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CONVOLUTIONAL CODED GENERALIZED DIRECT SEQUENCE 

SPREAD SPECTRUM 

 

 

MADAN VENN 

 

 

ABSTRACT 

In this thesis we investigate the worst-case performance of coded ordinary and 

coded generalized direct sequence spread spectrum (DSSS) systems in a communication 

channel corrupted by an unknown and arbitrary interfering signal of bounded power.  We 

consider convolutional codes with Viterbi decoding in order to compare the performance 

of coded ordinary and coded generalized DSSS systems. For the generalized DSSS 

system, we use a pulse stream of +1,-1 and 0 as the spreading sequence, which is 

different from ordinary DSSS system which uses the typical sequence with pulse values 

of +1 and -1. 

A C program for performing Monte-Carlo simulations is written in order to 

evaluate and compare the performance of coded ordinary and coded generalized DSSS 

systems.  Plots of the worst-case error probability versus signal-to-interference ratio are 

presented for different code rates and constraint lengths of the convolutional code. 

Simulation results of the worst-case performance of ordinary and generalized DSSS show 

that generalized DSSS consistently performs appreciably better than ordinary DSSS. 

Simulation is performed for various code rates, various constraint lengths of the 

convolutional code and various lengths of the convolutional interleaver.  Over all these 
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simulations, it is observed that the difference between ordinary and generalized DSSS 

gets more pronounced as the channel gets worse. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

It all started when Guglielmo Marconi invented wireless telegraph.  From then on 

wireless communications has gone through lots of inventions.  Particularly during the 

past twenty years, the mobile radio communications industry has grown by orders of 

magnitude, fueled by digital and RF circuit fabrication improvements, new large-scale 

circuit integration, and other miniaturization technologies which make portable radio 

equipment smaller, cheaper, and more reliable.  Digital switching techniques have 

enabled the large scale deployment of affordable, easy-to-use radio communication 

networks.  The innovations will continue at an even greater pace in the coming years. 

In our daily life we come across a wide array of communication devices, the most 

common being the cellular phone, GPS, radio, television and wireless internet.  Although 
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there is rapid growth in wired communications, the biggest challenges lie in developing 

wireless systems.  Research is being done to improve the robustness of the channel and 

provide error free transmission in a wireless communication system. 

With the inventions in wireless personal communications field over the last 

several years, the method of communication known as spread spectrum has gained a great 

deal of importance.  Spread spectrum involves the spreading of the desired signal over a 

bandwidth much larger than the minimum bandwidth necessary to send the information 

signal.  It was originally developed by the military as a method of communication that is 

less sensitive to intentional interference or jamming by third parties, but has become very 

popular in the realm of personal communications recently.  Spread spectrum methods can 

be combined with multiple access methods to create code division multiple access 

(CDMA) systems for multi-user communications with very good interference 

suppression.  Two very common types of spread spectrum schemes that are in use today 

are direct sequence spread spectrum (DSSS) and frequency hopping spread spectrum 

(FHSS). Usually FHSS devices use less power and are cheaper, but DSSS systems have 

better performance and are more reliable.  In this thesis we will also consider a newer, 

more robust class of proposed spread spectrum systems called generalized spread 

spectrum. Detailed description of a spread spectrum communication system is presented 

in Chapter 2 of this thesis. 

Channel coding is used to reduce the errors caused during transmission. Block 

codes and convolutional codes are the two widely used methods for channel coding. 

Detailed description of channel coding and its applications are presented in Chapter 2 of 
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this thesis.  The work in this thesis relates to applying convolutional codes to ordinary 

and generalized DSSS in order to compare their worst-case performance. 

1.2 Motivation 

The work in this thesis relates to the simulation of worst-case performance of 

ordinary and generalized direct sequence spread spectrum using convolutional codes with 

a Viterbi decoder in order to compare coded ordinary and coded generalized direct 

sequence spread spectrum. 

Most often spread spectrum is used in situations where we would like to suppress 

some type of interference in the channel other than additive white Gaussian noise. 

Information regarding the nature of such interference is not available or it changes with 

time in a random manner, which causes the correct estimation of channel properties 

unrealistic.  The usual approach to this particular problem is to assume a precise 

statistical description of the channel and evaluate the performance of communication 

system based on such assumptions.  A much better approach when considering a robust 

communication system is to make no statistical assumptions about the channel and 

perform a worst-case analysis based on no more than an average power limit on the 

interference.  In this thesis we follow this particular approach. 

Significant amount of research has been performed over a long time in the field of 

direct sequence spread spectrum by applying the above interference, called the arbitrarily 

varying channel, by Dr. Hizlan and Dr. Hughes.  In [1] they have shown that the 



 

 4

asymptotically optimal benchmark communication system in such situations consists of a 

random modulator that uniformly distributes any given message vector on the surface of 

an N-dimensional sphere, and a correlation receiver.  They have also shown that spread 

spectrum is only a special suboptimal instance of the family of such modems.   Since the 

asymptotically optimal system provides only a theoretical and impractical benchmark, 

later Hizlan [2] has proposed a practical generalized direct sequence spread spectrum 

system which improves upon ordinary direct sequence spread spectrum in the direction 

of the benchmark result.  In [3], Hizlan described the performance analysis of coded 

ordinary DSSS in the arbitrarily varying channel.  In [4] Vellala used block codes to 

show that coded generalized spread spectrum performed consistently better than coded 

ordinary direct sequence spread spectrum in the worst-case.  Our aim in this thesis is to 

use convolutional codes in order compare the worst-case coded performance of 

generalized and ordinary direct sequence spread spectrum systems. 

Consequently, in this thesis we consider coded ordinary and generalized direct 

sequence spread spectrum systems with a convolutional encoder and a Viterbi decoder. 

The spreading sequence used in the generalized system is a pulse stream with pulse 

values of +1, -1 and 0, which are different from the usual sequence with pulse values of 

+1 or -1 used in ordinary system. 
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1.3 Related Work 

In [1] Hizlan and Hughes derive a random linear modem and detector that 

asymptotically minimize the transmitted power for a given encoder as the block length of 

the encoder becomes large.  The optimal modem turns out to be independent of the 

encoder and the optimal detector is the standard correlation receiver.  The asymptotically 

optimal modem is a random modem that distributes a codeword uniformly on the surface 

of an N-dimensional sphere.  An upper bound to the performance of any encoder used 

with the optimal modem and detector is derived.  It is shown that the coding gain 

achieved on the arbitrarily varying channel is larger than that of the comparable Gaussian 

channel.  The results given in [1] provide a benchmark for robust communications against 

which a variety of spread spectrum modems and robust detectors could be compared.  In 

[1] the authors show that DSSS, which is referred to as ordinary DSSS in this thesis, is 

only a special case of random modulation, and that random modulation becomes 

asymptotically optimal as N gets larger, minimizing the signal-to-interference ratio 

required to guarantee a given worst-case performance level, when the message symbol is 

uniformly distributed on the surface of N-dimensional sphere.  This is only a theoretical 

benchmark of what could possibly be achieved and is difficult to implement in practice. 

The communication system in [2] is inspired by [1] and it talks about a 

generalization of uncoded DSSS.  Generalization improves upon ordinary DSSS by 

allowing the transmitted vector to more closely approximate a uniform distribution on the 

surface of an N-dimensional sphere while still being practical to implement.  As detailed 

in section 2.6, along with the vertices for ordinary DSSS, midpoints of the edges and 
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faces of the cube are considered as possible transmitted vectors, and these points are 

projected radially onto the surface of a 3-D sphere.  This idea, when extended to N-

dimensional signal space is called generalized DSSS. Though uniform distribution on the 

surface of the sphere may not necessarily be optimal for finite N, and is impractical to 

implement, it does provide a benchmark against which worst-case performance of 

generalized DSSS can be compared. Bounds to the worst-case error probability of this 

generalized DSSS system are obtained and they show an improvement in worst-case 

performance over ordinary DSSS. 

In [3], Hizlan described the performance analysis of coded ordinary DSSS in the 

arbitrarily varying channel.  He derived a simple upper bound to the worst-case error 

probability incurred by the communication system including a binary block code, 

pseudorandom interleaving and a correlation receiver, operating on a channel corrupted 

by thermal noise and by an unknown interfering signal of bounded power.  He also found 

that the derived upper bound for this channel is exponentially tight as the block length of 

the code became large.  In comparing the performance of coded ordinary DSSS with 

coded optimal random modem and detector, Hizlan found that for low-rate codes, there 

was a significant performance difference between ordinary DSSS and the optimal system, 

while the difference subsided for high-rate codes. 

In [4] Vellala described the performance of coded ordinary and coded generalized 

direct sequence spread spectrum systems with various cyclic, BCH and burst error 

correcting codes.  His simulation results of the worst-case performance of ordinary and 

generalized DSSS for several block codes showed that generalized DSSS consistently 

performed better than ordinary DSSS.  In [5], Ranga Kalakuntla considered further 
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generalization of uncoded DSSS to 5 levels.  In [6], Hariharan Ramaswamy worked on 

theoretical properties of 3- and 5-level sequences, and considered software and hardware 

methods for their generation.   

[1], [2], [3] and [4] talk about ordinary DSSS, generalization, performance 

analysis of ordinary DSSS and performance analysis of coded generalized DSSS using 

block codes only.  The performance analysis of coded generalized DSSS using 

convolutional coding is not considered, so we step ahead and simulate the worst-case 

performance of coded generalized DSSS using convolutional codes with a Viterbi 

decoder for different code rates and constraint lengths, and compare the performance of 

coded generalized DSSS with ordinary DSSS in this thesis. 

1.4 Thesis Structure 

This thesis considers the worst-case performance of a coded generalized direct 

sequence spread spectrum system in comparison to that of a coded ordinary direct 

sequence spread spectrum system, both using convolutional codes with Viterbi decoding 

and operating in the arbitrarily varying channel. Chapter 2 contains a description of the 

spread spectrum communication system, both ordinary and generalized.  Channel model 

and a measure of the worst-case system performance are described in Chapter 3.  An 

introduction to convolutional codes and their decoding techniques are discussed in 

Chapter 4.  The simulation of the communication system is talked about in Chapter 5. 
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Chapter 6 includes numerical results and observations.  Chapter 7 talks about conclusions 

and future work.  Also, simulation codes used in this thesis are found in Appendices. 
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CHAPTER II 

SPREAD SPECTRUM COMMUNICATION SYSTEM 

2.1 A Digital Communication System 

Communication systems are mainly classified into analog and digital.  The most 

important feature of a digital communication system is that it deals with a finite set of 

discrete messages, in contrast to an analog communication system in which the messages 

are continuous.  In a digital communication system, the message to be transmitted, 

whether analog or discrete, is processed in a digital form, i.e. as a sequence of binary 

digits obtained after source encoding.  A basic communication system consists of a 

transmitter, receiver and a channel through which the information is transmitted.  The 

main objective at the receiver of the digital system is not to reproduce a waveform with 

precision but instead determine from a noise-perturbed signal which of the finite set of 

waveforms had been sent by the transmitter.  The channel characteristics generally affect 
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the design of the basic elements of the system, a description of which is given in this 

section. 

A digital communication system may have components such as channel coding, 

interleaving, modulation and spreading techniques, which will be discussed in detail in 

the coming sections. 

2.2 Channel Coding 

When information is transmitted over a channel in the presence of noise, errors 

will occur.  The task of channel coding is to represent the source information in a manner 

that minimizes the error probability in decoding.  Channel coding refers to the class of 

signal transformations designed to improve communications performance by enabling the 

transmitted signals to better combat the effects of various channel impairments, such as 

noise, interference, and fading as described in [7].  The main purpose of channel coding 

is to reduce the probability of bit error at the cost of expanding the bandwidth.  In a coded 

digital system, each information sequence is first passed to a channel encoder which 

introduces some carefully designed structure to a data word in order to protect it from 

transmission errors.  This process is also termed as forward error correction, which 

improves the capacity of a channel by adding some carefully designed redundant 

information to the data being transmitted through the channel.  

Convolutional coding and block coding are the two major forms of channel 

coding as described in [8].  We choose convolutional codes in this thesis.  A block code 
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is described by two integers, n and k, and a generator matrix or polynomial.  The integer k 

is the number of data bits that form an input to a block encoder.  The integer n is the total 

number of bits in the associated codeword out of the encoder.  A characteristic of linear 

block codes is that each codeword n-tuple is uniquely determined by the input message k-

tuple.  The ratio k/n is called the rate of the code and gives a measure of the added 

redundancy.  A convolutional code is characterized by three integers, n, k, and K, where 

the ratio k/n has the same code rate significance as that for block codes.  However n does 

not define a block or codeword length as in the case of block codes.  The integer K is 

termed as constraint length and it represents the number of k-tuple stages in the encoding 

shift register.  An important feature of convolutional codes is that the encoder has 

memory, i.e. the n-tuple emitted by the convolutional encoding procedure is not only a 

function of an input k-tuple but is also a function of the previous K-1 input k-tuples.  

Convolutional codes operate on serial data, one or a few bits at a time whereas block 

codes operate on relatively large (typically, up to a couple of hundred bytes) message 

blocks.  There are a variety of useful convolutional codes, and a variety of algorithms for 

decoding the received coded information sequences to recover the original data.  In 

practice, n and k are small integers and K is varied usually between three and eight to 

control the redundancy.  A detailed description of convolutional codes is presented in 

chapter four of this thesis.  In this thesis we consider convolutional codes with different 

values of n and K while keeping k a constant equal to one. 
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2.3 Interleaving 

A memoryless channel is characterized with random errors but a channel with 

memory such as fading and multi-path exhibits mutually dependent signal transmission 

impairments.  Also, some channels suffer from switching noise and other burst noise.  All 

of these time-correlated impairments result in statistical dependence among successive 

symbol transmissions.  Hence, the disturbances tend to cause errors that occur in bursts, 

instead of isolated events.  Most block or convolutional codes are designed to combat 

random independent errors.  By applying these codes to channels with memory causes 

degradation in error performance.  A technique which requires knowledge of the duration 

of the channel memory and not the exact channel statistical characterization is the use of 

time diversity or interleaving.  Interleaving the coded message before transmission and 

deinterleaving after reception causes bursts of channel errors to be spread out in time and 

thus to be handled by the decoder as if they were random errors.  So in many applications 

data is interleaved just before transmission.  Most error control codes work much better 

when error in the received sequence is spread far apart. 

There are a number of interleavers to choose from for the system described in this 

thesis.  We use convolutional and pseudorandom interleavers in this thesis and compare 

their performance by keeping other parameters constant.  In order to reduce the 

complexity of using a deinterlever at the receiver end, we used interleaving over the 

interference for the purpose of system simulation, i.e. interference is interleaved before 

adding it to the channel symbols. 
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2.3.1 Convolutional Interleavers 

A convolutional interleaver has memory and its operation depends not only on 

current symbols but also on previous symbols.  In a convolutional interleaver the code 

symbols are sequentially shifted into the bank of N registers.  The first send the data 

directly through, after that each successive register provides J symbols more storage than 

the preceding one did.  The data is sequentially entered into each bank, one per symbol. 

The data is read out in the same manner using a commutator switch.  The deinterleaver 

performs the inverse operation, therefore the input and output commutators for both 

interleaving and deinterleving must be synchronized.  The symbol depth of the 

interleaver is, of course, chosen to match the symbol length of the convolutional encoder.  

The performance of a convolutional interleaver is very similar to that of a block 

interleaver. It is more complicated than a simple row vs. column block interleaver.  The 

most important advantage of this structure over block interleavers is a reduction by two in 

the memory and end-to-end throughput delay. 

2.3.2 Pseudorandom Interleavers 

The pseudorandom interleaver uses a fixed random permutation and maps the 

input sequence according to the permutation order.  They are generated by using a 

random number generator to produce permutations map of integers from 1 to N.  To 

create the pseudorandom interleaver map, generate n random numbers and rearrange 

them in ascending order or descending order.  Therefore every permutation involving a 
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block size of N is achieved.  Pseudorandom interleaving is a random mapping between 

input and output positions, generated by means of a pseudorandom number generator. 

2.3.3 Block Interleavers 

The block interleaver is the most commonly used interleaver in a communication 

system.  It writes in column wise from top to bottom and left to right and reads out row 

wise from left to right and top to bottom.  A block interleaver basically accepts the coded 

symbols in blocks from the encoder and rearranges them without repeating or omitting 

any of the symbols in the block.  The number of symbols in each block is fixed for a 

given interleaver.  Block interleavers tend to give poor performance because they do not 

break apart certain input sequences which result in low weight code words.  

2.4 Modulation 

Modulation is the process by which symbols are transformed into waveforms that 

are compatible with the characteristics of the channel.  It is the process of varying a 

periodic waveform in order to use that signal to convey a message.  Normally a high-

frequency sinusoid waveform is used as carrier signal.  The three key parameters of a sine 

wave are its amplitude, its phase and its frequency, all of which can be modified in 

accordance with a low frequency information signal to obtain the modulated signal. 
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The frequency of the carrier signal is usually much greater than the highest 

frequency of the input message signal. According to Nyquist sampling theorem the 

simulation sampling rate Fs must be greater than two times the sum of the carrier 

frequency and the highest frequency of the modulated signal in order to recover the 

message correctly.  There are two different modulation techniques available: one is 

baseband and the other is bandpass.  In this thesis we use baseband modulation for the 

purpose of simulation, also known as the low pass equivalent method, since it requires 

less computation. 

A device that performs modulation is known as a modulator and a device that 

performs the inverse operation of modulation is known as a demodulator.  Analog and 

digital modulation facilitate frequency division multiplexing (FDM), where several low 

pass information signals are transferred simultaneously over the same shared physical 

medium, using separate band pass channels.  Modulation can also be used to minimize 

the effects of interference.  A class of such modulation schemes, known as spread-

spectrum modulation, requires a system bandwidth much larger than the information 

bandwidth for interference rejection, and is studied in detail in the further sections of this 

thesis. 

2.4.1 Analog Modulation 

The aim of analog modulation is to transfer an analog low pass signal, for 

example an audio signal or TV signal, over an analog band pass channel, for example a 

limited radio frequency band or a cable TV network channel. 
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2.4.2 Digital Modulation 

The aim of digital modulation is to transfer a digital bit stream over an analog 

band pass channel, for example a public switched telephone network or a limited radio 

frequency band.  

In this thesis we assume a linear modulation scheme such as phase shift keying 

(PSK) or quadriphase shift keying (QPSK). 

2.5 Direct Sequence Spread Spectrum System 

2.5.1 Spread-Spectrum Communication Systems 

Spread spectrum communications is one of the widely used data communication 

schemes nowadays.  These techniques are used for a variety of reasons, including the 

establishment of secure communications, increasing resistance to natural interference and 

jamming, and to prevent detection.  It has many features that make it suitable for secure 

communications, multiple access scenarios, and many other properties that are desirable 

in a modern communication system.  

Spread Spectrum is a method of transmission in which the signal occupies a 

bandwidth in excess of the minimum necessary to send the information.  It employs 

direct sequence, frequency hopping or a hybrid of these, which can be used for multiple 
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access and/or multiple functions.  This technique decreases the potential interference to 

other receivers while achieving privacy.  Spread spectrum generally makes use of a 

sequential noise-like signal structure to spread the normally narrowband information 

signal over a relatively wide band of frequencies.  The receiver correlates the received 

signals to retrieve the original information signal.  The band spread is accomplished by 

means of a code which is independent of the data and synchronized reception with the 

code at the receiver is used for de-spreading. 

In spread spectrum the signal that has a limited defined bandwidth is spread to 

occupy a higher bandwidth, with its power spread over a wide range, by multiplying that 

signal with a higher frequency sequence.  The spreading will significantly reduce the 

possibility of corrupting the data, intentionally or unintentionally.  This is one of the main 

features of spread spectrum, the interference suppression capability.  When the spread 

signal is interfered by additive white Gaussian noise (AWGN), we will not notice any 

significant improvement if we choose spread spectrum.  But, when an intentional noise is 

applied, it is usually band limited to the range we are using.  When we spread the signal, 

the intentional noise (usually termed the jammer) will make one of two choices.  It will 

either spread its band limited power spectral density over the new bandwidth, which will 

reduce its effect on our signal, or stay at its original bandwidth, which will cause it to 

affect only a portion of our data.  Such effect might be further reduced by error correction 

coding at the receiver end.  This means that in both cases, the choice of spreading will 

reduce the jammer’s effect significantly.  While the typical interference encountered by a 

modern spread spectrum signal will not be arising from a jammer, the idea of a jammer 

has been historically used to illustrate the interference suppression capability of spread 
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spectrum.  Some of the more interesting and desirable properties of spread spectrum can 

be summarized as: 

• Good anti jamming performance. 

• Low power spectral density. 

• Interference limited operation, i.e. the whole frequency spectrum is used. 

• Multi path effects are reduced considerably with spread spectrum applications. 

• Random access probabilities, i.e. users can start their transmission at any time. 

• Privacy due to the use of unknown random codes. 

• Multiple access, i.e. more than one user can share the same bandwidth at the same 

time. 

Spread spectrum systems are classified according to the ways that the original 

data is modulated by the PN code.  The most commonly employed spread spectrum 

techniques are the following: 

Direct Sequence Spread Spectrum (DSSS): In DSSS, the baseband signal is 

multiplied by a pseudorandom code or pseudonoise (PN) signal, which has a higher bit 

rate than the original signal.  This will spread the spectrum of the baseband signal. In next 

section, DSSS technique is described in detail. 

 Frequency Hopping Spread Spectrum (FHSS): Frequency-hopping spread 

spectrum (FHSS) is a method of transmitting radio signals by rapidly switching a carrier 

among many frequency channels, using a pseudorandom sequence known to both the 

transmitter and the receiver.  This will result in modulating different portions of the data 
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signal with different carrier frequencies.  This technique makes the data signal hop from 

one frequency to another over a wide range and this hopping rate is a function of the 

information rate of the signal.  The specific order in which frequencies are occupied is a 

function of a code sequence.  The transmitted spectrum of a frequency hopping is 

different from that of the direct sequence system. 

Hybrid System (DS/FFH): This is a combination of both the direct sequence and 

frequency hopping techniques.  Here, one data bit is divided over frequency hop channels 

i.e. carrier frequencies.  In each frequency hop channel one complete PN code is 

multiplied with the data signal. 

In this thesis, the emphasis is going to be on the DSSS System.  A detailed 

description of DSSS system is given in next section. 

2.5.2 Direct Sequence Spread Spectrum Digital Communication Systems 

Direct sequence spread spectrum is one of the most widely used spread spectrum 

techniques.  The basic elements of DSSS digital communication system are illustrated in 

Figure 2.1.  We observe that in addition to the basic elements of a conventional digital 

communication system, a spread spectrum system includes two identical pseudorandom 

sequence generators, one interfacing with the modulator and the other with the 

demodulator.  As with all spread spectrum schemes, DSSS uses a unique code to spread 

the baseband signal, allowing it to have all the advantages of spread spectrum techniques. 

A random or pseudonoise signal is used to spread the baseband signal, causing fast phase 

transitions in the carrier frequency that contains data.  The basic method for 
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accomplishing spreading is shown in Figure 2.2.  The spreading sequence is a pulse 

stream with pulse values of +1, -1.  After spreading the base-band signal, the resulting 

spread signal is then modulated and transmitted through the specified medium.  Binary 

phase shift keying (BPSK) is a widely used digital modulation scheme for spread 

spectrum systems and we use the same in this thesis. 

When the modulated data is received at the demodulator port, the signal is de-

modulated using a BPSK demodulator that has a synchronized carrier frequency with the 

transmitter one.  The spread signal will be at the output of the demodulator. This is then 

multiplied with the locally generated PN sequence.  If the locally generated PN sequence 

is correlated with the one that was used in transmitter, the signal is de-spread, yielding 

the original signal.  The spectrum spreading is illustrated in Figure 2.3, which shows the 

convolution of two spectra, the narrow spectrum corresponding to the message signal and 

the wide spectrum corresponding to the signal from the PN generator. 

Spreading factor of the spread spectrum is an important parameter which defines 

the overall gain of the system.  It is also termed as processing gain, which is defined by: 

i

t
p BW

BWG =  

is the ratio of the transmission bandwidth tBW and the information bandwidth iBW .  It 

helps in determining the number of users that can be allowed in a multiple access system, 

the amount of multi-path effect reduction and the difficulty to jam or detect signals.  For 

spread spectrum systems, it is always better to choose a high processing gain. But this 

comes as a trade off with system complexity.  
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        Figure 2.1: Model of direct sequence spread spectrum digital communication system 
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                               Figure 2.2: Spreading code with pulse values +1,-1 
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                                      Figure 2.3: The spectrum spreading 
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A DSSS digital communication system can be classified into four major parts, 

which are: pseudo noise sequence generator, spreading and modulation (transmitter), 

demodulation and de-spreading (receiver), PN synchronization. Each part of the DSSS 

communication system is described in detail as follows. 

Pseudo Noise Sequence Generator: 

Pseudo Noise (PN) signals play a key role in DSSS systems, as they are the ones 

responsible for the spreading and de-spreading of the baseband signal.  These signals are 

generated in a deterministic way but appear to be random or noise-like.  PN sequences 

are considered to have noise like properties for an outsider, but they are known to the two 

devices using them.  They are considered pseudo random because the sequences are 

actually deterministic and are known to both the transmitter and the receiver. 

There are three basic properties that can be applied to a periodic binary sequence 

as a test of the appearance of randomness.  They are balance property, run property and 

correlation property.  One of the well known and easy to generate PN sequences are the 

maximum length sequences (MLS).  MLS satisfy all three PN properties.  An MLS is 

generated by the use of shift registers and some logic circuitry in its feedback path.  A 

feedback shift register is said to be linear if its feedback logic circuit consists entirely of 

modulo-2 adders (XOR gates).  

DSSS Transmitter: 

In DSSS the baseband waveform is multiplied by the PN sequence.  The PN is 

produced using a PN generator.  This generator consists of a shift register, and a logic 

circuit that determines the PN signal.  After spreading, the signal is modulated and 
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transmitted.  The most widely used modulation scheme is binary phase shift keying 

(BPSK). 

In BPSK a transition from a one state to a zero state (or the other way around) 

will cause a 180 degree phase shift in the carrier signal.   A BPSK modulator consists of a 

multiplier circuit that directly multiplies the incoming signal with the carrier frequency 

generated by the local oscillator.  Other transmitter schemes also exist. Some of them use 

the PN spreading after the baseband signal is modulated using BPSK.  This will spread 

the passband signal. In the receiver, the de-spreading takes part before the signal gets 

demodulated.  Based on the system architecture, one might decide which scheme to use. 

DSSS Receiver: 

In the demodulator section, we simply reverse the process.  We demodulate the 

BPSK signal first, pass it through a low pass filter, and then de-spread the filtered signal, 

to obtain the original message.  The receiver carrier frequency should be synchronized 

with the transmitter one for data detection. 

As for the PN sequence in the receiver, it should be an exact replica of the one 

used in the transmitter, with no delays, otherwise it might cause severe errors in the 

incoming message.  Usually a delay locked loop is used to overcome this issue, and lock 

the timing of the transmitted PN sequence with the one locally generated.  Once the 

incoming PN code is correlated with the locally generated one, we can de-spread the 

signal. 

After the signal gets multiplied with the PN sequence, the signal de-spreads, and 

we obtain the original bit signal that was transmitted.  The signal is then applied to a 
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decision device that will take care of the signal shaping, and leveling.  The original data 

signal is then obtained. In the presence of noise, extra circuitry is needed to compensate 

the signal degradation that affects the transmitted signal.  

PN Synchronization: 

In a spread spectrum system, the generated PN code at the receiver end must be 

aligned to the received PN sequence, otherwise, the PN code misalignment will result in 

ineffective de-spreading of the signal.  Synchronization is usually accomplished first by 

an acquisition of the initial PN code alignment and then followed by a tracking process to 

eliminate a possible new phase shift introduced to the received signal during the signal 

reception process.  Without synchronization, the spread spectrum will appear as noise and 

ineffective de-spreading will be achieved at the receiver end.  Therefore, synchronization 

of the PN code is crucial for data reception. 

Interference is added to the spread spectrum signal during transmission through 

the channel.  The characteristics of the interference depend to a large extent on its origin. 

Usually the interference is categorized as being either broadband or narrowband relative 

to the bandwidth of the information bearing signal, and either continuous in time or 

pulsed in time.  In this thesis we don’t apply any specific constraints or statistical 

meanings to the interference except a fundamental power limitation on the interfering 

signal. 
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2.6 Generalized Direct Sequence Spread Spectrum  

It is shown in [2] that ordinary DSSS can be improved by allowing the transmitted 

vector to more closely approximate a uniform distribution on the surface of an N-

dimensional sphere.  In [1] it is shown that ordinary DSSS is only a special case of 

random modulation, and that random modulation becomes asymptotically optimum (as N 

gets large), minimizing the signal-to-interference ratio required to guarantee a given 

worst-case performance level, when the message symbol is uniformly distributed on the 

surface of an N-dimensional sphere. 

Figure 2.4 shows all the possible transmitted vectors for ordinary DSSS as black 

dots when modeled as a 3-dimensional signal.  When ordinary DSSS is modeled in the 

N–dimensional signal space, all the message symbols are randomly distributed on the 

vertices of an N-dimensional cube space using a random chipping sequence of {-1, +1}, 

where N is the number of chips per symbol.  Now in generalizing ordinary DSSS, along 

with the vertices of ordinary DSSS the midpoints of the edges and faces of the 3-D cube 

are considered cube as possible transmitted same energy vectors and these points are 

projected radially onto the surface of a 3-D sphere as shown in Figures 2.5 and 2.6. 
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                                Figure 2.4: Transmission vector distribution for DSSS 

The resulting transmitted vectors for N = 3 can be expressed as 
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±  and ( )a

a
±,0,01  for the faces, 

for a total of 26 possible unit-energy vectors. 

Generalized DSSS can be viewed as the use of a novel chipping sequence where a 

0 is allowed in the chip sequence in addition to {-1, +1}.  This method has a transmitted 

vector distribution which more closely approximates a uniform distribution on the surface 

of an N-dimensional sphere than ordinary DSSS, with a slight increase in system 

complexity.  As shown in [2] when extended to the N-dimensional signal space, this 
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would produce 3N-1 possible unit energy vectors of all hamming weights 1 through N for 

a generalized DSSS. 

N
N

j
j

aa
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},0,{1

1

2
+−

∑
=  

The spreading sequence for a generalized DSSS is a pulse stream with pulse 

values of +1, -1 or 0, a deviation from the usual sequence of +1 or -1.  The spreading 

technique for generalized DSSS is shown in Figure 2.7.  The baseband message signal is 

a rectangular pulse of duration Tb.  This signal gets multiplied by the PN sequence 

generator, which has the PN code sequence of -1, +1, 0.  Therefore the bandwidth of the 

message signal is spread into the wider bandwidth occupied by PN generator signal. 

 

                      Figure 2.5: Transmission vector generalization for DSSS 
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                   Figure 2.6: Transmission vector distribution on sphere for DSSS 
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2.7 Channel Assumptions 

For most communication systems, importance is given to channels whose 

accurate statistical models are known.  However, in many practical communication 

situations the communicator does not have access to a complete statistical description of 

the interfering signals in the channel.  The channel statistics may change with time in an 

unknown and arbitrary way, making to it impractical to predict the channel properties, 

such as hostile jamming or multiple access interference from other non-cooperative 

transmitters. 

For the analyses of robust communication systems, highly optimistic models of 

the interfering signal are commonly used while channel modeling.  In case of anti-jam 

applications, several models for the interfering signal have been proposed.  Among these, 

pulse jamming, where the jammer transmits at full power for a fraction of the time and 

keeps silent for the remainder, was considered to be one of the worst forms of 

interference.  Broadband and partial-band noise jamming have also been considered. 

Multi-tone and repeat-back jamming has also been investigated in many contexts. 

Continuous wave jamming and blades system have been employed in different 

communication systems.  Gaussian approximation has also been employed as a model for 

a large number of transmitters.  For multiple access applications, performance analysis is 

usually based on exact error probability using fixed signature sequences for the 

transmitters.  
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                             Figure 2.7: Spreading sequence with pulse values -1, 0, +1 
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Any communication system which assumes a fixed statistical description for 

interfering signal suffers from a weakness that it is being highly optimistic.  Since a 

jammer has the same design options as a transmitter the most damaging signal that the 

jammer can produce may not necessarily be from these simple models.  Hence the worst-

case performance analysis of a communication system should consider all the possible 

models for the interference.  The definition of a robust communication requires a worst-

case analysis over all possible interference situations in order to guarantee a minimum 

level of reliability in information transfer.  

In modeling the channel, as mentioned by Hizlan in [3], we choose to be on the 

side of excessive pessimism thus consider a channel model in which nothing is known 

about the interference except that it is bounded in power.  Furthermore, it is also 

independent of the transmitted signal and thermal noise.  Therefore, our measure of 

reliability is the worst-case error probability over all such unknown signals. 

Figure 2.8 describes the basic channel model considered in this thesis.  Looking 

into the model, basically an integer message { }Mm ,...,1∈  is sent over a waveform 

channel in a time period of duration T seconds.  The transmitted signal )(tx  is corrupted 

by two independent interference signals resulting in a received signal which is given by: 

Τ≤≤++≅ ttStWtxtY 0),()()()(                                                      (2.1) 
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                                                        Figure 2.8: Channel Model 

Making use of correlation the receiver guesses m̂  from )(tY .  The signal )(tW  represents 

white Gaussian noise process with one-side power spectral density N0 W/Hz.  The signal 

)(tS  represents different sources of interference with partially unknown statistics, such as 

jammers, non-cooperative transmitters, etc.  Here, no such restrictions are imposed on 

)(tS  except that it is independent of m  and )(tW , and also its time-averaged power does 

not exceed JΡ : 

∫ ≤
T

JPdttS
T 0

2 )(1                                                                                    (2.2) 

The important feature of this channel is that the interfering signal can change with time in 

an arbitrary way, subject only to the fundamental limitation of bounded power.  

Therefore )(tS  can have arbitrary, time-varying, non-Gaussian statistics and it may also 

possess memory. 
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CHAPTER III 

CHANNEL MODEL 

3.1 Communication System Model 

Spread spectrum techniques and especially direct sequence modulation have long 

been employed as a means of achieving good communication when the statistical 

description of the channel interference is at least partially unknown.  In this chapter we 

consider a communication system composed of a convolutional encoder, 

convolutional/pseudorandom interleaving, direct sequence modulation and Viterbi 

decoder, operating on a channel corrupted by thermal noise and by an unknown 

interfering signal of bound power.  The channel model used by Hizlan and Hughes in [1] 

considers a much broader class of interference signals than has previously been 

considered.  Our aim is to simulate the worst-case error probability of this coded 

generalized DSSS communication system and compare results with ordinary DSSS for 

different code rates and constraint lengths of convolutional codes. 
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3.1.1 Waveform Model 

The communication system block diagram is shown in Figure 3.1.  The data 

generator gives out 5 × K bits, where K is the constraint length of the convolutional 

encoder.  We have chosen the message length as 5 × K since it is the decoding depth of 

the Viterbi decoder used in this thesis as described in chapter 4.  The convolutional 

encoder coverts these bits into L = 
r
K×5  encoded symbols by adding some redundancy 

for error checking at the receiver, where r is the code rate of convolutional encoder.  The 

transmitter generates L coded symbols every T seconds.   The encoded symbols are then 

transmitted by DS modulation with N pseudo-noise chips per code symbol.  

The N pseudonoise chips are generated randomly using a PN generator and the 

sequence generated is from {-1, 0, +1} for generalized DSSS and from {-1, +1} for 

ordinary DSSS.  These randomly generated chips are then multiplied with a 

normalization factor (equal to 1 for ordinary DSSS) in order to account for the energy 

lost due to the “0” chip in the generalized sequence.  Assume that a given transmitted 

message of length L is called message m.  The basic channel model is illustrated in Figure 

3.1 and a detailed description is given in section 2.5.  Here we replace ( )tx  by ( )txm  to 

show the dependence of the transmitted signal on the message m.  During transmission, 

( )txm  is corrupted by two independent, additive noise processes so that 

( ) ( ) ( ) ( ) TttStWtxtY m <≤++≅ 0,  

is received. Here ( )tW  is a white Gaussian noise process with one-sided power spectral 

density 0N  W/Hz and ( )tS  is an arbitrary signal independent of m and ( )tW . 
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The codeword associated with message m are ( )m
L

mm xxx 10 ,..., −=  for convolutional 

coded generalized direct-sequence spread spectrum.  The symbols are convolutional or 

pseudorandom interleaved to form an interleaved code waveform 

( ) ( ) TtTJtuxtZ
L

l
Sl

m
l

m <≤−≅ ∑
−

=

0,
1

0

 (3.1) 

where u(t) = 1 in the interval [0, TS) and vanishes outside, and TS = T/L is the symbol 

duration.  In equation (3.1) the index sequence {J0, …., JL-1} represents interleaving of 

the symbols, where {J0, …., JL-1} = {C0, …., CL-1} for convolutional interleaving and  

{J0, …., JL-1} = {P0, …., PL-1} for pseudorandom interleaving. 

The interleaved code word is binary phase-shift (BPSK) modulated and DS 

spread by the PN sequence. 

( ) ( ) ( ) TttZtCwtTEctX mm <≤≅ 0),(cos2  (3.2)  

where E is the energy per code word at the receiver, NTT SC =  is the chip duration, w is 

the carrier frequency with 12 −> cTw π , and ( )tC  is the spreading waveform 

( ) ( )∑
−

=

<≤−≅
1

0

.0,
NL

i
Ci TtiTtvAtC  

Here, ( )tv  is a low-pass chip waveform that satisfies ( )∫ =
CT

CTdttv
0

2  and vanishes outside 

the interval [0, CT ). 

The pseudo-noise sequence }{ iA  is modeled as an independent identically 

distributed sequence of random variables which satisfy Pr{Ai= +1} = Pr{Ai= 0} = Pr{Ai= 
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-1} = 1/3 for generalized DSSS and Pr{Ai= +1} = Pr{Ai= -1} = 1/2 for ordinary DSSS, 

and they are independent of {J0, ……, JL-1}.  Therefore, the energy normalization constant  

 

 

                                                       Figure 3.1: System Model 
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c takes the form as shown in [2, equation 2] with
u

NLc = , where u represents the total 

number of non-zero chips per L encoded symbols in the PN sequence. 

The deinterleaver at the receiver end can be represented as 

( ) TtTBtuxtZ
L

l
sl

m
l

m <≤−≅ ∑
−

=

0,)(
1

0

ˆ  (3.3) 

where u(t) = 1 in the interval [0, TS) and vanishes outside, and TS = T/L is the symbol 

duration.  In equation (3.3) the index sequence {B0, …., BL-1} represents deinterleaving of 

the symbols, where {B0, …., BL-1} = {D0, …., DL-1} for convolutional deinterleaving and 

{B0, …., BL-1} = {Q0, …., QL-1} for pseudorandom de-interleaving. 

During channel simulation in order to avoid the overhead of interleaving and 

deinterleaving, we directly interleave the interference in the channel while adding it to the 

signal as described in Figure 5.1 of Chapter 5.  In such a situation the deinterleaved signal 

at the receiver end can be represented as 

( ) ( ) ( ) ( ) TttStWtxtY m <≤++≅ 0,ˆ  (3.4) 

Where ( )tW  is a zero-mean white Gaussian noise process with one-sided power spectral 

density ,/0 HzWN , and ( )tS  is an interleaved unknown and arbitrary interfering signal.  

The signal ( )tS  represents interference from sources with unknown statistics, such as 

multiple-access interference, jamming and impulsive noise.  In this thesis, we consider a 

communication situation in which nothing is known about ( )tS  except that it is 

independent of {Ai}, ( )tW , {J0, …., JL-1}, {B0, …., BL-1} and that its energy is 
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constrained.  Therefore ( )tS  may be random or deterministic, narrow-band or wide-band, 

stationary or time-varying, Gaussian or non-Gaussian. 

In order to bound the error probability of a receiver for (3.4), we must place some 

constraint on the interference energy ( )∫
T

dttS
0

2 .  Here the interference energy is strictly 

bounded, i.e. 

( )∫ ≤
T

ITPdttS
0

2 . (3.5) 

At the receiver end, the same normalized PN code sequence used at the 

transmitter end is multiplied with the received noisy chips before any hard decision is 

performed over the received signal.  After the multiplication the chips are converted to 

symbols and then fed to decision box.  In our case the decision box will compare the 

input signal to zero threshold and output +1 if it is greater than zero and -1 if it is less 

than zero.  Once the symbols are out of the decision box, they are fed to a Viterbi decoder 

to get back the original message bits. 

At the receiver end first we integrate all the received bits described as 

( ) ∫ <≤≅
sT

s
m TtwttCtYtX

0

ˆ 0),cos()()(ˆ                                                 (3.6) 

and later fed to decision box to perform hard quantization, whose function is described as  

                        ( )txm̂ = 1 if ( )tX m̂ < 0 

                        ( )txm̂ = 0 if ( )tX m̂  > 0. 
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3.1.2 Worst-Case Probability of Error 

In this section we investigate the worst-case performance of the system described 

above, following the development in [3].  As discussed in [3], we convert the waveform 

channel described above into an equivalent vector channel representation which is easier 

for simulation. 

Given S = s, the conditional probability of error of the receiver as given in [3, 

equation 8] is 

( ) }ˆPr{1,
1

2 sSmm
NL

vs
NL

m
=≠≅ ∑

=

ε                                                         (3.7) 

where 0
2 2 NLNEv ≅ is the chip signal-to-noise power ratio. 

We calculate error probability when nothing is known about S except a constraint 

on the energy of ( )tS .  Note that the energy constraint (3.5) implies that S [3, equation 9] 
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for the vector channel representation.  The interference energy over L symbols is 
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with signal-to-interference ratio as  

2. σNL
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ii

b =≅  

where CTW 1=  is the system bandwidth, TR 1=  is the data rate and iPTE=2σ  is the 

signal-to-interference power ratio. 

For the purpose of simulating the worst-case performance of the system, we 

assume a canonical distribution for the interference and consider D chips out of the NL 

chips to be affected by interference at maximum power, where NLD ≤≤1 .  Now the 

interference energy vector over D chips is defined as 
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We obtain the worst-case error probability by maximizing the simulated error probability 

over D as it varies from 1 to NL chips, thus maximizing over the interference. 
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CHAPTER IV 

INTRODUCTION TO CONVOLUTIONAL CODES 

The history of error-correction coding began in 1948 with the publication of a 

landmark paper from Claude Shannon “A mathematical theory of communication” [9].  

Since Shannon’s work, much effort has been devoted to the implementation for 

controlling errors in noisy environment.  In this chapter we speak about the codes that are 

used in this thesis. 

Convolutional and block codes are the most widely used codes today.  In this 

thesis we choose convolutional codes with Viterbi decoding as error control codes.  

4.1 Convolutional Codes 

Convolutional codes are usually described using two parameters: the code rate 

and the constraint length.  The ratio of k/n is called the code rate (r) where n denotes the 

number of channel symbols output by the convolutional encoder and k denotes the 
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number of input bits fed to the convolutional encoder in a given encoder cycle.  The code 

rate of the encoder is a measure of the efficiency of the code.  Usually k and n parameters 

range from 1 to 8 and the code rate from 1/8 to 7/8. 

The constraint length parameter, K, denotes the "length" of the convolutional 

encoder, i.e. how many k-bit stages are available to feed the combinatorial logic that 

produces the output symbols.  The quantity K is defined by  

)1( += MkK  

Closely related to K is the parameter M, which indicates how many encoder 

cycles an input bit is retained and used for encoding after it first appears at the input to 

the convolutional encoder.  The M parameter can be thought of as the memory length of 

the encoder. 

4.1.1 Structure of the convolutional code  

A binary convolutional code is generated by passing the information sequence to 

be transmitted through a linear finite-state shift register.  The convolutional code structure 

is easy to draw from its parameters.  First draw the M boxes to represent the M memory 

registers.  Then draw n modulo-2 adders to represent the n output bits. Now connect the 

memory registers to the adders using the generator polynomial.  For a (rate k/n, K) 

convolutional code, the shift register consists of K-1 stages and n linear modulo-2 

function generators.  The input data is shifted into and along the shift registers a single bit 

at a time producing a n-tuple output for each shift.  To illustrate the working of a 

convolutional encoder, consider the (rate 1/2, K = 3) convolutional encoder shown in 
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Figure 4.1 where the output U = [Ui1, Ui2] at instant i is obtained from the message bit xi at 

instant i and the previous (K − 1) (which equals 2 in our example) message bits xi−1 and 

xi−2. 

 

                                Figure 4.1: Convolutional Encoder (rate 1/2, K = 3) 

The operator ⊕  is the modulo-2 adder operator. Initially, the shift registers are assumed 

to be in the all zero state. Suppose the first input bit is a 1.  At the next clock cycle, the 

initial content of the registers is moved towards the right by one bit and the message bit 

occupies the leftmost register.  The registers are therefore set to states 1, 0, and 0, i.e., xi 

= 1, xi-1 = 0, and xi−2 = 0.  The value of the two output bits Uij, for i = 1 and 1 ≤ j ≤ 2, are 

given by  
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221 −− ⊕⊕= iiii xxxU    

Suppose now that the second bit is a 1.  The registers are set to 1, 1, and 0 at the 

next clock cycle and the codeword U1 is 11.  By following this procedure, the code-

word’s Ui can be generated for the remaining message bits.  The selection of which bits 

are to be added to produce the output bit is called the generator polynomial (g) for that 

output bit.  The polynomials give the code its unique error protection quality.  The 

generator polynomials for the above encoder are g1 = [111] and g2 = [101].  One code can 

have completely different properties from another one depending on the polynomials 

chosen. 

4.1.2 States of Convolutional Code  

Convolutional encoders will exist in different states at different times.  Some 

complex encoders have long constraint lengths and simple ones have short in deciding the 

number of states they can be in.  The (rate 1/2, K = 3) code in Figure 4.1 has a constraint 

length of 3.  The number of combinations of bits in the memory are called the states of 

the code and are defined by  

Number of states = 2K -1 

where K = the constraint length of the code. 

Let us examine the states of the code (rate 1/2, K = 3) shown above.  This code 

outputs 2 bits for every one input bit. It is a rate 1/2 code.  Its constraint length is 3 and 
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memory length is 2.  The total number of states is equal to 4.  The four states of this (rate 

1/2, K = 3) code are: .11,10,01,00  

4.2 Convolutional Codes with Higher Inputs 

We can also create codes where k is more than one such as the (rate 2/3, K = 8) 

code.  This code takes in 2 bits and outputs 3 bits.  The number of memory registers is 4. 

The constraint length is 5 x 2 = 10. The code has 16 states. 

The procedure for drawing the structure of a (rate k/n, K) code where k is greater 

than 1 is as follows.  First draw k sets of M boxes.  Then draw n adders. Now connect n 

adders to the memory registers using the coefficients of the nth (kM) degree polynomial. 

What you will get is a structure like the one in Figure 4.2 for code (rate 2/3, K = 8), It has 3 

memory registers, 2 input bits and 3 output bits. 
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                                Figure 4.2: A (rate 2/3, K = 8) convolutional code.  

4.3 Systematic vs. Non-systematic Convolutional Code 

A systematic convolutional code is one in which the input k-tuple appears as part 

of the output branch word n-tuple associated with that k-tuple.  In a systematic 

convolutional code the output bits contain an easily recognizable sequence of the input bits. 

The systematic version of the above (rate 1/2, K = 3) code of Figure 4.1 is shown in Figure 

4.3, It has the same number of memory registers, and one input bit and two output bits. 

The output bits consist of the original two bits and a third parity bit.  Looking at the code 

we see that of the two output bits, one is exactly the same as the one input bit.  The second 
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bit is similar to a parity bit produced from a combination of three bits using a single 

polynomial. 

 

           Figure 4.3: The systematic version of the (rate 1/2, K = 3) convolutional code.  

Systematic codes are often preferred over the non-systematic codes because they 

allow quick look.  Another important property of systematic codes is that they are non 

catastrophic, which means that errors can not propagate catastrophically.  All these 

properties make them very desirable. But transforming a non-systematic convolutional 

code into a systematic code reduces the maximum possible free distance for a given 

constraint length and rate.  However the error protection properties of systematic codes 

are the same as those non-systematic codes.  In this thesis, we considered non-systematic 

codes. 
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4.4 Encoder Design 

The hardware of the encoder is much simpler than that of the decoder because the 

encoder does no math.  The encoder for convolutional code uses a table look up to do the 

encoding.  The look up table consists of four items: 

• Input bit. 

• The State of the encoder, which is one of the 4 possible states for the 

example (rate 1/2, K = 3) code.  

• The output bits. For the code (rate 1/2, K = 3), since two bits are output, 

the choices are .11,10,01,00  

• The output state which will be the input state for the next bit.  

For the code (rate 1/2, K = 3) the look-up table is shown below in table I. 

TABLE I: LOOK-UP TABLE  FOR THE  ENCODER OF CODE (RATE 1/2, K = 3) 
 

 

 

 

 

This look up table uniquely describes the code (rate 1/2, K = 3).  It is different for 

each code depending on the parameters and the polynomials used.  

 

I1 S1 S2 O1 O2 S1 S2 

1 0 0 0 0 0 0 

1 0 0 1 1 1 0 

0 0 0 1 1 0 0 

1 0 0 0 0 1 0 

0 0 1 1 0 0 0 

0 0 1 0 1 1 0 
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Flushing Bits 

Now if we are only going to send the data bits given above, in order for the last 

bit to affect three (K = 3) pairs of output symbols, we need to output two more pairs of 

symbols.  This is accomplished in our example encoder by clocking the convolutional 

encoder two (M) more times, while holding the input at zero.  This is called flushing the 

encoder, and results in two more pairs of output symbols.  If we don't perform the 

flushing operation, the last M bits of the message have less error-correction capability 

than the first through (M-1) bits had.  This is a pretty important thing to remember if 

you're going to use this Forward Error Correction technique in a burst-mode 

environment.  So there should be a step of clearing the shift register at the beginning of 

each burst.  The encoder must start in a known state and end in a known state for the 

decoder to be able to reconstruct the input data sequence properly.  
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4.5 Encoder Representation 

The encoder can be represented in several different but equivalent ways. They are 

• Generator Representation 

• State Diagram Representation 

• Tree Diagram Representation 

• Trellis Diagram Representation 

4.5.1 Generator Representation 

Generator representation shows the hardware connection of the shift register taps 

to the modulo-2 adders.  A generator vector represents the position of the taps for an 

output.  A “1” represents a connection and a “0” represents no connection.  For example, 

the two generator vectors for the encoder in Figure 1 are g1 = [111] and g2 = [101] where 

the subscripts 1 and 2 denote the corresponding output terminals. 

4.5.2 State Diagram Representation 

The state of a rate 1/n convolutional encoder is defined as the contents of the 

rightmost K – 1 stages.  In order to determine the next output it is sufficient to know the 
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present state and the next input.  The state diagram shows the state information of a 

convolutional encoder.  The state information of a convolutional encoder is stored in the 

shift registers.  In the state diagram, the state information of the encoder is shown in the 

rectangular boxes.  Each new input information bit causes a transition from one state to 

another.  The path information between the states, denoted as x/U, represents input 

information bit x and output encoded bits U.  It is customary to begin convolutional 

encoding from the all zero state.  The state diagram for the convolutional encoder of Figure 

4.1 is shown is Figure 4.4. 

For example, the input information sequence x= {1101} (begin from the all zero 

state) leads to the state transition sequence S = {10, 11, 01, 10} and produces the output 

encoded sequence U = {11, 01, 01, 00}.  

4.5.3 Tree Diagram Representation 

Although the state diagram completely describes the encoder, it is not easy to 

track encoder transitions as a function of time since the diagram cannot represent time 

history.  The tree diagram representation shows all possible information and encoded 

sequences for the convolutional encoder.  It is somewhat better than a state diagram but 

still not the preferred approach for representing convolutional codes.  

Here instead of jumping from one state to another, we go down branches of the 

tree depending on whether a 1 or 0 is received.  Figure 4.5 shows the tree diagram for the 

encoder in Figure 4.1 for four input bit intervals. 
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                        Figure 4.4: Encoder state diagram (rate 1/2, K = 3). 
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                     Figure 4.5: Tree representation of encoder (rate 1/2, K = 3) 
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In the tree diagram, a solid line represents input information bit 0 and a dashed 

line represents input information bit 1.  The corresponding output encoded bits are shown 

on the branches of the tree.  An input information sequence defines a specific path 

through the tree diagram from left to right.  For example, the input information sequence 

x= {1101} produces the output encoded sequence U = {11, 01, 01, 00}.  Each input 

information bit corresponds to branching either upward (for input information bit 0) or 

downward (for input information bit 1) at a tree node. 

4.5.4 Trellis Diagram Representation 

Trellis diagrams are generally preferred over both the tree and the state diagrams 

because they represent linear time sequencing of events.  The x-axis is represented by 

discrete time and all possible states are shown on the y-axis.  We move horizontally through 

the trellis with the passage of time.  Each transition means new bits have arrived.  

The trellis diagram is drawn by lining up all the possible states (2K-1) in the 

vertical axis.  Then we connect each state to the next state by the allowable code words 

for that state.  There are only two choices possible at each state. These are determined by 

the arrival of either a 0 or a 1 bit.  The lines show the input bit and the output bits are 

shown on top of the line.  The trellis diagram is unique to each code, same as both the 

state and tree diagrams are.  We can draw the trellis for as many periods as we want. 

Each period repeats the possible transitions.  

We always begin at state 00.  Starting from here, the trellis expands and in K bits 

becomes fully populated such that all transitions are possible.  The transitions then repeat 
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from this point on.  This means that any two nodes having the same state label, at the 

same time Ti, can be merged since all the succeeding paths will be indistinguishable.  The 

trellis diagram provides a more manageable encoder description than the tree diagram as 

it exploits the repetitive structure of the encoder.  For this particular reason trellis 

representation is used while decoding a particular sequence.  The trellis diagram for the 

convolutional encoder of Figure 4.1 is shown is Figure 4.6. 

 

                           Figure 4.6: Encoder trellis diagram (rate 1/2, K = 3). 
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Encoding using the trellis diagram 

In drawing trellis diagram, we use the same convention that we used with the state 

diagram that a solid line represents the output generated by an input bit, 0, and a dashed 

line represents the output generated by an input bit, 1.  We can only start at point 1. At 

each unit of time the trellis requires 2K-1 nodes to represent 2K-1 possible encoder states. 

The trellis in our example assumes a fixed periodic structure after trellis depth 3 is 

reached.  The path taken by the bits of the example sequence (1101) is shown by the lines 

shown is Figure 4.7.  The corresponding output branch words are shown as labels on the 

trellis branches.  We see that the trellis diagram gives exactly the same output sequence as the 

other three methods, which are graphical, state and the tree diagram.  Though all of these 

diagrams look similar, we should recognize that they are unique to each code. 

 

 Figure 4.7: Trellis Diagram, Input sequence (1101), Output sequence (11, 01, 01, 00). 
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4.6 Decoding 

There are several different approaches to decoding of convolutional codes.  These 

are grouped in two basic categories.  

a) Sequential Decoding --- Fano algorithm. 

b) Maximum likelyhood decoding --- Viterbi decoding. 

These methods represent two different approaches to the same basic idea behind 

decoding.  In this thesis, we use Viterbi decoding to decode the convolutional encoded 

sequence. 

Basic Decoding Principle 

Let’s assume that four bits were sent via a rate 1/2 code and we receive eight bits. 

Now the received eight bits may or may not have errors.  However we know from the 

encoding process that all these bits map uniquely.  So a 4-bit sequence will have a unique 

8-bit output.  But due to errors, we can receive any and all possible combinations of the 

eight bits.  

The permutation of four input bits results in sixteen possible input sequences. 

Each of these has a unique mapping to an eight bit output sequence by the code.  These 

form the set of permissible sequences and the decoder’s task is to determine which one was 

sent.  

Let’s say we received 11010101. In order to decode the received sequence we can 

use one of the following two methods, 
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• We can compare this received sequence to all permissible sequences and pick the 

one with the smallest Hamming distance (or bit disagreement). 

• We can do a correlation and pick the sequences with the best correlation.  

The first method is basically what is behind hard decision decoding and the 

second is the soft-decision decoding.  The bit disagreements show that we still get an 

ambiguous answer and do not know what was sent.  As the number of bits increase, the 

number of calculations required to do decoding in this brute force manner increases such 

that it is no longer practical to do decoding this way.  We need to find a more efficient 

method that does not examine all options and has a way of resolving ambiguity such as 

here where we have two possible answers. 

If a message of length q  bits is received, then the number of total possible 

codewords is q2 .  The basic idea behind decoding is to decode the received sequence 

without checking each and everyone of these q2  codewords. 

4.6.1 Sequential Decoding 

Sequential decoding was one of the first methods proposed for decoding a 

convolutionally encoded bit stream.  Sequential decoding has the advantage that it can 

perform very well with long constraint length convolutional codes, but it has a variable 

decoding time. 

In sequential decoding you are dealing with just one path at a time.  You may give 

up that path at any time and turn back to follow another path but the important thing is 
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that only one path is followed at any one time.  This method also allows both forward and 

backward movement through the trellis.  The decoder keeps track of its decisions each 

time it makes an ambiguous decision.  But if the tally increases faster than some 

threshold value, decoder gives up that path and retraces the path back to the last fork 

where the tally was below the threshold.  Since Viterbi decoding is used in this thesis, we 

will not discuss sequential decoding in depth.  

4.6.2 The Viterbi Convolutional Decoding Algorithm 

Viterbi decoding as described in [10] by Andrew J Viterbi is the best known 

implementation of maximum likelihood decoding.  It reduces the computational load by 

taking advantage of the special structure in the encoder trellis.  In this thesis we have 

chosen 5 × K as the decoding depth of the Viterbi decoder as described in [7], and also 

research has shown that a decoding depth of 5 × K is sufficient for Viterbi decoding with 

the type of codes used during simulation. Any deeper traceback increases decoding delay 

and decoder memory requirements, while not significantly improving the performance of 

the decoder.  Viterbi decoding has the advantage that it has a fixed decoding time.  It is 

well suited to hardware decoder implementation.  The advantage of Viterbi decoding 

over other decoding is that the complexity of a Viterbi decoder is not a function of the 

number of symbols in the codeword sequence. 

First the Viterbi decoder examines an entire received sequence of a given length. 

The decoder computes a metric for each path and makes a decision based on this metric. 

The Viterbi algorithm removes from consideration those trellis paths that could not 
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possibly be candidates for the maximum likelihood choice.  All paths are followed until 

two paths converge on one node.  Then the path with the higher metric is kept and the 

one with lower metric is discarded, this path is called the surviving path.  This selection 

of surviving paths is performed for all the states.  Following this pattern, the decoder 

advances deeper into the trellis, making decisions by eliminating the least likely paths. 

For a q -bit sequence, the total number of possible received sequences are q2 , 

however, of these only 2K are valid.  The Viterbi algorithm applies the maximum-

likelihood principles to limit the comparison to 2 to the power of K surviving paths 

instead of checking all paths.  The early rejection of the unlikely paths reduces the 

decoding complexity. 

The most common metric used is the Hamming distance metric.  This is just the 

degree of similarity between the received codeword and the allowable codeword.  All 

these metrics are added together so that the path with the smallest total metric is the 

correct sequence.  Table II describes the hamming metric for a (rate 1/2, K = 3) code. 

TABLE II: EACH BRANCH HAS A HAMMING METRIC DEPENDING ON WHAT WAS RECEIVED 
AND THE VALID CODEWORDS AT THAT STATE 

Received Valid Valid Hamming Hamming 

Bits Codeword 1 Codeword 2 Metric 1 Metric 2 

00 00 11 0 2 

10 00 11 1 1 

01 10 01 2 0 
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4.6.3 An Example of Viterbi Convolutional Decoding 

In this example we consider Hamming distance for finding the path metric.  The 

encoder in this example is shown in Figure 4.1 and the encoder trellis diagram is shown 

in Figure 4.6.  A similar trellis can be used to represent the decoder, which is shown in 

Figure 4.8.  The principle idea behind decoding procedure can be best understood by 

comparing the Figure 4.6 encoder trellis with the Figure 4.8 decoder trellis.  In the 

decoder trellis each branch at Ti is labeled with the hamming distance between the 

received code symbols and the corresponding branch codeword from the encoder trellis. 

The example in Figure 4.8 shows a message sequence, x, the corresponding codeword 

sequence, U, and a noise corrupted received sequence R.  The branch words seen on the 

encoder trellis branches are for the encoder in Figure 4.1.  These branch words are known 

to the encoder and the decoder prior to transmission.  As the code symbols are received, 

each branch of the decoded trellis is labeled with a metric of similarity (Hamming 

distance) between the received code symbols and each of the branch words at that time 

interval.  To label the decoder branches at time T1 with the appropriate hamming distance 

metric, we look at the encoder trellis in Figure 4.6.  Here we see that a state 00 to 00 

transition yields an output branch word of 00 and we received 11, therefore on the 

decoder trellis for state 00 to 00 transitions we get the branch metric 2.  Similarly for 00 

to 01 transition, we get the branch metric as 0 and continuing this approach we can fill 

the decoder trellis with the corresponding branch metrics.  The decoding algorithm will 

use these Hamming distance metrics in order to find the minimum distance path through 

the trellis. 
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The principle behind Viterbi decoding is that of two paths merging to a single 

state in the trellis, one of them can always be eliminated by deciding the optimum path 

among them.  The cumulative Hamming path metric of a given path at time Ti is defined 

as the sum of the branch Hamming distance metrics along the path up to time Ti.    

 

                              Figure 4.8: Decoder trellis diagram (rate 1/2, K = 3). 

When two paths try to merge at the same node then the one with smallest path metric is 

chosen as the optimum path.  At any time Ti  there are 2K-1 states in the trellis and each 

state can be entered by means of two paths.  Viterbi decoding consists of computing the 

metrics for the two paths entering each state and eliminating one of them.  The decoder 
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does this computation for each of the 2K-1 nodes at time Ti.  Then the decoder moves to 

time Ti+1 and repeats the same process.  With Viterbi decoder the first bit is not decoded 

until the path metric computation has proceeded to a much greater depth into the trellis.  

This leads to a decoding delay which can be as much as five times the constraint length in 

bits for a particular decoder. 

To illustrate the algorithm, let us decode a received sequence 11 10 11 00 using 

the Viterbi algorithm. 

a) At time T1, we have received bit 11.  The decoder always starts at state 00. 

From this point it has two paths available, either 00 or 10.  The decoder 

computes the branch metric for both of these and will continue 

simultaneously along both of these branches in contrast to the sequential 

decoding where a choice is made at every decision point.  The branch metric 

for state 00 to 00 is 2 and for state 00 to 10 is 0 as shown in Figure 4.9a. 



 

 66

 

                                                 Figure 4.9a: Survivors at T1 

b) At time T2 as shown in Figure 4.9b, the decoder fans out from these two 

possible states to four states.  The branch metrics for these branches are 

computed by looking at the agreement with the codeword and the 

incoming bits which are 10.  The new path metric is shown on the right of 

the trellis. 
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                                                  Figure 4.9b: Survivors at T2 

c) At time T3 as shown in Figure 4.9c, there are again two branches diverging 

from each state.  As a result there are two paths entering each state at T4. 

The path metrics are calculated for bits 01 and added to pervious metrics 

from T2. 
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                                                  Figure 4.9c: Survivors at T3 

As noted previously, one path entering each state can be eliminated by choosing the one 

having the larger cumulative path metric.  If the metrics of the two entering paths are equal 

then one path is chosen for elimination by arbitrary rule.  The surviving paths at this stage 

are shown in Figure 4.9d.  At this point in the decoding process there is only a single 

surviving path between T1 and T2.  Therefore, the decoder can now decide that the state 

transition which occurred between T1 and T2 was 00 to 10.  Since this transition is produced 

by input bit 1, the decoder gives out 1 as the first decoded bit. 
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                                             Figure 4.9d: Path Deciding at T3 

d) At time T4 as shown in Figure 4.9e, the received bits are 00.  Again the 

metrics are computed for all paths.  We discard all larger metrics but keep 

both if they are equal.  Figure 4.9e shows the survivors at time T4. 
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                                               Figure 4.9e: Survivors at T4. 

The 4-step trellis is complete.  We now look at the path with the lowest metric.  We have 

a winner and it is the one which has a path metric 1 as shown in Figure 4.9f.  The path 

traced by states 10, 11, 01, 10 and corresponding to bits 1101 is the decoded sequence. 

The decoded path is indicated by the dark line in Figure 4.9f. 
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                                                       Figure 4.9f: Final Path at T4. 

4.7 Hard and Soft-Quantization 

An ideal Viterbi decoder would work with infinite precision, or at least with 

floating-point numbers.  In practical systems, we quantize the received channel symbols 

with one or a few bits of precision in order to reduce the complexity of the Viterbi 

decoder.  If the received channel symbols are quantized to one-bit precision (< 0V = 1, > 

0V = 0), the result is called hard-decision data.  If the received channel symbols are 

quantized with more than one bit of precision, the result is called soft-decision data.  A 

Viterbi decoder with soft decision data inputs quantized to three or four bits of precision 
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can perform about 2 dB better than one working with hard-decision inputs.  The usual 

quantization precision is three bits.  More bits provide little additional improvement. 

In this thesis, hard decision decoding is used since our aim is only to compare the 

performance of ordinary and generalized DSSS. 
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CHAPTER V 

SIMULATION OF COMMUNICATION SYSTEM MODEL 

Simulation of a convolutional coded DSSS communication system involves a 

significant amount of computation and it is therefore very time consuming.  This chapter 

describes the constraints involved in simulation and also talks about Monte Carlo 

simulation, data generator, convolutional encoder, convolutional interleaver, PN 

generator and Viterbi decoder. 

C platform was used to simulate the communication system and the data collected 

was plotted for analysis.  The graphs shown in Chapter 6 are the graphs obtained from 

simulation results for different constraint lengths and code rates. 

5.1 Monte-Carlo Simulation for BER Measurement 

For any communication system bit error rate (BER) gives a good measure of its 

performance.  There are two methods to measure BER. First method is called error 
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counting, which counts a pre-determined number of symbols and trials, then makes a note 

of the total number of errors incurred.  The second is called symbol counting, which 

counts a pre-determined number of errors, and then makes a note of the total number of 

symbols required to produce these errors.  In this thesis we use error counting for all the 

simulations. 

The signal and noise sources used in the communication system are random in 

nature and therefore the results obtained in terms of BER are also random.  Usually the 

errors on the measurement of BER arise because it is impossible to have infinite number 

of trials to make the estimate.  When the probability of bit error is calculated by taking 

the ratio of the number of errors to a given number of trials, then the measurement could 

be in error because of the fact that underlying probability of error is small compared to 

the infinite number of trials. 

In order to obtain the desired “true” result we have to perform “infinite number” 

of simulation runs, which is impossible to achieve in reality. Instead, the reliability of the 

measurement could be determined, i.e. one can be confident in a quantifiable way that the 

resulting BER is a good representation of the “true” result.  To know more about the 

theory involved with the reliability of BER measurements refer to [11]. In order to avoid 

confusion it is always better to express BER in terms of a degree of confidence.  Thus the 

results from a Monte Carlo simulation should always be quoted in the form of confidence 

intervals with an associated probability.  For example: “there is a 96% probability that the 

actual BER is between 0.003 and 0.0035”, where 96% is known as the confidence level, 

and the difference between 0.003 and 0.0035 is the confidence interval.  The confidence 

interval decreases as the number of trials increases by keeping the confidence level 
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constant, whereas the confidence level increases with the increase in number of trials by 

keeping the confidence interval constant.  A simple formula is used to determine the 

confidence limits for a given confidence level.  Let N  be the number of trials and n  be 

the number of errors. Let p be the estimated bit error rate.  Then, from [11] 
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Now for a confidence level of Y%, we can set 

100
1 Y
−=β                                                                                             (5.4) 

Using the above given formula the necessary length of the simulation runs can be 

determined.  We consider 05.0=β  resulting in 96.1=βd  in this thesis.  However for 

many practical measurements, “the rule of thumb” that counting 10 errors gives a BER 

within a factor of 2 with 95% confidence is used.  In order to obtain a smaller spread in 

BER we need to count more errors.  We consider 10000 trials for all the simulations 

presented in this thesis. 
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5.2 Generating the Message Data 

Generating the data to be transmitted through the channel can be accomplished 

quite simply by using a random number generator.  C language provides rand() function 

which produces a uniform distribution of numbers on the interval from 0 to a maximum 

value.  Here, we use rand() function to generate random numbers as described in [12].  

Using this function, we can say that any value less than half of the maximum value is a 

zero; any value greater than or equal to half of the maximum value is a one. 

5.3 Simulation of Convolutional Encoder 

The encoder is simulated by first filling the two tables.  They are the next state 

and output symbol for the convolutional encoder.  A detailed description of convolutional 

encoder functionality is described in Chapter 4. The table III given below is often called a 

state transition table.  We will refer to it as the next state table.   

TABLE III: NEXT STATE TABLE 
  Next State, if  

Current State Input = 0: Input = 1: 

00 00 10 

01 00 10 

10 01 11 

11 01 11 
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Now let us look at table IV given below that lists the channel output symbols, 

given the current state and the input data, we will refer to as the output table: 

TABLE IV: OUTPUT TABLE 
 Output Symbols, if 

Current State Input = 0: Input = 1: 

00 00 11 

01 11 00 

10 10 01 

11 01 10 

 

You should now see that with these two tables, you can completely describe the 

behavior of the example (rate 1/2, K = 3) convolutional encoder.  Note that both of these 

tables have 2(K - 1) rows and 2k columns, where K is the constraint length and k is the 

number of bits input to the encoder for each cycle.  These two tables will come in handy 

when we start discussing the Viterbi decoder algorithm. 

In a convolutional encoder, generator polynomial represents the shift register 

connections to the modulo-two adders.  They are usually denoted as gi = [101] where the 

subscript i=1, 2, 3, etc. denote the corresponding output terminals.  A “1” represents a 

connection and a “0” represents no connection.  Choice of generator polynomials does 

influence the performance of convolutional codes.  We considered the generator 

polynomials listed in [5].  Table V describes all the generator polynomials used in this 

thesis for different codes. 
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TABLE V: GENERATOR POLYNOMIALS OF VARIOUS CODES 

Code 
Rate 
(r) 

Constraint 
Length 

(K) 

g1 g2 g3 g4 g5 g6 g7 

1/2 3 111 101 - - - - - 

1/2 5 11111 10101 - - - - - 

1/2 7 1111111 1101101 - - - - - 

1/3 3 111 101 110 - - - - 

1/5 3 111 101 110 011 010 - - 

1/7 3 111 101 110 011 010 111 101 

 
Mapping the one/zero output of the convolutional encoder onto an antipodal 

baseband signaling scheme is simply a matter of translating zeroes to +1s and ones to -1s.  

This can be accomplished by performing the operation y = 1 – 2x on each convolutional 

encoder output symbol.  

5.4 Pseudonoise Sequence and Energy Normalization  

The spreading sequence used in the simulation of coded generalized DSSS is 

different from the ordinary sequence.  The sequence used is {–1, 0, +1} instead of {–1, 

+1} and it is generated using a random number generator with some arbitrary seed.  The 

random number generators used for this purpose in this thesis are ran0( ) and ran2( ) 

described in [12].  They produce uniform deviates which are random numbers which lie 

within a specific range from 0 to 100, each number with equal probability of occurring. 
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Now the generated number is divided by 3 and if the remainder is equal to 0 we consider 

1 to be generated, if the remainder is 1 we consider 0 to be generated and if the remainder 

is 2 then we consider -1 to be generated. For each symbol we calculate total number of -

1, 0 and +1 chips generated.  

In order to account for the energy lost due to the extra 0-valued chip in the 

generalized sequence we need to normalize the PN generated chips before they are 

transmitted across the noisy channel.  The normalization factor will consolidate the 

energy lost due to the “0” chip in the {1, 0, +1} sequence.  At the receiver end the same 

normalized PN sequence is multiplied with the received noisy chips before hard decision 

is performed.  The normalization factor is given by
u

NLc = , where u represents the total 

number of non-zero chips per L encoded symbols in the PN sequence. 

5.5 Simulation of Channel 

We consider a channel model in which nothing is known about the interference 

except that it is bounded in power.  Furthermore, it is also independent of the transmitted 

signal and thermal noise.  In order to avoid the overhead of interleaving and 

deinterleaving, we directly interleave the interference in the channel while adding it to the 

signal which is described in Figure 5.1.  Our measure of reliability is the worst-case error 

probability over all such unknown signals.  In order to simulate the worst-case 

performance, first we distribute the interference over D chips out of total NL chips using 
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convolutional or pseudorandom interleaving and later we maximize the simulated BER 

for any given D over all values of D to get the worst-case performance.  We use chip-

level interleaving in this thesis as it performs better than symbol-level interleaving as 

described in [3]. 

Adding noise to the transmitted channel symbols produced by the convolutional 

encoder involves generating Gaussian random numbers, scaling the numbers according to 

the desired energy per chip to noise density ratio and adding the scaled Gaussian random 

numbers to the channel symbol values.  However, in this thesis we did not add Gaussian 

noise to better emphasize the performance due to the presence of arbitrary interference. 

5.6 Integration and Hard Quantization 

At the receiver end, the same normalized PN code sequence used at the 

transmitter end is multiplied with the received noisy chips before any hard decision is 

performed over the received signal.  A waveform channel would require an integrator for 

the correlation operation whereas the vector representation, which we are using for 

simulation purposes, requires only vector correlations i.e. chip by chip multiplication.  

After the multiplication the chips are converted to symbols and then fed to decision box.  

In our case the decision box will compare the input signal to zero threshold and output +1 

if it is greater than zero and –1 if it is less than zero.  Once the symbols are out of the 

decision box, they are fed to Viterbi decoder to get back the original message bits. 
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5.7 Simulation of Viterbi Decoder 

A detailed description of the Viterbi decoder functionality is given in Chapter 4. 

Here we talk about various steps involved in simulating it in software.  In this thesis we 

have chosen 5 × K as the decoding depth of the Viterbi decoder as described in [7], and 

also research has shown that a decoding depth of 5 × K is sufficient for Viterbi decoding 

with the type of codes used in this thesis. Any deeper traceback increases decoding delay 

and decoder memory requirements, while not significantly improving the performance of 

the decoder.  To implement a Viterbi decoder in software, the first step is to build some 

data structures around which the decoder algorithm will be implemented.  These data 

structures are best implemented as arrays.  The primary six arrays that we need for the 

Viterbi decoder are as follows:  

 A copy of the convolutional encoder next state table, the state transition 

table of the encoder.  The dimensions of this table (rows × columns) are 

2(K–1) × 2k.  This array needs to be initialized before starting the decoding 

process.  

 A copy of the convolutional encoder output table.  The dimensions of this 

table are 2(K–1) × 2k.  This array needs to be initialized before starting the 

decoding process.  

 An array or table showing for each convolutional encoder current state and 

next state, what input value (0 or 1) would produce the next state, given 

the current state.  This array is called the input table. Its dimensions are 
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2(K–1) × 2(K–1).  This array needs to be initialized before starting the 

decoding process.  

 An array to store state predecessor history for each encoder state for up to 

K×5 + 1 received channel symbol pairs.  We'll call this table the state 

history table.  The dimensions of this array are 2(K–1) × (K×5 + 1).  This 

array does not need to be initialized before starting the decoding process.  

 An array to store the accumulated error metrics for each state computed 

using the add-compare-select operation.  This array will be called the 

accumulated error metric array.  The dimensions of this array are 2(K–1) × 

2.  This array does not need to be initialized before starting the decoding 

process.  

 An array to store a list of states determined during trace back. It is called 

the state sequence array.  The dimensions of this array are K×5 + 1.  This 

array does not need to be initialized before starting the decoding process.  

5.8 Simulation of Coded Generalized DSSS Communication System 

 In order to avoid the overhead of interleaving and de-interleaving process as 

described in Figure 3.1, we directly interleave the interference in the channel while 

adding it to the signal which is described in Figure 5.1.  The steps involved in simulating 

a spread spectrum communication system using convolutional coding and Viterbi 

decoding are as follows:  
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                                         Figure 5.1: Simulated System Model                               
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 Generate the data to be transmitted through the channel.  In our case it is 

always in blocks of 5 × (constraint length) i.e. 5 × K binary data bits. 

 Convolutionally encode the data and map the one/zero channel symbols 

onto an antipodal baseband signal, producing transmitted channel symbols 

i.e. L = 
r
K×5  symbols where r is the code rate of encoder. 

 Multiply the baseband signals with normalized (for generalized DSSS) 

pseudonoise code sequence of length N.  Here the symbols get converted 

into chips. 

 Now distribute the interference over D chips out of total N×L chips using 

convolutional or pseudorandom interleaving, later the simulation result 

maximizes over all the values of D.   

 Multiply the received noisy chips with the same generalized pseudonoise 

code sequence used at the transmitter and later perform 1-bit quantization 

of the received channel symbols which is termed as hard-decision; here 

chips are converted back to symbols. 

 Perform Viterbi decoding on the quantized received channel symbols 

which results in binary data bits. 

 Compare the decoded data bits to the transmitted data bits and count the 

number of errors in order to calculate the BER of the communication 

system for the given value of D. 
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 Maximize calculated BER over all values of D to find the worst-case 

BER. 

In this thesis we accurately model the effects of interference even by bypassing 

the steps of modulating the channel symbols onto a transmitted carrier, and then 

demodulating the received carrier to recover the channel symbols.  We choose this 

method because it avoids complexity and at the same time it will not affect the 

performance of the system. 
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CHAPTER VI 

NUMERICAL RESULTS  

In this thesis we consider convolutional codes with different constraint lengths 

and code rates to compare the worst-case error performance of coded ordinary and coded 

generalized DSSS schemes.  Constraint lengths considered are K = 3, 5 and 7 and code 

rates considered are r = 1/2, 1/3, 1/5 and 1/7.  Results are obtained by keeping one 

variable constant while varying the other.  Conclusions are drawn from the observations. 

In this chapter, plots showing “generalized” correspond to the coded generalized 

DSSS communication system and plots showing “ordinary” correspond to the ordinary 

DSSS.  The Eb/Ni used in the plots is defined as follows: 

r
NKEb

××
=

5  

K = Constraint length 

5 × K = Decoding depth 

N = Chip length 

r = Code rate of convolutional encoder 
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where Eb is defined signal energy.  Ni is the interference considered for a bit set of 

r
NK ××5  as described in section 3.1.2 of Chapter 3. 

First we compare codes with the same constraint length and see how they perform 

as code rate varies.  We compare the performance of various codes and compare the 

difference between the curves for ordinary DSSS and generalized DSSS for each code, 

keeping constraint length constant.  This is followed by comparison of codes with the 

same code rate and different constraint lengths of the convolutional code.  We compare 

the performance of different codes and compare the difference between the curves for 

ordinary DSSS and generalized DSSS for each code, keeping code rate constant.  Then 

we compare codes with same code rate and same constraint length with varying lengths 

of the pseudorandom chip sequence (N).  We compare the performance of various codes 

and compare the difference between the curves for ordinary DSSS and generalized DSSS. 

Then we compare codes with same code rate and same constraint length by varying the 

interleaver between convolutional and pseudorandom.  We compare the performance of 

various codes and compare the difference between the curves for ordinary DSSS and 

generalized DSSS.  Then we compare codes with same code rate and same constraint 

length with varying the decoding depth of the Viterbi decoder.  We compare the 

performance of various codes and compare the difference between the curves for ordinary 

DSSS and generalized DSSS.  Finally we compare codes with same code rate and same 

constraint length by varying the number of rows of convolutional interleaver. 
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6.1 Convolutional Codes with Same Constraint Length 

In this section we compare the worst-case performance of convolutional codes 

with the same constraint length and see how they perform as code rate varies.  All the 

codes in this section are used with a chip sequence length of N = 10, decoding depth of 

5K and convolutional interleaving with the number of rows as 5. 

The codes shown in Figures 6.1, 6.2, 6.3 and 6.4 have the same constraint length 

of K = 3.  They have code rates of r = 1/2, 1/3, 1/5 and 1/7 respectively. Comparing the 

performance at 10-3 level, we get Table VI. 

TABLE VI: VARYING CODE RATE (R) 
    Code Code Rate (r) Generalized (dB) Ordinary (dB) Gain 

Figure 6.1 1/2 -0.5 0.5 1 

Figure 6.2 1/3 -2 -0.6 1.4 

Figure 6.3 1/5 -2.5 -1.0 1.5 

Figure 6.4 1/7 -4 -2.4 1.6 

 

From the results in this section it is observed that with constant constraint length 

of the convolutional code as code rate decreases performance improves, at the same time 

the difference between two systems increases.  It is expected that decreasing code length 

(increasing redundancy) would result in better performance.  It is interesting to also see 

that the difference between ordinary and generalized DSSS increases with decreasing 

code length, as stipulated by Hizlan [3]. 
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                                               Figure 6.1: Code Rate, r = 1/2 

 

 

 



 

 90

N=10_K=3_r=1/3

0.000001

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

Eb/NI

W
or

st
-c

as
e

Er
ro

rP
ro

ba
bi

lit
y

ordinary generalized
 

                                                 Figure 6.2: Code Rate, r = 1/3 

 



 

 91

N=10_K=3_ r=1/5

0.000001

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

Eb/NI

W
or

st
-c

as
e

Er
ro

rP
ro

ba
bi

lit
y

Ordinary Generalized

 

                                                Figure 6.3: Code Rate, r = 1/5 
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                                                Figure 6.4: Code Rate, r = 1/7 
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6.2 Convolutional Codes with Same Code Rate 

In this section we compare performance of convolutional codes with the same 

code rate and see how they perform as constraint length varies.  All the codes used in this 

section have a chip length of N = 10, decoding depth of 5K and use convolutional 

interleaving with number of rows as 5. 

The codes shown in Figure 6.5, 6.6 and 6.7 have the same code rate of r = 1/2. 

They have constraint lengths of K = 3, 5 and 7 respectively.  Comparing the performance 

at 10-3 level, we get Table VII. 

TABLE VII: VARYING CONSTRAINT LENGTH (K) 
    Code Constraint 

Length (K) 

Generalized (dB) Ordinary (dB) Gain 

Figure 6.5 3 -0.5 0.5 1 

Figure 6.6 5 -0.6 0.3 0.9 

Figure 6.7 7 -3.9 -3.1 0.8 

 

From the results in this section it is observed that with constant code rate of the 

convolutional code as constraint length increases performance improves, at the same time 

the difference between two systems decreases.  Again, it is expected that larger constraint 

lengths produce better results.  It is interesting to see that the difference between the two 

systems gets smaller with increasing constraint length.  This would suggest that 

generalized DSSS becomes increasingly more beneficial as coding memory is decreased. 
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                                         Figure 6.5: Constraint length, K = 3 
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                                         Figure 6.6: Constraint length, K = 5 
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                                           Figure 6.7: Constraint length, K = 7 
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6.3 Same Code Rate and Constraint Length with Varying Chip Length 

In this section we compare codes with same code rate and same constraint length 

with varying length of pseudo-random chip sequence (N).  All the codes used in this 

section have decoding depth of 5K and use convolutional Interleaving with number of 

rows as 5. 

The codes shown in Figure 6.8 and 6.9 have constraint length of K = 3 and code 

rate of r = 1/2.  They have chip length (N) of 10 and 20 respectively.  Comparing the 

performance at 10-3 level, we get Table VIII. 

TABLE VIII: VARYING CHIP LENGTH FOR K = 3 AND R = 1/2 
    Code Chip Length (N) Generalized (dB) Ordinary (dB) Gain 

Figure 6.8 10 -0.5 0.5 1 

Figure 6.9 20 -3.6 -2.8 0.8 

 

The codes shown in Figure 6.10 and 6.11 have the same constraint length of K = 3 

and same code rate of r = 1/3 respectively.  Comparing the performance at 10-3 level, we 

get Table IX. 

TABLE IX: VARYING CHIP LENGTH FOR K = 3 AND R = 1/3 
    Code Chip Length (N) Generalized (dB) Ordinary (dB) Gain 

Figure 6.10 10 -2.0 -0.6 1.4 

Figure 6.11 20 -5.8 -4.7 0.9 
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                                             Figure 6.8: Chip Length, N = 10 
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                                            Figure 6.9: Chip Length, N = 20 
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                                           Figure 6.10: Chip Length, N = 10 

 



 

 101

N=20_K=3_r=1/3

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Eb/NI

W
or

st
-c

as
e 

Er
ro

r P
ro

ba
bi

lit
y

ordinary generalized
 

                                             Figure 6.11: Chip Length, N = 20 
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The codes shown in Figure 6.12 and 6.13 have the same constraint length of K = 

3, same code rate of r = 1/5 and used convolutional Interleaving.  Comparing the 

performance at 10-3 level, we get Table X. 

TABLE X: VARYING CHIP LENGTH FOR K = 3 AND R = 1/5 
    Code Chip Length (N) Generalized (dB) Ordinary (dB) Gain 

Figure 6.12 10 -2.5 -1.0 1.5 

Figure 6.13 20 -5.1 -4.0 1.1 

 

The codes shown in Figure 6.14 and 6.15 have the same constraint length of K = 3 

and same code rate of r = 1/7 respectively.  Comparing the performance at 10-3 level, we 

get Table XI. 

TABLE XI: VARYING CHIP LENGTH FOR K = 3 AND R = 1/7 
    Code Chip Length (N) Generalized (dB) Ordinary (dB) Gain 

Figure 6.14 10 -4.0 -2.4 1.6 

Figure 6.15 20 -4.3 -3.0 1.3 

 

The codes shown in Figure 6.16 and 6.17 have constraint length of K = 3 and 

code rate of r = 1/2.  Comparing the performance at 10-3 level, we get Table XII. 
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                                          Figure 6.12: Chip Length, N = 10 
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                                              Figure 6.13: Chip Length, N = 20 
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                                             Figure 6.14: Chip Length, N = 10 
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                                           Figure 6.15: Chip Length, N = 20 
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                                             Figure 6.16: Chip Length, N = 10 
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                                            Figure 6.17: Chip length, N = 20 
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                                              Figure 6.18: Chip length, N = 10 
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                                             Figure 6.19: Chip Length, N = 20 
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                                            Figure 6.20: Chip Length, N = 10 
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                                           Figure 6.21: Chip Length, N = 20 
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TABLE XII: VARYING CHIP LENGTH FOR K = 3 AND R = 1/2 
    Code Chip Length (N) Generalized (dB) Ordinary (dB) Gain 

Figure 6.16 10 -0.5 0.5 1 

Figure 6.17 20 -3.6 -2.8 0.8 

 

The codes shown in Figure 6.18 and 6.19 have constraint length of K = 5 and 

code rate of r = 1/2.  Comparing the performance at 10-3 level, we get Table XIII. 

TABLE XIII: VARYING CHIP LENGTH FOR K = 5 AND R = 1/2 
    Code Chip Length (N) Generalized (dB) Ordinary (dB) Gain 

Figure 6.18 10 -0.6 0.3 0.9 

Figure 6.19 20 -0.7 0 0.7 

 

The codes shown in Figure 6.20 and 6.21 have constraint length of K = 7 and 

code rate of r = 1/2.  Comparing the performance at 10-3 level, we get Table XIV. 

TABLE XIV: VARYING CHIP LENGTH FOR K = 7 AND R = 1/2 
    Code Chip Length (N) Generalized (dB) Ordinary (dB) Gain 

Figure 6.20 10 -3.9 -3.1 0.8 

Figure 6.21 20 -4.0 -3.5 0.5 

 

From the results in this section it is observed that with same constraint length and 

same code rate as chip length (N) increases performance improves, at the same time the 
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difference between two systems decreases.  Again, the first observation here is obvious.  

The second observation suggests that generalized DSSS becomes increasingly more 

beneficial compared to ordinary DSSS as other parameters of the communication system 

(in this case N) are varied to make it less robust. 

6.4 Same Code Rate and Constraint Length with Varying Interleaver 

In this section we compare codes with same code rate and same constraint length 

by varying Interleaver between convolutional and random.  All the codes used in this 

section have chip length of N = 10, decoding depth of 5K and number of rows of 

convolutional Interleaver as 5. 

The codes shown in Figure 6.22 and 6.23 have the same constraint length of K = 

3, same code rate of r = 1/2 and they use convolutional, random Interleaver respectively. 

Comparing the performance at 10-3 level, we get Table XV. 

TABLE XV: VARYING INTERLEAVER FOR K = 3 AND R = 1/2 
    Code Interleaver Generalized (dB) Ordinary (dB) Gain 

Figure 6.22 Convolutional -0.5 0.5 1 

Figure 6.23 Random -1.5 -1.0 0.5 

 

The codes shown in Figure 6.24 and 6.25 have constraint length of K = 3 and 

code rate of r = 1/3. Comparing the performance at 10-3 level, we get Table XVI. 
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                                      Figure 6.22: Convolutional Interleaver 
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                                         Figure 6.23: Random Interleaver 
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                                      Figure 6.24: Convolutional Interleaver 

 

 

 



 

 118

N=10_K=3_ r=1/3

0.00001

0.0001

0.001

0.01

0.1

1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Eb/NI

W
or

st
-c

as
e 

Er
ro

r P
ro

ba
bi

lit
y

Ordinary Generalized

 

                                           Figure 6.25: Random Interleaver 
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                                     Figure 6.26: Convolutional Interleaver 
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                                           Figure 6.27: Random Interleaver 
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TABLE XVI: VARYING INTERLEAVER FOR K = 3 AND R = 1/3 
    Code Interleaver Generalized (dB) Ordinary (dB) Gain 

Figure 6.24 Convolutional -2.0 -0.6 1.4 

Figure 6.25 Random -3.0 -2.0 1 

 

The codes shown in Figure 6.26 and 6.27 have constraint length of K = 3 and 

code rate of r = 1/5. Comparing the performance at 10-3 level, we get Table XVII. 

TABLE XVII: VARYING INTERLEAVER FOR K = 3 AND R = 1/5 
    Code Interleaver Generalized (dB) Ordinary (dB) Gain 

Figure 6.26 Convolutional -2.5 -1.0 1.5 

Figure 6.27 Random -3.5 -2.3 1.2 

 

The codes shown in Figure 6.28 and 6.29 have constraint length of K = 3 and 

code rate of r = 1/7.  Comparing the performance at 10-3 level, we get Table XVIII. 

TABLE XVIII: VARYING INTERLEAVER FOR K = 3 AND R = 1/7 
    Code Interleaver Generalized (dB) Ordinary (dB) Gain 

Figure 6.28 Convolutional -4.0 -2.4 1.6 

Figure 6.29 Random -4.1 -3.0 1.1 
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                                    Figure 6.28: Convolutional Interleaver 
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                                            Figure 6.29: Random Interleaver 
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The codes shown in Figure 6.30 and 6.31 have constraint length of K = 3 and 

code rate of r = 1/2 respectively.  Comparing the performance at 10-3 level, we get Table 

XIX. 

TABLE XIX: VARYING INTERLEAVER FOR K = 3 AND R = 1/2 
    Code Interleaver Generalized (dB) Ordinary (dB) Gain 

Figure 6.30 Convolutional -0.5 0.5 1 

Figure 6.31 Random -1.5 -1.0 0.5 

 

The codes shown in Figure 6.32 and 6.33 have constraint length of K = 5 and 

code rate of r = 1/2 respectively.  Comparing the performance at 10-3 level, we get Table 

XX. 

TABLE XX: VARYING INTERLEAVER FOR K = 5 AND R = 1/2 
    Code Interleaver Generalized (dB) Ordinary (dB) Gain 

Figure 6.32 Convolutional -0.6 0.3 0.9 

Figure 6.33 Random -0.8 -0.1 0.7 

 

The codes shown in Figure 6.34 and 6.35 have constraint length of K = 7 and 

code rate of r = 1/2 respectively.  Comparing the performance at 10-3 level, we get Table 

XXI. 
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                                   Figure 6.30: Convolutional Interleaver 
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                                          Figure 6.31: Random Interleaver 
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                                      Figure 6.32: Convolutional Interleaver 
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                                         Figure 6.33: Random Interleaving 
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                                   Figure 6.34: Convolutional Interleaver 
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                                        Figure 6.35: Random Interleaving 
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                                          Figure 6.36: Decoding depth = 3K 
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                                          Figure 6.37: Decoding Depth = 5K 
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                                           Figure 6.38: Decoding Depth = 7K 
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                              Figure 6.39: Convolutional Interleaver rows = 5 
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                            Figure 6.40: Convolutional Interleaver Rows = 8 
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                           Figure 6.41: Convolutional Interleaver Rows = 10 

 

 

 

 



 

 137

TABLE XXI: VARYING INTERLEAVER FOR K = 7 AND R = 1/2 
    Code Interleaver Generalized (dB) Ordinary (dB) Gain 

Figure 6.34 Convolutional -3.9 -3.1 0.8 

Figure 6.35 Random -4.4 -3.8 0.6 

 

From the results in this section it is observed that for constant constraint length 

and code rate random interleaver performs better than convolutional interleaver, at the 

same time the difference between two systems decreases from convolutional to random.  

The first observation suggests that randomization helps with robustness.  This is well 

inline with the arguments presented for the optimal random modem for robust 

communication [1]. 

6.5 Same Code Rate and Constraint Length with Varying Decoder Depth 

In this section we compare codes with same code rate and same constraint length 

with varying decoding depth of Viterbi decoder.  All the codes used in this section have a 

chip length of N = 10 and use convolutional Interleaving with number of rows as 5. 

The codes shown in Figure 6.36, 6.37 and 6.38 have constraint length of K = 3 

and code rate of r = 1/2.  They have decoding depth of 3K, 5K and 7K respectively. 

Comparing the performance at 10-3 level, we get table XXII. 
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TABLE XXII: VARYING DECODING DEPTH  
    Code Decoding Depth  Generalized (dB) Ordinary (dB) Gain 

Figure 6.36 3K 1 1.7 0.7 

Figure 6.37 5K -0.5 0.5 1 

Figure 6.38 7K -0.7 0.4 1.1 

 

From the results in this section it is observed that with same constraint length and 

same code rate, as decoding depth increases performance improves, at the same time the 

difference between two systems also increases.  The first observation is expected since a 

Viterbi decoder performs well with an increase in its decoding depth.  It is also 

interesting to see that generalized spread spectrum becomes increasingly more beneficial 

as interleaving depth is increased. 

6.6 Same Code Rate, Constraint Length with Varying Interleaver Rows 

In this section we compare codes with same code rate and same constraint length 

with varying rows of convolutional Interleaver.  All the codes used in this section have a 

chip length of N = 10 and decoding depth of 5K.  

The codes shown in Figure 6.39, 6.40 and 6.41 have constraint length of K = 3, 

code rate of r = 1/2 and use convolutional Interleaving with number of rows as 5, 8 and 

10 respectively.  Comparing the performance at 10-3 level, we get Table XXIII. 
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TABLE XXIII: VARYING CONVOLUTIONAL INTERLEAVER ROWS 
    Code Interleaver Rows Generalized (dB) Ordinary (dB) Gain 

Figure 6.39 5 -0.5 0.5 1 

Figure 6.40 8 -0.5 0.4 0.9 

Figure 6.41 10 -0.5 0.3 0.8 

 

From the results in this section it is observed that with same constraint length and 

same code rate as number of rows of convolutional interleaver increases performance 

improves, at the same time the difference between two systems decreases.  The first 

observation is expected since with increasing number of rows the interleaver works 

better, behaving more like a random interleaver.  The second observation also makes 

sense since generalized DSSS becomes increasingly more beneficial as other parameters 

of the system (in this case, the number of rows) are varied to make the system less robust. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

Simulation results of the worst-case performance of ordinary and generalized 

DSSS show that generalized DSSS performs consistently better than ordinary DSSS.  

This observation has been well known and studied.  Other observations are: 

1. Performance of codes with same constraint length improves as code rate 

decreases, at the same time the difference between two systems increases.  It is 

expected that decreasing code length (increasing redundancy) would result in 

better performance.  It is interesting to also see that the difference between 

ordinary and generalized DSSS increases with decreasing code length, as 

stipulated by Hizlan [3]. 

2. Performance of codes with same code rate improves as constraint length 

increases, at the same time the difference between two systems decreases.  Again, 

it is expected that larger constraint lengths produce better results.  It is interesting 

to see that the difference between the two systems gets smaller with increasing 
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constraint length.  This would suggest that generalized DSSS becomes 

increasingly more beneficial as coding memory is decreased. 

3. Performance of codes with same constraint length and same code rate improves as 

chip length increases, at the same time the difference between two systems 

decreases.  Again, the first observation here is obvious.  The second observation 

suggests that generalized DSSS becomes increasingly more beneficial compared 

to ordinary DSSS as other parameters of the communication system (in this case 

N) are varied to make it less robust. 

4. Performance of codes with same constraint length and same code rate is better 

with random interleaver than convolutional interleaver, at the same time the 

difference between two systems decreases from convolutional to random 

interleaving.  The first observation suggests that randomization helps with 

robustness.  This is well inline with the arguments presented for the optimal 

random modem for robust communication [1]. 

5. Performance of codes with same constraint length and same code rate improves as 

the decoding depth of Viterbi decoder increases, at the same time the difference 

between two systems increases.  The first observation is expected since a Viterbi 

decoder performs well with an increase in its decoding depth.  It is also interesting 

to see that generalized spread spectrum becomes increasingly more beneficial as 

interleaving depth is increased. 

6. Performance of codes with same constraint length and same code rate improves as 

number of rows of convolutional Interleaver increases, at the same time the 

difference between two systems decreases.  The first observation is expected since 
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with increasing number of rows the interleaver works better, behaving more like a 

random interleaver.  The second observation also makes sense since generalized 

DSSS becomes increasingly more beneficial as other parameters of the system (in 

this case, the number of rows) are varied to make the system less robust. 

Looking at these results as a whole, we can say that generalized DSSS 

increasingly outperforms ordinary DSSS as code rate is decreased.  This result confirms 

the conjecture in [3].  We also see that generalized DSSS increasingly outperforms 

ordinary DSSS as other parameters of the spread spectrum system are varied to make it 

less robust.  This suggests that generalized DSSS is increasingly more beneficial as the 

conditions worsen.  Furthermore, we see that random interleaving is better than 

convolutional interleaving for robust communications. 

As future work, it is suggested that the worst-case performance of further 

generalized (five-level) DSSS with convolutional codes can be evaluated as an extension. 
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 APPENDIX A 

/* This program computes the Monte Carlo simulation of generalized DSSS based on a 

canonical  distribution of arbitrary interference using convolutional encoder and Viterbi 

decoder */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <malloc.h> 
#include <limits.h> 
#define MAX_SIZE 50 
#define TWOTOTHEM 4 
#define MAXMETRIC 128  
#define MAXINT 16384 
 
void generateSequence(int dataLength,int *dataSequence); 
void multiplyAndIntegrate(int dataLength,int codeLength,int 
**codeSequence,double **signalPlusNoise,double 
*decodedSequence); 
void multiply(int dataLength,int codeLength,int 
*dataSequence,double **codeSequence,double 
**multipliedSequence); 
void addSignalAndNoise(int dataLength, int codeLength, 
double **multipliedSequence, double *noiseArray, double 
**signalPlusNoise); 
void generateCode(int dataLength,int codeLength,int 
**codeArray); 
void generateNoise(int snr,int length,int 
*interleaveArray,int D,double *noiseArray); 
void convertToSignal(int *dataSequenceAfterCoding,int 
dataLength, int *dataSequenceInSignal); 
void acceptEquation(int **equationSet,int k, int rate); 
int nextNumber(); 
void compareAndDecide(int dataLength,double 
*decodeSequence,int *sequenceAfterDeciding); 
int getErrors(int dataLength,int *originalSequence,int 
*receiveSequence); 
double calculateBER(long totalNoOfBits,long 
totalNoOfErrors); 
void vd(int g[2][K],float es_ovr_no,float es_ovr_ni,long 
channel_length,float *channel_output_vector,int 
*decoder_output_matrix); 
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void conv_encoder(int g[2][K], long data_len, int 
*in_array, int *out_array); 
int quant(float channel_symbol); 
int soft_metric(int data, int guess); 
void increasePower(int **inputSequence,double 
**outputSequence); 
long int idum; 
 
int main()  
{ 
 
  int **equationSet; 
  int dataSequenceArray[MAX_SIZE]; 
  int dataSequenceAfterCodingArray[MAX_SIZE]; 
  int dataSequenceInSignalArray[MAX_SIZE]; 
  double decodedSequenceArray[MAX_SIZE]; 
  int sequenceAfterDecisionArray[MAX_SIZE]; 
  int originalDecodedDataArray[MAX_SIZE]; 
  int interleaveArray[MAX_SIZE]; 
  int codedDataSequence[MAX_SIZE]; 
  int codeSequenceArray[MAX_SIZE][MAX_SIZE]; 
  double multipliedSequenceArray[MAX_SIZE][MAX_SIZE]; 
  double generalizedCodeSequenceArray[MAX_SIZE][MAX_SIZE]; 
  double noiseSequenceArray[MAX_SIZE]; 
  double signalPlusNoiseArray[MAX_SIZE][MAX_SIZE]; 
  int sequenceAfterDeConvolution[MAX_SIZE]; 
  long noOfErrors,noOfBits; 
  int codeLength,rate =0, dataLength=0, rows,snr,D,loops; 
  dataLength = 5K; 
  codeLength = N; 
  rate = r; 
  double worstBER,ber; 
    #if K == 3        /* polynomials for K = 3 */ 
    int g[2][K] = {{1, 1, 1},     
                   {1, 0, 1}};   
    #endif 
 
    #if K == 5        /* polynomials for K = 5 */ 
    int g[2][K] = {{1, 1,  1, 0, 1},   
                   {1, 0,  0, 1, 1}};  
    #endif 
  
    #if K == 7        /* polynomials for K = 7 */ 
    int g[2][K] = {{1,  1, 1, 1,  0, 0, 1},   
                   {1,  0, 1, 1,  0, 1, 1}};  
    #endif 
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    #if K == 9        /* polynomials for K = 9 */ 
    int g[2][K] = {{1, 1, 1,  1, 0, 1,  0, 1, 1},  
                   {1, 0, 1,  1, 1, 0,  0, 0, 1}}; 
    #endif 
 
/* Input parameters */ 
 
 printf("Enter constraint length K [int]:   "); 
 scanf("%d", &K); 
 getchar();*/ 
 printf("Enter number of PN generator chips per bit N 
[int]:   "); 
 scanf("%d", &N); 
 getchar(); 
        printf("Enter code rate [int]:   "); 
 scanf("%d", &r); 
 getchar(); 
 printf("Enter interleaver seed for interleaving 
[negative long int]:   "); 
 scanf("%ld", &idum); 
 getchar(); 
 
 for (snr = 0; snr < 30;  snr++)  { 
 
  worstBER=0; 
  for( D = 0; D<5K*rate*N;D++ ) { 
    
   for( loops =0; loops <10000; loops++) { 
 
generateSequence(dataLength, dataSequenceArray);              
 
conv_encoder(g,dataLength,dataSequenceArray,codedDataSequen
ce);                
 
convertToSignal(codedDataSequence, dataLength, 
dataSequenceInSignalArray); 
 
generateCode(dataLength*rate, codeLength, (int 
**)codeSequenceArray); 
 
increasePower((int **)codeSequenceArray,(double 
**)generalizedCodeSequenceArray); 
 
multiply(dataLength*rate, codeLength, 
dataSequenceInSignalArray, (double 
**)generalizedCodeSequenceArray, (double 
**)multipliedSequenceArray); 
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generateNoise(snr, dataLength*rate*codeLength, 
interleaveArray, D, noiseSequenceArray); 
 
 
addSignalAndNoise(dataLength*rate, codeLength, (double 
**)multipliedSequenceArray, noiseSequenceArray, (double 
**)signalPlusNoiseArray); 
 
multiplyAndIntegrate(dataLength*rate, codeLength, (int 
**)codeSequenceArray ,(double **)signalPlusNoiseArray, 
decodedSequenceArray); 
     
compareAndDecide(dataLength*rate,decodedSequenceArray,seque
nceAfterDecisionArray); 
     
vd(g,snr,snr,dataLength*rate,(float 
*)sequenceAfterDecisionArray,(int 
*)sequenceAfterDeConvolution);     
     
    noOfErrors = noOfErrors + 
getErrors(dataLength, sequenceAfterDeConvolution, 
dataSequenceArray); 
         
    noOfBits = noOfBits + dataLength*rate; 
 
   } 
    
   ber = calculateBER(noOfBits, noOfErrors); 
 
   if(worstBER < ber) { 
    worstBER=ber; 
   } 
 
   noOfBits=0; 
   noOfErrors=0; 
  } 
 
  printf("the worst BER for %d snr is %f ",snr, 
worstBER); 
 } 
  return 0;  
} 
   
/* random data generation for message */     
void generateSequence(int dataLength,int *dataSequence){ 
     int i; 
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     for( i=0; i< dataLength; i++) { 
          dataSequence[i]= (int)ran2()%2; 
     } 
} 
 
/* at the receiver end multiply and integrate the chips 
received from noisy channel */ 
void multiplyAndIntegrate( int dataLength, int codeLength, 
       int **codeSequence, 
double **signalPlusNoise, 
       double *decodedSequence 
)  
{ 
 int i=0; 
 
 for(i=0; i < dataLength; i++ ) { 
  double temp=0; 
  int j=0; 
 
  for(j=0; j < codeLength; j++)  { 
   temp = temp + (codeSequence[i][j] * 
signalPlusNoise[i][j]); 
  } 
 
  decodedSequence[i] = temp; 
 } 
 
} 
 
/* calculate number of zeroes in the generalized sequence*/ 
void increasePower(int **inputSequence,double 
**outputSequence){ 
 
        int noOfZeros=0,noOfOnes=0; 
        double value=0,addedValue=0; 
        int i,j; 
        for(i=0;i<DATA_LENGTH;i++){ 
         
            noOfZeros=0; 
             
            for(j=0;j<CODE_LENGTH;j++){ 
             
                if(inputSequence[i][j]==0) noOfZeros++; 
             
            } 
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            noOfOnes=CODE_LENGTH-noOfZeros; 
            value=sqrt((double)CODE_LENGTH/noOfOnes); 
            addedValue=value-1; 
            for(j=0;j<CODE_LENGTH;j++){ 
             
                if(inputSequence[i][j]==1) 
outputSequence[i][j]=inputSequence[i][j]+addedValue; 
                 
                else if(inputSequence[i][j]==-1) 
outputSequence[i][j]=inputSequence[i][j]-addedValue; 
             
            } 
        } 
     } 
   
/* multiply symbols and chips at the transmitter end */    
void multiply(int dataLength, int codeLength, int 
*dataSequence,  
     double **codeSequence, double 
**multipliedSequence) { 
 int i,j; 
 
 for(i = 0; i < dataLength; i++) { 
  for(j = 0; j < codeLength; j++) { 
  
 multipliedSequence[i][j]=codeSequence[i][j]*dataSequen
ce[i]; 
  } 
 } 
} 
 
/* add noise to signal */ 
void addSignalAndNoise(int dataLength, int codeLength, 
double **multipliedSequence, 
         double *noiseArray, double **signalPlusNoise)
 { 
 int n=0,i=0,j; 
 
 for(i = 0; i < dataLength; i++) { 
  for(j = 0; j < codeLength; j++) { 
 
   signalPlusNoise[i][j] = noiseArray[n] + 
multipliedSequence[i][j]; 
   n++; 
  } 
 } 
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} 
 
/* generate code symbols */ 
void generateCode(int dataLength, int codeLength, int 
**codeArray) { 
 int i = 0,j,temp=0; 
 
 for(i = 0;i < dataLength; i++) { 
  for(j=0;j<codeLength;j++) { 
 
   temp=(int)ran2%3; 
                 
                if(temp==0) codeArray[i][j]=0; 
                 
                else if(temp==1) codeArray[i][j]=-1; 
                 
                else codeArray[i][j]=1; 
  } 
 } 
} 
 
/* generate noise */ 
void generateNoise(int snr, int length, int 
*interleaveArray, int D,  
        double *noiseArray) { 
 int i = 0; 
 for( i = 0; i < D; i++) { 
 
  noiseArray[interleaveArray[i]] = 
sqrt(length/(pow(10,(double)(snr-10)/10)*D)); 
 
 } 
} 
 
/* convert to baseband signals */ 
void convertToSignal(int *dataSequenceAfterCoding, int 
dataLength, int *dataSequenceInSignal){ 
 int i = 0; 
 
 for(i = 0; i < dataLength;i++) { 
   
  if(dataSequenceAfterCoding[i] == 0) { 
   dataSequenceInSignal[i] = -1; 
  } 
  else { 
   dataSequenceInSignal[i] = 1; 
  } 



 

 153

  } 
 
} 
 
int nextNumber(){    
 
    //return random number 
    return 0; 
} 
 
/* generator polynomials of encoder */ 
void acceptEquation (int **equationSet, int k, int rate) { 
 int i,j; 
 for(i = 0; i < rate; i++) { 
   
  for(j = 0; j < k; j++) { 
    
  printf("Enter the value of row %d and column %d 
",i,j); 
  scanf("%d",&equationSet[i][j]);  
  } 
 } 
} 
 
/* hard decision * 
void compareAndDecide(int dataLength, double 
*decodeSequence, int *sequenceAfterDeciding)  { 
 int i; 
  
 for( i = 0;  i < dataLength; i++) { 
   
  if(decodeSequence[i] < 0) { 
  sequenceAfterDeciding[i] = 0; 
  } 
  else  { 
  sequenceAfterDeciding[i] = 1; 
  } 
 } 
} 
 
/* calculate errors */ 
int getErrors(int dataLength,int *originalSequence,int 
*receiveSequence){ 
 long result = 0; 
 int i; 
  
 for(i = 0; i < dataLength; i++) { 
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  if(originalSequence[i] != receiveSequence[i] )
 { 
   result++; 
  } 
 } 
 
 return result; 
 
} 
    
/* final ber calculation*/    
double calculateBER(long totalNoOfBits,long 
totalNoOfErrors){ 
         
        double result=0; 
         
        result = totalNoOfErrors/totalNoOfBits; 
         
        return result; 
         
    } 
 
/* convolutional encoder*/ 
void conv_encoder(int g[2][K], long data_len, int 
*in_array, int *out_array)  
{ 
    int m= K-1;                /* K - 1 */ 
    long t,S;                  /* bit time, symbol time */ 
    int j, k;                  /* loop variables */ 
    int *unencoded_data;       /* this is the pointer to 
data array */ 
    int shift_reg[K];          /* the encoder shift 
register */ 
    int sr_head;               /* index to the first entry 
in the sr */ 
    int a,b;            /* the upper and lower xor gate 
outputs */ 
 
   long channel_length = ( data_len + m ) * 2; 
 
    /* allocate space for the zero-padded input data array 
*/ 
   unencoded_data = (int 
*)malloc((data_len+m)*sizeof(int)); 
    if (unencoded_data == NULL) { 
        printf("\n conv_encoder.c: Can't allocate enough 
memory for unencoded data!  Aborting..."); 
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        exit(1); 
    } 
 
    //unencoded_data = in_array ; 
    /* read the input data and store it in the array */ 
   for (t = 0; t < data_len; t++) 
        *(unencoded_data + t) = *(in_array + t); 
 
    /* now zero-pad the end of the data */ 
    for (t = 0; t < m; t++) { 
        *(unencoded_data + data_len + t) = 0; 
    } 
 
    /* Initializing the shift register */ 
    for (j = 0; j < K; j++) 
 { 
        shift_reg[j] = 0; 
    } 
 
   /* In order to speed things up a little, the shift 
register will be operated 
      as a circular buffer, so it needs a head 
pointer.we'll just be overwriting the oldest entry with the 
new data. */ 
 
    sr_head = 0; 
 
    /* initializing the channel symbol output index */ 
    S = 0; 
 
    /* Here the encoding process begins */ 
    /* now compute the upper and lower modulo-two adder 
outputs, one bit at a time */ 
    for (t = 0; t < data_len + m; t++) 
 { 
    shift_reg[sr_head] = *( unencoded_data + t ); 
 a = 0; 
 b = 0; 
        for (j = 0; j < K; j++) 
     { 
     k = (j + sr_head) % K; 
     a ^= shift_reg[k] & g[0][j]; 
     b ^= shift_reg[k] & g[1][j]; 
        } 
 
      /* write the upper and lower xor gate outputs as 
channel symbols */ 
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 *(out_array + S) = a; 
        S = S + 1; 
      // printf(" %d\n",a); 
  
 *(out_array + S) = b; 
        S = S + 1; 
      // printf("%d\n",b); 
   
        sr_head -= 1;    /* This is equivalent to shifting 
everything right one place */ 
        if (sr_head < 0) /* we need to make sure that the 
pointer modulo K is adjusted */ 
            sr_head = m; 
    } 
/* now transform the data from 0/1 to +1/-1 */ 
    for (t = 0; t < channel_length; t++) 
 { 
 
        /*if the binary data value is 1, the channel symbol 
is -1; if the 
        binary data value is 0, the channel symbol is +1. 
*/ 
        *(out_array+t) = 1 - 2 *  *( out_array + t ); 
 
  // printf("%d\n",*( out_array + t )); 
 
 } 
/*now the dynamically allocated array is made free */ 
      free(unencoded_data); 
 
} 
 
/* viterbi decoder */ 
void vd(int g[2][K],float es_ovr_no,float es_ovr_ni,long 
channel_length,float *channel_output_vector,int 
*decoder_output_matrix) 
{      
 int i, j, l, ll;                          /* loop 
variables */    
    long t;                                   /* time */     
 int memory_contents[K];                   /* input + 
conv. encoder sr */     
 int input[TWOTOTHEM][TWOTOTHEM];          /* maps 
current/nxt sts to input */     
 int output[TWOTOTHEM][2];                 /* gives 
conv. encoder output */     
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 int nextstate[TWOTOTHEM][2]; /* for current st, gives 
nxt given input */     
  
 int accum_err_metric[TWOTOTHEM][2]; /* accumulated 
error metrics */     
  
 int state_history[TWOTOTHEM][K * 5 + 1];  /* state 
history table */     
 int state_sequence[K * 5 + 1]; /* state sequence list 
*/     
 int *channel_output_matrix;     /* ptr to input matrix 
*/     
  
 int binary_output[2]; /* vector to store binary enc 
output */     
  
        int branch_output[2]; /* vector to store trial enc 
output */      
  
 int m, n, number_of_states, depth_of_trellis, step, 
branch_metric,sh_ptr, sh_col, x, xx, h, hh, next_state, 
last_stop; /* misc variables */  
 /* n is 2^1 = 2 for rate 1/2 */    
 n = 2;   
 
 /* m (memory length) = K - 1 */    
 m = K - 1;  
 
 /* number of states = 2^(K - 1) = 2^m for k = 1 */     
 number_of_states = (int) pow((double)2, m); 
   
 depth_of_trellis = K * 5; 
 
void deci2bin(int d, int size, int *b); 
int bin2deci(int *b, int size); 
int nxt_stat(int current_state, int input, int 
*memory_contents); 
void init_adaptive_quant(float es_ovr_no,float es_ovr_ni); 
int quant(float channel_symbol); 
int soft_metric(int data, int guess); 
 
 /* initialize data structures */     
 for (i = 0; i < number_of_states; i++)  
 {         
  for (j = 0; j < number_of_states; j++)             
   input[i][j] = 0;         
  for (j = 0; j < n; j++)  
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  {             
   nextstate[i][j] = 0;            
   output[i][j] = 0;        
  }         
  for (j = 0; j <= depth_of_trellis; j++) 
  { 
   state_history[i][j] = 0;        
  }        
  /* initial accum_error_metric[x][0] = zero */         
  accum_err_metric[i][0] = 0;         
  /* by setting accum_error_metric[x][1] to MAXINT, 
we don't need a flag */          
  /* MAXINT is simply the largest possible integer, 
defined in values.h */     
  accum_err_metric[i][1] = MAXINT;   
 }  
 
 /* generate the state transition matrix, output 
matrix, and input matrix - input matrix shows how FEC 
encoder bits lead to next state */ 
 for (j = 0; j < number_of_states; j++) 
 {         
  for (l = 0; l < n; l++)  
  {             
   next_state = nxt_stat(j, l, 
memory_contents);            
   input[j][next_state] = l;  
 
  /* now compute the convolutional encoder output 
given the current state number and the input value */       
   branch_output[0] = 0;             
   branch_output[1] = 0;   
 
   for (i = 0; i < K; i++)  
   {                 
    branch_output[0] ^= memory_contents[i] 
& g[0][i];      
    branch_output[1] ^= memory_contents[i] 
& g[1][i];          
   }    
 
 /* next state, given current state and input */            
   nextstate[j][l] = next_state;   
 
   /* output in decimal, given current state 
and input */         
   output[j][l] = bin2deci(branch_output, 2);    
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  } /* end of l for loop */   
 
 } /* end of j for loop */   
 
#ifdef DEBUG    
 printf("\nInput:");   
 
 for (j = 0; j < number_of_states; j++)  
 {         
  printf("\n");      
 
  for (l = 0; l < number_of_states; l++)       
   printf("%2d ", input[j][l]); 
 
 } /* end j for-loop */ 
 
 printf("\nOutput:");   
 
 for (j = 0; j < number_of_states; j++)  
 {      
  printf("\n");      
  for (l = 0; l < n; l++)       
   printf("%2d ", output[j][l]); 
 
 } /* end j for-loop */ 
 
 printf("\nNext State:");   
 
 for (j = 0; j < number_of_states; j++)  
 {       
  printf("\n");     
 
  for (l = 0; l < n; l++)     
   printf("%2d ", nextstate[j][l]);   
 
 } /* end j for-loop */ 
 
#endif 
 
 channel_output_matrix = (int*) malloc(channel_length * 
sizeof(int));   
 
 if (channel_output_matrix == NULL) 
 {        
  printf(        "\nsdvd.c: Can't allocate memory 
for channel_output_matrix! Aborting...");        
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  exit(1);   
 }  
 
 /* now we're going to rearrange the channel output so 
it has n rows, and n/2 columns where each row corresponds  
to a channel symbol for a given bit and each column 
corresponds to an encoded bit */ 
 channel_length = channel_length / n;  
 
  /*quantization for specified es_ovr_no*/ 
   init_adaptive_quant(es_ovr_no,es_ovr_ni); 
 
 /* quantize the channel output--convert float to short 
integer */   
 /* channel_output_matrix = reshape(channel_output, n, 
channel_length) */   
 for (t = 0; t < (channel_length * n); t += n)  
 {         
  for (i = 0; i < n; i++)       
   *(channel_output_matrix + (t / n) + (i * 
channel_length) ) = quant( *(channel_output_vector + (t + 
i) ) ); 
 } /* end t for-loop */   
 
 /* End of setup. Start decoding of channel outputs 
with forward traversal of trellis!   
 Stop just before encoder-flushing bits.  */ 
    for (t = 0; t < channel_length - m; t++)  
 {    
  if (t <= m)           
   /* assume starting with zeroes, so just 
compute paths from all-zeroes state */       
   step = (int)pow((double)2, m - t * 1);     
  else             
   step = 1;  
  
  /* set up the state history array pointer for 
this time t */        
  sh_ptr = (int) ( ( t + 1 ) % (depth_of_trellis + 
1) ); 
 
  /* repeat for each possible state */    
  for (j = 0; j < number_of_states; j+= step) 
  {             
   /* repeat for each possible convolutional 
encoder output n-tuple */             
   for (l = 0; l < n; l++) 
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   {                 
    branch_metric = 0; 
     
/* compute branch metric per channel symbol, and sum for 
all channel symbols in the convolutional encoder output n-
tuple */ 
             
/* convert the decimal representation of the encoder output 
to binary */            
    binary_output[0] = ( output[j][l] & 
0x00000002 ) >> 1;          
    binary_output[1] = output[j][l] & 
0x00000001;   
 
    /* compute branch metric per channel 
symbol, and sum for all channel symbols in the 
convolutional encoder output n-tuple */    
    branch_metric = branch_metric + abs( *( 
channel_output_matrix +( 0 * channel_length + t ) ) - 7 * 
binary_output[0] ) +  
     abs( *( channel_output_matrix +( 1 
* channel_length + t ) ) - 7 * binary_output[1] );            
     
    /* now choose the surviving path--the 
one with the smaller accumlated error metric... */  
    if ( accum_err_metric[ nextstate[j][l] 
] [1] > accum_err_metric[j][0] +branch_metric )  
    {                   
     /* save an accumulated metric 
value for the survivor state */                    
     accum_err_metric[ nextstate[j][l] 
] [1] = accum_err_metric[j][0] +branch_metric; 
 
     /* update the state_history array 
with the state number of the survivor */     
     state_history[ nextstate[j][l] ] 
[sh_ptr] = j;  
 
    } /* end of if-statement */ 
 
   } /* end of 'l' for-loop */   
 
  } /* end of 'j' for-loop -- we have now updated 
the trellis */  
 
  /* for all rows of accum_err_metric, move col 2 
to col 1 and flag col 2 */      
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  for (j = 0; j < number_of_states; j++) 
  {            
   accum_err_metric[j][0] = 
accum_err_metric[j][1];        
   accum_err_metric[j][1] = MAXINT; 
 
  } /* end of 'j' for-loop */  
 
  /* now start the traceback, if we've filled the 
trellis */        
  if (t >= depth_of_trellis - 1)  
  {              
    
   /* initialize the state_sequence vector--
probably unnecessary */       
   for (j = 0; j <= depth_of_trellis; j++)                
    state_sequence[j] = 0;        
    
   /* find the element of state_history with 
the min. accum. error metric */         
   /* since the outer states are reached by 
relatively-improbable runs of zeroes or ones, 
   search from the top and bottom of the 
trellis in */ 
   x = MAXINT;            
   for (j = 0; j < ( number_of_states / 2 ); 
j++) 
 
   {              
    if ( accum_err_metric[j][0] < 
accum_err_metric[number_of_states - 1 - j][0] )  
 
    {                 
     xx = accum_err_metric[j][0];          
      
     hh = j;  
 
    }              
    else 
    {       
     xx = 
accum_err_metric[number_of_states - 1 - j][0];      
     hh = number_of_states - 1 - j;         
    }                 
    if ( xx < x)  
    {                  
     x = xx;         
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     h = hh;          
    }            
   } /* end 'j' for-loop */                 
    
   /* now pick the starting point for traceback 
*/      
   state_sequence[depth_of_trellis] = h;              
    
   /* now work backwards from the end of the 
trellis to the oldest state in the trellis to determine the  
optimal path. The purpose of this is to determine the most 
likely state sequence at the encoder based on what channel 
symbols we received. */  
 
   for (j = depth_of_trellis; j > 0; j--) 
   {                
    sh_col = j + ( sh_ptr - 
depth_of_trellis );  
 
    if (sh_col < 0) 
 
     sh_col = sh_col + depth_of_trellis 
+ 1;        
     state_sequence[j - 1] = state_history[ 
state_sequence[j] ] [sh_col];  
 
   } /* end of j for-loop */  
 
   /* now figure out what input sequence 
corresponds to the state sequence in the optimal path */        
   *(decoder_output_matrix + t - 
depth_of_trellis + 1) = input[ state_sequence[0] ] [ 
state_sequence[1] ]; 
  } /* end of if-statement */  
 } /* end of 't' for-loop */      
 
 /* now decode the encoder flushing channel-output bits 
*/   
 for (t = channel_length - m; t < channel_length; t++)  
  
 {         
  /* set up the state history array pointer for 
this time t */        
  sh_ptr = (int) ( ( t + 1 ) % (depth_of_trellis + 
1) ); 
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  /* don't need to consider states where input was 
a 1, so determine what is the highest possible  
  state number where input was 0 */        
  last_stop =  number_of_states /(int) 
pow((double)2, t - channel_length + m);  
 
  /* repeat for each possible state */      
  for (j = 0; j < last_stop; j++) 
  {              
   branch_metric = 0;            
   deci2bin(output[j][0], n, binary_output); 
 
   /* compute metric per channel bit, and sum 
for all channel bits in the convolutional encoder output n-
tuple */   
   for (ll = 0; ll < n; ll++)  
   {                 
    branch_metric = branch_metric + 
soft_metric( *(channel_output_matrix +(ll * channel_length 
+ t)), binary_output[ll] ); 
   } /* end of 'll' for loop */   
 
   /* now choose the surviving path--the one 
with the smaller total metric... */      
   if ( (accum_err_metric[ nextstate[j][0] ][1] 
> accum_err_metric[j][0] +branch_metric) /*|| flag[ 
nextstate[j][0] ] == 0*/)  
   {                  
     
/* save a state metric value for the survivor state */            
    accum_err_metric[ nextstate[j][0] ][1] 
= accum_err_metric[j][0] + branch_metric;  
 
    /* update the state_history array with 
the state number of the survivor */           
    state_history[ nextstate[j][0] 
][sh_ptr] = j;   
   } /* end of if-statement */ 
 
  } /* end of 'j' for-loop */  
 
  /* for all rows of accum_err_metric, swap columns 
1 and 2 */   
  for (j = 0; j < number_of_states; j++) 
  {             
   accum_err_metric[j][0] = 
accum_err_metric[j][1];   
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   accum_err_metric[j][1] = MAXINT;    
 
  } /* end of 'j' for-loop */   
 
  /* now start the traceback, if i >= 
depth_of_trellis - 1*/       
  if (t >= depth_of_trellis - 1) 
  {            
   /* initialize the state_sequence vector */       
   for (j = 0; j <= depth_of_trellis; j++) 
state_sequence[j] = 0; 
 
   /* find the state_history element with the 
minimum accum. error metric */        
   x = accum_err_metric[0][0];       
   h = 0;             
   for (j = 1; j < last_stop; j++)  
   {                 
    if (accum_err_metric[j][0] < x)  
    {                 
     x = accum_err_metric[j][0];        
     h = j;             
    } /* end if */            
 
   } /* end 'j' for-loop */          
    
   state_sequence[depth_of_trellis] = h;  
/* now work backwards from the end of the trellis to the 
oldest state in the trellis to determine the optimal 
path.The purpose of this is to determine the most likely 
state sequence at the encoder based on what channel symbols 
we received. */      
   for (j = depth_of_trellis; j > 0; j--) 
   {                 
    sh_col = j + ( sh_ptr - 
depth_of_trellis );   
    if (sh_col < 0)                  
     sh_col = sh_col + depth_of_trellis 
+ 1;    
    state_sequence[j - 1] = state_history[ 
state_sequence[j] ][sh_col];     
   } /* end of j for-loop */  
   /* now figure out what input sequence 
corresponds to the optimal path */      
   *(decoder_output_matrix + t - 
depth_of_trellis + 1) = input[ state_sequence[0] ][ 
state_sequence[1] ];  
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  } /* end of if-statement */ 
 
 } /* end of 't' for-loop */  
 
 for (i = 1; i < depth_of_trellis - m; i++) 
 { 
  *(decoder_output_matrix + channel_length - 
depth_of_trellis + i) =  input[ state_sequence[i] ] [ 
state_sequence[i + 1] ]; 
 } 
 for(i=0;i<channel_length-m;i++) 
 { 
       printf("\n decoder output matrix is 
%d",*(decoder_output_matrix + i)); 
    getchar(); 
 } 
 /* free the dynamically allocated array storage area 
*/     
 free(channel_output_matrix);     
 return; 
} /* end of function vd */  
 
int nxt_stat(int current_state, int input, int 
*memory_contents)  
 {      
  int binary_state[K - 1];              /* binary 
value of current state */   
  int next_state_binary[K - 1];         /* binary 
value of next state */     
  int next_state;                       /* decimal 
value of next state */   
  int i;                                /* loop 
variable */  
        void deci2bin(int d, int size, int *b); 
        int bin2deci(int *b, int size); 
/* convert the decimal value of the current state number to 
binary */  
  deci2bin(current_state, K - 1, binary_state);  
/* given the input and current state number, compute the 
next state number */   
  next_state_binary[0] = input;   
 
  for (i = 1; i < K - 1; i++)      
   next_state_binary[i] = binary_state[i - 
1];/* convert the binary value of the next state number to 
decimal */ 
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  next_state = bin2deci(next_state_binary, K - 
1);/* memory_contents are the inputs to the modulo-two 
adders in the encoder */  
  memory_contents[0] = input;    
  for (i = 1; i < K; i++)         
      memory_contents[i] = binary_state[i - 1]; 
  return(next_state); 
 } 
 
 /* this function converts a decimal number to a binary 
number, stored   as a vector MSB first,having a specified 
number of bits with leading   zeroes as necessary */ 
 void deci2bin(int d, int size, int *b)  
 {     
  int i;  
  for(i = 0; i < size; i++)      
   b[i] = 0;     
  b[size - 1] = d & 0x01;   
 
  for (i = size - 2; i >= 0; i--)  
  {        
   d = d >> 1;   
   b[i] = d & 0x01;    
  } 
 } 
 
 /* this function converts a binary number having a 
specified number of bits to the corresponding decimal 
number ith improvement contributed by Bryan Ewbank 
2001.11.28 */ 
 
 int bin2deci(int *b, int size) 
 {    
  int i, d;    
  d = 0;   
  for (i = 0; i < size; i++)  
   d += b[i] << (size - i - 1); 
  return(d); 
 } 
 
/* Function to generate uniform deviates using idum*/ 
 
#define IM1 2147483563 
#define IM2 2147483399 
#define AM (1.0/IM1) 
#define IMM1 (IM1-1) 
#define IA1 40014 
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#define IA2 40692 
#define IQ1 53668 
#define IQ2 52774 
#define IR1 12211 
#define IR2 3791 
#define NTAB 32 
#define NDIV (1+IMM1/NTAB) 
#define EPS 1.2e-7 
#define RNMX (1.0-EPS) 
 
float ran2(void) 
{ 
 int j; 
 long k; 
 static long idum2=123456789; 
 static long iy=0; 
 static long iv[NTAB]; 
 float temp; 
 
 if (idum <= 0) { 
  if (-(idum) < 1) idum = 1; 
  else idum = -(idum); 
  idum2 = (idum); 
  for (j=NTAB+7; j>=0; j--) { 
   k = (idum)/IQ1; 
   idum = IA1*(idum - k*IQ1) - k*IR1; 
   if (idum < 0) idum += IM1; 
   if (j < NTAB) iv[j] = idum; 
  } 
  iy = iv[0]; 
 } 
 k = (idum)/IQ1; 
 idum = IA1*(idum - k*IQ1) - k*IR1; 
 if (idum < 0) idum += IM1; 
 k = idum2/IQ2; 
 idum2 = IA2*(idum2 - k*IQ2) - k*IR2; 
 if (idum2 < 0) idum2 += IM2; 
 j = iy/NDIV; 
 iy = iv[j] - idum2; 
 iv[j] = idum; 
 if (iy < 1) iy += IMM1; 
 if ((temp=AM*iy) > RNMX) return RNMX; 
 else return temp; 
} 
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APPENDIX B 

/* This program computes the Monte Carlo simulation of ordinary DSSS based on a 

canonical  distribution of arbitrary interference using convolutional encoder and Viterbi 

decoder */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <malloc.h> 
#include <limits.h> 
#define MAX_SIZE 50 
#define TWOTOTHEM 4 
#define MAXMETRIC 128  
#define MAXINT 16384 
 
void generateSequence(int dataLength,int *dataSequence); 
void multiplyAndIntegrate(int dataLength,int codeLength,int 
**codeSequence,double **signalPlusNoise,double 
*decodedSequence); 
void multiply(int dataLength,int codeLength,int 
*dataSequence,double **codeSequence,double 
**multipliedSequence); 
void addSignalAndNoise(int dataLength, int codeLength, 
double **multipliedSequence, double *noiseArray, double 
**signalPlusNoise); 
void generateCode(int dataLength,int codeLength,int 
**codeArray); 
void generateNoise(int snr,int length,int 
*interleaveArray,int D,double *noiseArray); 
void convertToSignal(int *dataSequenceAfterCoding,int 
dataLength, int *dataSequenceInSignal); 
void acceptEquation(int **equationSet,int k, int rate); 
void compareAndDecide(int dataLength,double 
*decodeSequence,int *sequenceAfterDeciding); 
int getErrors(int dataLength,int *originalSequence,int 
*receiveSequence); 
double calculateBER(long totalNoOfBits,long 
totalNoOfErrors); 
void vd(int g[2][K],float es_ovr_no,float es_ovr_ni,long 
channel_length,float *channel_output_vector,int 
*decoder_output_matrix); 
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void conv_encoder(int g[2][K], long data_len, int 
*in_array, int *out_array); 
int quant(float channel_symbol); 
int soft_metric(int data, int guess); 
int nextNumber(); 
long int idum; 
 
int main()  
{ 
 
  int **equationSet; 
  int dataSequenceArray[MAX_SIZE]; 
  int dataSequenceAfterCodingArray[MAX_SIZE]; 
  int dataSequenceInSignalArray[MAX_SIZE]; 
  double decodedSequenceArray[MAX_SIZE]; 
  int sequenceAfterDecisionArray[MAX_SIZE]; 
  int originalDecodedDataArray[MAX_SIZE]; 
  int interleaveArray[MAX_SIZE]; 
  int codedDataSequence[MAX_SIZE]; 
  int codeSequenceArray[MAX_SIZE][MAX_SIZE]; 
  double multipliedSequenceArray[MAX_SIZE][MAX_SIZE]; 
  double noiseSequenceArray[MAX_SIZE]; 
  double signalPlusNoiseArray[MAX_SIZE][MAX_SIZE]; 
  int sequenceAfterDeConvolution[MAX_SIZE]; 
  long noOfErrors,noOfBits; 
  int codeLength,rate =0, dataLength=0, rows,snr,D,loops; 
  dataLength = 5K; 
  codeLength = N; 
  rate = r; 
  double worstBER,ber; 
    #if K == 3        /* polynomials for K = 3 */ 
    int g[2][K] = {{1, 1, 1},     
                   {1, 0, 1}};   
    #endif 
 
    #if K == 5        /* polynomials for K = 5 */ 
    int g[2][K] = {{1, 1,  1, 0, 1},   
                   {1, 0,  0, 1, 1}};  
    #endif 
  
    #if K == 7        /* polynomials for K = 7 */ 
    int g[2][K] = {{1,  1, 1, 1,  0, 0, 1},   
                   {1,  0, 1, 1,  0, 1, 1}};  
    #endif 
 
    #if K == 9        /* polynomials for K = 9 */ 
    int g[2][K] = {{1, 1, 1,  1, 0, 1,  0, 1, 1},  
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                   {1, 0, 1,  1, 1, 0,  0, 0, 1}}; 
    #endif 
 
/* Input parameters */ 
 
 printf("Enter constraint length K [int]:   "); 
 scanf("%d", &K); 
 getchar();*/ 
 printf("Enter number of PN generator chips per bit N   
[int]:   "); 
 scanf("%d", &N); 
 getchar(); 
        printf("Enter code rate [int]:   "); 
 scanf("%d", &r); 
 getchar(); 
 printf("Enter interleaver seed for interleaving 
[negative long int]:   "); 
 scanf("%ld", &idum); 
 getchar(); 
 
 for (snr = 0; snr < 30;  snr++)  { 
 
  worstBER=0; 
  for( D = 0; D<5K*rate*N;D++ ) { 
    
   for( loops =0; loops <10000; loops++)  
                        { 
 
generateSequence(dataLength, dataSequenceArray);                      
 
conv_encoder(g,dataLength,dataSequenceArray,codedDataSequen
ce);                
 
convertToSignal(codedDataSequence, dataLength, 
dataSequenceInSignalArray); 
 
generateCode(dataLength*rate, codeLength, (int 
**)codeSequenceArray); 
 
multiply(dataLength*rate, codeLength, 
dataSequenceInSignalArray, (int **)codeSequenceArray, 
(double **)multipliedSequenceArray); 
                     
generateNoise(snr, dataLength*rate*codeLength, 
interleaveArray, D, noiseSequenceArray); 
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addSignalAndNoise(dataLength*rate, codeLength, (double 
**)multipliedSequenceArray, noiseSequenceArray, (double 
**)signalPlusNoiseArray); 
 
multiplyAndIntegrate(dataLength*rate, codeLength, (int 
**)codeSequenceArray ,(double **)signalPlusNoiseArray, 
decodedSequenceArray); 
     
compareAndDecide(dataLength*rate,decodedSequenceArray,seque
nceAfterDecisionArray); 
     
vd(g,snr,snr,dataLength*rate,(float 
*)sequenceAfterDecisionArray,(int 
*)sequenceAfterDeConvolution);     
     
    noOfErrors = noOfErrors + 
getErrors(dataLength, sequenceAfterDeConvolution, 
dataSequenceArray); 
         
    noOfBits = noOfBits + dataLength*rate; 
 
   } 
    
   ber = calculateBER(noOfBits, noOfErrors); 
 
   if(worstBER < ber) { 
    worstBER=ber; 
   } 
 
   noOfBits=0; 
   noOfErrors=0; 
  } 
 
printf("the worst BER for %d snr is %f ",snr, worstBER); 
 } 
  return 0;  
} 
   
/* random data generation for message */    
void generateSequence(int dataLength,int *dataSequence){ 
     int i; 
      
     for( i=0; i< dataLength; i++) { 
          dataSequence[i]= (int)ran2()%2; 
     } 
} 
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/* at the receiver end multiply and integrate the chips 
received from noisy channel */ 
void multiplyAndIntegrate( int dataLength, int 
codeLength,int **codeSequence, double 
**signalPlusNoise,double *decodedSequence )  
{ 
 int i=0; 
 
 for(i=0; i < dataLength; i++ ) { 
  double temp=0; 
  int j=0; 
 
  for(j=0; j < codeLength; j++)  { 
   temp = temp + (codeSequence[i][j] * 
signalPlusNoise[i][j]); 
  } 
 
  decodedSequence[i] = temp; 
 } 
 
} 
 
/* multiply symbols and chips at the transmitter end */ 
void multiply(int dataLength, int codeLength, int 
*dataSequence,  
     double **codeSequence, double 
**multipliedSequence) { 
 int i,j; 
 
 for(i = 0; i < dataLength; i++) { 
  for(j = 0; j < codeLength; j++) { 
 
  
 multipliedSequence[i][j]=codeSequence[i][j]*dataSequen
ce[i]; 
  } 
 } 
} 
 
/* add noise to signal */ 
void addSignalAndNoise(int dataLength, int codeLength, 
double **multipliedSequence, 
                                          double 
*noiseArray, double **signalPlusNoise) { 
 int n=0,i=0,j; 
 
 for(i = 0; i < dataLength; i++) { 
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  for(j = 0; j < codeLength; j++) { 
 
   signalPlusNoise[i][j] = noiseArray[n] + 
multipliedSequence[i][j]; 
   n++; 
  } 
 } 
 
} 
 
/* generate code symbols */ 
void generateCode(int dataLength, int codeLength, int 
**codeArray) { 
 int i = 0,j,temp=0; 
 
 for(i = 0;i < dataLength; i++) { 
  for(j=0;j<codeLength;j++) { 
 
   temp=(int)ran2%3; 
                 
                if(temp==0) codeArray[i][j]=0; 
                 
                else if(temp==1) codeArray[i][j]=-1; 
                 
                else codeArray[i][j]=1; 
  } 
 } 
} 
 
/* generate noise */ 
void generateNoise(int snr, int length, int 
*interleaveArray, int D,  
        double *noiseArray) { 
 int i = 0; 
 for( i = 0; i < D; i++) { 
 
  noiseArray[interleaveArray[i]] = 
sqrt(length/(pow(10,(double)(snr-10)/10)*D)); 
 
 } 
} 
 
/* convert to baseband signals */ 
void convertToSignal(int *dataSequenceAfterCoding, int 
dataLength, int *dataSequenceInSignal){ 
 int i = 0; 
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 for(i = 0; i < dataLength;i++) { 
   
  if(dataSequenceAfterCoding[i] == 0) { 
   dataSequenceInSignal[i] = -1; 
  } 
  else { 
   dataSequenceInSignal[i] = 1; 
  } 
  } 
} 
 
int nextNumber(){    
 
    //return random number 
    return 0; 
} 
 
/* generator polynomials of encoder */ 
void acceptEquation (int **equationSet, int k, int rate) { 
 int i,j; 
 for(i = 0; i < rate; i++) { 
   
  for(j = 0; j < k; j++) { 
    
  printf("Enter the value of row %d and column %d 
",i,j); 
  scanf("%d",&equationSet[i][j]);  
  } 
 } 
} 
 
/* hard decision */ 
void compareAndDecide(int dataLength, double 
*decodeSequence, int *sequenceAfterDeciding)  { 
 int i; 
  
 for( i = 0;  i < dataLength; i++) { 
   
  if(decodeSequence[i] < 0) { 
  sequenceAfterDeciding[i] = 0; 
  } 
  else  { 
  sequenceAfterDeciding[i] = 1; 
  } 
 } 
} 
 



 

 176

/* calculate errors */ 
int getErrors(int dataLength,int *originalSequence,int 
*receiveSequence){ 
 long result = 0; 
 int i; 
  
 for(i = 0; i < dataLength; i++) { 
  if(originalSequence[i] != receiveSequence[i] )
 { 
   result++; 
  } 
 } 
 
 return result; 
 
} 
   
/* final ber calculation*/    
double calculateBER(long totalNoOfBits,long 
totalNoOfErrors){ 
        double result=0; 
        result = totalNoOfErrors/totalNoOfBits; 
        return results;    
    } 
 
/* convolutional encoder*/ 
 
void conv_encoder(int g[2][K], long data_len, int 
*in_array, int *out_array)  
{ 
    int m= K-1;                /* K - 1 */ 
    long t,S;                  /* bit time, symbol time */ 
    int j, k;                  /* loop variables */ 
    int *unencoded_data;       /* this is the pointer to 
data array */ 
    int shift_reg[K];          /* the encoder shift 
register */ 
    int sr_head;               /* index to the first entry 
in the sr */ 
    int a,b;            /* the upper and lower xor gate 
outputs */ 
 
   long channel_length = ( data_len + m ) * 2; 
 
    /* allocate space for the zero-padded input data array 
*/ 
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   unencoded_data = (int 
*)malloc((data_len+m)*sizeof(int)); 
    if (unencoded_data == NULL) { 
        printf("\n conv_encoder.c: Can't allocate enough 
memory for unencoded data!  Aborting..."); 
        exit(1); 
    } 
 
    //unencoded_data = in_array ; 
    /* read the input data and store it in the array */ 
   for (t = 0; t < data_len; t++) 
        *(unencoded_data + t) = *(in_array + t); 
 
    /* now zero-pad the end of the data */ 
    for (t = 0; t < m; t++) { 
        *(unencoded_data + data_len + t) = 0; 
    } 
 
    /* Initializing the shift register */ 
    for (j = 0; j < K; j++) 
 { 
        shift_reg[j] = 0; 
    } 
 
   /* In order to speed things up a little, the shift 
register will be operated 
      as a circular buffer, so it needs a head 
pointer.we'll just be overwriting the oldest entry with the 
new data. */ 
 
    sr_head = 0; 
 
    /* initializing the channel symbol output index */ 
    S = 0; 
 
    /* Here the encoding process begins */ 
    /* now compute the upper and lower modulo-two adder 
outputs, one bit at a time */ 
    for (t = 0; t < data_len + m; t++) 
 { 
    shift_reg[sr_head] = *( unencoded_data + t ); 
 a = 0; 
 b = 0; 
        for (j = 0; j < K; j++) 
     { 
     k = (j + sr_head) % K; 
     a ^= shift_reg[k] & g[0][j]; 
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     b ^= shift_reg[k] & g[1][j]; 
        } 
 
      /* write the upper and lower xor gate outputs as 
channel symbols */ 
 *(out_array + S) = a; 
        S = S + 1; 
      // printf(" %d\n",a); 
  
 *(out_array + S) = b; 
        S = S + 1; 
      // printf("%d\n",b); 
   
        sr_head -= 1;    /* This is equivalent to shifting 
everything right one place */ 
        if (sr_head < 0) /* we need to make sure that the 
pointer modulo K is adjusted */ 
            sr_head = m; 
 
    } 
/* now transform the data from 0/1 to +1/-1 */ 
    for (t = 0; t < channel_length; t++) 
 { 
 
        /*if the binary data value is 1, the channel symbol 
is -1; if the 
        binary data value is 0, the channel symbol is +1. 
*/ 
        *(out_array+t) = 1 - 2 *  *( out_array + t ); 
 
  // printf("%d\n",*( out_array + t )); 
 
 } 
/*now the dynamically allocated array is made free */ 
      free(unencoded_data); 
 
} 
 
/* viterbi decoder */ 
void vd(int g[2][K],float es_ovr_no,float es_ovr_ni,long 
channel_length,float *channel_output_vector,int 
*decoder_output_matrix) 
{      
 int i, j, l, ll;                /* loop variables */    
    long t;                          /* time */     
 int memory_contents[K]; /* input + conv. encoder sr */     
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 int input[TWOTOTHEM][TWOTOTHEM]; /* maps current/nxt 
sts to input */     
 int output[TWOTOTHEM][2]; /* gives conv. encoder 
output */     
 int nextstate[TWOTOTHEM][2];/* for current st, gives 
nxt given input */     
  
 int accum_err_metric[TWOTOTHEM][2];/* accumulated 
error metrics */     
  
 int state_history[TWOTOTHEM][K * 5 + 1];  /* state 
history table */     
 int state_sequence[K * 5 + 1];/* state sequence list 
*/     
 int *channel_output_matrix; /* ptr to input matrix */     
  
 int binary_output[2];   /* vector to store binary enc 
output */     
  
  
        int branch_output[2]; /* vector to store trial enc 
output */      
  
 int m, n, number_of_states, depth_of_trellis, step, 
branch_metric,sh_ptr, sh_col, x, xx, h, hh, next_state, 
last_stop; /* misc variables */  
 /* n is 2^1 = 2 for rate 1/2 */    
 n = 2;   
 
 /* m (memory length) = K - 1 */    
 m = K - 1;  
 
 /* number of states = 2^(K - 1) = 2^m for k = 1 */     
 number_of_states = (int) pow((double)2, m); 
 depth_of_trellis = K * 5; 
void deci2bin(int d, int size, int *b); 
int bin2deci(int *b, int size); 
int nxt_stat(int current_state, int input, int 
*memory_contents); 
void init_adaptive_quant(float es_ovr_no,float es_ovr_ni); 
int quant(float channel_symbol); 
int soft_metric(int data, int guess); 
 
 /* initialize data structures */     
 for (i = 0; i < number_of_states; i++)  
 {         
  for (j = 0; j < number_of_states; j++)             
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   input[i][j] = 0;         
  for (j = 0; j < n; j++)  
  {             
   nextstate[i][j] = 0;            
   output[i][j] = 0;        
  }         
  for (j = 0; j <= depth_of_trellis; j++) 
  { 
   state_history[i][j] = 0;        
  }        
  /* initial accum_error_metric[x][0] = zero */         
  accum_err_metric[i][0] = 0;         
  /* by setting accum_error_metric[x][1] to MAXINT, 
we don't need a flag */          
  /* MAXINT is simply the largest possible integer, 
defined in values.h */     
  accum_err_metric[i][1] = MAXINT;   
 }  
 
 /* generate the state transition matrix, output 
matrix, and input matrix - input matrix shows how FEC 
encoder bits lead to next state */ 
 for (j = 0; j < number_of_states; j++) 
 {         
  for (l = 0; l < n; l++)  
  {             
   next_state = nxt_stat(j, l, 
memory_contents);            
   input[j][next_state] = l;  
 
   /* now compute the convolutional encoder 
output given the current state number and the input value 
*/       
   branch_output[0] = 0;             
   branch_output[1] = 0;   
 
   for (i = 0; i < K; i++)  
   {                 
    branch_output[0] ^= memory_contents[i] 
& g[0][i];      
    branch_output[1] ^= memory_contents[i] 
& g[1][i];          
   }    
 
 /* next state, given current state and input */            
   nextstate[j][l] = next_state;   
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/* output in decimal, given current state and input */         
   output[j][l] = bin2deci(branch_output, 2);    
 
  } /* end of l for loop */   
 
 } /* end of j for loop */   
 
#ifdef DEBUG    
 printf("\nInput:");   
 
 for (j = 0; j < number_of_states; j++)  
 {         
  printf("\n");      
 
  for (l = 0; l < number_of_states; l++)       
   printf("%2d ", input[j][l]); 
 
 } /* end j for-loop */ 
 
 printf("\nOutput:");   
 
 for (j = 0; j < number_of_states; j++)  
 {      
  printf("\n");      
  for (l = 0; l < n; l++)       
   printf("%2d ", output[j][l]); 
 
 } /* end j for-loop */ 
 
 printf("\nNext State:");   
 
 for (j = 0; j < number_of_states; j++)  
 {       
  printf("\n");     
 
  for (l = 0; l < n; l++)     
   printf("%2d ", nextstate[j][l]);   
 
 } /* end j for-loop */ 
 
#endif 
 
 channel_output_matrix = (int*) malloc(channel_length * 
sizeof(int));   
 
 if (channel_output_matrix == NULL) 
 {        



 

 182

printf(        "\nsdvd.c: Can't allocate memory for 
channel_output_matrix! Aborting...");        
  exit(1);   
 }  
/* now we're going to rearrange the channel output so it 
has n rows, and n/2 columns where each row corresponds  
to a channel symbol for a given bit and each column 
corresponds to an encoded bit */ 
 channel_length = channel_length / n;  
 
  /* adaptive quantization for specified es_ovr_no)*/ 
   init_adaptive_quant(es_ovr_no,es_ovr_ni); 
 /* quantize the channel output--convert float to short 
integer */   
 /* channel_output_matrix = reshape(channel_output, n, 
channel_length) */   
 for (t = 0; t < (channel_length * n); t += n)  
 {         
  for (i = 0; i < n; i++)       
   *(channel_output_matrix + (t / n) + (i * 
channel_length) ) = quant( *(channel_output_vector + (t + 
i) ) ); 
 } /* end t for-loop */   
 /* End of setup. Start decoding of channel outputs 
with forward traversal of trellis!   
 Stop just before encoder-flushing bits.  */ 
    for (t = 0; t < channel_length - m; t++)  
 {    
  if (t <= m)           
   /* assume starting with zeroes, so just 
compute paths from all-zeroes state */       
   step = (int)pow((double)2, m - t * 1);     
  else             
   step = 1;  
  
  /* set up the state history array pointer for 
this time t */        
  sh_ptr = (int) ( ( t + 1 ) % (depth_of_trellis + 
1) ); 
 
  /* repeat for each possible state */    
  for (j = 0; j < number_of_states; j+= step) 
  {             
   /* repeat for each possible convolutional 
encoder output n-tuple */             
   for (l = 0; l < n; l++) 
   {                 
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    branch_metric = 0; 
     
/* compute branch metric per channel symbol, and sum for 
all channel symbols in the convolutional encoder output n-
tuple */ 
/* convert the decimal representation of the encoder output 
to binary */            
    binary_output[0] = ( output[j][l] & 
0x00000002 ) >> 1;          
    binary_output[1] = output[j][l] & 
0x00000001;   
 
    /* compute branch metric per channel 
symbol, and sum for all channel symbols in the 
convolutional encoder output n-tuple */    
    branch_metric = branch_metric + abs( *( 
channel_output_matrix +( 0 * channel_length + t ) ) - 7 * 
binary_output[0] ) +  
     abs( *( channel_output_matrix +( 1 
* channel_length + t ) ) - 7 * binary_output[1] );            
     
    /* now choose the surviving path--the 
one with the smaller accumlated error metric... */  
    if ( accum_err_metric[ nextstate[j][l] 
] [1] > accum_err_metric[j][0] +branch_metric )  
    {                   
     /* save an accumulated metric 
value for the survivor state */                    
     accum_err_metric[ nextstate[j][l] 
] [1] = accum_err_metric[j][0] +branch_metric; 
 
     /* update the state_history array 
with the state number of the survivor */     
     state_history[ nextstate[j][l] ] 
[sh_ptr] = j;  
 
    } /* end of if-statement */ 
 
   } /* end of 'l' for-loop */   
 
  } /* end of 'j' for-loop -- we have now updated 
the trellis */  
 
  /* for all rows of accum_err_metric, move col 2 
to col 1 and flag col 2 */      
  for (j = 0; j < number_of_states; j++) 
  {            
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   accum_err_metric[j][0] = 
accum_err_metric[j][1];        
   accum_err_metric[j][1] = MAXINT; 
 
  } /* end of 'j' for-loop */  
 
  /* now start the traceback, if we've filled the 
trellis */        
  if (t >= depth_of_trellis - 1)  
  {              
    
   /* initialize the state_sequence vector--
probably unnecessary */       
   for (j = 0; j <= depth_of_trellis; j++)                
    state_sequence[j] = 0;        
    
   /* find the element of state_history with 
the min. accum. error metric */         
   /* since the outer states are reached by 
relatively-improbable runs of zeroes or ones, 
   search from the top and bottom of the 
trellis in */ 
   x = MAXINT;            
   for (j = 0; j < ( number_of_states / 2 ); 
j++) 
   {              
    if ( accum_err_metric[j][0] < 
accum_err_metric[number_of_states - 1 - j][0] )  
    {                 
     xx = accum_err_metric[j][0];          
      
     hh = j;  
    }              
    else 
    {       
     xx = 
accum_err_metric[number_of_states - 1 - j][0];      
     hh = number_of_states - 1 - j;         
    }                 
    if ( xx < x)  
    {                  
     x = xx;         
     h = hh;          
    }            
   } /* end 'j' for-loop */                 
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   /* now pick the starting point for traceback 
*/      
   state_sequence[depth_of_trellis] = h;              
    
   /* now work backwards from the end of the 
trellis to the oldest state in the trellis to determine the  
   optimal path. The purpose of this is to 
determine the most likely state sequence at the encoder  
   based on what channel symbols we received. 
*/  
   for (j = depth_of_trellis; j > 0; j--) 
   {                
    sh_col = j + ( sh_ptr - 
depth_of_trellis );  
    if (sh_col < 0) 
     sh_col = sh_col + depth_of_trellis 
+ 1;        
     state_sequence[j - 1] = state_history[ 
state_sequence[j] ] [sh_col];  
   } /* end of j for-loop */  
   /* now figure out what input sequence 
corresponds to the state sequence in the optimal path */        
   *(decoder_output_matrix + t - 
depth_of_trellis + 1) = input[ state_sequence[0] ] [ 
state_sequence[1] ]; 
  } /* end of if-statement */  
 } /* end of 't' for-loop */      
 /* now decode the encoder flushing channel-output bits 
*/   
 for (t = channel_length - m; t < channel_length; t++)  
 {         
  /* set up the state history array pointer for 
this time t */        
  sh_ptr = (int) ( ( t + 1 ) % (depth_of_trellis + 
1) ); 
  /* don't need to consider states where input was 
a 1, so determine what is the highest possible  
  state number where input was 0 */        
  last_stop =  number_of_states /(int) 
pow((double)2, t - channel_length + m);  
 
  /* repeat for each possible state */      
  for (j = 0; j < last_stop; j++) 
  {              
   branch_metric = 0;            
   deci2bin(output[j][0], n, binary_output); 
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   /* compute metric per channel bit, and sum 
for all channel bits in the convolutional encoder output n-
tuple */   
   for (ll = 0; ll < n; ll++)  
   {                 
    branch_metric = branch_metric + 
soft_metric( *(channel_output_matrix +(ll * channel_length 
+ t)), binary_output[ll] ); 
   } /* end of 'll' for loop */   
 
   /* now choose the surviving path--the one 
with the smaller total metric... */      
   if ( (accum_err_metric[ nextstate[j][0] ][1] 
> accum_err_metric[j][0] +branch_metric) /*|| flag[ 
nextstate[j][0] ] == 0*/)  
   {                   
    /* save a state metric value for the 
survivor state */            
    accum_err_metric[ nextstate[j][0] ][1] 
= accum_err_metric[j][0] + branch_metric;  
 
    /* update the state_history array with 
the state number of the survivor */           
    state_history[ nextstate[j][0] 
][sh_ptr] = j;   
 
   } /* end of if-statement */ 
 
  } /* end of 'j' for-loop */  
 
  /* for all rows of accum_err_metric, swap columns 
1 and 2 */   
  for (j = 0; j < number_of_states; j++) 
  {             
   accum_err_metric[j][0] = 
accum_err_metric[j][1];   
   accum_err_metric[j][1] = MAXINT;    
 
  } /* end of 'j' for-loop */   
 
  /* now start the traceback, if i >= 
depth_of_trellis - 1*/       
  if (t >= depth_of_trellis - 1) 
  {            
   /* initialize the state_sequence vector */       
   for (j = 0; j <= depth_of_trellis; j++) 
state_sequence[j] = 0; 
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/* find the state_history element with the minimum accum. 
error metric */        
   x = accum_err_metric[0][0];       
   h = 0;             
   for (j = 1; j < last_stop; j++)  
   {                 
    if (accum_err_metric[j][0] < x)  
    {                 
     x = accum_err_metric[j][0];        
     h = j;             
    } /* end if */            
 
   } /* end 'j' for-loop */          
 
    
   state_sequence[depth_of_trellis] = h;  
 
   /* now work backwards from the end of the 
trellis to the oldest state in the trellis to determine the 
optimal path. The purpose of this is to determine the most 
likely state sequence at the encoder based on what channel 
symbols we received. */      
   for (j = depth_of_trellis; j > 0; j--) 
   {                 
    sh_col = j + ( sh_ptr - 
depth_of_trellis );   
 
    if (sh_col < 0)                  
     sh_col = sh_col + depth_of_trellis 
+ 1;    
    state_sequence[j - 1] = state_history[ 
state_sequence[j] ][sh_col];     
   } /* end of j for-loop */  
 
   /* now figure out what input sequence 
corresponds to the optimal path */      
   *(decoder_output_matrix + t - 
depth_of_trellis + 1) = input[ state_sequence[0] ][ 
state_sequence[1] ];  
 
  } /* end of if-statement */ 
 
 } /* end of 't' for-loop */  
 
 for (i = 1; i < depth_of_trellis - m; i++) 
 { 
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  *(decoder_output_matrix + channel_length - 
depth_of_trellis + i) =  input[ state_sequence[i] ] [ 
state_sequence[i + 1] ]; 
  
 } 
 for(i=0;i<channel_length-m;i++) 
 { 
       printf("\n decoder output matrix is 
%d",*(decoder_output_matrix + i)); 
    getchar(); 
 } 
 /* free the dynamically allocated array storage area 
*/     
 free(channel_output_matrix);     
 
 return; 
 
} /* end of function vd */  
 
int nxt_stat(int current_state, int input, int 
*memory_contents)  
 {      
  int binary_state[K - 1];              /* binary 
value of current state */   
  int next_state_binary[K - 1];         /* binary 
value of next state */     
  int next_state;                       /* decimal 
value of next state */   
  int i;                                /* loop 
variable */  
        void deci2bin(int d, int size, int *b); 
        int bin2deci(int *b, int size); 
  /* convert the decimal value of the current state 
number to binary */  
  deci2bin(current_state, K - 1, binary_state);  
 
  /* given the input and current state number, 
compute the next state number */   
  next_state_binary[0] = input;   
 
  for (i = 1; i < K - 1; i++)      
   next_state_binary[i] = binary_state[i - 
1];/* convert the binary value of the next state number to 
decimal */ 
  next_state = bin2deci(next_state_binary, K - 
1);/* memory_contents are the inputs to the modulo-two 
adders in the encoder */  
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  memory_contents[0] = input;    
 
  for (i = 1; i < K; i++)         
      memory_contents[i] = binary_state[i - 1]; 
  return(next_state); 
 } 
 
 /* this function converts a decimal number to a binary 
number, stored   as a vector MSB first,having a specified 
number of bits with leading   zeroes as necessary */ 
 void deci2bin(int d, int size, int *b)  
 {     
  int i;  
  for(i = 0; i < size; i++)      
   b[i] = 0;     
  b[size - 1] = d & 0x01;   
 
  for (i = size - 2; i >= 0; i--)  
  {        
   d = d >> 1;   
   b[i] = d & 0x01;    
  } 
 } 
 
 /* this function converts a binary number having a 
specified number of bits to the corresponding decimal 
number ith improvement */ 
 
 int bin2deci(int *b, int size) 
 {    
  int i, d;    
  d = 0;   
  for (i = 0; i < size; i++)  
   d += b[i] << (size - i - 1); 
  return(d); 
 } 
 
/* Function to generate uniform deviates using idum*/ 
 
#define IM1 2147483563 
#define IM2 2147483399 
#define AM (1.0/IM1) 
#define IMM1 (IM1-1) 
#define IA1 40014 
#define IA2 40692 
#define IQ1 53668 
#define IQ2 52774 
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#define IR1 12211 
#define IR2 3791 
#define NTAB 32 
#define NDIV (1+IMM1/NTAB) 
#define EPS 1.2e-7 
#define RNMX (1.0-EPS) 
float ran2(void) 
{ 
 int j; 
 long k; 
 static long idum2=123456789; 
 static long iy=0; 
 static long iv[NTAB]; 
 float temp; 
 if (idum <= 0) { 
  if (-(idum) < 1) idum = 1; 
  else idum = -(idum); 
  idum2 = (idum); 
  for (j=NTAB+7; j>=0; j--) { 
   k = (idum)/IQ1; 
   idum = IA1*(idum - k*IQ1) - k*IR1; 
   if (idum < 0) idum += IM1; 
   if (j < NTAB) iv[j] = idum; 
  } 
  iy = iv[0]; 
 } 
 k = (idum)/IQ1; 
 idum = IA1*(idum - k*IQ1) - k*IR1; 
 if (idum < 0) idum += IM1; 
 k = idum2/IQ2; 
 idum2 = IA2*(idum2 - k*IQ2) - k*IR2; 
 if (idum2 < 0) idum2 += IM2; 
 j = iy/NDIV; 
 iy = iv[j] - idum2; 
 iv[j] = idum; 
 if (iy < 1) iy += IMM1; 
 if ((temp=AM*iy) > RNMX) return RNMX; 
 else return temp; 
} 
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