.

 Multiply the baseband signals with normalized (for generalized DSSS)

pseudonoise code sequence of length N. Here the symbols get converted

into chips.

 Now distribute the interference over D chips out of total N×L chips using

convolutional or pseudorandom interleaving, later the simulation result

maximizes over all the values of D.

 Multiply the received noisy chips with the same generalized pseudonoise

code sequence used at the transmitter and later perform 1-bit quantization

of the received channel symbols which is termed as hard-decision; here

chips are converted back to symbols.

 Perform Viterbi decoding on the quantized received channel symbols

which results in binary data bits.

 Compare the decoded data bits to the transmitted data bits and count the

number of errors in order to calculate the BER of the communication

system for the given value of D.

 85

 Maximize calculated BER over all values of D to find the worst-case

BER.

In this thesis we accurately model the effects of interference even by bypassing

the steps of modulating the channel symbols onto a transmitted carrier, and then

demodulating the received carrier to recover the channel symbols. We choose this

method because it avoids complexity and at the same time it will not affect the

performance of the system.

 86

CHAPTER VI

NUMERICAL RESULTS

In this thesis we consider convolutional codes with different constraint lengths

and code rates to compare the worst-case error performance of coded ordinary and coded

generalized DSSS schemes. Constraint lengths considered are K = 3, 5 and 7 and code

rates considered are r = 1/2, 1/3, 1/5 and 1/7. Results are obtained by keeping one

variable constant while varying the other. Conclusions are drawn from the observations.

In this chapter, plots showing “generalized” correspond to the coded generalized

DSSS communication system and plots showing “ordinary” correspond to the ordinary

DSSS. The Eb/Ni used in the plots is defined as follows:

r
NKEb

××
=

5

K = Constraint length

5 × K = Decoding depth

N = Chip length

r = Code rate of convolutional encoder

 87

where Eb is defined signal energy. Ni is the interference considered for a bit set of

r
NK ××5 as described in section 3.1.2 of Chapter 3.

First we compare codes with the same constraint length and see how they perform

as code rate varies. We compare the performance of various codes and compare the

difference between the curves for ordinary DSSS and generalized DSSS for each code,

keeping constraint length constant. This is followed by comparison of codes with the

same code rate and different constraint lengths of the convolutional code. We compare

the performance of different codes and compare the difference between the curves for

ordinary DSSS and generalized DSSS for each code, keeping code rate constant. Then

we compare codes with same code rate and same constraint length with varying lengths

of the pseudorandom chip sequence (N). We compare the performance of various codes

and compare the difference between the curves for ordinary DSSS and generalized DSSS.

Then we compare codes with same code rate and same constraint length by varying the

interleaver between convolutional and pseudorandom. We compare the performance of

various codes and compare the difference between the curves for ordinary DSSS and

generalized DSSS. Then we compare codes with same code rate and same constraint

length with varying the decoding depth of the Viterbi decoder. We compare the

performance of various codes and compare the difference between the curves for ordinary

DSSS and generalized DSSS. Finally we compare codes with same code rate and same

constraint length by varying the number of rows of convolutional interleaver.

 88

6.1 Convolutional Codes with Same Constraint Length

In this section we compare the worst-case performance of convolutional codes

with the same constraint length and see how they perform as code rate varies. All the

codes in this section are used with a chip sequence length of N = 10, decoding depth of

5K and convolutional interleaving with the number of rows as 5.

The codes shown in Figures 6.1, 6.2, 6.3 and 6.4 have the same constraint length

of K = 3. They have code rates of r = 1/2, 1/3, 1/5 and 1/7 respectively. Comparing the

performance at 10-3 level, we get Table VI.

TABLE VI: VARYING CODE RATE (R)
 Code Code Rate (r) Generalized (dB) Ordinary (dB) Gain

Figure 6.1 1/2 -0.5 0.5 1

Figure 6.2 1/3 -2 -0.6 1.4

Figure 6.3 1/5 -2.5 -1.0 1.5

Figure 6.4 1/7 -4 -2.4 1.6

From the results in this section it is observed that with constant constraint length

of the convolutional code as code rate decreases performance improves, at the same time

the difference between two systems increases. It is expected that decreasing code length

(increasing redundancy) would result in better performance. It is interesting to also see

that the difference between ordinary and generalized DSSS increases with decreasing

code length, as stipulated by Hizlan [3].

 89

N=10_K=3_r=1/2

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.1: Code Rate, r = 1/2

 90

N=10_K=3_r=1/3

0.000001

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

Eb/NI

W
or

st
-c

as
e

Er
ro

rP
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.2: Code Rate, r = 1/3

 91

N=10_K=3_ r=1/5

0.000001

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

Eb/NI

W
or

st
-c

as
e

Er
ro

rP
ro

ba
bi

lit
y

Ordinary Generalized

 Figure 6.3: Code Rate, r = 1/5

 92

N=10_K=3_r=1/7

0.000001

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

Eb/NI

W
or

st
-c

as
e

Er
ro

rP
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.4: Code Rate, r = 1/7

 93

6.2 Convolutional Codes with Same Code Rate

In this section we compare performance of convolutional codes with the same

code rate and see how they perform as constraint length varies. All the codes used in this

section have a chip length of N = 10, decoding depth of 5K and use convolutional

interleaving with number of rows as 5.

The codes shown in Figure 6.5, 6.6 and 6.7 have the same code rate of r = 1/2.

They have constraint lengths of K = 3, 5 and 7 respectively. Comparing the performance

at 10-3 level, we get Table VII.

TABLE VII: VARYING CONSTRAINT LENGTH (K)
 Code Constraint

Length (K)

Generalized (dB) Ordinary (dB) Gain

Figure 6.5 3 -0.5 0.5 1

Figure 6.6 5 -0.6 0.3 0.9

Figure 6.7 7 -3.9 -3.1 0.8

From the results in this section it is observed that with constant code rate of the

convolutional code as constraint length increases performance improves, at the same time

the difference between two systems decreases. Again, it is expected that larger constraint

lengths produce better results. It is interesting to see that the difference between the two

systems gets smaller with increasing constraint length. This would suggest that

generalized DSSS becomes increasingly more beneficial as coding memory is decreased.

 94

N=10_K=3_r=1/2

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.5: Constraint length, K = 3

 95

N=10_K=5_r=1/2

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.6: Constraint length, K = 5

 96

N=10_K=7_ r=1/2

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

Ordinary Generalized

 Figure 6.7: Constraint length, K = 7

 97

6.3 Same Code Rate and Constraint Length with Varying Chip Length

In this section we compare codes with same code rate and same constraint length

with varying length of pseudo-random chip sequence (N). All the codes used in this

section have decoding depth of 5K and use convolutional Interleaving with number of

rows as 5.

The codes shown in Figure 6.8 and 6.9 have constraint length of K = 3 and code

rate of r = 1/2. They have chip length (N) of 10 and 20 respectively. Comparing the

performance at 10-3 level, we get Table VIII.

TABLE VIII: VARYING CHIP LENGTH FOR K = 3 AND R = 1/2
 Code Chip Length (N) Generalized (dB) Ordinary (dB) Gain

Figure 6.8 10 -0.5 0.5 1

Figure 6.9 20 -3.6 -2.8 0.8

The codes shown in Figure 6.10 and 6.11 have the same constraint length of K = 3

and same code rate of r = 1/3 respectively. Comparing the performance at 10-3 level, we

get Table IX.

TABLE IX: VARYING CHIP LENGTH FOR K = 3 AND R = 1/3
 Code Chip Length (N) Generalized (dB) Ordinary (dB) Gain

Figure 6.10 10 -2.0 -0.6 1.4

Figure 6.11 20 -5.8 -4.7 0.9

 98

N=10_K=3_r=1/2

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.8: Chip Length, N = 10

 99

N=20_K=3_r=1/2

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.9: Chip Length, N = 20

 100

N=10_K=3_r=1/3

0.000001

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

Eb/NI

W
or

st
-c

as
e

Er
ro

rP
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.10: Chip Length, N = 10

 101

N=20_K=3_r=1/3

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.11: Chip Length, N = 20

 102

The codes shown in Figure 6.12 and 6.13 have the same constraint length of K =

3, same code rate of r = 1/5 and used convolutional Interleaving. Comparing the

performance at 10-3 level, we get Table X.

TABLE X: VARYING CHIP LENGTH FOR K = 3 AND R = 1/5
 Code Chip Length (N) Generalized (dB) Ordinary (dB) Gain

Figure 6.12 10 -2.5 -1.0 1.5

Figure 6.13 20 -5.1 -4.0 1.1

The codes shown in Figure 6.14 and 6.15 have the same constraint length of K = 3

and same code rate of r = 1/7 respectively. Comparing the performance at 10-3 level, we

get Table XI.

TABLE XI: VARYING CHIP LENGTH FOR K = 3 AND R = 1/7
 Code Chip Length (N) Generalized (dB) Ordinary (dB) Gain

Figure 6.14 10 -4.0 -2.4 1.6

Figure 6.15 20 -4.3 -3.0 1.3

The codes shown in Figure 6.16 and 6.17 have constraint length of K = 3 and

code rate of r = 1/2. Comparing the performance at 10-3 level, we get Table XII.

 103

N=10_K=3_ r=1/5

0.000001

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

Ordinary Generalized

 Figure 6.12: Chip Length, N = 10

 104

N=20_K=3_r=1/5

0.000001

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.13: Chip Length, N = 20

 105

N=10_K=3_r=1/7

0.000001

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

Eb/NI

W
or

st
-c

as
e

Er
ro

rP
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.14: Chip Length, N = 10

 106

N=20_K=3_r=1/7

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

Eb/NI

W
or

st
-c

as
e

Er
ro

rP
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.15: Chip Length, N = 20

 107

N=10_K=3_r=1/2

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.16: Chip Length, N = 10

 108

N=20_K=3_r=1/2

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.17: Chip length, N = 20

 109

N=10_K=5_r=1/2

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

Eb/NI

W
or

st
-c

as
e

Er
ro

rP
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.18: Chip length, N = 10

 110

N=20_K=5_r=1/2

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.19: Chip Length, N = 20

 111

N=10_K=7_ r=1/2

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

Ordinary Generalized

 Figure 6.20: Chip Length, N = 10

 112

N=20_K=7_r=1/2

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.21: Chip Length, N = 20

 113

TABLE XII: VARYING CHIP LENGTH FOR K = 3 AND R = 1/2
 Code Chip Length (N) Generalized (dB) Ordinary (dB) Gain

Figure 6.16 10 -0.5 0.5 1

Figure 6.17 20 -3.6 -2.8 0.8

The codes shown in Figure 6.18 and 6.19 have constraint length of K = 5 and

code rate of r = 1/2. Comparing the performance at 10-3 level, we get Table XIII.

TABLE XIII: VARYING CHIP LENGTH FOR K = 5 AND R = 1/2
 Code Chip Length (N) Generalized (dB) Ordinary (dB) Gain

Figure 6.18 10 -0.6 0.3 0.9

Figure 6.19 20 -0.7 0 0.7

The codes shown in Figure 6.20 and 6.21 have constraint length of K = 7 and

code rate of r = 1/2. Comparing the performance at 10-3 level, we get Table XIV.

TABLE XIV: VARYING CHIP LENGTH FOR K = 7 AND R = 1/2
 Code Chip Length (N) Generalized (dB) Ordinary (dB) Gain

Figure 6.20 10 -3.9 -3.1 0.8

Figure 6.21 20 -4.0 -3.5 0.5

From the results in this section it is observed that with same constraint length and

same code rate as chip length (N) increases performance improves, at the same time the

 114

difference between two systems decreases. Again, the first observation here is obvious.

The second observation suggests that generalized DSSS becomes increasingly more

beneficial compared to ordinary DSSS as other parameters of the communication system

(in this case N) are varied to make it less robust.

6.4 Same Code Rate and Constraint Length with Varying Interleaver

In this section we compare codes with same code rate and same constraint length

by varying Interleaver between convolutional and random. All the codes used in this

section have chip length of N = 10, decoding depth of 5K and number of rows of

convolutional Interleaver as 5.

The codes shown in Figure 6.22 and 6.23 have the same constraint length of K =

3, same code rate of r = 1/2 and they use convolutional, random Interleaver respectively.

Comparing the performance at 10-3 level, we get Table XV.

TABLE XV: VARYING INTERLEAVER FOR K = 3 AND R = 1/2
 Code Interleaver Generalized (dB) Ordinary (dB) Gain

Figure 6.22 Convolutional -0.5 0.5 1

Figure 6.23 Random -1.5 -1.0 0.5

The codes shown in Figure 6.24 and 6.25 have constraint length of K = 3 and

code rate of r = 1/3. Comparing the performance at 10-3 level, we get Table XVI.

 115

N=10_K=3_r=1/2

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.22: Convolutional Interleaver

 116

N=10_K=3_r=1/2

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.23: Random Interleaver

 117

N=10_K=3_r=1/3

0.000001

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

Eb/NI

W
or

st
-c

as
e

Er
ro

rP
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.24: Convolutional Interleaver

 118

N=10_K=3_ r=1/3

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

Ordinary Generalized

 Figure 6.25: Random Interleaver

 119

N=10_K=3_ r=1/5

0.000001

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

Ordinary Generalized

 Figure 6.26: Convolutional Interleaver

 120

N=10_K=3_ r=1/5

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Eb/NI

W
or

st
-c

as
e

Er
ro

rP
ro

ba
bi

lit
y

Ordinary Generalized

 Figure 6.27: Random Interleaver

 121

TABLE XVI: VARYING INTERLEAVER FOR K = 3 AND R = 1/3
 Code Interleaver Generalized (dB) Ordinary (dB) Gain

Figure 6.24 Convolutional -2.0 -0.6 1.4

Figure 6.25 Random -3.0 -2.0 1

The codes shown in Figure 6.26 and 6.27 have constraint length of K = 3 and

code rate of r = 1/5. Comparing the performance at 10-3 level, we get Table XVII.

TABLE XVII: VARYING INTERLEAVER FOR K = 3 AND R = 1/5
 Code Interleaver Generalized (dB) Ordinary (dB) Gain

Figure 6.26 Convolutional -2.5 -1.0 1.5

Figure 6.27 Random -3.5 -2.3 1.2

The codes shown in Figure 6.28 and 6.29 have constraint length of K = 3 and

code rate of r = 1/7. Comparing the performance at 10-3 level, we get Table XVIII.

TABLE XVIII: VARYING INTERLEAVER FOR K = 3 AND R = 1/7
 Code Interleaver Generalized (dB) Ordinary (dB) Gain

Figure 6.28 Convolutional -4.0 -2.4 1.6

Figure 6.29 Random -4.1 -3.0 1.1

 122

N=10_K=3_r=1/7

0.000001

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

Eb/NI

W
or

st
-c

as
e

Er
ro

rP
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.28: Convolutional Interleaver

 123

N=10_K=3_ r=1/7

0.000001

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

Eb/NI

W
or

st
-c

as
e

Er
ro

rP
ro

ba
bi

lit
y

Ordinary Generalized

 Figure 6.29: Random Interleaver

 124

The codes shown in Figure 6.30 and 6.31 have constraint length of K = 3 and

code rate of r = 1/2 respectively. Comparing the performance at 10-3 level, we get Table

XIX.

TABLE XIX: VARYING INTERLEAVER FOR K = 3 AND R = 1/2
 Code Interleaver Generalized (dB) Ordinary (dB) Gain

Figure 6.30 Convolutional -0.5 0.5 1

Figure 6.31 Random -1.5 -1.0 0.5

The codes shown in Figure 6.32 and 6.33 have constraint length of K = 5 and

code rate of r = 1/2 respectively. Comparing the performance at 10-3 level, we get Table

XX.

TABLE XX: VARYING INTERLEAVER FOR K = 5 AND R = 1/2
 Code Interleaver Generalized (dB) Ordinary (dB) Gain

Figure 6.32 Convolutional -0.6 0.3 0.9

Figure 6.33 Random -0.8 -0.1 0.7

The codes shown in Figure 6.34 and 6.35 have constraint length of K = 7 and

code rate of r = 1/2 respectively. Comparing the performance at 10-3 level, we get Table

XXI.

 125

N=10_K=3_r=1/2

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.30: Convolutional Interleaver

 126

N=10_K=3_ r=1/2

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

Eb/NI

W
or

st
-c

as
e

Er
ro

rP
ro

ba
bi

lit
y

Ordinary Generalized

 Figure 6.31: Random Interleaver

 127

N=10_K=5_r=1/2

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

Eb/NI

W
or

st
-c

as
e

Er
ro

rP
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.32: Convolutional Interleaver

 128

N=10_K=5_ r=1/2

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

Eb/NI

W
or

st
-c

as
e

Er
ro

rP
ro

ba
bi

lit
y

Ordinary Generalized

 Figure 6.33: Random Interleaving

 129

N=10_K=7_ r=1/2

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Eb/NI

W
or

st
-c

as
e

Er
ro

rP
ro

ba
bi

lit
y

Ordinary Generalized

 Figure 6.34: Convolutional Interleaver

 130

N=10_K=7_ r=1/2

0.000001

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

Ordinary Generalized

 Figure 6.35: Random Interleaving

 131

N=10_K=3_r=1/2

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.36: Decoding depth = 3K

 132

N=10_K=3_r=1/2

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.37: Decoding Depth = 5K

 133

N=10_K=3_r=1/2

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.38: Decoding Depth = 7K

 134

N=10_K=3_r=1/2

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.39: Convolutional Interleaver rows = 5

 135

N=10_K=3_r=1/2

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.40: Convolutional Interleaver Rows = 8

 136

N=10_K=3_r=1/2

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

Eb/NI

W
or

st
-c

as
e

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized

 Figure 6.41: Convolutional Interleaver Rows = 10

 137

TABLE XXI: VARYING INTERLEAVER FOR K = 7 AND R = 1/2
 Code Interleaver Generalized (dB) Ordinary (dB) Gain

Figure 6.34 Convolutional -3.9 -3.1 0.8

Figure 6.35 Random -4.4 -3.8 0.6

From the results in this section it is observed that for constant constraint length

and code rate random interleaver performs better than convolutional interleaver, at the

same time the difference between two systems decreases from convolutional to random.

The first observation suggests that randomization helps with robustness. This is well

inline with the arguments presented for the optimal random modem for robust

communication [1].

6.5 Same Code Rate and Constraint Length with Varying Decoder Depth

In this section we compare codes with same code rate and same constraint length

with varying decoding depth of Viterbi decoder. All the codes used in this section have a

chip length of N = 10 and use convolutional Interleaving with number of rows as 5.

The codes shown in Figure 6.36, 6.37 and 6.38 have constraint length of K = 3

and code rate of r = 1/2. They have decoding depth of 3K, 5K and 7K respectively.

Comparing the performance at 10-3 level, we get table XXII.

 138

TABLE XXII: VARYING DECODING DEPTH
 Code Decoding Depth Generalized (dB) Ordinary (dB) Gain

Figure 6.36 3K 1 1.7 0.7

Figure 6.37 5K -0.5 0.5 1

Figure 6.38 7K -0.7 0.4 1.1

From the results in this section it is observed that with same constraint length and

same code rate, as decoding depth increases performance improves, at the same time the

difference between two systems also increases. The first observation is expected since a

Viterbi decoder performs well with an increase in its decoding depth. It is also

interesting to see that generalized spread spectrum becomes increasingly more beneficial

as interleaving depth is increased.

6.6 Same Code Rate, Constraint Length with Varying Interleaver Rows

In this section we compare codes with same code rate and same constraint length

with varying rows of convolutional Interleaver. All the codes used in this section have a

chip length of N = 10 and decoding depth of 5K.

The codes shown in Figure 6.39, 6.40 and 6.41 have constraint length of K = 3,

code rate of r = 1/2 and use convolutional Interleaving with number of rows as 5, 8 and

10 respectively. Comparing the performance at 10-3 level, we get Table XXIII.

 139

TABLE XXIII: VARYING CONVOLUTIONAL INTERLEAVER ROWS
 Code Interleaver Rows Generalized (dB) Ordinary (dB) Gain

Figure 6.39 5 -0.5 0.5 1

Figure 6.40 8 -0.5 0.4 0.9

Figure 6.41 10 -0.5 0.3 0.8

From the results in this section it is observed that with same constraint length and

same code rate as number of rows of convolutional interleaver increases performance

improves, at the same time the difference between two systems decreases. The first

observation is expected since with increasing number of rows the interleaver works

better, behaving more like a random interleaver. The second observation also makes

sense since generalized DSSS becomes increasingly more beneficial as other parameters

of the system (in this case, the number of rows) are varied to make the system less robust.

 140

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

Simulation results of the worst-case performance of ordinary and generalized

DSSS show that generalized DSSS performs consistently better than ordinary DSSS.

This observation has been well known and studied. Other observations are:

1. Performance of codes with same constraint length improves as code rate

decreases, at the same time the difference between two systems increases. It is

expected that decreasing code length (increasing redundancy) would result in

better performance. It is interesting to also see that the difference between

ordinary and generalized DSSS increases with decreasing code length, as

stipulated by Hizlan [3].

2. Performance of codes with same code rate improves as constraint length

increases, at the same time the difference between two systems decreases. Again,

it is expected that larger constraint lengths produce better results. It is interesting

to see that the difference between the two systems gets smaller with increasing

 141

constraint length. This would suggest that generalized DSSS becomes

increasingly more beneficial as coding memory is decreased.

3. Performance of codes with same constraint length and same code rate improves as

chip length increases, at the same time the difference between two systems

decreases. Again, the first observation here is obvious. The second observation

suggests that generalized DSSS becomes increasingly more beneficial compared

to ordinary DSSS as other parameters of the communication system (in this case

N) are varied to make it less robust.

4. Performance of codes with same constraint length and same code rate is better

with random interleaver than convolutional interleaver, at the same time the

difference between two systems decreases from convolutional to random

interleaving. The first observation suggests that randomization helps with

robustness. This is well inline with the arguments presented for the optimal

random modem for robust communication [1].

5. Performance of codes with same constraint length and same code rate improves as

the decoding depth of Viterbi decoder increases, at the same time the difference

between two systems increases. The first observation is expected since a Viterbi

decoder performs well with an increase in its decoding depth. It is also interesting

to see that generalized spread spectrum becomes increasingly more beneficial as

interleaving depth is increased.

6. Performance of codes with same constraint length and same code rate improves as

number of rows of convolutional Interleaver increases, at the same time the

difference between two systems decreases. The first observation is expected since

 142

with increasing number of rows the interleaver works better, behaving more like a

random interleaver. The second observation also makes sense since generalized

DSSS becomes increasingly more beneficial as other parameters of the system (in

this case, the number of rows) are varied to make the system less robust.

Looking at these results as a whole, we can say that generalized DSSS

increasingly outperforms ordinary DSSS as code rate is decreased. This result confirms

the conjecture in [3]. We also see that generalized DSSS increasingly outperforms

ordinary DSSS as other parameters of the spread spectrum system are varied to make it

less robust. This suggests that generalized DSSS is increasingly more beneficial as the

conditions worsen. Furthermore, we see that random interleaving is better than

convolutional interleaving for robust communications.

As future work, it is suggested that the worst-case performance of further

generalized (five-level) DSSS with convolutional codes can be evaluated as an extension.

 143

REFERENCES

1. B. L. Hughes and M. Hizlan, “An Asymptotically Optimal Random Modem and
Detector for Robust Communication,” IEEE Trans. Inform. Theory, vol 36, pp.
810-821, July 1990.

2. Dr. Murad Hizlan, Cleveland State University, “A Generalization of Direct-
Sequence Spread-Spectrum”. Submitted for publication.

3. M. Hizlan and B. L. Hughes, “Worst-Case Error Probability of a Spread Spectrum
System in Energy Limited Interference,” IEEE Trans. Comm.., vol 39, pp. 1193-
1196, August 1991.

4. Manohar Vellala, Masters Thesis from Cleveland State University 2004, “Coded
Generalized Direct-Sequence Spread-Spectrum with Specific Codes”.

5. Ranga Kalakuntla, Masters Thesis from Cleveland State University 2004, “Further
Generalized Direct-Sequence Spread-Spectrum”.

6. Hariharan Ramaswamy, Masters Thesis from Cleveland State University 2004,
“Generation of Generalized Signature Sequences”.

7. Bernard Skalar, Digital communications: Fundamentals and Applications.
Pearson Education 2002.

8. Shu Lin and Daniel J. Costello, Error Control Coding: Fundamentals and
Applications, Prentice-Hall 1983.

9. Claude Shannon, A Mathematical Theory of Communication, Bell System Tech.
J. 27 (1948) 379–423, 623–656.

 144

10. A. J. Viterbi, "Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm," IEEE Transactions on Information Theory , vol.
IT-13, April, 1967, pp. 260-269.

11. Michel C. Jruchim, Pilip Balaban, and K. Sam Shanmugan, Simulation of
Communication Systems, Applications of Communication Theory. Plenum press,
1992.

12. William H Press, Brian P Flannery, Saul A Teukolsky, Numerical Recipes in C,
Cambridge University Press. 1998.

13. H.L. Van Trees, Detection Estimation and Modulation Theory. Wiley, 1968.

14. J. M Wozencraft and I.M Jacobs, Principles of Communication Engineering.
Wiley 1965.

15. Marvin K. Simon, Jim k. Omura, Robert A. Schotz and Barry K. Levitt, Spread
Spectrum Communications Hand Book. McGraw-Hill Inc 1994.

16. R. Ziemer, R. Peterson and D. Borth, Introduction to Spread Spectrum
Communications, Prentice Hall, 1995.

 145

APPENDICES

 146

 APPENDIX A

/* This program computes the Monte Carlo simulation of generalized DSSS based on a

canonical distribution of arbitrary interference using convolutional encoder and Viterbi

decoder */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <malloc.h>
#include <limits.h>
#define MAX_SIZE 50
#define TWOTOTHEM 4
#define MAXMETRIC 128
#define MAXINT 16384

void generateSequence(int dataLength,int *dataSequence);
void multiplyAndIntegrate(int dataLength,int codeLength,int
**codeSequence,double **signalPlusNoise,double
*decodedSequence);
void multiply(int dataLength,int codeLength,int
*dataSequence,double **codeSequence,double
**multipliedSequence);
void addSignalAndNoise(int dataLength, int codeLength,
double **multipliedSequence, double *noiseArray, double
**signalPlusNoise);
void generateCode(int dataLength,int codeLength,int
**codeArray);
void generateNoise(int snr,int length,int
*interleaveArray,int D,double *noiseArray);
void convertToSignal(int *dataSequenceAfterCoding,int
dataLength, int *dataSequenceInSignal);
void acceptEquation(int **equationSet,int k, int rate);
int nextNumber();
void compareAndDecide(int dataLength,double
*decodeSequence,int *sequenceAfterDeciding);
int getErrors(int dataLength,int *originalSequence,int
*receiveSequence);
double calculateBER(long totalNoOfBits,long
totalNoOfErrors);
void vd(int g[2][K],float es_ovr_no,float es_ovr_ni,long
channel_length,float *channel_output_vector,int
*decoder_output_matrix);

 147

void conv_encoder(int g[2][K], long data_len, int
*in_array, int *out_array);
int quant(float channel_symbol);
int soft_metric(int data, int guess);
void increasePower(int **inputSequence,double
**outputSequence);
long int idum;

int main()
{

 int **equationSet;
 int dataSequenceArray[MAX_SIZE];
 int dataSequenceAfterCodingArray[MAX_SIZE];
 int dataSequenceInSignalArray[MAX_SIZE];
 double decodedSequenceArray[MAX_SIZE];
 int sequenceAfterDecisionArray[MAX_SIZE];
 int originalDecodedDataArray[MAX_SIZE];
 int interleaveArray[MAX_SIZE];
 int codedDataSequence[MAX_SIZE];
 int codeSequenceArray[MAX_SIZE][MAX_SIZE];
 double multipliedSequenceArray[MAX_SIZE][MAX_SIZE];
 double generalizedCodeSequenceArray[MAX_SIZE][MAX_SIZE];
 double noiseSequenceArray[MAX_SIZE];
 double signalPlusNoiseArray[MAX_SIZE][MAX_SIZE];
 int sequenceAfterDeConvolution[MAX_SIZE];
 long noOfErrors,noOfBits;
 int codeLength,rate =0, dataLength=0, rows,snr,D,loops;
 dataLength = 5K;
 codeLength = N;
 rate = r;
 double worstBER,ber;
 #if K == 3 /* polynomials for K = 3 */
 int g[2][K] = {{1, 1, 1},
 {1, 0, 1}};
 #endif

 #if K == 5 /* polynomials for K = 5 */
 int g[2][K] = {{1, 1, 1, 0, 1},
 {1, 0, 0, 1, 1}};
 #endif

 #if K == 7 /* polynomials for K = 7 */
 int g[2][K] = {{1, 1, 1, 1, 0, 0, 1},
 {1, 0, 1, 1, 0, 1, 1}};
 #endif

 148

 #if K == 9 /* polynomials for K = 9 */
 int g[2][K] = {{1, 1, 1, 1, 0, 1, 0, 1, 1},
 {1, 0, 1, 1, 1, 0, 0, 0, 1}};
 #endif

/* Input parameters */

 printf("Enter constraint length K [int]: ");
 scanf("%d", &K);
 getchar();*/
 printf("Enter number of PN generator chips per bit N
[int]: ");
 scanf("%d", &N);
 getchar();
 printf("Enter code rate [int]: ");
 scanf("%d", &r);
 getchar();
 printf("Enter interleaver seed for interleaving
[negative long int]: ");
 scanf("%ld", &idum);
 getchar();

 for (snr = 0; snr < 30; snr++) {

 worstBER=0;
 for(D = 0; D<5K*rate*N;D++) {

 for(loops =0; loops <10000; loops++) {

generateSequence(dataLength, dataSequenceArray);

conv_encoder(g,dataLength,dataSequenceArray,codedDataSequen
ce);

convertToSignal(codedDataSequence, dataLength,
dataSequenceInSignalArray);

generateCode(dataLength*rate, codeLength, (int
**)codeSequenceArray);

increasePower((int **)codeSequenceArray,(double
**)generalizedCodeSequenceArray);

multiply(dataLength*rate, codeLength,
dataSequenceInSignalArray, (double
**)generalizedCodeSequenceArray, (double
**)multipliedSequenceArray);

 149

generateNoise(snr, dataLength*rate*codeLength,
interleaveArray, D, noiseSequenceArray);

addSignalAndNoise(dataLength*rate, codeLength, (double
**)multipliedSequenceArray, noiseSequenceArray, (double
**)signalPlusNoiseArray);

multiplyAndIntegrate(dataLength*rate, codeLength, (int
**)codeSequenceArray ,(double **)signalPlusNoiseArray,
decodedSequenceArray);

compareAndDecide(dataLength*rate,decodedSequenceArray,seque
nceAfterDecisionArray);

vd(g,snr,snr,dataLength*rate,(float
*)sequenceAfterDecisionArray,(int
*)sequenceAfterDeConvolution);

 noOfErrors = noOfErrors +
getErrors(dataLength, sequenceAfterDeConvolution,
dataSequenceArray);

 noOfBits = noOfBits + dataLength*rate;

 }

 ber = calculateBER(noOfBits, noOfErrors);

 if(worstBER < ber) {
 worstBER=ber;
 }

 noOfBits=0;
 noOfErrors=0;
 }

 printf("the worst BER for %d snr is %f ",snr,
worstBER);
 }
 return 0;
}

/* random data generation for message */
void generateSequence(int dataLength,int *dataSequence){
 int i;

 150

 for(i=0; i< dataLength; i++) {
 dataSequence[i]= (int)ran2()%2;
 }
}

/* at the receiver end multiply and integrate the chips
received from noisy channel */
void multiplyAndIntegrate(int dataLength, int codeLength,
 int **codeSequence,
double **signalPlusNoise,
 double *decodedSequence
)
{
 int i=0;

 for(i=0; i < dataLength; i++) {
 double temp=0;
 int j=0;

 for(j=0; j < codeLength; j++) {
 temp = temp + (codeSequence[i][j] *
signalPlusNoise[i][j]);
 }

 decodedSequence[i] = temp;
 }

}

/* calculate number of zeroes in the generalized sequence*/
void increasePower(int **inputSequence,double
**outputSequence){

 int noOfZeros=0,noOfOnes=0;
 double value=0,addedValue=0;
 int i,j;
 for(i=0;i<DATA_LENGTH;i++){

 noOfZeros=0;

 for(j=0;j<CODE_LENGTH;j++){

 if(inputSequence[i][j]==0) noOfZeros++;

 }

 151

 noOfOnes=CODE_LENGTH-noOfZeros;
 value=sqrt((double)CODE_LENGTH/noOfOnes);
 addedValue=value-1;
 for(j=0;j<CODE_LENGTH;j++){

 if(inputSequence[i][j]==1)
outputSequence[i][j]=inputSequence[i][j]+addedValue;

 else if(inputSequence[i][j]==-1)
outputSequence[i][j]=inputSequence[i][j]-addedValue;

 }
 }
 }

/* multiply symbols and chips at the transmitter end */
void multiply(int dataLength, int codeLength, int
*dataSequence,
 double **codeSequence, double
**multipliedSequence) {
 int i,j;

 for(i = 0; i < dataLength; i++) {
 for(j = 0; j < codeLength; j++) {

 multipliedSequence[i][j]=codeSequence[i][j]*dataSequen
ce[i];
 }
 }
}

/* add noise to signal */
void addSignalAndNoise(int dataLength, int codeLength,
double **multipliedSequence,
 double *noiseArray, double **signalPlusNoise)
 {
 int n=0,i=0,j;

 for(i = 0; i < dataLength; i++) {
 for(j = 0; j < codeLength; j++) {

 signalPlusNoise[i][j] = noiseArray[n] +
multipliedSequence[i][j];
 n++;
 }
 }

 152

}

/* generate code symbols */
void generateCode(int dataLength, int codeLength, int
**codeArray) {
 int i = 0,j,temp=0;

 for(i = 0;i < dataLength; i++) {
 for(j=0;j<codeLength;j++) {

 temp=(int)ran2%3;

 if(temp==0) codeArray[i][j]=0;

 else if(temp==1) codeArray[i][j]=-1;

 else codeArray[i][j]=1;
 }
 }
}

/* generate noise */
void generateNoise(int snr, int length, int
*interleaveArray, int D,
 double *noiseArray) {
 int i = 0;
 for(i = 0; i < D; i++) {

 noiseArray[interleaveArray[i]] =
sqrt(length/(pow(10,(double)(snr-10)/10)*D));

 }
}

/* convert to baseband signals */
void convertToSignal(int *dataSequenceAfterCoding, int
dataLength, int *dataSequenceInSignal){
 int i = 0;

 for(i = 0; i < dataLength;i++) {

 if(dataSequenceAfterCoding[i] == 0) {
 dataSequenceInSignal[i] = -1;
 }
 else {
 dataSequenceInSignal[i] = 1;
 }

 153

 }

}

int nextNumber(){

 //return random number
 return 0;
}

/* generator polynomials of encoder */
void acceptEquation (int **equationSet, int k, int rate) {
 int i,j;
 for(i = 0; i < rate; i++) {

 for(j = 0; j < k; j++) {

 printf("Enter the value of row %d and column %d
",i,j);
 scanf("%d",&equationSet[i][j]);
 }
 }
}

/* hard decision *
void compareAndDecide(int dataLength, double
*decodeSequence, int *sequenceAfterDeciding) {
 int i;

 for(i = 0; i < dataLength; i++) {

 if(decodeSequence[i] < 0) {
 sequenceAfterDeciding[i] = 0;
 }
 else {
 sequenceAfterDeciding[i] = 1;
 }
 }
}

/* calculate errors */
int getErrors(int dataLength,int *originalSequence,int
*receiveSequence){
 long result = 0;
 int i;

 for(i = 0; i < dataLength; i++) {

 154

 if(originalSequence[i] != receiveSequence[i])
 {
 result++;
 }
 }

 return result;

}

/* final ber calculation*/
double calculateBER(long totalNoOfBits,long
totalNoOfErrors){

 double result=0;

 result = totalNoOfErrors/totalNoOfBits;

 return result;

 }

/* convolutional encoder*/
void conv_encoder(int g[2][K], long data_len, int
*in_array, int *out_array)
{
 int m= K-1; /* K - 1 */
 long t,S; /* bit time, symbol time */
 int j, k; /* loop variables */
 int *unencoded_data; /* this is the pointer to
data array */
 int shift_reg[K]; /* the encoder shift
register */
 int sr_head; /* index to the first entry
in the sr */
 int a,b; /* the upper and lower xor gate
outputs */

 long channel_length = (data_len + m) * 2;

 /* allocate space for the zero-padded input data array
*/
 unencoded_data = (int
*)malloc((data_len+m)*sizeof(int));
 if (unencoded_data == NULL) {
 printf("\n conv_encoder.c: Can't allocate enough
memory for unencoded data! Aborting...");

 155

 exit(1);
 }

 //unencoded_data = in_array ;
 /* read the input data and store it in the array */
 for (t = 0; t < data_len; t++)
 *(unencoded_data + t) = *(in_array + t);

 /* now zero-pad the end of the data */
 for (t = 0; t < m; t++) {
 *(unencoded_data + data_len + t) = 0;
 }

 /* Initializing the shift register */
 for (j = 0; j < K; j++)
 {
 shift_reg[j] = 0;
 }

 /* In order to speed things up a little, the shift
register will be operated
 as a circular buffer, so it needs a head
pointer.we'll just be overwriting the oldest entry with the
new data. */

 sr_head = 0;

 /* initializing the channel symbol output index */
 S = 0;

 /* Here the encoding process begins */
 /* now compute the upper and lower modulo-two adder
outputs, one bit at a time */
 for (t = 0; t < data_len + m; t++)
 {
 shift_reg[sr_head] = *(unencoded_data + t);
 a = 0;
 b = 0;
 for (j = 0; j < K; j++)
 {
 k = (j + sr_head) % K;
 a ^= shift_reg[k] & g[0][j];
 b ^= shift_reg[k] & g[1][j];
 }

 /* write the upper and lower xor gate outputs as
channel symbols */

 156

 *(out_array + S) = a;
 S = S + 1;
 // printf(" %d\n",a);

 *(out_array + S) = b;
 S = S + 1;
 // printf("%d\n",b);

 sr_head -= 1; /* This is equivalent to shifting
everything right one place */
 if (sr_head < 0) /* we need to make sure that the
pointer modulo K is adjusted */
 sr_head = m;
 }
/* now transform the data from 0/1 to +1/-1 */
 for (t = 0; t < channel_length; t++)
 {

 /*if the binary data value is 1, the channel symbol
is -1; if the
 binary data value is 0, the channel symbol is +1.
*/
 *(out_array+t) = 1 - 2 * *(out_array + t);

 // printf("%d\n",*(out_array + t));

 }
/*now the dynamically allocated array is made free */
 free(unencoded_data);

}

/* viterbi decoder */
void vd(int g[2][K],float es_ovr_no,float es_ovr_ni,long
channel_length,float *channel_output_vector,int
*decoder_output_matrix)
{
 int i, j, l, ll; /* loop
variables */
 long t; /* time */
 int memory_contents[K]; /* input +
conv. encoder sr */
 int input[TWOTOTHEM][TWOTOTHEM]; /* maps
current/nxt sts to input */
 int output[TWOTOTHEM][2]; /* gives
conv. encoder output */

 157

 int nextstate[TWOTOTHEM][2]; /* for current st, gives
nxt given input */

 int accum_err_metric[TWOTOTHEM][2]; /* accumulated
error metrics */

 int state_history[TWOTOTHEM][K * 5 + 1]; /* state
history table */
 int state_sequence[K * 5 + 1]; /* state sequence list
*/
 int *channel_output_matrix; /* ptr to input matrix
*/

 int binary_output[2]; /* vector to store binary enc
output */

 int branch_output[2]; /* vector to store trial enc
output */

 int m, n, number_of_states, depth_of_trellis, step,
branch_metric,sh_ptr, sh_col, x, xx, h, hh, next_state,
last_stop; /* misc variables */
 /* n is 2^1 = 2 for rate 1/2 */
 n = 2;

 /* m (memory length) = K - 1 */
 m = K - 1;

 /* number of states = 2^(K - 1) = 2^m for k = 1 */
 number_of_states = (int) pow((double)2, m);

 depth_of_trellis = K * 5;

void deci2bin(int d, int size, int *b);
int bin2deci(int *b, int size);
int nxt_stat(int current_state, int input, int
*memory_contents);
void init_adaptive_quant(float es_ovr_no,float es_ovr_ni);
int quant(float channel_symbol);
int soft_metric(int data, int guess);

 /* initialize data structures */
 for (i = 0; i < number_of_states; i++)
 {
 for (j = 0; j < number_of_states; j++)
 input[i][j] = 0;
 for (j = 0; j < n; j++)

 158

 {
 nextstate[i][j] = 0;
 output[i][j] = 0;
 }
 for (j = 0; j <= depth_of_trellis; j++)
 {
 state_history[i][j] = 0;
 }
 /* initial accum_error_metric[x][0] = zero */
 accum_err_metric[i][0] = 0;
 /* by setting accum_error_metric[x][1] to MAXINT,
we don't need a flag */
 /* MAXINT is simply the largest possible integer,
defined in values.h */
 accum_err_metric[i][1] = MAXINT;
 }

 /* generate the state transition matrix, output
matrix, and input matrix - input matrix shows how FEC
encoder bits lead to next state */
 for (j = 0; j < number_of_states; j++)
 {
 for (l = 0; l < n; l++)
 {
 next_state = nxt_stat(j, l,
memory_contents);
 input[j][next_state] = l;

 /* now compute the convolutional encoder output
given the current state number and the input value */
 branch_output[0] = 0;
 branch_output[1] = 0;

 for (i = 0; i < K; i++)
 {
 branch_output[0] ^= memory_contents[i]
& g[0][i];
 branch_output[1] ^= memory_contents[i]
& g[1][i];
 }

 /* next state, given current state and input */
 nextstate[j][l] = next_state;

 /* output in decimal, given current state
and input */
 output[j][l] = bin2deci(branch_output, 2);

 159

 } /* end of l for loop */

 } /* end of j for loop */

#ifdef DEBUG
 printf("\nInput:");

 for (j = 0; j < number_of_states; j++)
 {
 printf("\n");

 for (l = 0; l < number_of_states; l++)
 printf("%2d ", input[j][l]);

 } /* end j for-loop */

 printf("\nOutput:");

 for (j = 0; j < number_of_states; j++)
 {
 printf("\n");
 for (l = 0; l < n; l++)
 printf("%2d ", output[j][l]);

 } /* end j for-loop */

 printf("\nNext State:");

 for (j = 0; j < number_of_states; j++)
 {
 printf("\n");

 for (l = 0; l < n; l++)
 printf("%2d ", nextstate[j][l]);

 } /* end j for-loop */

#endif

 channel_output_matrix = (int*) malloc(channel_length *
sizeof(int));

 if (channel_output_matrix == NULL)
 {
 printf("\nsdvd.c: Can't allocate memory
for channel_output_matrix! Aborting...");

 160

 exit(1);
 }

 /* now we're going to rearrange the channel output so
it has n rows, and n/2 columns where each row corresponds
to a channel symbol for a given bit and each column
corresponds to an encoded bit */
 channel_length = channel_length / n;

 /*quantization for specified es_ovr_no*/
 init_adaptive_quant(es_ovr_no,es_ovr_ni);

 /* quantize the channel output--convert float to short
integer */
 /* channel_output_matrix = reshape(channel_output, n,
channel_length) */
 for (t = 0; t < (channel_length * n); t += n)
 {
 for (i = 0; i < n; i++)
 *(channel_output_matrix + (t / n) + (i *
channel_length)) = quant(*(channel_output_vector + (t +
i)));
 } /* end t for-loop */

 /* End of setup. Start decoding of channel outputs
with forward traversal of trellis!
 Stop just before encoder-flushing bits. */
 for (t = 0; t < channel_length - m; t++)
 {
 if (t <= m)
 /* assume starting with zeroes, so just
compute paths from all-zeroes state */
 step = (int)pow((double)2, m - t * 1);
 else
 step = 1;

 /* set up the state history array pointer for
this time t */
 sh_ptr = (int) ((t + 1) % (depth_of_trellis +
1));

 /* repeat for each possible state */
 for (j = 0; j < number_of_states; j+= step)
 {
 /* repeat for each possible convolutional
encoder output n-tuple */
 for (l = 0; l < n; l++)

 161

 {
 branch_metric = 0;

/* compute branch metric per channel symbol, and sum for
all channel symbols in the convolutional encoder output n-
tuple */

/* convert the decimal representation of the encoder output
to binary */
 binary_output[0] = (output[j][l] &
0x00000002) >> 1;
 binary_output[1] = output[j][l] &
0x00000001;

 /* compute branch metric per channel
symbol, and sum for all channel symbols in the
convolutional encoder output n-tuple */
 branch_metric = branch_metric + abs(*(
channel_output_matrix +(0 * channel_length + t)) - 7 *
binary_output[0]) +
 abs(*(channel_output_matrix +(1
* channel_length + t)) - 7 * binary_output[1]);

 /* now choose the surviving path--the
one with the smaller accumlated error metric... */
 if (accum_err_metric[nextstate[j][l]
] [1] > accum_err_metric[j][0] +branch_metric)
 {
 /* save an accumulated metric
value for the survivor state */
 accum_err_metric[nextstate[j][l]
] [1] = accum_err_metric[j][0] +branch_metric;

 /* update the state_history array
with the state number of the survivor */
 state_history[nextstate[j][l]]
[sh_ptr] = j;

 } /* end of if-statement */

 } /* end of 'l' for-loop */

 } /* end of 'j' for-loop -- we have now updated
the trellis */

 /* for all rows of accum_err_metric, move col 2
to col 1 and flag col 2 */

 162

 for (j = 0; j < number_of_states; j++)
 {
 accum_err_metric[j][0] =
accum_err_metric[j][1];
 accum_err_metric[j][1] = MAXINT;

 } /* end of 'j' for-loop */

 /* now start the traceback, if we've filled the
trellis */
 if (t >= depth_of_trellis - 1)
 {

 /* initialize the state_sequence vector--
probably unnecessary */
 for (j = 0; j <= depth_of_trellis; j++)
 state_sequence[j] = 0;

 /* find the element of state_history with
the min. accum. error metric */
 /* since the outer states are reached by
relatively-improbable runs of zeroes or ones,
 search from the top and bottom of the
trellis in */
 x = MAXINT;
 for (j = 0; j < (number_of_states / 2);
j++)

 {
 if (accum_err_metric[j][0] <
accum_err_metric[number_of_states - 1 - j][0])

 {
 xx = accum_err_metric[j][0];

 hh = j;

 }
 else
 {
 xx =
accum_err_metric[number_of_states - 1 - j][0];
 hh = number_of_states - 1 - j;
 }
 if (xx < x)
 {
 x = xx;

 163

 h = hh;
 }
 } /* end 'j' for-loop */

 /* now pick the starting point for traceback
*/
 state_sequence[depth_of_trellis] = h;

 /* now work backwards from the end of the
trellis to the oldest state in the trellis to determine the
optimal path. The purpose of this is to determine the most
likely state sequence at the encoder based on what channel
symbols we received. */

 for (j = depth_of_trellis; j > 0; j--)
 {
 sh_col = j + (sh_ptr -
depth_of_trellis);

 if (sh_col < 0)

 sh_col = sh_col + depth_of_trellis
+ 1;
 state_sequence[j - 1] = state_history[
state_sequence[j]] [sh_col];

 } /* end of j for-loop */

 /* now figure out what input sequence
corresponds to the state sequence in the optimal path */
 *(decoder_output_matrix + t -
depth_of_trellis + 1) = input[state_sequence[0]] [
state_sequence[1]];
 } /* end of if-statement */
 } /* end of 't' for-loop */

 /* now decode the encoder flushing channel-output bits
*/
 for (t = channel_length - m; t < channel_length; t++)

 {
 /* set up the state history array pointer for
this time t */
 sh_ptr = (int) ((t + 1) % (depth_of_trellis +
1));

 164

 /* don't need to consider states where input was
a 1, so determine what is the highest possible
 state number where input was 0 */
 last_stop = number_of_states /(int)
pow((double)2, t - channel_length + m);

 /* repeat for each possible state */
 for (j = 0; j < last_stop; j++)
 {
 branch_metric = 0;
 deci2bin(output[j][0], n, binary_output);

 /* compute metric per channel bit, and sum
for all channel bits in the convolutional encoder output n-
tuple */
 for (ll = 0; ll < n; ll++)
 {
 branch_metric = branch_metric +
soft_metric(*(channel_output_matrix +(ll * channel_length
+ t)), binary_output[ll]);
 } /* end of 'll' for loop */

 /* now choose the surviving path--the one
with the smaller total metric... */
 if ((accum_err_metric[nextstate[j][0]][1]
> accum_err_metric[j][0] +branch_metric) /*|| flag[
nextstate[j][0]] == 0*/)
 {

/* save a state metric value for the survivor state */
 accum_err_metric[nextstate[j][0]][1]
= accum_err_metric[j][0] + branch_metric;

 /* update the state_history array with
the state number of the survivor */
 state_history[nextstate[j][0]
][sh_ptr] = j;
 } /* end of if-statement */

 } /* end of 'j' for-loop */

 /* for all rows of accum_err_metric, swap columns
1 and 2 */
 for (j = 0; j < number_of_states; j++)
 {
 accum_err_metric[j][0] =
accum_err_metric[j][1];

 165

 accum_err_metric[j][1] = MAXINT;

 } /* end of 'j' for-loop */

 /* now start the traceback, if i >=
depth_of_trellis - 1*/
 if (t >= depth_of_trellis - 1)
 {
 /* initialize the state_sequence vector */
 for (j = 0; j <= depth_of_trellis; j++)
state_sequence[j] = 0;

 /* find the state_history element with the
minimum accum. error metric */
 x = accum_err_metric[0][0];
 h = 0;
 for (j = 1; j < last_stop; j++)
 {
 if (accum_err_metric[j][0] < x)
 {
 x = accum_err_metric[j][0];
 h = j;
 } /* end if */

 } /* end 'j' for-loop */

 state_sequence[depth_of_trellis] = h;
/* now work backwards from the end of the trellis to the
oldest state in the trellis to determine the optimal
path.The purpose of this is to determine the most likely
state sequence at the encoder based on what channel symbols
we received. */
 for (j = depth_of_trellis; j > 0; j--)
 {
 sh_col = j + (sh_ptr -
depth_of_trellis);
 if (sh_col < 0)
 sh_col = sh_col + depth_of_trellis
+ 1;
 state_sequence[j - 1] = state_history[
state_sequence[j]][sh_col];
 } /* end of j for-loop */
 /* now figure out what input sequence
corresponds to the optimal path */
 *(decoder_output_matrix + t -
depth_of_trellis + 1) = input[state_sequence[0]][
state_sequence[1]];

 166

 } /* end of if-statement */

 } /* end of 't' for-loop */

 for (i = 1; i < depth_of_trellis - m; i++)
 {
 *(decoder_output_matrix + channel_length -
depth_of_trellis + i) = input[state_sequence[i]] [
state_sequence[i + 1]];
 }
 for(i=0;i<channel_length-m;i++)
 {
 printf("\n decoder output matrix is
%d",*(decoder_output_matrix + i));
 getchar();
 }
 /* free the dynamically allocated array storage area
*/
 free(channel_output_matrix);
 return;
} /* end of function vd */

int nxt_stat(int current_state, int input, int
*memory_contents)
 {
 int binary_state[K - 1]; /* binary
value of current state */
 int next_state_binary[K - 1]; /* binary
value of next state */
 int next_state; /* decimal
value of next state */
 int i; /* loop
variable */
 void deci2bin(int d, int size, int *b);
 int bin2deci(int *b, int size);
/* convert the decimal value of the current state number to
binary */
 deci2bin(current_state, K - 1, binary_state);
/* given the input and current state number, compute the
next state number */
 next_state_binary[0] = input;

 for (i = 1; i < K - 1; i++)
 next_state_binary[i] = binary_state[i -
1];/* convert the binary value of the next state number to
decimal */

 167

 next_state = bin2deci(next_state_binary, K -
1);/* memory_contents are the inputs to the modulo-two
adders in the encoder */
 memory_contents[0] = input;
 for (i = 1; i < K; i++)
 memory_contents[i] = binary_state[i - 1];
 return(next_state);
 }

 /* this function converts a decimal number to a binary
number, stored as a vector MSB first,having a specified
number of bits with leading zeroes as necessary */
 void deci2bin(int d, int size, int *b)
 {
 int i;
 for(i = 0; i < size; i++)
 b[i] = 0;
 b[size - 1] = d & 0x01;

 for (i = size - 2; i >= 0; i--)
 {
 d = d >> 1;
 b[i] = d & 0x01;
 }
 }

 /* this function converts a binary number having a
specified number of bits to the corresponding decimal
number ith improvement contributed by Bryan Ewbank
2001.11.28 */

 int bin2deci(int *b, int size)
 {
 int i, d;
 d = 0;
 for (i = 0; i < size; i++)
 d += b[i] << (size - i - 1);
 return(d);
 }

/* Function to generate uniform deviates using idum*/

#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMM1 (IM1-1)
#define IA1 40014

 168

#define IA2 40692
#define IQ1 53668
#define IQ2 52774
#define IR1 12211
#define IR2 3791
#define NTAB 32
#define NDIV (1+IMM1/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)

float ran2(void)
{
 int j;
 long k;
 static long idum2=123456789;
 static long iy=0;
 static long iv[NTAB];
 float temp;

 if (idum <= 0) {
 if (-(idum) < 1) idum = 1;
 else idum = -(idum);
 idum2 = (idum);
 for (j=NTAB+7; j>=0; j--) {
 k = (idum)/IQ1;
 idum = IA1*(idum - k*IQ1) - k*IR1;
 if (idum < 0) idum += IM1;
 if (j < NTAB) iv[j] = idum;
 }
 iy = iv[0];
 }
 k = (idum)/IQ1;
 idum = IA1*(idum - k*IQ1) - k*IR1;
 if (idum < 0) idum += IM1;
 k = idum2/IQ2;
 idum2 = IA2*(idum2 - k*IQ2) - k*IR2;
 if (idum2 < 0) idum2 += IM2;
 j = iy/NDIV;
 iy = iv[j] - idum2;
 iv[j] = idum;
 if (iy < 1) iy += IMM1;
 if ((temp=AM*iy) > RNMX) return RNMX;
 else return temp;
}

 169

APPENDIX B

/* This program computes the Monte Carlo simulation of ordinary DSSS based on a

canonical distribution of arbitrary interference using convolutional encoder and Viterbi

decoder */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <malloc.h>
#include <limits.h>
#define MAX_SIZE 50
#define TWOTOTHEM 4
#define MAXMETRIC 128
#define MAXINT 16384

void generateSequence(int dataLength,int *dataSequence);
void multiplyAndIntegrate(int dataLength,int codeLength,int
**codeSequence,double **signalPlusNoise,double
*decodedSequence);
void multiply(int dataLength,int codeLength,int
*dataSequence,double **codeSequence,double
**multipliedSequence);
void addSignalAndNoise(int dataLength, int codeLength,
double **multipliedSequence, double *noiseArray, double
**signalPlusNoise);
void generateCode(int dataLength,int codeLength,int
**codeArray);
void generateNoise(int snr,int length,int
*interleaveArray,int D,double *noiseArray);
void convertToSignal(int *dataSequenceAfterCoding,int
dataLength, int *dataSequenceInSignal);
void acceptEquation(int **equationSet,int k, int rate);
void compareAndDecide(int dataLength,double
*decodeSequence,int *sequenceAfterDeciding);
int getErrors(int dataLength,int *originalSequence,int
*receiveSequence);
double calculateBER(long totalNoOfBits,long
totalNoOfErrors);
void vd(int g[2][K],float es_ovr_no,float es_ovr_ni,long
channel_length,float *channel_output_vector,int
*decoder_output_matrix);

 170

void conv_encoder(int g[2][K], long data_len, int
*in_array, int *out_array);
int quant(float channel_symbol);
int soft_metric(int data, int guess);
int nextNumber();
long int idum;

int main()
{

 int **equationSet;
 int dataSequenceArray[MAX_SIZE];
 int dataSequenceAfterCodingArray[MAX_SIZE];
 int dataSequenceInSignalArray[MAX_SIZE];
 double decodedSequenceArray[MAX_SIZE];
 int sequenceAfterDecisionArray[MAX_SIZE];
 int originalDecodedDataArray[MAX_SIZE];
 int interleaveArray[MAX_SIZE];
 int codedDataSequence[MAX_SIZE];
 int codeSequenceArray[MAX_SIZE][MAX_SIZE];
 double multipliedSequenceArray[MAX_SIZE][MAX_SIZE];
 double noiseSequenceArray[MAX_SIZE];
 double signalPlusNoiseArray[MAX_SIZE][MAX_SIZE];
 int sequenceAfterDeConvolution[MAX_SIZE];
 long noOfErrors,noOfBits;
 int codeLength,rate =0, dataLength=0, rows,snr,D,loops;
 dataLength = 5K;
 codeLength = N;
 rate = r;
 double worstBER,ber;
 #if K == 3 /* polynomials for K = 3 */
 int g[2][K] = {{1, 1, 1},
 {1, 0, 1}};
 #endif

 #if K == 5 /* polynomials for K = 5 */
 int g[2][K] = {{1, 1, 1, 0, 1},
 {1, 0, 0, 1, 1}};
 #endif

 #if K == 7 /* polynomials for K = 7 */
 int g[2][K] = {{1, 1, 1, 1, 0, 0, 1},
 {1, 0, 1, 1, 0, 1, 1}};
 #endif

 #if K == 9 /* polynomials for K = 9 */
 int g[2][K] = {{1, 1, 1, 1, 0, 1, 0, 1, 1},

 171

 {1, 0, 1, 1, 1, 0, 0, 0, 1}};
 #endif

/* Input parameters */

 printf("Enter constraint length K [int]: ");
 scanf("%d", &K);
 getchar();*/
 printf("Enter number of PN generator chips per bit N
[int]: ");
 scanf("%d", &N);
 getchar();
 printf("Enter code rate [int]: ");
 scanf("%d", &r);
 getchar();
 printf("Enter interleaver seed for interleaving
[negative long int]: ");
 scanf("%ld", &idum);
 getchar();

 for (snr = 0; snr < 30; snr++) {

 worstBER=0;
 for(D = 0; D<5K*rate*N;D++) {

 for(loops =0; loops <10000; loops++)
 {

generateSequence(dataLength, dataSequenceArray);

conv_encoder(g,dataLength,dataSequenceArray,codedDataSequen
ce);

convertToSignal(codedDataSequence, dataLength,
dataSequenceInSignalArray);

generateCode(dataLength*rate, codeLength, (int
**)codeSequenceArray);

multiply(dataLength*rate, codeLength,
dataSequenceInSignalArray, (int **)codeSequenceArray,
(double **)multipliedSequenceArray);

generateNoise(snr, dataLength*rate*codeLength,
interleaveArray, D, noiseSequenceArray);

 172

addSignalAndNoise(dataLength*rate, codeLength, (double
**)multipliedSequenceArray, noiseSequenceArray, (double
**)signalPlusNoiseArray);

multiplyAndIntegrate(dataLength*rate, codeLength, (int
**)codeSequenceArray ,(double **)signalPlusNoiseArray,
decodedSequenceArray);

compareAndDecide(dataLength*rate,decodedSequenceArray,seque
nceAfterDecisionArray);

vd(g,snr,snr,dataLength*rate,(float
*)sequenceAfterDecisionArray,(int
*)sequenceAfterDeConvolution);

 noOfErrors = noOfErrors +
getErrors(dataLength, sequenceAfterDeConvolution,
dataSequenceArray);

 noOfBits = noOfBits + dataLength*rate;

 }

 ber = calculateBER(noOfBits, noOfErrors);

 if(worstBER < ber) {
 worstBER=ber;
 }

 noOfBits=0;
 noOfErrors=0;
 }

printf("the worst BER for %d snr is %f ",snr, worstBER);
 }
 return 0;
}

/* random data generation for message */
void generateSequence(int dataLength,int *dataSequence){
 int i;

 for(i=0; i< dataLength; i++) {
 dataSequence[i]= (int)ran2()%2;
 }
}

 173

/* at the receiver end multiply and integrate the chips
received from noisy channel */
void multiplyAndIntegrate(int dataLength, int
codeLength,int **codeSequence, double
**signalPlusNoise,double *decodedSequence)
{
 int i=0;

 for(i=0; i < dataLength; i++) {
 double temp=0;
 int j=0;

 for(j=0; j < codeLength; j++) {
 temp = temp + (codeSequence[i][j] *
signalPlusNoise[i][j]);
 }

 decodedSequence[i] = temp;
 }

}

/* multiply symbols and chips at the transmitter end */
void multiply(int dataLength, int codeLength, int
*dataSequence,
 double **codeSequence, double
**multipliedSequence) {
 int i,j;

 for(i = 0; i < dataLength; i++) {
 for(j = 0; j < codeLength; j++) {

 multipliedSequence[i][j]=codeSequence[i][j]*dataSequen
ce[i];
 }
 }
}

/* add noise to signal */
void addSignalAndNoise(int dataLength, int codeLength,
double **multipliedSequence,
 double
*noiseArray, double **signalPlusNoise) {
 int n=0,i=0,j;

 for(i = 0; i < dataLength; i++) {

 174

 for(j = 0; j < codeLength; j++) {

 signalPlusNoise[i][j] = noiseArray[n] +
multipliedSequence[i][j];
 n++;
 }
 }

}

/* generate code symbols */
void generateCode(int dataLength, int codeLength, int
**codeArray) {
 int i = 0,j,temp=0;

 for(i = 0;i < dataLength; i++) {
 for(j=0;j<codeLength;j++) {

 temp=(int)ran2%3;

 if(temp==0) codeArray[i][j]=0;

 else if(temp==1) codeArray[i][j]=-1;

 else codeArray[i][j]=1;
 }
 }
}

/* generate noise */
void generateNoise(int snr, int length, int
*interleaveArray, int D,
 double *noiseArray) {
 int i = 0;
 for(i = 0; i < D; i++) {

 noiseArray[interleaveArray[i]] =
sqrt(length/(pow(10,(double)(snr-10)/10)*D));

 }
}

/* convert to baseband signals */
void convertToSignal(int *dataSequenceAfterCoding, int
dataLength, int *dataSequenceInSignal){
 int i = 0;

 175

 for(i = 0; i < dataLength;i++) {

 if(dataSequenceAfterCoding[i] == 0) {
 dataSequenceInSignal[i] = -1;
 }
 else {
 dataSequenceInSignal[i] = 1;
 }
 }
}

int nextNumber(){

 //return random number
 return 0;
}

/* generator polynomials of encoder */
void acceptEquation (int **equationSet, int k, int rate) {
 int i,j;
 for(i = 0; i < rate; i++) {

 for(j = 0; j < k; j++) {

 printf("Enter the value of row %d and column %d
",i,j);
 scanf("%d",&equationSet[i][j]);
 }
 }
}

/* hard decision */
void compareAndDecide(int dataLength, double
*decodeSequence, int *sequenceAfterDeciding) {
 int i;

 for(i = 0; i < dataLength; i++) {

 if(decodeSequence[i] < 0) {
 sequenceAfterDeciding[i] = 0;
 }
 else {
 sequenceAfterDeciding[i] = 1;
 }
 }
}

 176

/* calculate errors */
int getErrors(int dataLength,int *originalSequence,int
*receiveSequence){
 long result = 0;
 int i;

 for(i = 0; i < dataLength; i++) {
 if(originalSequence[i] != receiveSequence[i])
 {
 result++;
 }
 }

 return result;

}

/* final ber calculation*/
double calculateBER(long totalNoOfBits,long
totalNoOfErrors){
 double result=0;
 result = totalNoOfErrors/totalNoOfBits;
 return results;
 }

/* convolutional encoder*/

void conv_encoder(int g[2][K], long data_len, int
*in_array, int *out_array)
{
 int m= K-1; /* K - 1 */
 long t,S; /* bit time, symbol time */
 int j, k; /* loop variables */
 int *unencoded_data; /* this is the pointer to
data array */
 int shift_reg[K]; /* the encoder shift
register */
 int sr_head; /* index to the first entry
in the sr */
 int a,b; /* the upper and lower xor gate
outputs */

 long channel_length = (data_len + m) * 2;

 /* allocate space for the zero-padded input data array
*/

 177

 unencoded_data = (int
*)malloc((data_len+m)*sizeof(int));
 if (unencoded_data == NULL) {
 printf("\n conv_encoder.c: Can't allocate enough
memory for unencoded data! Aborting...");
 exit(1);
 }

 //unencoded_data = in_array ;
 /* read the input data and store it in the array */
 for (t = 0; t < data_len; t++)
 *(unencoded_data + t) = *(in_array + t);

 /* now zero-pad the end of the data */
 for (t = 0; t < m; t++) {
 *(unencoded_data + data_len + t) = 0;
 }

 /* Initializing the shift register */
 for (j = 0; j < K; j++)
 {
 shift_reg[j] = 0;
 }

 /* In order to speed things up a little, the shift
register will be operated
 as a circular buffer, so it needs a head
pointer.we'll just be overwriting the oldest entry with the
new data. */

 sr_head = 0;

 /* initializing the channel symbol output index */
 S = 0;

 /* Here the encoding process begins */
 /* now compute the upper and lower modulo-two adder
outputs, one bit at a time */
 for (t = 0; t < data_len + m; t++)
 {
 shift_reg[sr_head] = *(unencoded_data + t);
 a = 0;
 b = 0;
 for (j = 0; j < K; j++)
 {
 k = (j + sr_head) % K;
 a ^= shift_reg[k] & g[0][j];

 178

 b ^= shift_reg[k] & g[1][j];
 }

 /* write the upper and lower xor gate outputs as
channel symbols */
 *(out_array + S) = a;
 S = S + 1;
 // printf(" %d\n",a);

 *(out_array + S) = b;
 S = S + 1;
 // printf("%d\n",b);

 sr_head -= 1; /* This is equivalent to shifting
everything right one place */
 if (sr_head < 0) /* we need to make sure that the
pointer modulo K is adjusted */
 sr_head = m;

 }
/* now transform the data from 0/1 to +1/-1 */
 for (t = 0; t < channel_length; t++)
 {

 /*if the binary data value is 1, the channel symbol
is -1; if the
 binary data value is 0, the channel symbol is +1.
*/
 *(out_array+t) = 1 - 2 * *(out_array + t);

 // printf("%d\n",*(out_array + t));

 }
/*now the dynamically allocated array is made free */
 free(unencoded_data);

}

/* viterbi decoder */
void vd(int g[2][K],float es_ovr_no,float es_ovr_ni,long
channel_length,float *channel_output_vector,int
*decoder_output_matrix)
{
 int i, j, l, ll; /* loop variables */
 long t; /* time */
 int memory_contents[K]; /* input + conv. encoder sr */

 179

 int input[TWOTOTHEM][TWOTOTHEM]; /* maps current/nxt
sts to input */
 int output[TWOTOTHEM][2]; /* gives conv. encoder
output */
 int nextstate[TWOTOTHEM][2];/* for current st, gives
nxt given input */

 int accum_err_metric[TWOTOTHEM][2];/* accumulated
error metrics */

 int state_history[TWOTOTHEM][K * 5 + 1]; /* state
history table */
 int state_sequence[K * 5 + 1];/* state sequence list
*/
 int *channel_output_matrix; /* ptr to input matrix */

 int binary_output[2]; /* vector to store binary enc
output */

 int branch_output[2]; /* vector to store trial enc
output */

 int m, n, number_of_states, depth_of_trellis, step,
branch_metric,sh_ptr, sh_col, x, xx, h, hh, next_state,
last_stop; /* misc variables */
 /* n is 2^1 = 2 for rate 1/2 */
 n = 2;

 /* m (memory length) = K - 1 */
 m = K - 1;

 /* number of states = 2^(K - 1) = 2^m for k = 1 */
 number_of_states = (int) pow((double)2, m);
 depth_of_trellis = K * 5;
void deci2bin(int d, int size, int *b);
int bin2deci(int *b, int size);
int nxt_stat(int current_state, int input, int
*memory_contents);
void init_adaptive_quant(float es_ovr_no,float es_ovr_ni);
int quant(float channel_symbol);
int soft_metric(int data, int guess);

 /* initialize data structures */
 for (i = 0; i < number_of_states; i++)
 {
 for (j = 0; j < number_of_states; j++)

 180

 input[i][j] = 0;
 for (j = 0; j < n; j++)
 {
 nextstate[i][j] = 0;
 output[i][j] = 0;
 }
 for (j = 0; j <= depth_of_trellis; j++)
 {
 state_history[i][j] = 0;
 }
 /* initial accum_error_metric[x][0] = zero */
 accum_err_metric[i][0] = 0;
 /* by setting accum_error_metric[x][1] to MAXINT,
we don't need a flag */
 /* MAXINT is simply the largest possible integer,
defined in values.h */
 accum_err_metric[i][1] = MAXINT;
 }

 /* generate the state transition matrix, output
matrix, and input matrix - input matrix shows how FEC
encoder bits lead to next state */
 for (j = 0; j < number_of_states; j++)
 {
 for (l = 0; l < n; l++)
 {
 next_state = nxt_stat(j, l,
memory_contents);
 input[j][next_state] = l;

 /* now compute the convolutional encoder
output given the current state number and the input value
*/
 branch_output[0] = 0;
 branch_output[1] = 0;

 for (i = 0; i < K; i++)
 {
 branch_output[0] ^= memory_contents[i]
& g[0][i];
 branch_output[1] ^= memory_contents[i]
& g[1][i];
 }

 /* next state, given current state and input */
 nextstate[j][l] = next_state;

 181

/* output in decimal, given current state and input */
 output[j][l] = bin2deci(branch_output, 2);

 } /* end of l for loop */

 } /* end of j for loop */

#ifdef DEBUG
 printf("\nInput:");

 for (j = 0; j < number_of_states; j++)
 {
 printf("\n");

 for (l = 0; l < number_of_states; l++)
 printf("%2d ", input[j][l]);

 } /* end j for-loop */

 printf("\nOutput:");

 for (j = 0; j < number_of_states; j++)
 {
 printf("\n");
 for (l = 0; l < n; l++)
 printf("%2d ", output[j][l]);

 } /* end j for-loop */

 printf("\nNext State:");

 for (j = 0; j < number_of_states; j++)
 {
 printf("\n");

 for (l = 0; l < n; l++)
 printf("%2d ", nextstate[j][l]);

 } /* end j for-loop */

#endif

 channel_output_matrix = (int*) malloc(channel_length *
sizeof(int));

 if (channel_output_matrix == NULL)
 {

 182

printf("\nsdvd.c: Can't allocate memory for
channel_output_matrix! Aborting...");
 exit(1);
 }
/* now we're going to rearrange the channel output so it
has n rows, and n/2 columns where each row corresponds
to a channel symbol for a given bit and each column
corresponds to an encoded bit */
 channel_length = channel_length / n;

 /* adaptive quantization for specified es_ovr_no)*/
 init_adaptive_quant(es_ovr_no,es_ovr_ni);
 /* quantize the channel output--convert float to short
integer */
 /* channel_output_matrix = reshape(channel_output, n,
channel_length) */
 for (t = 0; t < (channel_length * n); t += n)
 {
 for (i = 0; i < n; i++)
 *(channel_output_matrix + (t / n) + (i *
channel_length)) = quant(*(channel_output_vector + (t +
i)));
 } /* end t for-loop */
 /* End of setup. Start decoding of channel outputs
with forward traversal of trellis!
 Stop just before encoder-flushing bits. */
 for (t = 0; t < channel_length - m; t++)
 {
 if (t <= m)
 /* assume starting with zeroes, so just
compute paths from all-zeroes state */
 step = (int)pow((double)2, m - t * 1);
 else
 step = 1;

 /* set up the state history array pointer for
this time t */
 sh_ptr = (int) ((t + 1) % (depth_of_trellis +
1));

 /* repeat for each possible state */
 for (j = 0; j < number_of_states; j+= step)
 {
 /* repeat for each possible convolutional
encoder output n-tuple */
 for (l = 0; l < n; l++)
 {

 183

 branch_metric = 0;

/* compute branch metric per channel symbol, and sum for
all channel symbols in the convolutional encoder output n-
tuple */
/* convert the decimal representation of the encoder output
to binary */
 binary_output[0] = (output[j][l] &
0x00000002) >> 1;
 binary_output[1] = output[j][l] &
0x00000001;

 /* compute branch metric per channel
symbol, and sum for all channel symbols in the
convolutional encoder output n-tuple */
 branch_metric = branch_metric + abs(*(
channel_output_matrix +(0 * channel_length + t)) - 7 *
binary_output[0]) +
 abs(*(channel_output_matrix +(1
* channel_length + t)) - 7 * binary_output[1]);

 /* now choose the surviving path--the
one with the smaller accumlated error metric... */
 if (accum_err_metric[nextstate[j][l]
] [1] > accum_err_metric[j][0] +branch_metric)
 {
 /* save an accumulated metric
value for the survivor state */
 accum_err_metric[nextstate[j][l]
] [1] = accum_err_metric[j][0] +branch_metric;

 /* update the state_history array
with the state number of the survivor */
 state_history[nextstate[j][l]]
[sh_ptr] = j;

 } /* end of if-statement */

 } /* end of 'l' for-loop */

 } /* end of 'j' for-loop -- we have now updated
the trellis */

 /* for all rows of accum_err_metric, move col 2
to col 1 and flag col 2 */
 for (j = 0; j < number_of_states; j++)
 {

 184

 accum_err_metric[j][0] =
accum_err_metric[j][1];
 accum_err_metric[j][1] = MAXINT;

 } /* end of 'j' for-loop */

 /* now start the traceback, if we've filled the
trellis */
 if (t >= depth_of_trellis - 1)
 {

 /* initialize the state_sequence vector--
probably unnecessary */
 for (j = 0; j <= depth_of_trellis; j++)
 state_sequence[j] = 0;

 /* find the element of state_history with
the min. accum. error metric */
 /* since the outer states are reached by
relatively-improbable runs of zeroes or ones,
 search from the top and bottom of the
trellis in */
 x = MAXINT;
 for (j = 0; j < (number_of_states / 2);
j++)
 {
 if (accum_err_metric[j][0] <
accum_err_metric[number_of_states - 1 - j][0])
 {
 xx = accum_err_metric[j][0];

 hh = j;
 }
 else
 {
 xx =
accum_err_metric[number_of_states - 1 - j][0];
 hh = number_of_states - 1 - j;
 }
 if (xx < x)
 {
 x = xx;
 h = hh;
 }
 } /* end 'j' for-loop */

 185

 /* now pick the starting point for traceback
*/
 state_sequence[depth_of_trellis] = h;

 /* now work backwards from the end of the
trellis to the oldest state in the trellis to determine the
 optimal path. The purpose of this is to
determine the most likely state sequence at the encoder
 based on what channel symbols we received.
*/
 for (j = depth_of_trellis; j > 0; j--)
 {
 sh_col = j + (sh_ptr -
depth_of_trellis);
 if (sh_col < 0)
 sh_col = sh_col + depth_of_trellis
+ 1;
 state_sequence[j - 1] = state_history[
state_sequence[j]] [sh_col];
 } /* end of j for-loop */
 /* now figure out what input sequence
corresponds to the state sequence in the optimal path */
 *(decoder_output_matrix + t -
depth_of_trellis + 1) = input[state_sequence[0]] [
state_sequence[1]];
 } /* end of if-statement */
 } /* end of 't' for-loop */
 /* now decode the encoder flushing channel-output bits
*/
 for (t = channel_length - m; t < channel_length; t++)
 {
 /* set up the state history array pointer for
this time t */
 sh_ptr = (int) ((t + 1) % (depth_of_trellis +
1));
 /* don't need to consider states where input was
a 1, so determine what is the highest possible
 state number where input was 0 */
 last_stop = number_of_states /(int)
pow((double)2, t - channel_length + m);

 /* repeat for each possible state */
 for (j = 0; j < last_stop; j++)
 {
 branch_metric = 0;
 deci2bin(output[j][0], n, binary_output);

 186

 /* compute metric per channel bit, and sum
for all channel bits in the convolutional encoder output n-
tuple */
 for (ll = 0; ll < n; ll++)
 {
 branch_metric = branch_metric +
soft_metric(*(channel_output_matrix +(ll * channel_length
+ t)), binary_output[ll]);
 } /* end of 'll' for loop */

 /* now choose the surviving path--the one
with the smaller total metric... */
 if ((accum_err_metric[nextstate[j][0]][1]
> accum_err_metric[j][0] +branch_metric) /*|| flag[
nextstate[j][0]] == 0*/)
 {
 /* save a state metric value for the
survivor state */
 accum_err_metric[nextstate[j][0]][1]
= accum_err_metric[j][0] + branch_metric;

 /* update the state_history array with
the state number of the survivor */
 state_history[nextstate[j][0]
][sh_ptr] = j;

 } /* end of if-statement */

 } /* end of 'j' for-loop */

 /* for all rows of accum_err_metric, swap columns
1 and 2 */
 for (j = 0; j < number_of_states; j++)
 {
 accum_err_metric[j][0] =
accum_err_metric[j][1];
 accum_err_metric[j][1] = MAXINT;

 } /* end of 'j' for-loop */

 /* now start the traceback, if i >=
depth_of_trellis - 1*/
 if (t >= depth_of_trellis - 1)
 {
 /* initialize the state_sequence vector */
 for (j = 0; j <= depth_of_trellis; j++)
state_sequence[j] = 0;

 187

/* find the state_history element with the minimum accum.
error metric */
 x = accum_err_metric[0][0];
 h = 0;
 for (j = 1; j < last_stop; j++)
 {
 if (accum_err_metric[j][0] < x)
 {
 x = accum_err_metric[j][0];
 h = j;
 } /* end if */

 } /* end 'j' for-loop */

 state_sequence[depth_of_trellis] = h;

 /* now work backwards from the end of the
trellis to the oldest state in the trellis to determine the
optimal path. The purpose of this is to determine the most
likely state sequence at the encoder based on what channel
symbols we received. */
 for (j = depth_of_trellis; j > 0; j--)
 {
 sh_col = j + (sh_ptr -
depth_of_trellis);

 if (sh_col < 0)
 sh_col = sh_col + depth_of_trellis
+ 1;
 state_sequence[j - 1] = state_history[
state_sequence[j]][sh_col];
 } /* end of j for-loop */

 /* now figure out what input sequence
corresponds to the optimal path */
 *(decoder_output_matrix + t -
depth_of_trellis + 1) = input[state_sequence[0]][
state_sequence[1]];

 } /* end of if-statement */

 } /* end of 't' for-loop */

 for (i = 1; i < depth_of_trellis - m; i++)
 {

 188

 *(decoder_output_matrix + channel_length -
depth_of_trellis + i) = input[state_sequence[i]] [
state_sequence[i + 1]];

 }
 for(i=0;i<channel_length-m;i++)
 {
 printf("\n decoder output matrix is
%d",*(decoder_output_matrix + i));
 getchar();
 }
 /* free the dynamically allocated array storage area
*/
 free(channel_output_matrix);

 return;

} /* end of function vd */

int nxt_stat(int current_state, int input, int
*memory_contents)
 {
 int binary_state[K - 1]; /* binary
value of current state */
 int next_state_binary[K - 1]; /* binary
value of next state */
 int next_state; /* decimal
value of next state */
 int i; /* loop
variable */
 void deci2bin(int d, int size, int *b);
 int bin2deci(int *b, int size);
 /* convert the decimal value of the current state
number to binary */
 deci2bin(current_state, K - 1, binary_state);

 /* given the input and current state number,
compute the next state number */
 next_state_binary[0] = input;

 for (i = 1; i < K - 1; i++)
 next_state_binary[i] = binary_state[i -
1];/* convert the binary value of the next state number to
decimal */
 next_state = bin2deci(next_state_binary, K -
1);/* memory_contents are the inputs to the modulo-two
adders in the encoder */

 189

 memory_contents[0] = input;

 for (i = 1; i < K; i++)
 memory_contents[i] = binary_state[i - 1];
 return(next_state);
 }

 /* this function converts a decimal number to a binary
number, stored as a vector MSB first,having a specified
number of bits with leading zeroes as necessary */
 void deci2bin(int d, int size, int *b)
 {
 int i;
 for(i = 0; i < size; i++)
 b[i] = 0;
 b[size - 1] = d & 0x01;

 for (i = size - 2; i >= 0; i--)
 {
 d = d >> 1;
 b[i] = d & 0x01;
 }
 }

 /* this function converts a binary number having a
specified number of bits to the corresponding decimal
number ith improvement */

 int bin2deci(int *b, int size)
 {
 int i, d;
 d = 0;
 for (i = 0; i < size; i++)
 d += b[i] << (size - i - 1);
 return(d);
 }

/* Function to generate uniform deviates using idum*/

#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMM1 (IM1-1)
#define IA1 40014
#define IA2 40692
#define IQ1 53668
#define IQ2 52774

 190

#define IR1 12211
#define IR2 3791
#define NTAB 32
#define NDIV (1+IMM1/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)
float ran2(void)
{
 int j;
 long k;
 static long idum2=123456789;
 static long iy=0;
 static long iv[NTAB];
 float temp;
 if (idum <= 0) {
 if (-(idum) < 1) idum = 1;
 else idum = -(idum);
 idum2 = (idum);
 for (j=NTAB+7; j>=0; j--) {
 k = (idum)/IQ1;
 idum = IA1*(idum - k*IQ1) - k*IR1;
 if (idum < 0) idum += IM1;
 if (j < NTAB) iv[j] = idum;
 }
 iy = iv[0];
 }
 k = (idum)/IQ1;
 idum = IA1*(idum - k*IQ1) - k*IR1;
 if (idum < 0) idum += IM1;
 k = idum2/IQ2;
 idum2 = IA2*(idum2 - k*IQ2) - k*IR2;
 if (idum2 < 0) idum2 += IM2;
 j = iy/NDIV;
 iy = iv[j] - idum2;
 iv[j] = idum;
 if (iy < 1) iy += IMM1;
 if ((temp=AM*iy) > RNMX) return RNMX;
 else return temp;
}

	Cleveland State University
	EngagedScholarship@CSU
	2008

	Convolutional Coded Generalized Direct Sequence Spread Spectrum
	Madan Venn
	Recommended Citation

	Microsoft Word - Thesis.doc

