
Cleveland State University
EngagedScholarship@CSU

ETD Archive

2010

Implementation and Evaluation of a Tdma Based
Protocol for Wireless Sensor Networks
Robert M. Fiske
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

Part of the Electrical and Computer Engineering Commons
How does access to this work benefit you? Let us know!

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an
authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Recommended Citation
Fiske, Robert M., "Implementation and Evaluation of a Tdma Based Protocol for Wireless Sensor Networks" (2010). ETD Archive.
789.
https://engagedscholarship.csuohio.edu/etdarchive/789

https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F789&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F789&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F789&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F789&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/789?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F789&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

IMPLEMENTATION AND EVALUATION OF A TDMA

BASED PROTOCOL FOR WIRELESS SENSOR

NETWORKS

ROBERT FISKE

Bachelor of Computer Engineering

Bachelor of Science in Computer Information Systems

December 2007

Cleveland State University

submitted in partial fulfillment of the requirements for the degree

MASTERS OF SCIENCE IN SOFTWARE ENGINEERING

at the

CLEVELAND STATE UNIVERSITY

December 2010

This thesis has been approved for the

Department of ELECTRICAL AND COMPUTER ENGINEERING

and the College of Graduate Studies by

Thesis Committee Chairperson, Dr. Chansu Yu

Department/Date

Dr. Nigamanth Sridhar

Department/Date

Dr. Wenbing Zhao

Department/Date

Dedicated to my family and friends

ACKNOWLEDGMENTS

I would like to thank Dr. Yu for his support since undergrad, and for providing

countless interesting projects to work on over the years. I would also like to thank

Adrienne and Jan in the department office for their various assistance over the years.

Both Dr. Sridhar and Dr. Zhao for serving on my defense committee.

The Pohang Institute of Science and Technology in Pohang, for allowing me

to conduct research using their facilities. From POSTECH Nguyen B. Truong for his

assistance in debugging portions of my code. Ah-Young Heo, Heejoo Choi, Seok Seong

Jeon and Sangwook Bak for their assistance in finding my way around POSTECH.

All the members of the Mobile Computing Lab at CSU in my time there, Sai

Krishna Gumudavally, Sachin Hirve, Xiang Li, Murali Krishna Marunganti, Kushal

Shah, Tianning Shen

iv

IMPLEMENTATION AND EVALUATION OF A TDMA

BASED PROTOCOL FOR WIRELESS SENSOR

NETWORKS

ROBERT FISKE

ABSTRACT

When evaluating MAC layer network protocols for wireless sensor networks,

performing simulations of a protocol’s operation can provide great insight into the

performance of the protocol. In order to prove that a protocol will work in a real

setting and not just at the theoretical level, however, there is no substitute for evalua-

tion with a physical implementation. This thesis discusses a physical implementation

and evaluation of the Many-to-One-Sensor-to-Sink (MOSS) MAC layer protocol for

sink based wireless sensor networks using the MAC Layer Architecture for TinyOS.

MOSS is a Time Division Multiple Access (TDMA) based protocol first proposed in

an earlier work. MOSS aims to utilize the strengths and alleviate the weaknesses

of TDMA. In addition to discussing and evaluating the physical MOSS implemen-

tation, the process of developing MAC layer protocol implementations with MLA is

also discussed.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF FIGURES . ix

CHAPTER

I. INTRODUCTION . 1

II. RELATED WORKS . 4

2.1 Wireless Sensor Networks . 4

2.2 TinyOS . 5

2.3 Mote . 5

2.4 Previous WSN MAC Protocols 7

2.4.1 S-MAC . 7

2.4.2 B-MAC . 7

2.4.3 X-MAC . 8

2.4.4 TDMA . 9

2.4.5 SS-TDMA . 10

III. MOSS Protocol . 11

3.1 Scheduling Phase . 12

3.2 Data Phase . 13

IV. DESIGN AND IMPLEMENTATION 14

4.1 MLA . 14

4.1.1 MLA Introduction . 14

4.1.2 Why MLA . 15

vi

4.2 Initialization . 16

4.3 Scheduling Phase . 17

4.3.1 Send PADV . 17

4.3.2 Receive PADV . 17

4.3.3 Send PSEL . 19

4.3.4 Receive PSEL . 20

4.3.5 Sending the Schedule . 20

4.3.6 Receiving the Schedule 20

4.4 Data Phase . 21

4.4.1 Handling Data . 22

4.5 Handling Trouble . 23

4.5.1 Missing PADV . 23

4.5.2 Missing PSEL . 24

4.5.3 PSEL Collision . 24

4.5.4 Sending Permission Denied by Schedule 24

4.5.5 Missed Schedule . 25

4.5.6 Missing Data and Missing Beacon 25

4.5.7 Synchronization . 26

V. PERFORMANCE EVALUATION . 27

5.1 Data Phase . 27

5.1.1 Experimental Overview 27

5.1.2 Testing Scenario . 28

5.1.3 PDR . 29

5.1.4 Latency . 30

5.2 Scheduling Phase . 32

5.2.1 Experimental Overview 32

vii

5.2.2 Testing Scenario . 33

5.2.3 Results . 34

VI. CONCLUSION AND FUTURE WORK 36

6.1 Conclusion . 36

6.2 MLA Evaluation . 37

6.3 Future Work . 38

BIBLIOGRAPHY . 40

APPENDICES . 43

A. Slot Event Handler . 44

B. BigSlot End . 51

C. Send Broadcast Message . 56

D. Receive Message . 58

E. Lower Level Code . 65

F. Data Handling Functions . 68

viii

LIST OF FIGURES

Figure Page

1 Tmote Sky iv Mote Device http://www.sic.rma.ac.be/Projects/

WSN/tmote_sky.jpg . 6

2 Timing of scheduling phase operation. 16

3 MOSS parent selection scenario. 19

4 Data Phase Operation for The Nodes in the Given Tree. 21

5 Timing of scheduling and data phase operations. 22

6 The measured PDR of data phase transmission. 29

7 The measured packet latency of data phase transmissions. 31

8 Experimental setup for scheduling phase experiments. 33

9 The measured success rate of parent acquisition. 34

ix

http://www.sic.rma.ac.be/Projects/WSN/tmote_sky.jpg
http://www.sic.rma.ac.be/Projects/WSN/tmote_sky.jpg

CHAPTER I

INTRODUCTION

This thesis will evaluate the Many-to-One-Sensor-to-Sink (MOSS) protocol for

wireless sensor networks proposed in [1]. Both the theory behind the protocol as well

as a description of a physical implementation of the protocol will be presented here.

The MOSS protocol is a MAC layer network protocol designed for Wireless Sensor

Networks (WSN) with the goal of providing a robust, low energy method for data

propagation from a sensor to a sink node.

Wireless sensor networks are an ever-growing area of network technology, which

unlike regular networks are very dependent on their energy efficiency in addition to

the normal requirements for networks such as reliability. For old fashioned PC based

wireless networks technologies such as Carrier Sense Multiple Access (CSMA) provide

reliable network performance, but these protocols are expensive when it comes to en-

ergy consumption reducing their desirability in WSNs. The Time Division Multiple

Access (TDMA) protocol provides a much more energy reliable approach for WSNs

but this reliability comes at the cost of flexibility.

In high traffic situations CSMA can lead to highly congested networks due to

1

collisions [8, 9, 10, 11]. CSMA also loses efficiency since any time spent using CSMA

is time that the radio is on but is not relaying any useful information. TDMA presents

a different approach for WSNs which alleviates these shortcomings of CSMA based

protocols [8, 12, 13, 14, 15, 16, 17]. In TDMA each node is assigned a given time

slot where it has exclusive rights to the medium; by having exclusive rights to the

medium, nodes do not need to use technology such as CSMA and may instead freely

transmit without fear of collision at their assigned time [18]. This also allows for con-

sistent energy consumption regardless of the amount of traffic in the network since

nodes know when they must transmit and do not need to spend time confirming this

fact. In spite of these performance improvements over CSMA, TDMA is not widely

used because of several factors including the high cost of generating a usable schedule

for a given network and its inflexibility to change [1].

MOSS is presented here as an improvement to the TDMA concept which main-

tains the energy efficiency and reliability of TDMA but makes it more flexible and

therefore more useful in real world environments. One key difference between MOSS

and other attempts to improve upon TDMA is that other protocols such as SS-

TDMA/Z-MAC [14] use a TDMA based schedule for data transmission, but still rely

on technologies such as CSMA for scheduling, MOSS uses a TDMA based schedule

for all operations within the protocol. SS-TDMA’s use of CSMA allows it great op-

portunity to provide improved performance in low traffic environments but comes

at a a high cost in the area of power consumption. By sticking to a predetermined

schedule for all data transmissions MOSS has a guaranteed duty cycle which allows

maximum power saving potential.

The rest of this thesis is organized as follows. Sections II gives an overview

of other MAC protocols for wireless sensor networks. Section III looks at the MOSS

protocol, while section IV examines the physical implementation of MOSS and the

2

foundation it is built upon. The experimental results are examined in section V.

Section VI closes this thesis by evaluating the conclusions derived from this work and

presenting a direction of future study for this project.

3

CHAPTER II

RELATED WORKS

2.1 Wireless Sensor Networks

Wireless Sensor Networks are an ever growing technology in both the Research

and Industrial communities. As technology advances the amount of processing power

available and size required for such power is increasing and shrinking respectively.

While a simple computer once took up an entire room equivalent processing power

can now be held in the palm of your hand. This allows for hundreds or thousands

of devices to be placed in an environment which can then be studied in much more

detail than was once possible, and all of this can be done relatively cheaply compared

to the past.

For such a setting processing power is not a major concern as currently available

technology provides phones with more processing power than the computers of a

decade ago. However, in such an environment the major limiting factor is power

consumption as a device should be left unattended for months or perhaps years on

end with only a simple battery to sustain it. To this end MAC protocols for WSNs

4

often strive to maximize power efficiency.

2.2 TinyOS

The MOSS implementation is built on top of the TinyOS operating system

developed at the University of California at Berkley. TinyOS is a ubiquitous event

driven model for developing wireless sensor networks. To meet the requirements of a

wireless sensor network system TinyOS provides both a modular design as well as an

architecture that can deal with concurrency intensive applications[3]. Programming

in TinyOS is developed in the nesC [4] programming language. Nesc has syntax sim-

ilar to the C language and acts as an interface to the standard C language.

When TinyOS code is compiled the nesC code is translated into C instructions

which are then compiled by a cross compiling GCC (GNU Compiler Collection) [22].

TinyOS allows designers to access low level hardware functionality if required, but in

general gives higher level access to the user allowing for a more abstracted program-

ming model. The MLA framework described in more detail later provides for further

abstractions allowing code to be written which will work on any hardware device that

has implemented the framework allowing for portable code to be written for mote

devices.

2.3 Mote

The hardware used to implement the MOSS protocol was a combination of

TMote Sky iv and Crosswbow motes. Both of these devices are members of the

TelosB family of wireless sensors[20, 21]. The motes contain 10KB of RAM and 48KB

of program memory. The micro controller on the device is a TI MSP430 and consumes

3mW of power during the active state and 15uW when asleep, with a wakeup time of

5

Figure 1: Tmote Sky iv Mote Device http://www.sic.rma.ac.be/Projects/WSN/

tmote_sky.jpg

6us. The radio on the devices is a CC2420 with a 250kbps data rate using O-QPSK

modulation. The antenna used on the mote is an integrated Inverted-F microstrip

design providing 50 meter indoor range and upwards of 125 meter outdoor range [20].

Communication with the PC for programming and outputting data is accomplished

through a USB port on the mote device.

The CC2420 radio can be configured for various power levels. A higher power

level reduces energy efficiency but extends transmission range. At its highest level the

radio has a 17.4mA current consumption and outputs at 0dB. At the lowest power

setting the current consumption is 8.5mA with a power output of -25dB [19].

The Telos architecture was developed at The University of California at Berkley.

The CC2420 radio provides transmission in the 2.4GHz range and generates RSSI (Re-

ceived Signal Strength Indicator) [20] values which are used in the MOSS protocol to

choose from potential parents.

6

http://www.sic.rma.ac.be/Projects/WSN/tmote_sky.jpg
http://www.sic.rma.ac.be/Projects/WSN/tmote_sky.jpg

2.4 Previous WSN MAC Protocols

2.4.1 S-MAC

Striving to save power in wireless sensor networks is not a new concept and

many protocols have been proposed which aim to reduce power consumption and

increase the lifetime of a wireless sensor node. Among these protocols is the Sensor-

MAC (S-MAC) protocol proposed by Ye et. al. in [2]. In S-MAC when in an idle

state motes will use a predefined duty cycle and sense the medium during their active

state. Nodes attempt to schedule their sleep period with their neighbors so that they

are awake at the same time, however, the protocol does not guarantee that nodes

will use matching schedules. Nodes then transmit their schedule to their neighbors

so that a node who wishes to transmit to a given node knows when that node will be

awake.

If a node finds that one of its neighbor’s schedule is different than it’s own it

alters its schedule so that it is awake for both time periods. While S-MAC nodes

reduce their needed duty cycle by knowing a specific range of time that transmissions

may be sent or received it still relies on carrier sensing to avoid collisions during

its contention period. In high traffic situations when many nodes attempt to send

to a given node the overhead of sensing the medium further reduces the limited

transmission time during the nodes active period.

2.4.2 B-MAC

The default MAC protocol in TinyOS is B-MAC [6]. B-MAC achieves a reduc-

tion in power by allowing the radio to sleep for long periods of time while ensuring

that all nodes wakeup once within a specified period of time. Transmitting nodes

then send a preamble that is slightly longer than this period of time, this ensures

7

that the receiving node will wakeup during the transmission period and sense the

medium, discovering that someone wishes to transmit to it.

In order to attempt to reduce collisions CSMA is used to deter two nodes from

both attempting to transmit data at the same time. The protocol allows for substan-

tial power savings for the receiving node as it can go to sleep for long periods of time

without fearing the loss of a packet. However this presents two major drawbacks.

From a performance standpoint this is an inefficient approach as during the trans-

mission of the long preamble no data is being sent. From a power saving standpoint

although it saves energy for receivers by allowing lower duty cycles it consumes more

power for transmitters as a node must transmit data for the duration of the preamble

which may actually be much longer than the transmission time for the actual data

which the node wishes to send.

B-MAC also reduces power efficiency by requiring a node that overhears the

long preamble to remain in the on state until the preamble is finished and the data

packet which indicates the intended receiver is sent meaning a node that hears the

preamble may stay awake for a large portion of that preamble only to learn that

there is no information intended for it and no reason for it to have been awake for

all that time. In addition to this this the use of CSMA presents further delays and

inefficiencies as the back off time and CSMA transmission attempt both represent

time spent in an on state while not transmitting any useful information [1].

2.4.3 X-MAC

The X-MAC protocol introduced by [5] represents an improvement on B-MAC

by inserting the intended receiver’s identity in the preamble and then allowing nodes

who hear the preamble to see if they are the intended receiver and if they are not,

then they are permitted to return to a low power state. The node that is the intended

8

receiver then transmits an acknowledgment to the transmitting node allowing that

node to then stop sending its preamble and instead start the transmission of the

actual data. While this presents a major improvement over the original B-MAC

design it still can force a node to transmit for extended periods of time without

actually transmitting anything of use if the intended receiver doesn’t wake up until

near the end of the preamble. In addition its use of CSMA may force a node who has

something to send to idle in an active power state while it waits for its turn to send

data.

2.4.4 TDMA

A key advantage of the TDMA protocol is the fact that its transmissions op-

erate in a completely predictable way, sticking to its established schedule. While

this does present limited flexibility in a wireless sensor network predictability can

be a major asset. In an environment where a device needs to operate on a single

battery over the course of several years using a protocol with a predictable nature

allows engineers to plan the project with more confidence that the devices will be

able to fulfill their requirements. While the transmission portion of TDMA allows for

superior power consumption it fails to take advantage of this on the receiving end as

it must use methods such as low power listening for the reception of messages since

it does not know when it will receive a message. MOSS addresses this concern by

retaining knowledge of when it could possibly receive a message allowing the radio to

be shut down completely when it will be certain it will not receive a message. This

will be discussed in further detail later in this thesis.

9

2.4.5 SS-TDMA

The MLA paper [7] presents a hybrid protocol similar to Z-MAC [14] called

SS-TDMA. This protocol works to improve TDMA performance by allowing a node to

attempt to send in a slot it doesn’t own if it has a message to send and the owner of the

slot is idle. This is detected by having the slot owner begin transmitting immediately

in its own slot if it has something to send, other nodes wait for a small period of time

in order to check if owner has begun transmission. This protocol improves on the

throughput of TDMA by allowing nodes to transmit early rather than waiting for its

assigned time, however this comes at the cost of energy efficiency since nodes must

remain awake to both check if it is able to steal a slot as well as parent nodes must

remain awake at all times to see if one of its children is attempting to send.

10

CHAPTER III

MOSS Protocol

The MOSS protocol is a TDMA based protocol with data transmission occur-

ring in much the same manner as TDMA. MOSS splits time into several units, the

smallest of which is a slot which is equivalent to a slot in TDMA. A grouping of slots

are called a bigslot, the number of slots in a bigslot varies by implementation. A

frame is a group of three bigslots.

In TDMA collisions are avoided by dividing time into uniform slot times and

having nodes only transmit in a slot that it owns. Since nodes only transmit in prede-

termined intervals there is no need for collision detection and avoidance mechanisms

such as CSMA. One of the key disadvantages of TDMA is the limited flexibility of

a predetermined schedule as well as the inability to take advantage of opportuni-

ties to turn the radio off since a parent has no knowledge of when it may receive a

message. MOSS addresses both of these concerns by periodically generating a new

schedule as well as retaining child transmission schedules in order to take advantage

of unscheduled time and turn off the radio, reducing radio duty cycle and saving

energy.

11

3.1 Scheduling Phase

While the data phase of MOSS is very similar to TDMA, MOSS uses a novel

approach to generating its schedule. When a node first joins the network it listens

for a parent advertisement packet (PADV), once it receives this packet it begins full

participation in the network. Upon receiving a PADV packet a node checks the (RSSI)

value of the received packet as well as the ID of the sender, and the number of hops

between the sender and the sink. If the packet is the first PADV received by the node

or if the hop count is less than its current parent the node marks the sender as its

new parent. If the hop count is equal to its current parent the node then compares

the RSSI of packet to the RSSI of the PADV it received from its current parent, if the

new packet is stronger the node marks the sender as its new parent. When a node

selects a new parent it randomly selects a slot which it wishes to transmit in, while its

bigslot is determined by its hop count from the sink. If a node is not in the scheduling

phase it will set itself to the scheduling phase upon receiving a PADV from its parent

or from a node that it will consider its parent from that point on. The PADV is

considered to be received in the first bigslot of a frame. In the second bigslot of the

frame a node sends a PSEL packet to its chosen parent, the slot is chosen randomly

for a new parent and if the parent remains the same as it was at the end of the last

data phase the same slot is chosen. In the third bigslot of the frame a node receives a

schedule from its chosen parent, it then checks the index of the schedule with a value

equal to the slot it chose, if it finds its node ID in this location then it considers itself

to have permission to send.

Regardless of the result of the schedule check a node will take the same actions

in the rest of the scheduling phase, it will not however attempt to send during the

data phase. At the beginning of the next frame (first bigslot) during the node’s slot

it transmits its own PADV message. In the following bigslot the node receives PSEL

12

messages from its potential children. When it receives one of these PSEL messages the

node marks the sender’s ID in an array it stores as its schedule. In the third bigslot of

the frame it then transmits a schedule packet with the contents of its schedule array.

The node then sleeps for one full frame so that it won’t interfere with its children’s

scheduling process. After this rest period the data phase begins for the given node.

3.2 Data Phase

When the data phase begins a node is permitted to transmit data in its bigslot

during its slot, if it has no data to send it may also transmit synchronization beacons

during this time. During the data phase a node will sleep for slots in which it has no

scheduled activity, the node wakes up in order to transmit data, as well as during it’s

children’s transmission slots so that it may hear data from them. During its parent’s

bigslot a node may sleep for the entire bigslot. A node begins the wakeup process

during the slot before its slot or its children’s slot and sleeps when it has finished

sending or upon receiving a packet from its child. At the end of the data phase a

node again goes to sleep for one frame in order to not interfere with its parent’s

scheduling phase.

13

CHAPTER IV

DESIGN AND IMPLEMENTATION

4.1 MLA

4.1.1 MLA Introduction

The Mac Layer Architecture (MLA) was developed by Kevin Klues, et al as

a common building block for developing and comparing MAC layer implementations

for TinyOS [7]. Their work abstracts many of the lower level details of developing a

MAC protocol allowing developers to concentrate on the high level operations of their

chosen protocol. By using the MLA platform developers do not have to worry about

scrutiny into whether they gave their protocol an unfair advantage in the low level

operations of the mote, such as using unique radio functionality for their protocol, but

not for others. This allows for a fair comparison of the protocols. The MLA format

also helps speed up development as once the MLA architecture has been ported to

use a given mote architecture then all developers may implement their protocol on

that architecture without needing to learn the inner workings of the new mote.

14

4.1.2 Why MLA

The MLA platform was chosen for development because it provided a frame-

work for the necessary underlying features of the MOSS protocol. It also provides

several sample implementations that both assisted in developing MOSS and provide a

proven, reliable, and fair implementation of other protocols to compare with MOSS.

Although the scheduling for MOSS is heavily customized one of the key features MLA

provides are controls for node timing, including the ability to use a slot based sched-

ule. By using MLA the implementation has better protection against future changes

to TinyOS than if the code was written directly to a certain version of TinyOS. As

long as the MLA format is maintained MAC layer code has a stable set of interfaces

to build to, and any changes in the underlying functionality of TinyOS is abstracted

from the protocol implementation code.

In the remainder of this section the MOSS implementation will be described.

Deviations from the proposed protocol including optimizations, as well as workarounds

that are required due to the MLA framework. The MOSS protocol was implemented

by modifying the pure-tdma implementation provided in the TinyOS contrib folder.

This code was originally written by the research group of Chenyang Lu for their

MLA paper [7]. This particular implementation was chosen because MOSS is an

enhancement of the TDMA protocol and as such by choosing to modify a TDMA

implementation a lot of the groundwork was already laid. Within the pure-tdma

implementation two files required heavy modification in order to implement MOSS.

Of these files, the one that required the most modification was PureTdmaSched-

ulerP.nc in the lib/macs/pure-tdma folder while the file BeaconSlotP.nc in the system

folder also required significant changes. PureTdmaSchedulerP.nc contained the basic

scheduling controls for the TDMA protocol. As released a node simply transmits in

the slot associated with its ID (node one in slot one, node two in slot two and so on).

15

Figure 2: Timing of scheduling phase operation.

4.2 Initialization

The most basic unit of operation in MOSS is the slot, upon starting a mote

must set the parameters of operation for its slot and bigslot. The length of any

given slot is determined by setting the slotSize variable to the desired length (in mil-

liseconds), this value is then passed to the FrameConfiguration interface by calling

FrameConfiguration.setSlotLength. The bigslot size is set by setting the bi vari-

able, the value given is the number of slots per bigslot. This information is then

passed along to FrameConfiguration.setFrameLength. The majority of code written

for MOSS is held within the slot event of the Slotter interface, an interface which is

provided by MLA. This event is signaled at the beginning of each slot.

Upon powering up the sink node transmits a PADV beacon message as a

broadcast message in order to initiate construction of the tree. Since all transmissions

are to a single sink node and this node is likely to have a reliable source of energy the

sink node does not need to consider the case where the network is already active when

it powers on and can begin operation immediately. When non-sink nodes power up

they remain in the active state listening for a PADV signal from a potential parent

16

before beginning operation according to the MOSS protocol. The generation and

processing of the PADV packet is described below.

4.3 Scheduling Phase

4.3.1 Send PADV

In the slot event when the scheduling phase is active and both the frame count

and bigslot are set to one a PADV packet is generated and sent when the node’s

transmission slot starts. The PADV packet contains the hop count of the node as

well as synchronization information. This information consists of the current slot, and

current bigslot, as well as a time stamp. The time stamp is added in the BeaconSlotP

file while everything else is set within slot.

4.3.2 Receive PADV

When a node receives a PADV message it checks the RSSI value of the incom-

ing packet. The node then checks the hop count of the incoming PADV, as well as

the source address. If the incoming packet has a lower hop count than its previous

parent and the source address is not considered to be an excluded address (based on

poor performance with this parent in the past) its parent is updated to the new src,

as well as a new random slot is chosen by calling the function updateParent which is

passed a pointer to the payload, the source address and the RSSI value. The RSSI

and src values are then stored for future reference while the payload is used to set

the proper bigslot for future transmissions by using the hop count information. The

hop count is stored along with the slot that the parent transmitted in, this is used so

that a child may wake up for future parental transmissions. The src address and hop

count are also checked against the previous value, if the new parent is of the same

17

generation as the former parent and the parent has switched then the former parent

is stored as a potential backup in case the new parent becomes inaccessible before

the next scheduling phase.

A signal is then sent to the lower layer indicating the new parent, this informa-

tion is used solely for determining weather or not an incoming packet should be used

for synchronization. The inclusion of backup parent information was used because

of issues with the MLA framework. Within the MLA TDMA implementation clock

drift was a considerable problem with nodes often quickly beginning to disagree over

the current slot causing collisions when two or more nodes would think it was their

turn to send. In order to alleviate this problem additional synchronization was used

(described later) and child nodes may also detect if they can no longer hear from

their parent, and switch to their step parent.

If the incoming PADV message is neither an excluded address nor the current

parent, is of the same generation as the former parent, and has a stronger RSSI than

the current parent then once again the parent information is updated via updatePar-

ent. The PADV indicates a new backup parent when the incoming packet is from

neither the current parent, and excluded address, nor the current backup parent, but

has stronger RSSI than the current backup parent and is of the same generation as

the current parent. This is set using the setBackup function, which simply stores the

information of the new backup. If the source is the current parent, and the parent

is not an excluded address the value of the currently selected transmission slot is

checked, if the most significant bit of the slot value is set to one, this indicates a

previously denied transmission attempt and a new slot is randomly selected.

18

Figure 3: MOSS parent selection scenario.

4.3.3 Send PSEL

During the first frame of the second bigslot a node transmits its parent select

message. While this message is intended for a single recipient, the transmission is

sent as a broadcast. The message is broadcast to all receivers for two purposes, both

relating to the problems with MLA discussed in the previous section. The primary

reason reason for the PSEL packet being sent as a broadcast is so that any of the

nodes currently treating the subject node as a parent can use the broadcast message

in order to synchronize, the second being so that a backup parent can be alerted to

the potential future child. The transmission of this PSEL message is sent in a slot

determined by the selection of a random number whenever a node detects that its

parent has changed, while the bigslot is determined by its hop count from the sink.

In order to determine which parent a node is attempting to select the PSEL message

contains the intended parent ID.

19

4.3.4 Receive PSEL

Upon reception of a PSEL packet the intended destination address is checked

against the current node’s ID, if the message was intended for the given node the

source address is stored in the local schedule. However if the PSEL message was

intended for another recipient but has its hop count set as one greater than the

current node, and if the current slot of the schedule is free then the current schedule

value is set to be the source with the most significant bit set to one. This indicates

that the slot is occupied by a node which may wish to transmit to the given node in

the future if the foreign node’s parent becomes inaccessible (a potential stepchild).

However, the node does not wish to transmit presently indicating it is safe for the

current node to normally sleep during this slot and would only need to be active to

check for parental switches.

4.3.5 Sending the Schedule

When the current bigslot is three and the current slot is a node’s transmission

slot it sends a broadcast message that contains the current slot, and time stamp value,

as well as its current transmission schedule. The schedule is created by receiving

PSEL messages and is stored within the payload of a singular schedule packet that is

reused for each scheduling phase. This payload also includes space for the value of the

current slot that a node is transmitting its schedule in which is used in conjunction

with the time stamp for synchronization.

4.3.6 Receiving the Schedule

Upon receiving a schedule message a node checks the source address of the

schedule. If the message originates from the node’s parent it sets a flag indicating

that it has received a schedule and checks the index of its chosen transmission slot, if

20

Figure 4: Data Phase Operation for The Nodes in the Given Tree.

the value matches its own ID then the node is considered to have permission to send

in the slot. If the sender was the selected backup parent the value in the desired slot

is also checked, if permission is granted the backup parent is confirmed, however if it

is denied the backup parent value is invalidated.

4.4 Data Phase

Once the schedule has been set MOSS works much in the same manner as

vanilla TDMA. In order to ensure that its messages do not collide with its siblings’

messages a node transmits only during its designated time period. Although not called

21

Figure 5: Timing of scheduling and data phase operations.

for in the original MOSS protocol one potential improvement that was implemented

is the possibility for a node to detect a broken link between itself and its parent.

In this case the orphaned node would attempt to resume transmissions with its step

parent. To improve end to end latency the Big Slots are structured such that when

a child transmits to its parent the parent node will transmit to its own parent in the

following Big Slot.

4.4.1 Handling Data

Upon receiving a packet the type is checked, if the packet is of type DATA the

source address is checked. If the packet originates from a node’s parent then a flag

is set indicating the reception of a beacon that was used to synchronize the node at

the lower level, a counter that keeps track of the number of missed beacons is also

22

reset. The intended recipient value is then checked, if the message was intended for

the the given an ifdef statement separates the actions of the sink from all other motes.

The sink calls SinkHandleData while all other nodes call storeCombineData. Both

functions are passed the start of the data in the payload as well as the length of the

data portion. The implementation of these functions should vary by the application

of the sensor network. The purpose of the storeCombineData function is to locally

store the data in convenient format for combining other data packets for delivery up

the tree, such as keeping a total value of a numerator and denominator so that the

sink can calculate an average value. SinkHandleData is intended to be a place where

the user can specify how the sink should interact with data that it receives, such as

printing values to a connected PC, or passing the values to a PC for more complex

data analysis/calculations. For the sink the Application level is then signaled about

the reception of the packet. For the purposes of synchronization a node may transmit

a synchronizing beacon in place of a data packet if it has nothing to send, this is done

whenever a node has nothing to transmit due to synchronization problems in MLA,

for a more reliable operating environment idle synchronization can occur at longer

intervals, or may not be needed at all. If a node receives such a packet it notes the

fact that it received a beacon and resets the missed beacon counter.

4.5 Handling Trouble

4.5.1 Missing PADV

A missed PADV message simply results in a node losing out on a potential

parent. If no PADVs are received for a node it will continue to try use its previous

parent.

23

4.5.2 Missing PSEL

If a PSEL message is lost the parent is unaffected aside from the loss of a

potential child. The sending node deals with this error when it fails to receive per-

mission to send from the schedule of the parent it selected. For the sending node

this error is indistinguishable from the case of being denied permission to send upon

receiving the schedule and is handled there.

4.5.3 PSEL Collision

If two nodes successfully transmit a PSEL in the same slot then the second

PSEL to be received will be recorded in the schedule. Child nodes will see the effects

of this error when they are possibly denied permission to send upon receiving the

schedule.

4.5.4 Sending Permission Denied by Schedule

If the node finds that the value stored in its intended transmission slot when

it receives its parent’s schedule is different than its ID the most significant bit of

its chosen transmission slot is set. This indicates that it was denied permission to

send data but can still transmit its PADV in this slot. A counter (denyCount) is

also incremented, if the new counter value is greater than a preset value (EXCLU-

SION THRESHOLD) the node marks its parent as an excluded parent and then

resets the RSSI value, hop count and parent ID to default values so that a new par-

ent may be chosen. This is done so that a parent which has a strong but intermittent

signal can be passed over in favor of a weaker but more reliable link. If the incoming

schedule is from a node that has been selected as a backup parent the index associ-

ated with the selected transmission slot is checked, if the node finds its ID it sets the

backup parent slot to be equal to that slot, if it does not find its ID it invalidates

24

its backup parent ID and backup parent RSSI, there is no exclusion checking for a

backup parent.

If a scheduling phase passes without a node receiving a schedule transmission

slot value has the most significant bit set, the hop count, parent ID and parent RSSI

values are invalidated, and the denyCount value is also incremented and the exclusion

threshold is checked and if exceeded the parent is marked for exclusion.

4.5.5 Missed Schedule

If a node finishes the scheduling phase without receiving a schedule it invali-

dates its parent, hop count and parent RSSI. It also sets the most significant bit of its

transmission slot and increments the denyCount variable, if the exclusion threshold

is exceeded it also marks its former parent as an excluded address.

4.5.6 Missing Data and Missing Beacon

When a new frame begins within the data phase the beacon flag is checked and

if no beacon was received the missed beacon counter is incremented, if the number of

consecutive missed beacons exceeds a preset threshold (BEACON EXCLUSION THRESHOLD)

and a backup parent is available the the node will signal the lower layer that it is

switching parents, it also locally sets its backup parent as its active parent. Nodes

wakeup during the transmission slots of their potential stepchildren in a certain in-

terval determined by the defined value SWITCH CHECK RATE which indicates a

number of frames between wakeups. During this period if a child wishes to switch

parents it sends a PSWITCH packet to its new parent, this packet contains the node

ID of the new parent. After sending the PSWITCH packet a node then invalidates

its backup parent value. A node knows it wishes to switch parents when its backup

parent and active parent have the same value.

25

When a node receives a PSWITCH packet it checks if the packet was intended

for itself. If it was the intended receiver it checks its schedule to see if the node has

permission to send, if the index of the schedule for the slot the packet was received

in contains the address of the sender (with the most significant bit set to one) then

the child is adopted, and the most significant bit is cleared in the schedule. If the

original parent hears the PSWITCH packet of its child then it clears the slot in its

schedule so it can go to sleep during that slot.

4.5.7 Synchronization

In addition to the standard operation exceptions given above, during the course

of the implementation extra handling of node synchronization was found to be neces-

sary due to problems with the MLA framework. In the physical MOSS implementa-

tion synchronization occurs for all transmissions when a node hears a message from

its parent. The MOSS protocol only calls for synchronization when receiving a PADV

packet from a node that is chosen as a parent. This synchronization is handled in

the BeaconSlotP file. In the receive function the node ID of the incoming packet is

checked against the currently known value, if it is a match, or if the current parent

is listed as 0xFF (indicating that no parent has been selected yet) the packet is con-

sidered to be a synchronizing packet. The packet is then checked for the time stamp

and slot number stored in the payload. When a packet is sent out from this interface

the time stamp information is added, however if the pointer to the packet passed to

the send command is null then no message is sent, instead the the parent ID is set to

be equal to the value stored in the length parameter of the call, this is a workaround

to allow the upper layer to signal to the lower layer who its parent should be without

changing the connections between layers for MLA.

26

CHAPTER V

PERFORMANCE EVALUATION

Two sets of experiments were run in order to evaluate the MOSS protocol, one

set of experiments demonstrating the scheduling phase, and another comparing the

data phase performance of MOSS as well as other MAC layer protocols utilizing the

MLA framework. Since the MLA based implementations of the other protocols are

designed without a routing protocol, only single hop experimental data is shown. The

experimental setups as well as results are discussed below.

5.1 Data Phase

5.1.1 Experimental Overview

To test the performance of the MOSS data phase, experiments were run with

the MOSS implementation as well as implementations of B-MAC, and SS-TDMA that

were provided with the MLA framework code. The MLA implementation of B-MAC

is actually a hybrid B-MAC/X-MAC protocol. The MLA B-MAC implementation

includes the ability of nodes to go to sleep for traffic not destined for them by including

27

destination address information in the preamble. The B-MAC implementation also

uses repeating copies of the data packet in place of true preamble transmission. The

B-MAC experiments were run twice, once with a CCA Check-length of 5ms and again

with a CCA Check-length of 2ms. The CCA Check-length is the amount of time a

node stays awake when performing Clear Channel Assessment for CSMA. The MLA

paper states that a 8ms check is required for maximum reception while their code

uses a 2ms check. With a shorter check-length a mote can find the medium to be

clear when in actually a node is transmitting causing a collision.

5.1.2 Testing Scenario

The testing scenario consisted of twelve TelosB motes. Each experiment in-

cluded a sink mote, an event mote, and between one and 10 transmission motes. The

event mote acted as a driver event rather than a transmission node that was part of

the network. The event mote transmitted packets periodically based off of a sequence

of pseudo-random numbers. Upon receiving an event packet the data motes would

wait for two seconds and then attempt to send a packet to the sink. This delay was

introduced due to the fact that in a real environment the event would be sensor based,

meaning the radio would likely be in an idle state whenever a packet was to be sent.

However, since the event node is a radio transmission the radio in the experiments,

because of this if motes transmitted directly after witnessing the event they would

already be in an active state. The two second delay is sufficient time for the radio

to return to the idle state. The sink node received all data packets and recorded

performance metrics. To ensure event packets weren’t missed by the transmitting

nodes every node was kept in the active state until the event packet was received, at

which point the radio would be turned on or off based on the protocol being used.

Each node was elevated about fifteen centimeters from a table surface in order

28

Figure 6: The measured PDR of data phase transmission.

to reduce near field effects[6]. The sink node was placed in the center of the table

while data transmission motes formed a circle around the sink. Each data transmis-

sion consisted of a single packet with a sixty byte payload. Packet retransmission

was not used in any of the experiments, whenever a packet was missed by the sink it

was considered to be lost. Each experiment was run forty times, and the performance

measurements are given as the average result of all of the runs.

5.1.3 PDR

For each protocol the Packet Delivery Ratio (PDR) was recorded by measuring

the number of packets received for a given event compared to the number of trans-

mitter nodes. As can be seen from the graph the PDR of MOSS is nearly 100%

29

with only a few lost packets that are likely caused by clock drift causing the sink

node to go to sleep when a data node is transmitting. SS-TDMA suffers under high

traffic due to the slot stealing mechanism, which allows a node to reduce its latency

but by introducing possible collisions reduces PDR. The B-MAC protocol has vastly

different performance based on the check-length, while a 5ms check greatly increases

reception rates, it is also less energy efficient. The B-MAC PDR is also harmed by

MLA’s implementation of packet reception in B-MAC packets. In the MLA B-MAC

implementation, packets are only passed up to the higher layer when the medium is

IDLE or when sending data itself, otherwise the received packet is held in a queue,

however the queue size is only one, meaning if two packets are received back to back,

the second packet is dropped.

5.1.4 Latency

Latency, measured as the time between the event and the last received packet

(subtracting the delay time) is given in the graph above. For low numbers of sending

nodes MOSS has higher latency than the other protocols because it must adhere to

its schedule and if an event comes immediately after its transmitting slot the sender

must wait for its turn to arrive again, while the other nodes can attempt to send when

it finds the medium idle. For higher numbers of nodes however, MOSS compares fa-

vorably to the other protocols because it is able to send without question in its own

slot, while B-MAC has to compete for the medium and back off whenever it loses to

a competing node. SS-TDMA shows low latency due to its ability to compete when

the medium is free but falls back to its guaranteed slot similar to MOSS. Although

SS-TDMA shows a lower latency than MOSS it also has a much higher rate of lost

packets as described in the previous section.

The results for B-MAC are of particular interest as they show some of the

30

Figure 7: The measured packet latency of data phase transmissions.

31

flaws of the MLA framework, with the B-MAC protocol the absolute minimum la-

tency achievable for a single node should be 100ms+packet transmission time (100ms

is the preamble length), for two nodes this time should be doubled. However, the

experimental results show much better than expected latency. The cause of this

is primarily from two factors, one factor is the above-mentioned CCA check-length

problem, a node will begin transmitting when the protocol calls for it to wait. The

other cause is that the MLA implementation uses copies of the data packet as the

preamble and does not differentiate between a true data packet and a preamble packet

in the code, meaning what should be considered as a preamble is actually treated as

a received packet in the code, causing much lower latency than what is expected.

Although inconsistencies with the MLA framework result in values that don’t

seem feasible, the effects of these flaws are split between both negative and positives

side effects. In addition to this the general trend of the results are in line with what is

expected. The result trends show that in low traffic situations the contention based

protocols show better performance than MOSS due to the generally free medium,

while under high loads the overhead of CSMA severely degrades performance of con-

tention based protocols while MOSS performs at a level consistent with its low traffic

performance.

5.2 Scheduling Phase

5.2.1 Experimental Overview

Due to time and resource constraints setting up a true tree network to measure

the performance of the protocol over time was not a practical approach, instead in

addition to the measured data phase measures the viability of the MOSS scheduling

mechanism was shown in a separate set of experiments. The experiments were setup to

32

Figure 8: Experimental setup for scheduling phase experiments.

repeatedly run the scheduling phase of the MOSS algorithm and record the frequency

at which motes were successfully able to achieve transmission permission from a

possible parent.

5.2.2 Testing Scenario

To measure the performance of the scheduling phase six motes were arranged

in a circle around two potential parents. This is not an ideal testing scenario since

a true tree is not formed, however, setting up a realistic tree based network within

space and time constraints proved to be infeasible.

When the parents sent PADV packets to the children, the children attempted

to acquire a parent according to the MOSS Protocol. The parent nodes would then

33

Figure 9: The measured success rate of parent acquisition.

record which children they had granted permission to transmit to. This information

was then transmitted to a PC via the USB port. The total successful parent ac-

quisitions were then recorded along with the total opportunities to acquire a parent.

Results were measured for networks with eight, ten, twelve, and sixteen available slots

for the 6 transmitting nodes. Each experiment was run for ten scheduling phases and

then repeated five times providing fifty scheduling phases per network setup.

5.2.3 Results

The above graph displays the mean, median, and mode of the the combined

experimental data. The experiments show that for a network starved for slots nodes

will struggle to find acceptable parents, but given enough room the likelihood of

finding a parent increases considerably. The drop-off from a ten node network to a

34

twelve node network can likely be explained with the probability that the random

numbers used by some of the nodes result in the same slots being chosen more often,

as the same two motes show the drop in performance for all of the twelve node

experiments.

35

CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Conclusion

The experimental results show that a TDMA based transmission schedule like

the one used in TDMA provides consistent and reliable performance at a low energy

cost when compared to B-MAC and SS-TDMA, especially for high traffic loads. The

physical MOSS implementation fails to take advantage of all of the power saving

potential of MOSS due to the need to wake up for synchronization messages. It should

be noted however, that this flaw is necessitated by the framework the implementation

was built upon rather than an inherent flaw in the design of the MOSS protocol.

During the course of development for the MOSS implementation in addition to

the performance related issues with MLA the design of the framework also presented

its own limitations. A more detailed listing of the shortfalls of the MLA framework

in addition to the already discussed design issues are given in the following section.

36

6.2 MLA Evaluation

Although the MLA framework is an improvement over writing a MAC pro-

tocol from scratch, since several of the components used for developing MOSS are

tightly tied to the MLA implementation of TDMA some inefficient design decisions

were made in order to prevent needing to write most of the code from scratch. If

the MLA framework had been designed as an extension to TinyOS rather than as a

set of premade code, development could be greatly simplified by offering some Object

Oriented Programming (OOP) principles. By providing a feature such as inheritance,

a key component of OOP design, the implementation of MOSS would have been a

much simpler task by allowing additional features such as the control over broadcast

messages on top of the already written code. Overall the framework feels more like

a set of enforced naming conventions rather than a true library that can be used to

build more complex protocols.

As mentioned in this document, in addition to the overall design issues the

MLA framework proved to not be reliable for the purpose of comparison due to how

certain protocols were implemented. In the B-MAC and X-MAC MLA implementa-

tions since the preamble was actually a copy of the data packet, a message could be

received before physically possible under strict compliance with the protocol, espe-

cially in the case of B-MAC which does not allow for early termination of the preamble

transmission. This particular flaw leads to X-MAC and B-MAC having better latency

than should be possible, while another flaw severely harmed PDR performance. While

a preamble calls for the continuous transmission of series of bits, MLA’s use of data

packet copies results in gaps between these packets which can cause the CSMA mech-

anism to report the medium is idle when a transmission is actually ongoing. The

MLA paper [7] states that a 8ms period of time is needed to continuously sense the

medium to avoid the check falling inside a transmission gap the provided code uses

37

only 2ms for checking. Originally measurements of mote duty cycle were intended to

be included in this thesis by recording the amount of time between radio start and

stop events and keeping a running total in order to calculate the duty cycle. However,

in the course of evaluating data phase performance it was found that the inclusion

of this calculation made a significant impact on PDR measurements. Because of this

the duty cycle measurements were scrapped. The original MLA paper recorded duty

cycle values, and the code from their website has hooks to get duty cycle, the actual

mechanisms that calculated this value were removed from the official release at some

point.

The MLA framework serves two primary purposes, to aid in developing MAC

layer protocols, and to provide a fair comparison between various protocols. The

framework does provide a good head start on developing a protocol by providing

basic functionality, but the questions surrounding the reliability of this foundation

undermines its abilities to serve this purpose. Of an even greater concern is that

although features such as using data packets in place of a preamble and allowing

the preamble packets to be treated as data may be a valid thing to consider when

developing an application for field use it severely undermines the ability of MLA to

form the basis for fair comparisons between protocols. A testbed framework that

shows results that are impossible under the protocol being tested, such as the latency

of B-MAC should is not an acceptable option, and as such if this project were to

be redone the MLA framework would not be used as the foundation of the MOSS

implementation.

6.3 Future Work

Over the course of the development of this project questions have been raised

about the reliability of the MLA framework, developing MOSS in a separate envi-

38

ronment would be beneficial to prove that the shortcomings of the physical imple-

mentation are caused by the framework rather than any flaw in the protocol. The

already introduced proposed modifications to the protocol should also be tested more

thoroughly in a large simulated environment. A larger test bed allowing experiments

with a true tree topology would also be of value. As stated in [1] another possible

enhancement is the inclusion of multiple and or mobile sinks in a network.

Another possible enhancement to the MOSS protocol would be an expansion

of the step parent mechanism. Since the schedule is a broadcast message which all

nodes can read all nodes know what parent slots are free. The parent could then

periodically offer up free slots to orphaned children. As with similar proposed exten-

sions there is a trade-off of gained performance against lost energy efficiency. Further

study of this trade-off could prove beneficial.

39

BIBLIOGRAPHY

[1] C. Yu, K. Shin, K. Tatapudi, and S. Kalubandi, ”Design and Anal-

ysis of Bulk Synchronous Medium Access Protocol,” MCRL (Mo-

bile Computing Research Lab.), ECE Dept., CSU, August 16, 2006.

(http://academic.csuohio.edu/yuc/bsma/BSMA tech.pdf)

[2] W. Ye, J. Heidemann, D. Estrin, An Energy-Efcient MAC Protocol for Wireless

Sensor Networks, IEEE INFOCOM 2002.

[3] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer

Pister, System architecture directions for networked sensors, in Proceedings of

the 9th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, Cambridge, MA, USA, Nov. 2000, pp. 93104,

ACM.

[4] Gay, D., Levis, P., von Behren, R., Welsh, W., Brewer, E., and Culler, D. The

nesC language: A holistic approach to network embedded systems. In Proceed-

ings of the ACM SIGPLAN 2003 Conference on Programming Language Design

and Implementation (San Diego, CA, June 911, 2003).

[5] M. Buettner, G. V. Yee, E. Anderson, and R. Han, X-MAC: a short preamble

MAC protocol for duty-cycled wireless sensor networks, in SenSys, 2006.

[6] J. Polastre, J. Hill, and D. Culler, Versatile low power media access for wireless

sensor networks, in SenSys, 2004.

[7] K. Klues, G. Hackmann, O. Chipara, and C. Lu, A component-based architecture

for power-efcient media access control in wireless sensor networks, ACM SenSys,

2007.

40

[8] C. Busch, M. Magdon-Ismail, F. Sivrikaya, and B. Yender, Contention-Free MAC

Protocols for Wireless Sensor Networks, 18th Annual Conf. on Distributed Com-

puting (DISC), LNCS, 3704, pp. 245-259, 2004.

[9] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, Energy-Efcient Com-

munication Protocol for Wireless Microsensor Networks, HICSS, 2000.

[10] A. Keshavarzian, H. Lee, and L. Venkatraman, Wakeup Scheduling in Wireless

Sensor Networks, ACM MobiHoc, 2006.

[11] M. Ringwald and K. Romer, BitMAC: A Deterministic, Collision-Free, and Ro-

bust MAC Protocol for Sensor Networks, EWSN, 2005.

[12] M. J. Miller and N. H. Vaidya, On-Demand TDMA Scheduling for Energy Con-

servation in Sensor Networks, Technical Report, June 2004.

[13] V. Rajendran, K. Obraczka, and J.J. Garcia-Luna-Aceves, Energy Efcient,

Collision-Free Medium Access Control for Wireless Sensor Networks, ACM Sen

Sys, 2003.

[14] I. Rhee, A. Warrier, M. Aia, and J. Min, Z-MAC: a Hybrid MAC for Wireless

Sensor Networks, ACM SenSys, 2005.

[15] S. Gobriel, D. Mosse, R. Cleric, TDMA-ASAP: Sensor Network TDMA Schedul-

ing with Adaptive Slot-Stealing and Parallelism, IEEE ICDCS, 2009.

[16] P. Chen, Wireless Sensor Network Metrics for Real-Time Systems, Technical

Report No. UCB/EECS-2009-75, University of California, Berkeley, 2009.

[17] H. Gong, M. Liu, L. Yu, X. Wang, An Event Driven TDMA Protocol for Wire-

less Sensor Networks, International Conference on Communications and Mobile

Computing, 2009.

41

[18] S. Ramanathan, A Unied Framework and Algorithm for (T/F/C)DMA Channel

Assignement in Wireless Networks, IEEE INFOCOM, 1997.

[19] Chipcon, 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver, 74HC4051

datasheet, June 2004.

[20] Moteiv Corporation Ultra low power IEEE 802.15.4 compliant wireless sensor

module. tmote sky datasheet, February 2006.

[21] Crossbow. TelosB Mote Platform TPR2400 datasheet.

[22] GNU Compiler Collection project. http://gcc.gnu.org/

42

APPENDICES

43

APPENDIX A

Slot Event Handler

async event void Slotter.slot(uint8_t slot) {

message_t *tmpToSend;

uint8_t tmpToSendLen;

uint8_t *schedPay;

uint8_t curBigSlot;

uint16_t curFrameCount;

uint8_t curPhase;

atomic

{

curPhase = phase;

curSlot = slot;

curFrameCount = frameCount;

curBigSlot = bigSlot;

if (bigSlot == 1 && curPhase == SCHED_PHASE && frameCount == 0)

{

44

schedule[slot] = 0;

}

}

if (curPhase == SCHED_PHASE)

{

if (curFrameCount == 1)

{

if (curBigSlot == 1)

{

if ((0x7F & mySlot) == slot)

{

//atomic call AMPacket.setDestination(&dummyPkt,myParent);

schedPay = call SubSend.getPayload(&dummyPkt, 8);

schedPay[4] = PADV;

schedPay[5] = myHopCount;

schedPay[6] = curBigSlot;

schedPay[7] = slot;

call BeaconSend.send(&dummyPkt, 8);

#ifdef DEBUG_1

printf("sp s %d\n", slot);

#endif

}

}

else if (curBigSlot == 3)

{

if ((0x7F & mySlot) == slot)

45

{

schedPay = schedule-6;

schedPay[4] = SCH;

schedPay[5] = slot;

#ifdef DEBUG_1

printf("ss\n");// %d %d %d %d %d %d %d %d\n",schedPay[6],schedPay[7],schedPay[8],schedPay[9],schedPay[10],schedPay[11],schedPay[12],schedPay[13]);

#endif

call BeaconSend.send(&schedPkt,MAX_SLOT+6);

#ifndef SINK

//call RadioPowerControl.stop();

#endif

}

}

}

else if (curBigSlot == 2 && curFrameCount == 0)

{

#ifndef SINK

if (slot == trySlot)

{

#ifdef DEBUG_1

printf("send PSEL in slot %d to: %d\n",slot,myParent);

#endif

call AMPacket.setSource(&pselPkt,TOS_NODE_ID);

call AMPacket.setDestination(&pselPkt,AM_BROADCAST_ADDR);

schedPay = call BeaconSend.getPayload(&pselPkt, 6);

schedPay[4] = PSEL;

46

schedPay[5] = myParent;

schedPay[6] = myHopCount;

call BeaconSend.send(&pselPkt,7);

}

#endif

}

}

else if (curPhase == DATA_PHASE)

{

#ifndef SINK

if (radioState == OFF)

{

DataCheckOn();

}

else

{

if (frameCount < NUM_DATA_FRAMES+3)

{

DataCheckOff();

}

}

#endif

if (curBigSlot == myBigSlot && frameCount < NUM_DATA_FRAMES+3)

{

if (slot == mySlot)

{

47

#ifndef SINK

if (toSend != NULL)

#endif

{

if ((backupParent == myParent) && (frameCount % SWITCH_CHECK_RATE == 0))

{

tmpToSend = &dummyPkt;

tmpToSendLen = 6;

printf("send switch packet to: %d s %d\n",myParent,slot);

schedPay = call SubSend.getPayload(tmpToSend, 6);

schedPay[4] = PSWITCH;

schedPay[5] = myParent;

backupParent = 0xFF;

call BeaconSend.send(tmpToSend, tmpToSendLen);

}

else

{

atomic

{

#ifndef SINK

if (toSend != NULL)

{

tmpToSend = toSend;

tmpToSendLen = 17;//toSendLen;

printf("A\n");

schedPay = call SubSend.getPayload(tmpToSend, tmpToSendLen+7);

48

schedPay[4] = DATA;

}

else if (frameCount % SYNCH_RATE == 0)

{

printf("B\n");

tmpToSend = &dummyPkt;

tmpToSendLen = MAX_SLOT;

schedPay = call SubSend.getPayload(tmpToSend, tmpToSendLen+7);

schedPay[4] = BEACON;

}

else

{

wrapupSlotter(slot,curBigSlot,curFrameCount,curPhase);

}

#else

tmpToSend = &dummyPkt;

tmpToSendLen = MAX_SLOT;

schedPay = call SubSend.getPayload(tmpToSend, tmpToSendLen+7);

schedPay[4] = BEACON;

#endif

}

#ifndef SINK

printf("d %d f %d s %d\n", myParent,frameCount,slot);

loadCombineData(schedPay+7,tmpToSendLen + 7);

#else

////printf("transmit beacon in slot %d\tcurBigSlot: %d frame: %d\n",mySlot,curBigSlot,frameCount);

49

//schedPay[4] = BEACON;

//printf("b f %d s %d\n",frameCount,slot);

#endif

schedPay[5] = slot;

schedPay[6] = myParent;

call BeaconSend.send(tmpToSend, tmpToSendLen + 7);

}

}

}

}

}

wrapupSlotter(slot,curBigSlot,curFrameCount,curPhase);

return;

}

50

APPENDIX B

BigSlot End

Called at the end of every slot.

inline void wrapupSlotter(uint8_t slot,uint8_t curBigSlot,uint16_t curFrameCount,uint8_t curPhase)

{

if (slot == bi - 1)

{

curBigSlot++;

if (curBigSlot == 4)

{

#ifndef SINK

if (gotBeacon == 0 && phase == DATA_PHASE && frameCount < NUM_DATA_FRAMES + 2)

{

missedBeacon++;

tmpCount++;

printf("mb %d f %d p %d bp %d\n",missedBeacon,frameCount,myParent,backupParent);

if (missedBeacon > BEACON_EXCLUSION_THRESHOLD && backupParent != 0xFF)

51

{

//printf("lost parent switching oldparent %d newparent %d\n",myParent,backupParent);

myParent = backupParent;

coordRssi = backupRssi;

parentSlot = backupParentSlot;

//backupParent = 0xFF;

backupRssi = -250;

missedBeacon = 0;

gotBeacon = 1;

call BeaconSend.send(NULL,myParent);

printf("bps %d nps %d\n",myParent, parentSlot);

}

}

else

{

gotBeacon = 0;

}

//#endif

#endif

#ifdef DEBUG_2

////printf("wrap around bigslot\n");

#endif

////printf("frame over\n");

atomic curBigSlot = 1;

curFrameCount++;

52

if (curFrameCount == 3)

{

#ifndef SINK

if (gotSched == 0)

{

printf("didn’t get a schedule set deny\n");

mySlot |= 0x80;

denyCount++;

myParent = 0xFF;

coordRssi = -250;

myHopCount = 255;

if (denyCount > EXCLUSION_THRESHOLD)

{

exclusion = myParent;

}

}

#endif

curPhase = DATA_PHASE;

#ifdef DEBUG_1

printf("sdp mbs %d ms %d bs %d\n",myBigSlot,mySlot,bigSlot);

printfflush();

#endif

}

else if (curPhase == DATA_PHASE)

53

{

if (curFrameCount == NUM_DATA_FRAMES+3)

{

#ifdef DEBUG_1

////printf("turn radio on for sched I think\n");

#endif

#ifndef SINK

call RadioPowerControl.start();

#endif

}

else if (curFrameCount == NUM_DATA_FRAMES+4)

{

#ifdef DEBUG_1

//printf("set sched phase rollover\n");

#endif

//printf("output node uptime: %lu downtime: %lu\n",upTime,downTime);

printf("tmpCount %d n1: %d n2: %d n8 %d frame: %d\n",tmpCount,tmpCount1,tmpCount2,tmpCount8,tmpFrame);

tmpCount = 0;

tmpCount1 = 0;

tmpCount2 = 0;

tmpCount8 = 0;

tmpFrame++;

curPhase = SCHED_PHASE;

gotSched = 0;

curFrameCount = 0;

54

}

}

}

atomic bigSlot = curBigSlot;

atomic phase = curPhase;

atomic frameCount = curFrameCount;

}

}

55

APPENDIX C

Send Broadcast Message

async event void BeaconSend.sendDone(message_t * msg, error_t error) {

if (msg == toSend) {

if (call AMPacket.type(msg) != SIMPLE_TDMA_SYNC) {

signal Send.sendDone(msg, error);

}

atomic toSend = NULL;

if (phase == DATA_PHASE && frameCount < NUM_DATA_FRAMES+3)

{

DataCheckOff();

}

}

#ifndef SINK

if (phase == DATA_PHASE)

{

56

if (bigSlot == myBigSlot)

{

if (curSlot > mySlot && radioState == ON)

{

#ifdef DEBUG_3

//printf("Off A\n");

#endif

call RadioPowerControl.stop();

}

}

}

#endif

57

APPENDIX D

Receive Message

async event void SubReceive.receive(message_t *msg, void *payload, uint8_t len)

{

uint8_t *pay = (uint8_t*)payload;

am_addr_t src = call AMPacket.source(msg);

#ifndef SINK

int16_t tmp;

#endif

uint8_t tellme = src;

uint8_t slot;

uint8_t type = pay[4];

atomic slot = curSlot;

if (type == PADV)

{

tmpCount = 0;

tmpCount1 = 0;

58

tmpCount2 = 0;

tmpCount8 = 0;

#ifndef SINK

printf("got padv from: %d in slot: %d\n",src,curSlot);

atomic tmp = call CC2420Packet.getRssi(msg);

if (tmp > 0x80)

tmp = tmp - 256 - 45;

else

tmp = tmp - 45;

if ((pay[5] < myHopCount-1) && (src != exclusion))

{

updateParent(pay,src,tmp);

}

else if ((tmp > coordRssi) && (pay[5] == myHopCount-1) && (src != myParent) && (src != exclusion))

{

updateParent(pay,src,tmp);

}

else if (src != myParent && src != backupParent && src != exclusion && tmp > backupRssi && pay[5] == myHopCount-1)

{

setBackup(src,tmp,curSlot);

}

else if (src == myParent && src != exclusion)

{

if((mySlot & 0x80) == 0x80)

{

59

atomic trySlot = (call Random.rand16() % 9) + 1;

}

atomic phase = SCHED_PHASE;

atomic frameCount = 0;

atomic bigSlot = pay[6];

}

#endif

}

else if (type == PSEL)

{

printf("got psel from: %d in slot: %d\n",tellme,slot);

if (pay[5] == TOS_NODE_ID)

{

schedule[slot] = (uint8_t)src;

}

else if (schedule[slot] == 0 && myHopCount-1 == pay[6]) //zippy added this

{

schedule[slot] = 0x80 | (uint8_t)src;

}

}

else if (type == SCH)

{

pay = pay + 6;

if (src == myParent)

{

parentSlot = slot;

60

//printf("set parentslot: %d\n",slot);

gotSched = 1;

if (pay[trySlot] == TOS_NODE_ID)

{

atomic mySlot = trySlot;

denyCount = 0;

exclusion = 0xFF;

}

else

{

mySlot = 0x80 | trySlot;

denyCount++;

if (denyCount > EXCLUSION_THRESHOLD)

{

exclusion = myParent;

myParent = 0xFF;

myHopCount = 0xFF;

coordRssi = -250;

denyCount = 0;

}

}

}

else if (src == backupParent)

{

if ((0x7F & pay[trySlot]) == (0x7F & TOS_NODE_ID))

{

61

backupParentSlot = slot;

}

else

{

printf("invalidate backupparent val was: %d\n",pay[trySlot]);

backupParent = 0xFF;

backupRssi = -250;

}

}

}

else if (type == DATA)

{

if (src == myParent)

{

atomic gotBeacon = 1;

missedBeacon = 0;

}

if (pay[6] == TOS_NODE_ID)

{

if (src == 8)

{

tmpCount8++;

}

else if (src == 1)

{

tmpCount1++;

62

}

else if (src == 2)

{

tmpCount2++;

}

#ifndef SINK

storeCombineData(pay+7,len);

signal Receive.receive(msg, payload+7, len-7);

#else

SinkHandleData(pay+7,len);

#endif

}

else if (src == myParent)

{

printf("gdb %d s %d b %d f %d\n",src,slot,bigSlot,frameCount);

}

}

else if (type == BEACON)

{

if (src == myParent)

{

printf("gb f %d s %d fc %d\n",src,slot, frameCount);

atomic gotBeacon = 1;

missedBeacon = 0;

}

}

63

else if (type == PSWITCH)

{

if (pay[5] == TOS_NODE_ID)

{

if ((0x7F & schedule[slot]) == src)

{

printf("accept switch f %d s %d frame %d bs %d\n",src,slot,frameCount, bigSlot);

schedule[slot] = 0x7F & schedule[slot];

}

else

{

printf("deny switch f %d v %d s %d\n",src, schedule[slot],slot);

}

}

else if (schedule[slot] == src)

{

schedule[slot] = 0;

}

}

else

{

printf("ERROR: Unknown message type: %X from: %d\npay: %d %d %d %d %d %d\n",type,src,pay[0],pay[1],pay[2],pay[3],pay[4],pay[5]);

}

call Receive.updateBuffer(msg);

}

64

APPENDIX E

Lower Level Code

BeaconSlotP Send Message

async command error_t Send.send(message_t *msg, uint8_t len) {

uint8_t *payload;

error_t status;

uint32_t remaining;

if (msg == NULL)

{

atomic myParent = len;

return 0;

}

payload = call SubSend.getPayload(msg, len);

remaining = call SlotterControl.getRemaining();

write_timestamp(payload, remaining);

65

status = call SubSend.send(msg, len);

return status;

}

BeaconSlotP Receive Broadcast Message

async event void SubReceive.receive(message_t *msg, void *payload, uint8_t len) {

uint32_t alarmTime;

uint8_t *pay = (uint8_t*)(payload);

am_addr_t src = call AMPacket.source(msg);

#ifndef SINK

if ((src == myParent || myParent == 0xFF)) {

call SlotterControl.stop();

if (pay[4] == 0xFE)

{

//printf("synch on padv\n");

parentSlot = pay[7] + 1;

}

else if (pay[4] == 0xFC || pay[4] == 0xFB)

{

//printf("synch on %s\n",pay[4] == 0xFC ? "sched" : "data");

parentSlot = pay[5] + 1;

}

else if (pay[4] == 0xFA)

{

//printf("synch on beacon\n");

parentSlot = pay[5] + 1;

66

}

else if (pay[4] == 0xFD)

{

signal Receive.receive(msg, payload, len);

}

alarmTime = read_timestamp(payload);

if (alarmTime > PACKET_TIME_32HZ) {

alarmTime = alarmTime - PACKET_TIME_32HZ;

call SyncAlarm.start(alarmTime);

} else {

call SlotterControl.synchronize(parentSlot);

}

signal Receive.receive(msg, payload, len);

call SubReceive.updateBuffer(msg);

} else {

signal Receive.receive(msg, payload, len);

}

#else

parentSlot = 1;

signal Receive.receive(msg,payload,len);

#endif

}

67

APPENDIX F

Data Handling Functions

Received data is added to local count information which is then transmitted up the tree. The sink then prints the totals reported from each of its children.

typedef nx_struct nx_trans

{

nx_uint32_t up;

nx_uint32_t down;

nx_uint8_t count;

} nx_trans;

/*called on reception*/

void SinkHandleData(uint8_t *pay,uint8_t len)

{

uint8_t count;

nx_trans *data;

if (frameCount % 100 == 0)

{

68

data = (nx_trans*)pay;

count = data->count;

printf("up %lu down %lu count %d\n",data->up,data->down,count);

}

}

/*called on reception*/

void storeCombineData(uint8_t *pay,uint8_t len)

{

uint32_t up,down;

uint8_t count;

nx_trans *data;

data = (nx_trans*)pay;

count = data->count;

up = data->up;

down = data->down;

totalUp += up;

totalDown += down;

totalCount += count;

}

/*called before transmision*/

void loadCombineData(uint8_t *pay, uint8_t len)

{

nx_trans *data;

totalUp += upTime;

totalDown += downTime;

data = (nx_trans*)pay;

69

data->count = totalCount+1;

data->up = totalUp;

data->down = totalDown;

totalDown = 0;

totalUp = 0;

totalCount = 0;

}

70

	Cleveland State University
	EngagedScholarship@CSU
	2010

	Implementation and Evaluation of a Tdma Based Protocol for Wireless Sensor Networks
	Robert M. Fiske
	Recommended Citation

	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF FIGURES
	I. INTRODUCTION
	II. RELATED WORKS
	2.1 Wireless Sensor Networks
	2.2 TinyOS
	2.3 Mote
	2.4 Previous WSN MAC Protocols
	2.4.1 S-MAC
	2.4.2 B-MAC
	2.4.3 X-MAC
	2.4.4 TDMA
	2.4.5 SS-TDMA

	III. MOSS Protocol
	3.1 Scheduling Phase
	3.2 Data Phase

	IV. DESIGN AND IMPLEMENTATION
	4.1 MLA
	4.1.1 MLA Introduction
	4.1.2 Why MLA

	4.2 Initialization
	4.3 Scheduling Phase
	4.3.1 Send PADV
	4.3.2 Receive PADV
	4.3.3 Send PSEL
	4.3.4 Receive PSEL
	4.3.5 Sending the Schedule
	4.3.6 Receiving the Schedule

	4.4 Data Phase
	4.4.1 Handling Data

	4.5 Handling Trouble
	4.5.1 Missing PADV
	4.5.2 Missing PSEL
	4.5.3 PSEL Collision
	4.5.4 Sending Permission Denied by Schedule
	4.5.5 Missed Schedule
	4.5.6 Missing Data and Missing Beacon
	4.5.7 Synchronization

	V. PERFORMANCE EVALUATION
	5.1 Data Phase
	5.1.1 Experimental Overview
	5.1.2 Testing Scenario
	5.1.3 PDR
	5.1.4 Latency

	5.2 Scheduling Phase
	5.2.1 Experimental Overview
	5.2.2 Testing Scenario
	5.2.3 Results

	VI. CONCLUSION AND FUTURE WORK
	6.1 Conclusion
	6.2 MLA Evaluation
	6.3 Future Work

	BIBLIOGRAPHY
	APPENDICES
	A. Slot Event Handler
	B. BigSlot End
	C. Send Broadcast Message
	D. Receive Message
	E. Lower Level Code
	F. Data Handling Functions

