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FREE CONVECTION ALONG A VERTICAL WAVY SURFACE IN A 

NANOFLUID 

 

DEEPAK RAVIPATI 

 

ABSTRACT  

 

The study of this paper is to introduce a boundary layer analysis for the fluid flow 

and heat transfer characteristics of an incompressible nanofluid along a vertical wavy 

surface in a nanofluid. The Resulting transformed governing equations are solved 

numerically by an implicit finite-difference scheme (Keller-Box method). The results are 

presented for the major parameters including the wave amplitude  , buoyancy ratio 

parameter    , Brownian motion parameter    , Thermophoresis parameter    and Lewis 

number   . A systematic study on the effects of the various parameters of the local 

frication factor, surface heat transfer rate (Nusselt number) and mass transfer rate 

(Sherwood number) characteristics is carried out. The Obtained results are presented 

graphically. 

Keywords: Nanofluid, Free Convection and Wavy Surface. 
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NOMENCLATURE 

   Brownian diffusion coefficient 

   Thermophoretic diffusion coefficient   

   Lewis number  

    Buoyancy Ratio  

   Brownian motion parameter  

   Thermophoresis parameter  

U Reference velocity  

Cp           Specific heat at constant pressure 

Cfx Local skin-friction coefficient 

f  Dimensionless stream function 

g Acceleration due to gravity 

Gr Grashof number 

k (T)    Thermal conductivity 

   Local Nusselt Number 

Pr Prandtl number 

qw  Heat flux at the surface 

T Temperature of the fluid in the boundary layer 

T  Temperature of the ambient fluid 

Tw Temperature at the surface 
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u, v The dimensionless x and y- component of the velocity 

v̂,û  The dimensional x̂  and ŷ component of the velocity 

          x, y In the direction along and normal to the surface 

Greek Symbols: 

 Volumetric coefficient of thermal expansion 

  Stream function 

 Amplitude of the wavy surface 

 Non-dimensional similarity variable 

 Shear stress 

 Density of the fluid 

 Reference kinematic viscosity 

 Viscosity of the fluid 

 Dynamic viscosity of the ambient fluid 

 Dimensionless temperature function 

(x) Surface profile function defined in (1) 

  Nano-particle volume fraction 

   Nano-particle mass density 

   Fluid density 

    Heat capacity of fluid 



x 
 

Subscript: 

W Wall conditions 

 Ambient temperature 

X Differentiation with respect to x 

Superscript: 

 Differentiation with respect to  
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CHAPTER I 

INTRODUCTION 

                 The study of convective heat transfer in nanofluids is gaining a lot of attention. 

The nanofluids have many engineering applications in the industry since materials of 

nanometer size have unique physical and chemical properties. The term nanofluids refers 

to a liquid containing a dispersion of submicron solid-liquid composite materials 

consisting of solid nanoparticles or nanofibers with sizes typically 1-100 nm suspended in 

liquid. Modern technology makes it possible to produce ultra fine metallic or nonmetallic 

particles of nanometer dimensions, which makes revolutions in heat transfer 

enhancement methods. Considering a very small particle size and their small volume 

fraction (<1% volume fraction) of Cu nanoparticles with ethylene glycol or carbon 

nanotubes dispersed in oil is reported to increase the inherently poor thermal conductivity 

of the liquid by 40% and 150%, respectively [1,2]. Also the relatively large surface area 

of nanoparticles increases the stability and reduces the sedimentation of nanoparticles. A 

more dramatic improvement in that transfer efficiency is expected a results decreasing the 

particle size in a suspension because heat transfer takes place at the surface of the 
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particles. High concentrations (>10%) of particles is required to achieve such 

enhancement in case of conventional particle-liquid suspensions. In general problems of 

rheology and stability are amplified at high concentration, precluding the widespread use 

of conventional slurries as heat transfer fluids. In some cases, the observed enhancement 

in thermal conductivity of nanofluids is the order of magnitude larger than predicted by 

well-established theories. Other perplexing results is that rapidly evolving field include a 

surprising strong temperature dependence of thermal conductivity [3] and a three-fold 

higher critical heat flux compared with the base fluids [4]. The feasibility of nanofluids in 

nuclear applications is made by improving the performance of any water-cooled nuclear 

system with heat removal limited has been studies by kim et al. [5] at the Massachusetts 

Institute of technology(MIT) is exploring the nuclear applications of nanofluids, 

specifically in Main reactor coolant for pressurized water reactors (PWRs), Coolant for 

the emergency core cooling system(ECCS) of both PWRs and boiling water reactors and 

coolant for in-vessel retention of the molten core during severe accidents in high power-

density light water reactors.[6].  

Nanofluids can be utilized where straight heat transfer enhancement is very 

important as in most Heat transfer applications such as industrial cooling applications, 

smart fluids, nuclear reactors, extraction of geothermal power and other energy sources. 

Other applications, such as nanofluid coolant, nanofluid in fuel, Brakes and other 

vehicular nanofluids. Electronic applications such as cooling of microchips, microscale 

fluidic applications. Biomedical applications such as nanodrug delivery, cancer 

therapeutics, cryopreservation, nanocryosurgery, sensing and imaging. Review of 

experimental studies indicates that nanofluids have the potential to conserve 1 trillion Btu 
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of energy for U.S. industry by replacing cooling and heating water with nanofluid. For 

the U.S. electric power industry, using nanofluids in closed-loop cooling cycles could 

save about 10–30 trillion Btu per year (equivalent to the annual energy consumption of 

about 50,000–150,000 households). The related emissions reductions would be 

approximately 5.6 million metric tons of carbon dioxide; 8,600 metric tons of nitrogen 

oxides; and 21,000 metric tons of sulfur dioxide [7]. There is a growth in the use of 

colloids which are nanofluids in the biomedical industry for sensing and imaging 

purposes. This is directly related to the ability to design novel materials at the nanoscale 

level, alongside recent innovations in analytical and imaging technologies for measuring 

and manipulating nonmaterials. This has led to the fast development of commercial 

applications which uses a wide variety of manufactured nanoparticles. The production, 

use and disposal of manufactured nanoparticles will lead to discharges in air, soils and 

water systems. Negative effects are likely, so quantification and minimization of these 

effects on environmental health is necessary. True knowledge of concentration and 

physicochemical properties of manufactured nanoparticles under realistic conditions is 

important to predicting their fate, behavior and toxicity in the natural aquatic 

environment. The aquatic colloid and atmospheric ultrafine particle literature both offer 

evidence as to the likely behavior and impacts of manufactured nanoparticles [8]. 

In geothermal power, energy extraction from the earth’s crust involves high 

temperatures around 5000C to 10000C, nanofluids can be employed to cool the pipes 

exposed to such high temperatures. When drilling, nanofluids can serve in cooling the 

machinery and equipment working in environments with high temperatures. Nanofluids 

could be used as a working fluid to extract energy from the earths core [9], However 
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previous research has concentrated on the problem of natural convection for the case of 

flat plates, on the other hand, few studies have been carried out to examine the effect of 

geometric complexity, such as irregular surfaces, the convection heat transfer. That is 

because complicated boundary conditions or external flow fields are difficult to deal 

with. However, the prediction of heat transfer form an irregular surface is of fundamental 

importance, and is encountered in several heat transfer devices, such as flat-plate solar 

collectors and flat-plate condensers in refrigerators. For example, in cavity wall 

insulating systems, grain storage installations geothermal and industrial applications, 

such as the dispersion of chemical contaminants through water-saturated soil, the 

migration of moisture through air contained in fibrous insulations heat radiator in 

industry. Irregularities frequently occur in the process of manufacture. Moreover, 

surfaces are sometimes intentionally roughened to enhance heat transfer because the 

presence of rough surfaces disturbs the flow and alters the heat transfer rate. Despite of 

many investigations done in irregular surfaces, these investigations have only 

concentrated on the problems of free convection along a vertical wavy surface in 

nanofluids. 
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CHAPTER II 

LITERATURE REVIEW 

        Heat transfer problems have several engineering applications such as thermal 

energy storage, crude oil extraction, geothermal energy recovery, ground water pollution 

and flow through filtering media. Described below are a few studies which show work 

done in the area of the geometric complexity, such as irregular surfaces, on the 

convection heat transfer in nanofluids. That is because complicated boundary conditions 

or external flow fields are difficult to work with. However, the prediction of heat transfer 

from an irregular surface is of fundamental importance, and is encountered in several heat 

transfer devices, such as flat-plate solar collectors and flat-plate condensers in 

refrigerators. Moreover, surfaces are sometimes intentionally roughened to enhance heat 

transfer for the presence of rough surfaces disturbs the flow and alters the heat transfer 

rate. However, all of the previous studies considered only the case of flat plate or simple 

two-dimensional bodies, and few have been on wavy surfaces. 
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Ghosh and Yao [10] have studied laminar free convection along a semi-infinite 

vertical wavy surface. This is a model problem for the investigation of heat transfer from 

roughened surfaces in order to understand heat transfer enhancement. In many 

applications of practical importance, however, the surface temperature is non-uniform. In 

this note, the case of uniform surface heat flux rate, which is often approximated in 

practical applications and is easier to measure in a laboratory, has been investigated. 

Numerical results have been obtained for a sinusoidal wavy surface. The results show 

that the Nusselt number varies periodically along the wavy surface. The wavelength of 

the Nusselt number variation is half of that of the wavy surface, while the amplitude 

gradually decreases downstream where the boundary layer grows thick. It is hoped that 

experimental results will become available in the near future to verify the results of this 

investigation. 

             Molla, Hossain and Yao [11] investigated the effect of internal heat generation 

/absorption on a steady two-dimensional natural convection flow of viscous 

incompressible fluid along a uniformly heated vertical wavy surface. The equations are 

mapped into the domain of flat vertical plate, and then solved numerically employing the 

implicit finite difference method, known as Keller-box scheme. Effects of the pertinent 

parameters, such as the heat generation/absorption parameter (Q), the amplitude of the 

waviness (α) of the surface and Prandtl number Pr on the rate of heat transfer in terms of 

the local Nusselt number (Nux), isotherms and the streamlines were discussed. 

  Hossain and Rees [12] studied the combined heat and mass transfer in natural 

convection flow from a vertical wavy surface. In this paper, effects of combined 

buoyancy forces from mass and thermal diffusion by natural convection flow from a 
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vertical wavy surface have been investigated using the implicit finite difference method. 

The study was focused on the evolution of the surface shear stress, f″(0), rate of heat 

transfer, g′(0), and surface concentration gradient, h′(0) with effect of different values of 

the governing parameters, such as the Schmidt number Sc ranging from 7 to 1500 which 

are appropriate for different species concentration in water (Pr = 7.0), the amplitude of 

the waviness of the surface ranging from 0.0 to 0.4 and the buoyancy parameter, w, 

ranging from 0.0 to 1. 

             A previously proposed transformation has been applied by Yao, L. S [13] to the 

natural-convection boundary layer along a complex vertical surface created from two 

sinusoidal functions, a fundamental wave and its first harmonic. The numerical results 

demonstrate that the additional harmonic substantially alters the flow field and 

temperature distribution near the surface. The conclusion that the averaged heat-transfer 

rate per unit-wetted wavy surface is less than that of a corresponding flat plate has been 

confirmed for this more complex surface. On the other hand, the total heat-transfer rates 

for a complex surface are greater than that of a flat plate. According to the numerical 

results the enhanced total heat-transfer rate seems to depend on the ratio of amplitude and 

wavelength of a surface. 

Neild and Kuznestov [14] have studied the convective heat transfer in a nanofluid 

past a vertical plate. According to this study a model was used in which Brownian motion 

and thermophoresis are accounted with the simplest possible boundary conditions, 

namely those in which both the temperature and the nanoparticle fraction are constant 

along the wall. Using this, solution was obtained which depends on five dimensionless 

parameters, namely a Prandtl number   , a Lewis number   , a buoyancy-ratio 
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parameter   , a Brownian motion parameter   , and a thermophoresis parameter   . 

They have explored the way in which the wall heat flux, represented by a Nusselt number 

Nu and then scaled in terms of - local Rayleigh number defined in the paper to produce a 

reduced Nusselt number, depends on these five parameters.  

           Chamkha and Khaled [15] have solved the problem of coupled heat and mass 

transfer by natural convection from a semi-infinite inclined flat plate in the presence of an 

external magnetic field and internal heat generation or absorption effects. Surface of the 

plate has a power- law variation of both wall temperature and concentration and is 

permeable to allow for possible fluid wall suction or blowing. The resulting governing 

equations were solved by using similarity transformation and solved numerically by 

implicit iterative and finite-difference scheme methods. They performed parametric study 

of all involved parameters and conducted a set of numerical results for the velocity and 

temperature profiles as well as the skin-friction parameter, average Nusselt number, and 

the average Sherwood number is illustrated graphically to show typical trends of the 

solutions. 

Wang and Chen [16] studied mixed convection boundary layer flows of Non-

Newtonian fluids over the wavy surfaces using the coordinate transformation and the 

cubic spline collocation numerical method. The effects of the wavy geometry, the 

buoyancy parameter and the generalized Prandtl number for pseudoplastic fluids, 

Newtonian fluids and dilatant fluids on the skin-friction coefficient, local and mean 

Nusselt numbers have been graphically studied. As per the results both higher 

generalized Prandtl numbers and buoyancy parameters were seen to enhance the 

influence of wavy surfaces on the local Nusselt number, irrespective of whether the fluids 
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were Newtonian fluids or non-Newtonian fluids. Moreover, the irregular surfaces were 

having higher total heat flux than that of corresponding flats plate for any fluid. 

Yang, Chen and Lin [17] applied Prandtl transformation method to study the 

natural convection of Non-Newtonian fluids along a wavy vertical plate in the presence 

of a magnetic field. A simple transformation was proposed, to transform the governing 

equations into the boundary layer equations, and solved numerically by the cubic spline 

approximation. A simple coordinate transformation was employed to transfer the 

complex wavy surface to a vertical flat plate for a constant wall temperature by the 

numerical method. The effects of the magnetic field parameter, the wavy geometry and 

the non-Newtonian nature of the fluids on the flow characteristics and heat transfer were 

discussed in detail. It was found that the action of the magnetic field decelerates the flow, 

does decreasing the Nusselt number. 

Hossain and Pop [18] formulated the problem of the boundary layer flow and heat 

transfer on a continuous moving wavy surface in a quiescent electrically conducting fluid 

with a constant transverse magnetic field. The resulting parabolic differential equations 

were solved numerically using the Keller-box scheme. They presented the detailed results 

for the velocity and temperature fields, and also the results for the skin-friction 

coefficient and the local Nusselt number. Those results are given for different values of 

the amplitude of the wavy surface and magnetic parameter when the Prandtl number 

equals 0.7. They showed that the flow and heat transfer characteristics are substantially 

altered by both the magnetic parameter and the amplitude of the wavy surface 

  Hossain, Kabir and Rees [19] studied the effect of a temperature dependent 

viscosity on natural convection flow of viscous incompressible fluid from a vertical wavy 
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surface has been investigated using an implicit finite difference method. They focused on 

the evaluation of the local skin-friction and the local Nusselt number. The governing 

parameters were, the Prandtl number, Pr, ranging from 1 to 100, the amplitude of the 

waviness of the surface, alpha, ranging from 0.0 to 0.4 and the viscosity variation 

parameter, epsilon, ranging from 0.0 to 6. 

Kumari, Pop and Takhar [20] considered a theoretical analysis of laminar free-

convection flow over a vertical isothermal wavy surface in a Non-Newtonian power-law 

fluid.  First they casted the governing equations into a non dimensional form by using 

suitable boundary-layer variables that subtract out the effect of the wavy surface from the 

boundary conditions. Then they solved the boundary-layer equations numerically by a 

very efficient implicit finite-difference method known as the Keller-Box method. A 

sinusoidal surface was used to elucidate the effects of the power-law index, the amplitude 

wavelength, and the Prandtl number on the velocity and temperature fields, as well as on 

the local Nusselt number. The results obtained showed that the local Nusselt number 

varies periodically along the wavy surface. The wave-length of the local Nusselt number 

variation is half that of the wavy surface, irrespective of whether the fluid is a Newtonian 

fluid or a Non-Newtonian fluid.  

Lakshmi and Sibanda [21] In their article, studied free convection of heat and 

mass transfer along a vertical wavy surface in a Newtonian fluid saturated Darcy porous 

medium by considering cross diffusion (namely the Soret and the Dufour effects) in the 

medium. The vertical wavy wall and the flow governing equations are transformed to a 

plane geometry case by using a suitable transformation. They then presented a similarity 

solution to the problem under the large Darcy–Rayleigh number assumption. The 
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governing partial differential equations were reduced to a set of ordinary differential 

equations that are integrated using numerical methods to study the nature of the non-

dimensional heat and mass transfer coefficients in the medium. The results are presented 

for a range of the flow governing parameters such as the diffusivity ratio parameter, the 

buoyancy ratio parameter, the Soret parameter, the Dufour parameter and the amplitude 

of the wavy surface. 

Hossain, Kabir and Rees [22] in their paper presented the effect of a temperature 

dependent viscosity on natural convection flow of viscous incompressible fluid from a 

vertical wavy surface has been investigated using an implicit finite difference method. 

They have focused their attention on the evaluation of the local skin-friction and the local 

Nusselt number. The governing parameters are the Prandtl number, Pr, ranging from 1 to 

100, the amplitude of the waviness of the surface  , ranging from 0.0 to 0.4 and the 

viscosity variation parameter,  , ranging from 0.0 to 6. 

In
 
this study, Chen, Yang and Chang [23] used Prandtl's transposition theorem to 

stretch the
 
ordinary coordinate-system in certain direction. The small wavy surface can

 
be 

transferred into a calculable plane coordinate-system. The new governing
 
equations of 

turbulent forced convection along wavy surface were derived
 
from complete Navier–

Stokes equations. A simple transformation was proposed to
 
transform the governing 

equations into boundary layer equations for solution
 
by the cubic spline collocation 

method. The effects such as
 
the wavy geometry, the local skin-friction and Nusselt 

number were
 
studied. The results of the simulation show that it is

 
more significant to 

increase heat transfer with small wavy surface
 
than plat surface 
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Kumar and Shalini [24] analyzed the natural convection heat transfer from a 

vertical wavy surface in a thermally stratified fluid saturated porous medium under 

Forchheimer based Non-Darcian assumptions. They reduced the governing equations to 

boundary layer equations based on non-similarity transformation deduced by scale 

analysis. Those simplified partial differential equations are solved numerically by a finite 

difference scheme following the Keller Box approach. Extensive numerical simulations 

are carried out for various values of wavelength-to-amplitude ratio of wavy vertical 

surface at different thermal stratification levels of a porous medium both under Darcian 

and Non-Darcian assumptions. Results of their study are compared with those available 

in literature. In the Darcian case, local heat fluxes along the wavy vertical surface are 

periodic with an oscillatory pattern of period, which is exactly half of the period of a 

vertical wavy surface. In the non-Darcian case, the local heat fluxes continue to be 

periodic but with a complex oscillatory pattern of period exactly the same as that of the 

vertical wavy surface. Increasing S or    or   leads to a fall in local Nusselt number.  

Polidori, Fohanno and Nguyen [25] have studied the problem of natural 

convection flow and heat transfer of Newtonian alumina–water nanofluids over a vertical 

semi-infinite plate from a theoretical viewpoint, for a range of nanoparticle volume 

fractions up to 4%. The analysis is based on a macroscopic modeling and under the 

assumption of constant thermophysical nanofluid properties. They proposed semi-

analytical formulas of heat transfer parameters for both the uniform wall temperature 

(UWT) and uniform heat flux (UHF) surface thermal conditions and found that natural 

convection heat transfer is not solely characterized by the nanofluid effective thermal 
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conductivity and that the sensitivity to the viscosity model used seemed undeniable and 

plays a key role in the heat transfer behavior. 

Mamun, Hossain and Gorla [26] investigated the natural convection laminar flow 

of a viscous incompressible fluid along a uniformly heated vertical wavy surface with 

temperature dependent viscosity and thermal conductivity. They considered the boundary 

layer regime when the Grashof number    is large. The appropriate transformation 

variables were used. The basic governing equations are first transformed to non-similar 

boundary layer form and then solved numerically employing the implicit finite difference 

method together with Keller-Box scheme. They presented the numerical results in terms 

of the streamlines and isothermals as well as fluid flow and heat transfer characteristics, 

namely, the local skin-frication coefficient and the local Nusselt number for a wide range 

of values of the viscosity and thermal conductivity variation parameter, surface waviness 

and the Prandtl number 

Bachok, Ishak and Pop [27] have studied the steady boundary-layer flow of a 

nanofluid past a moving semi-infinite flat plate in a uniform free stream. Assumptions 

were made that the plate is moving in the same or opposite directions to the free stream to 

define the resulting system of nonlinear ordinary differential equations. Governing 

equations were solved using the Keller-Box method. The results are obtained for the skin-

friction coefficient, the local Nusselt number and the local Sherwood number as well as 

the velocity, temperature and the nanoparticle volume fraction profiles for the governing 

parameters, namely, the plate velocity parameter, Prandtl number, Lewis number, the 

Brownian motion parameter and the thermophoresis parameter. 
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Xuan and Li [28] have experimentally investigated flow and convective heat 

transfer characteristics for Cu–water based nanofluids through a straight tube with a 

constant heat flux at wall. Results showed that the nanofluids give substantial 

enhancement of heat transfer rate compared to pure water. 

Khan and Pop [29] have studied the problem of laminar fluid flow which results 

from the stretching of a flat surface in a nanofluid and investigated it numerically. The 

model they used for the nanofluid incorporates the effects of Brownian motion and 

thermophoresis and found solution which depends on the Prandtl number   , Lewis 

number   , Brownian motion number    and thermophoresis number   . They showed 

variation of the reduced Nusselt and reduced Sherwood numbers with    and    for 

various values of    and   in tabular and graphical forms and conclude that a reduced 

Nusselt number is a decreasing function while the reduced Sherwood number is 

increasing function of each values of the parameters   ,   ,    and    considered for 

study. 

Koo and Kleinstreuer [30] have studied steady laminar liquid nanofluid flow in 

microchannels for conduction-convection heat transfer for two different base fluids water 

and ethylene glycol having copper oxide nanospheres at low volume concentrations. 

They conjugate the heat transfer problem for microheat-sinks solved numerically. They 

employed new models for the effective thermal conductivity and dynamic viscosity of 

nanofluids in light of aspect ratio, viscous dissipation and enhanced temperature effects 

for computation of the impact of nanoparticle concentrations in these two mixture flows 

on the microchannel pressure gradients, temperature profiles and Nusselt numbers. 
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CHAPTER III 

NUMERICAL STUDY OF FREE CONVECTION ALONG A VERTICAL WAVY 

SURFACE IN A NANOFLUID 

 

3.1 Mathematical formulation and analysis 

         We consider the steady free convection boundary layer flow past a vertical wavy 

plate placed in a nano-fluid. The co-ordinate system is chosen such that x̂ -measures the 

distance along the wavy surface and ŷ measures the distance normal outward, see figure 

(1). Here we consider a wavy surface that is described under the foregoing assumptions 

with introducing Overbeck-Boussinesq approximations, the equations governing the 

steady state flow can be written in two dimensional Cartesian coordinates(  x̂ , ŷ ), in 

usual notation as  
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Figure 1: Physical model and coordinate system 
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where L is half of the wavelength of the wavy surface.  The geometry of the wavy surface 

and the two-dimensional Cartesian coordinate system are as shown in Figure1.  
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Concentration Equation  
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where  yx ˆ,ˆ  are the dimensional coordinates in the vertical and horizontal directions, 

 v̂,û are the velocity components parallel to  yx ˆ,ˆ , g is the acceleration due to gravity, p̂

is the pressure of the fluid,  (T) is the dynamic viscosity, f ,  and   are the density, 

viscosity, and volumetric volume expansion coefficient of the fluid while 
p is the 

density of the particles. BD  Brownian diffusion coefficient and TD  is the thermophoretic 

diffusion coefficient. 

The associated boundary conditions are: 

 xyyTTu ww ˆˆˆat,0ˆ,0ˆ  v  

  yppTTu ˆasˆ,,0ˆ  

where Tw  is the surface temperature, T is the ambient temperature of the fluid. 

Following Yao (1983), we now introduce the following non-dimensional variables: 
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On introducing the above dimensionless dependent variables into the equations (1) – (6) 

The following dimensionless form of the governing equations are obtained at leading 

order in the Grashof number Gr 
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By combining equations  (7) and (8) 
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Energy Equation 
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Concentration Equation 
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Now we introduce the following transformations to reduce the governing equation to a 

convenient form: 
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Where   is the pseudo similarity variable and  is the stream-function that satisfies the 

equation and is defined by  
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Introducing the transformations given in equation (14) into the equations (11), (12) and 

(13) we have, 
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Where prime denotes differentiation with respect to   and parameters are defined by 
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                                                            (19) 

   The boundary conditions now take the following form: 

      10,,00,0,  xxfxf                                                                           (20) 

    0,,  xxf   

 

Solutions of the non-similar partial differential system given by 16, 17 and 18 subject to 

the boundary conditions (20) are obtained by using the implicit finite difference method 

developed by Keller (1978). 

However, once we know the values of the function f and  and their derivatives, it is 

important to calculate the values of the local Nusselt number (Nux), Sherwood number 

(     , and skin-friction (Cfx) from the following relations 

                    and           
                                                      (21) 

Where 

            
   

             
   

 and                                                     (22) 

here n̂  is the unit normal to the surface.  Using the transformation (14) Nux and Cfx take 

the following forms: 

                    
                                                                              (23) 

                    
                                                                                (24) 

    (         
 =  

21 x    0,x                                                                            (25)                                                                                                      
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3.2. Numerical Solutions  

Keller Box Method: 

The resulting nonlinear system of the partial differentials equations is solved 

numerically by the Keller-Box method which is an implicit finite difference method. The 

method allows for non-uniform grid discretion and converts the differential equations 

into algebraic ones which are then solved using Thomas algorithm. Thomas algorithm is 

essentially the result of applying gauss elimination to the tri-diagonal system of 

equations. The number of grid points in both directions affects the numerical results. To 

obtain accurate results, a mesh sensitivity study was performed. 
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3.3 Results and discussions  

  The nonlinear ordinary differential Equations (16-18) were solved numerically to 

satisfy the boundary conditions (20) for parametric values of    (Lewis number),    

(buoyancy ratio number),   (Brownian motion parameter) and   (Thermophoresis 

parameter) using implicit finite difference method (Keller-Box method). 

  The effect of various parameters on the free convection with heat and mass 

transfer along a vertical wavy surface is examined and discussed in this section. The 

parameters that the solution affected are the                    . 

 Figure 2-4 represents the effect of variations in the velocity, temperature and 

concentration for values of      it is clear that as the Buoyancy ratio increases, the 

velocity decreases while the temperature and concentration increases. So, we conclude 

that Buoyancy has a minor effect on the particle diffusion. 

 Figure 5-7 represents the effect of variations in the velocity, temperature and 

concentration for values of   , it is clear that as the thermophoresis parameter increases, 

the velocity, temperature and concentration increases.    plays a strong role in 

determining the diffusion of heat and nanoparticle concentration.  

 Figure 8-10 represents the effect of variations in the velocity, temperature and 

concentration for values of   , it is clear that as the Brownian motion increases, the 

velocity and temperature increases while concentration decreases. Brownian diffusion 

promotes heat conduction and also reduces nanoparticle diffusion. 
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Figure 11-13 represents the effect of variations in the velocity, temperature and 

concentration for values of   . It is clear that as the    increases, the velocity increases 

while the temperature and concentration within the boundary layer decreases.    is the 

ratio of molecular thermal diffusivity to mass diffusivity. As    increases, thermal 

diffusivity dominates. 

 Figure 14-16 indicates the effect of variations in the surface wave amplitude in 

velocity, temperature and concentration. It is clear that as the    increases, the velocity 

decreases while the temperature and concentration increases. So, we conclude that much 

roughness of the surface results in an increase of viscous effect within the boundary layer 

and hence, the flow and thermal fluxes reduces. 

Figure 17-19 represents the effect of variations in the local skin-frication 

coefficient,               , Nusselt number               and Sherwood number 

               for values of   , it is clear that as the    increases the Skin-frication 

coefficient, Nusselt number and Sherwood number decreases. So, we conclude that much 

value of the Buoyancy ratio, the Skin-frication coefficient, heat and mass transfer rate are 

decreasing. 

Figure 20-22 represents the effect of variations in the local skin-frication 

coefficient,                , Nusselt number                and Sherwood number 

              for values of   , it is clear that as the    increases, the Skin-frication 

coefficient, Nusselt number and Sherwood number decreases. So, we conclude that much 

value of Thermophoresis parameter, the Skin-frication coefficient, heat and mass transfer 

rate are decreasing. 
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Figure 23-25 indicates the effect of Brownian motion parameter    on local skin-

frication coefficient                , Nusselt number               and Sherwood 

number,              , and it is clear that increasing the value of     increases the Skin-

frication coefficient and Sherwood number, where as Nusselt number decreases. So, we 

conclude that much value of Brownian motion parameter, the Skin-frication coefficient, 

mass transfer rate increasing and heat transfer rate decreasing. 

Figure 26-28 indicates the influence of Lewis number    on local skin-frication 

coefficient,               , Nusselt number,               and Sherwood number 

              )for values of   , and it is clear that as the    increases the rate of heat 

transfer decreases, while the rate and amplitude of mass transfer rate and Skin-frication 

coefficient increases. 

 Figure 29-31 represents the effect of variations in the surface wave amplitude on 

local skin-frication coefficient,                , Nusselt number                and 

Sherwood number,               for values of  .We observe that, as the value of 

  increases ,the Skin-frication coefficient, Nusselt number and Sherwood number 

decreases. So we conclude that much roughness of the surface increasing, the Skin-

friction coefficient, heat and mass transfer rate decreasing. 

The Brownian motion and thermophoresis of nanoparticles increase the effective 

thermal conductivity of the nanofluid. Both Brownian motion and thermophoresis give 

rise to cross diffusion terms similar to soret and dufour cross diffusion terms that arise 

with a binary fluid. 
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               Figure 2 Effect of     on velocity profiles 

 

        Figure 3 Effect of     on temperature profiles 
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                    Figure 4 Effect of     on concentration profiles 

 

                  Figure 5 Effect of     on velocity profiles 
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                 Figure 6 Effect of     on temperature profiles 

 

                       Figure 7 Effect of     on concentration profiles 
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                  Figure 8 Effect of     on velocity profiles 

 

           Figure 9 Effect of     on temperature profiles 
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             Figure 10 effect of     on concentration profiles 

 

              Figure 11 Effect of    on velocity profiles 
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                Figure 12 Effect of    on temperature profiles 

 

                                          Figure 13 Effect of    on concentration profiles 
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         Figure 14 Effect of α on velocity profiles 

 

 Figure 15 Effect of α on temperature profiles  
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             Figure 16 Effect of α on concentration profiles 

 

               Figure 17 Effect of     on skin- frication coefficient 
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                 Figure 18 Effect of     on heat transfer rate 

 

                   Figure 19 Effect of     on mass transfer rate 
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                 Figure 20 Effect of     on skin- frication coefficient 

 

                    Figure 21 Effect of     on heat transfer rate 
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                        Figure 22 Effect of     on mass transfer rate 

 

                Figure 23 Effect of     on skin- frication coefficient 
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                  Figure 24 Effect of     on heat transfer rate 

 

                  Figure 25 Effect of     on mass transfer rate 
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                         Figure 26 Effect of     on skin- frication coefficient 

 

                   Figure 27 Effect of     on heat transfer rate 
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                      Figure 28 Effect of     on mass transfer rate 

 

                         Figure 29 Effect of    on skin- frication coefficient 
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            Figure 30 effect of    on heat transfer rate 

 

                     Figure 31 Effect of    on mass transfer rate 
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CHAPTER IV 

CONCLUDING REMARKS 

                              In this study, we presented a boundary layer analysis for free 

convection along a vertical wavy surface in a nanofluid. Numerical results for friction 

factor, surface heat transfer rate and mass transfer rate have been presented for parametric 

variations of buoyancy ratio parameter   , Brownian motion parameter  , 

thermophoresis parameter    and Lewis number   . The results indicate that as     and 

  increases, the friction factor, the heat transfer (Nusselt number) and mass transfer rates 

(Sherwood number) decreases. As     increases, the friction factor and surface mass 

transfer rates increases, where the surface heat transfer rates decreases. As     increases, 

the friction factor increases, where as mass transfer rates and heat transfer rates 

decreases. As     increase, the friction factor, mass transfer and heat transfer rates 

increases. 
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