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Recent data highlight that competitive skiers face a high
risk of injuries especially during off-balance jump
landing maneuvers in downhill skiing. The purpose of the
present study was to develop a musculo-skeletal modeling
and simulation approach to investigate the cause-and-
effect relationship between a perturbed landing position,
i.e., joint angles and trunk orientation, and the peak force
in the anterior cruciate ligament (ACL) during jump
landing. A two-dimensional musculo-skeletal model was
developed and a baseline simulation was obtained repro-
ducing measurement data of a reference landing move-
ment. Based on the baseline simulation, a series of
perturbed landing simulations (n = 1000) was generated.

Multiple linear regression was performed to determine a
relationship between peak ACL force and the perturbed
landing posture. Increased backward lean, hip flexion,
knee extension, and ankle dorsiflexion as well as an asym-
metric position were related to higher peak ACL forces
during jump landing. The orientation of the trunk of the
skier was identified as the most important predictor
accounting for 60% of the variance of the peak ACL force
in the simulations. Teaching of tactical decisions and the
inclusion of exercise regimens in ACL injury prevention
programs to improve trunk control during landing
motions in downhill skiing was concluded.

In the last few years, injury data reported through the
International Ski Federation Injury Surveillance System
highlight that competitive skiers face a high injury risk
(Flørenes et al. 2009, 2012). During the winter seasons
from 2006 to 2008, about every third athlete suffered a
time loss injury and about every ninth athlete suffered a
severe injury per season (>28 days of absence). Severe
injuries typically involve the knee and knee ligaments
and injuries of the anterior cruciate ligament (ACL) are
the most frequent specific diagnosis (Flørenes et al.,
2009). Among the different skiing disciplines, the
highest injury rate has been reported in downhill skiing
(Flørenes et al., 2009) and landing from a jump has been
identified as the dominant ACL injury mechanism in
downhill skiing (Bere et al., 2011a).

Recent studies focusing on video analysis of injury
cases have provided considerable insight into possible
mechanisms of ACL injuries (Bere et al., 2011a) and the
events leading to the injury situation during the landing
movement (Bere et al., 2011b). In the study of Bere et al.
(2011b), skiers’ mistakes such as a poor jumping tech-
nique and incorrect tactical decisions have been deter-
mined as key factors contributing to injury. These
mistakes have been observed to result in a backward
off-balance situation of the skier during the flight and in

landing on the tails of the skis with nearly extended
knees. However, there is a lack of knowledge, how these
characteristics are related to the loading of the knee and
knee ligaments and whether the kinematics of the skier
prior to jump landing might be used to predict the peak
ACL force during the subsequent landing. In addition,
knowledge of the most important predictor(s) might be
included in the design of prevention programs and the
teaching of tactical decisions with the aim to reduce the
number of ACL injuries during jump landing in downhill
skiing.

Because of ethical reasons, in vivo studies, which
mimic possible injury situations, are not feasible.
However, musculo-skeletal modeling and simulation
offer the possibility to study injury situations in a com-
puter environment and estimate ACL forces and strains
(Krosshaug et al., 2005). In addition, sophisticated
musculo-skeletal models allow the investigation of
cause-and-effect relations such as between neuromuscu-
lar control and knee joint loading using a series of Monte
Carlo simulations (McLean et al., 2004, 2008). McLean
et al. (2004) used as series of Monte Carlo simulations to
study random perturbations in initial trunk and joint
kinematics on knee joint loading during a side-step
cutting task. In a subsequent study, McLean et al. (2008)



analyzed modifications in initial hip and knee flexion,
hip internal rotation, and hip internal rotation velocity on
knee joint loading in a series of side-step cutting simu-
lations. In the simulation study of Gerritsen et al. (1996),
a possible injury situation was investigated during jump
landing in downhill skiing. A single backward off-
balance landing movement in combination with an active
recovery movement was simulated and the peak force in
the ACL was predicted. However, up to now, there is a
lack of simulation studies focusing on a systematic
analysis of the relationship between the kinematics of
the skier prior to ground contact and the subsequent peak
ACL force during jump landing in downhill skiing.

The purpose of the present study was to develop a
musculo-skeletal modeling and simulation approach to
investigate the effect of a perturbed landing position, i.e.,
joint angles and trunk orientation, on peak ACL force
during the subsequent landing movement.

Methods
Musculo-skeletal model

A planar, musculo-skeletal model of an alpine skier with two skis
was developed. The skier model consisted of seven rigid segments,
one segment representing the head, arms and torso, and three
segments for each lower extremity: thigh, shank, and one segment
for the foot and the ski boot. The restraining component of the ski
boot was represented as passive joint moment acting at the ankle
joint (Gerritsen et al., 1996). The model of each ski consisted of a
chain of nine rigid segments connected by revolute joints. Bending
stiffness and damping properties of the skis were integrated into
the model using linear spring-damper elements attached to the
revolute joints. Parameters of the spring-damper elements were
derived from bending experiments and ski vibration tests (Bruck
et al., 2003) of a downhill ski with a nominal length of 2.11 m.
Multibody dynamics was derived based on Kane’s method using
Autolev 4.1 (Symbolic Dynamics Inc., Sunnyvale, California,
USA). In total, the skier-skis system had 25 kinematic degrees of
freedom and the equations of motion were formulated as:

M q q B q q R q M( ) + ( ) + ( ) =�� �, F 0 [1]

where q, �q , and ��q are the generalized coordinates, velocities, and
accelerations; M(q) is the system mass matrix; B(q, �q ) is a vector
of generalized forces due to gravity, external forces and moments,
coriolis and centrifugal forces and moments, and passive joint
moments; R(q) is a matrix of muscle moment arms; FM is a vector
of muscle forces and R(q)FM is a vector of net joint moments.

The motion of the skier was actuated by 16 muscles, eight for
each lower extremity: iliopsoas (Ili), glutei (Glu), hamstrings
(Ham), rectus femoris (RF), vasti (Vas), gastrocnemius (Gas),
soleus (Sol), and tibialis anterior (TA). Each muscle was modeled
as three-element Hill-type model. Contraction dynamics incorpo-
rating the force-length-velocity properties of the muscle was
modeled as function of muscle fiber length, LCE, fiber lengthening
velocity, �LCE , activation, a, and muscle length, LM(q) (McLean
et al., 2003),

g qCE CE ML L a L, , ,� ( )( ) = 0 [2]

Activation dynamics was modeled as a first-order process (He
et al., 1991):

h a a u, ,�( ) = 0 [3]

where u denotes the neural excitation of the muscles. A linear
relationship was assumed between joint angles and muscle-tendon
length (McLean et al., 2003) and muscle parameters were taken
from Gerritsen et al. (1996). In total, the musculo-skeletal
model of the skier and the two skis had 82 state variables
x q q a CE= [ ], , ,� L T and 16 control variables u. The dynamics of the

skier-skis model was given by eqns. [1], [2], and [3].

Contact models

Contact between skis and snow was modeled by two types of
forces applied at the mass center of each ski segment: a penetration
force, Fp, acting normal to the snow surface and a friction force, Ff,
acting parallel to the snow surface. The penetration force was
given by the following equation:
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where d and �d are the penetration depth and velocity of the
segment’s center of mass, A is the area of the rectangularly
approximated base of the segment, and kp and bp are ski-snow
contact parameters. The stiffness parameter kp was set to 6 ×
105 N/m3 to get a maximum penetration of about 0.05 m at the ski
below the area of the ski boot. In reality, the penetration below the
area of the ski boot corresponds to the deformation of the heel pad,
the liner of the ski boot, the ski bindings, and the snow. The
damping parameter bp was set to 0.75 s/m. The parameter d0 rep-
resents a smooth transition region of the contact model and was set
to 0.01 m. The friction force Ff was approximated by Coulomb
friction with a friction coefficient of μ = 0.1 (Kaps et al., 1996):
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where v denotes the sliding velocity parallel to the snow surface.
The smoothing parameter v0 was set to 1 m/s. Air drag was applied
on each segment of the skier based on the regression model of
Barelle et al. (2004), which describes the relationship between
total drag force and the skier’s body size and posture.

Baseline simulation of landing movement

A baseline simulation was obtained in which muscle stimulation
patterns of the model were optimized to track a reference landing
movement in competitive downhill skiing. In particular, the fol-
lowing optimal control problem was solved, minimizing the cost
function:

J J J J= + +1 2 3 [6]
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subjected to constraints because of the dynamics of the skier-skis
model and upper and lower bounds on the controls 0 ≤ u ≤ 1. Nd,



Nmus, and Nsk denote the number of degrees of freedom of the skier
model, the number of muscles, and the number of degrees of
freedom of both skis, respectively. Time duration is represented by
T. The first term, J1, represents the mean deviation of the simula-
tion results qi(t) with respect to experimental kinematic data
qi,data(t) scaled by a factor σi (1 ≤ i ≤ Nd). Experimental data were
taken from a previous study (Nachbauer et al., 1996) where a
downhill skier was captured with two high-speed cameras at
180 Hz performing a jump landing movement that lasted for 1 s.
Anthropometric measurements of the downhill skier and geomet-
ric modeling were used to derive segment length, segment mass,
and inertia properties of the skier model. The second term, J2,
weighted with wmus, was used to resolve muscle redundancy as in
Spägele et al. (1999). The third term, J3, weighted with wsk, was
used to avoid excessive ski bending and vibration especially
during the aerial phase.

Solution method

The optimal control problem was transformed into a constrained
nonlinear programming problem (NLP) using direct collocation
(Betts, 2010) and the implicit midpoint formula for discretization
of the system dynamics (van den Bogert et al., 2011). The NLP
was solved using IPOPT (Wächter & Biegler, 2006), an interior
point optimization solver, and a mesh refinement strategy. The
weight factor wmus = 10 was found to give a reasonable weighting
between J1 and J2. J3 was relatively small and was weighted by
wsk = 0.01.

Knee joint loading

Sagittal knee joint loading was calculated similar to the study of
McLean et al. (2008). In addition, the slope of the tibial plateau
was included in the present calculations as follows. The anterior-
posterior resultant knee reaction force with respect to the tibial
plateau was calculated from the simulated movement, gravity, and
the contact forces using a standard inverse dynamics analysis
(Winter, 2009). A tibial slope angle of 9° was assumed (Matsuda
et al., 1999). The relative contributions of the quadriceps and ham-
string muscle forces were subtracted from the resultant knee reac-
tion force to obtain an estimate of the anterior drawer force. Based
on the anterior drawer force, cruciate ligament forces (ACL and
posterior cruciate ligament, respectively) were calculated by
assuming that only one cruciate at a time is loaded. In the calcu-
lations, muscle and ligament orientations were defined as a func-
tion of knee flexion angle using the data of Herzog & Read (1993).

Perturbed landing simulations

Based on the baseline simulation a series of Monte Carlo simula-
tions (n = 1000) was generated to investigate the effect of a per-
turbed landing position prior to ground contact on peak ACL force
during the subsequent landing movement. During the subsequent
landing movement, it was assumed that the skier attempts an active
recovery movement with the aim to regain balance. Specifically, in
each simulation of the Monte Carlo series, the kinematic state of
the skier obtained by the baseline simulation 0.4 m above the snow
surface was perturbed by adding random numbers to the trunk
orientation and to the joint angles of the left and right lower
extremity. The random numbers were generated assuming a
Gaussian distribution with zero mean and standard deviations
derived from the study of Barone et al. (1999) (hip: 9.4°; knee:
8.7°; ankle: 5.2°; trunk orientation: 9.2°). The distance of 0.4 m
was chosen to avoid that the ski tails penetrate the snow in the
perturbed initial position. With the initial posture of the skier
constrained to the perturbed values an optimal control problem
similar to the baseline simulation was solved to simulate the recov-

ery movement. In contrast to the baseline simulation, muscle
stimulation patterns were optimized to track the human landing
data only at the final time, where the skier was observed to be in a
well-balanced downhill position. Correspondingly, the term J1 was
replaced by the deviation of the measurement and simulation data
at the final time t = 1 in the cost function. Additionally, the weight
factor wmus was reduced to 1 to increase the weight with respect to
the tracking of the balanced end position. Regaining a balanced
position represents the behavior that would be expected from a real
skier who finds him/herself in a perturbed position prior to ground
contact.

Statistical analyses

Multiple linear regression was performed to investigate the rela-
tionship between the peak force in the ACL in the left/right lower
extremity during the landing movement as dependent variable and
perturbed kinematic state variables of the posture of the skier prior
to ground contact as independent variables. The perturbed kine-
matic state variables were the orientation of the trunk segment, the
joint angles at the hip, knee, and ankle of the lower extremity
corresponding to the peak force in the ACL as well as the differ-
ence in the joint angles at the hip, knee, and ankle of both lower
extremities. Instead of the joint angles of the second lower extrem-
ity, these differences were included in the analysis to account for
asymmetries in the posture of the skier. Bivariate correlations were
also performed to further examine the relationship between the
kinematic posture variables and peak force in the ACL. Finally,
squared semipartial correlations were evaluated to determine the
amount of variance in the dependent variable attributed uniquely
to each independent variable (Trabachnick & Fidell, 2005).

Results

The baseline simulation could be successfully solved
(Fig. 1, an animation is provided online as supporting
information) and repeated runs with different random
initial guesses resulted in identical solutions. Joint
angles and trunk orientation of the skier obtained by the
baseline simulation were in good agreement with the
corresponding measurement data, with differences
similar to the noise in the measurements (Fig. 2). Root
mean square (RMS) differences between measured and
optimized joint angles ranged from 2.9° to 6.7°; the
RMS difference of the trunk orientation was 3.7°.

In the baseline simulation, primarily, the right knee of
the skier was loaded. In the right knee, the ACL was
loaded until 60 ms after ground contact when the knee
flexed from 36.3° to 66.0°. Ground contact was defined
at time t = 0.46 s when the ground reaction force at the
ski segment below the ski boot exceeded 10 N. In the
right knee, peak ACL force reached 695 N after 33 ms of
ground contact; in the left knee, peak ACL force
amounted to 165 N (Fig. 3). In the Monte Carlo simula-
tions (n = 1000), substantially higher peak ACL forces
were observed compared with the baseline simulation
(Fig. 4) reaching values up to 2017 N.

The multiple regression analysis showed that the
posture variables of the skier prior to ground contact
significantly predicted the peak force in the ACL during
the subsequent landing movement [F(7,951) = 956.34,



P < 0.001, R2 = 0.88]. In the regression model, the orien-
tation of the trunk, the joint angles at the hip, knee and
ankle of the loaded lower extremity, and the difference in
hip and knee flexion were included (Table 1) accounting
for 88% of the variance of the peak force in the ACL.
Although the bivariate correlations (Table 2) showed sig-
nificant relations between each independent variable and

the dependent variable, the difference in ankle dorsiflex-
ion did not contribute significantly to the regression.

The individual regression coefficients revealed that
increased backward lean, hip flexion, knee extension,
and ankle dorsiflexion were related to higher peak ACL
forces during the subsequent landing movement. Differ-
ences in hip and knee flexion angles, which account for
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Fig. 1. Stick figure diagram of the baseline landing simulation (Δ t = 1/180) showing every third frame.
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an asymmetric position, were also related to increased
peak ACL forces (Table 2).

The orientation of the trunk of the skier was identified
as the most important predictor in the regression model.
As indicated by the squared semipartial correlations,
60% of the variance of the peak force in the ACL could
be uniquely attributed to the orientation of the trunk
segment prior to ground contact (Table 3).

Discussion

The purpose of the present study was to develop a
musculo-skeletal modeling and simulation approach to
investigate the effect of a perturbed landing position, i.e.,
joint angles and trunk orientation, on peak ACL force
during the subsequent landing movement.

A biped musculo-skeletal model of a skier was devel-
oped and a baseline simulation was successfully
obtained in which muscle stimulation patterns of the
modeled skier were optimized to track measurement data
of a reference landing movement in competitive down-
hill skiing. During the baseline simulation, the peak
tensile force in the ACL amounted to 695 N (0.9 body
weight (BW)) and occurred about 30 ms after initial
ground contact. There is a lack of studies reporting liga-
ment forces during a well-performed jump landing in
downhill skiing. In the simulation study of Gerritsen
et al. (1996), peak ACL force was reported only for a
perturbed off-balance situation and amounted to 1350 N;
for the unperturbed simulation, only the net knee reac-
tion force was reported. However, durations of 20–40 ms
and magnitudes of up to 0.4 BW were reported in
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Fig. 3. ACL force in the right (solid) and left knee (dash-dotted)
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Fig. 4. Distribution of peak ACL force obtained by the series of
Monte Carlo simulations (n = 1000).

Table 1. Results of the multiple linear regression analysis showing the
unstandardized coefficients B and standardized coefficients β of the pre-
dictor variables. In the multiple linear regression analysis, the peak force
in the ACL in the left/right lower extremity during the landing movement
was chosen as dependent variable and perturbed kinematic state variables
of the posture of the skier prior to ground contact as the predictor
variables. The perturbed kinematic state variables were the orientation of
the trunk segment, the joint angles at the hip, knee, and ankle of the lower
extremity corresponding to the peak force in the ACL as well as the
difference in the joint angles at the hip, knee, and ankle of both lower
extremities

Variable B β P-value

Trunk orientation (deg) 2902 0.809 <0.001
Hip flexion (deg) 2066 0.625 <0.001
Knee flexion (deg) −1069 −0.284 <0.001
Ankle dorsiflexion (deg) 257 0.043 0.011
Hip flexion diff (deg) 1280 0.564 <0.001
Knee flexion diff (deg) −428 −0.169 <0.001
Ankle dorsiflexion diff (deg) 36 −0.008 0.628

Table 2. Bivariate correlations r between the peak ACL force and each of
the predictor variables

Variable r P-value

Trunk orientation 0.787 <0.001
Hip flexion 0.166 <0.001
Knee flexion −0.275 <0.001
Ankle dorsiflexion 0.260 <0.001
Hip flexion diff 0.138 <0.001
Knee flexion diff 0.181 <0.001
Ankle dorsiflexion diff −0.274 <0.001

Table 3. Semipartial correlations sr for the predictor variables

Variable sr

Trunk orientation 0.777
Hip flexion 0.426
Knee flexion −0.199
Ankle dorsiflexion 0.029
Hip flexion diff 0.388
Knee flexion diff −0.117
Ankle dorsiflexion diff 0.006



previous studies analyzing drop jumps from a 60 cm
platform (Pflum et al., 2004; Kernozek & Ragan, 2008).
The considerably higher peak ACL force in the present
study might be primarily due to the effective fall height
of about 90 cm. The higher fall height is likely to cause
an increased tibiofemoral compression force, which
would directly elevate anterior tibial load and conse-
quently ACL load due to the tibial plateau angle (Yeow
et al., 2010). Additionally, the low friction between skis
and snow reduces the posterior ground reaction force,
which is considered to protect the ACL.

The simulation with random perturbations of the ori-
entation of the trunk and the joint angles of the skier
prior to ground contact resulted in substantially higher
peak ACL forces compared with the baseline simulation.
Peak ACL forces reached values up to 2017 N. As the
ACL typically tears at loads greater than 2000 N (Woo
et al., 1991), this peak ACL force might have resulted in
a possible injury situation. In the simulation study of
Kietlinski & Rzymkowski (2005), also, a high injury
risk was reported during a backward off-balance jump
landing movement. A peak elongation of the ACL of
20% was predicted and based on the Abbreviated Injury
Scale, a high risk of total rupture was concluded. Based
on the study of Kietlinski & Rzymkowski (2005) and the
results of the present simulations, a sagittal plane ACL
injury mechanism might exist during jump landing in
downhill skiing. Although the current opinion states that
it is highly probable that ACL injuries occur during
multi-planar mechanisms of injury (Quatman et al.,
2010), a single-planar mechanism might be sufficient to
tear the ACL during jump landing in downhill skiing.

Multiple regression analysis revealed that the increase
of backward lean, hip flexion, knee extension, and ankle
dorsiflexion were related to higher peak ACL forces
during the subsequent landing movement. These results
are in agreement with video sequences of injury cases
during landing movements in world cup downhill skiing.
Skiers’ mistakes such as a poor jumping technique and
incorrect tactical decisions have been determined as key
factors contributing to injury and these mistakes have
been observed to result in a backward off-balance situ-
ation of the skier during the flight and in landing on the
tails of the skis with nearly extended knees (Bere et al.,
2011a). Also, in the computer simulation study of
Gerritsen et al. (1996), a perturbed backward off-balance
landing movement of an alpine skier resulted in higher
ligament forces compared with an unperturbed landing
simulation. In other sports, more backward lean and an
increased distance between the center of mass and the
base of support were identified in ACL injuries cases by
videotape analysis (Sheehan et al., 2012). Interestingly,
our simulation results are consistent with the results of
Sheehan et al. (2012), as backward lean in combination
with an increase of hip flexion and knee extension results
in an increased distance between the center of mass and
the base of support.

The orientation of the trunk prior to landing was iden-
tified as the most important predictor for high ACL
forces among the perturbed variables. This result reveals
a set of preventive measures, which could be easily
implemented in training and competitions. To keep the
trunk in a forward oriented position during jumping
skiers have to rotate their body forward during takeoff
and stay in a tuck position during flight. Low speed and
a gentle change of the radius of the takeoff area ease the
necessary forward rotation of the skier to achieve the
required angular momentum. Additionally, a straight and
sufficiently long inrun favors a proper preparation of the
skiers before takeoff. High flight trajectories are likely to
result in a more upright orientation of the trunk during
flight and landing. Resulting air resistance may act above
the center of mass rotating the skier backward especially
when the skier’s speed is high. So low flight trajectories
and low speed have to be applied in jump design. The
inclusion of exercise regimes in ACL injury prevention
to improve body position during landing was proposed
by Shimokochi et al. (2013), who studied the influence
of changing the sagittal plane body position (self-
selected, leaning forward and upright) during single-leg
landings. Based on the present results, special focus on
trunk control regarding jump landing in downhill skiing
is suggested.

The musculo-skeletal model had certain limitations.
The model was two-dimensional and effects due to
internal/external rotation and varus/valgus of the knee
joint were not included, which are known to affect liga-
ment forces (Shimokochi & Shultz, 2008). Such out-of-
plane loads are likely to occur during jump landings
(Bere et al., 2011a), and our findings do not directly
apply to such cases. Extending the present planar model
to three dimensions to investigate these out-of-plane
loads additionally is in progress.

In each perturbed landing simulation, muscle stimula-
tion patterns were re-optimized such that the skier tries
an active recovery motion to regain balance. Because the
optimized muscle stimulation patterns affect the corre-
sponding muscle forces and the loading of the knee and
knee ligaments, a sensitivity analysis was conducted to
test whether the optimized muscle stimulation patterns
are affected by the choice of the objective function. The
analysis showed that changing the weight factor wmus by
a factor of 2 (setting wmus to 0.5 and 2, respectively) in a
sample of 100 perturbed landing simulations only
changed the force in the ACL on average by 4%. Regain-
ing a balanced position represents the behavior that
would be expected from a real skier who finds him/
herself in a perturbed position prior to ground contact.
Up to the authors’ knowledge, this is the first study,
where a series of perturbed landing simulations with a
given task has been solved. The conventional approach
has been to generate repeated forward simulations with
the same muscle excitation patterns (McLean et al.,
2004, 2008) or to use a prescribed muscle excitation



pattern (Gerritsen et al., 1996). However, both
approaches neglect task-oriented adaptive behavior of
the athlete.

In the series of Monte Carlo simulations, the joint
angles and trunk orientation were perturbed prior to
ground contact, and not the velocities. Variation of the
linear velocity of the trunk segment normal to the snow
surface could be used to include the influence of jump
height. However, measurement data regarding variation
of jump heights in downhill skiing are currently lacking.
Further applications of the present musculo-skeletal
model might be to study the effect of the inclination of
the landing surface, the speed, and the jump height of the
skier as well as modifications of the equipment. In addi-
tion, alternative control strategies of the skier might also
be investigated aiming at a reduction of the peak force in
the ACL during jump landing.

Perspectives

Competitive skiers face a high injury risk during off-
balance jump landing maneuvers in downhill skiing
(Flørenes et al., 2009, 2012). In vivo studies, which
mimic injury situations, are ethically not feasible.
However, musculo-skeletal modeling offers the possibil-
ity to study injury situations in a computer environment.
A two-dimensional musculo-skeletal skier-skis model

was developed and applied to investigate a cause-and-
effect relationship between landing position and peak
ACL force during jump landing. Backward lean of the
skier was identified as the most important predictor for
high ACL forces. An increase of hip flexion, knee exten-
sion, ankle dorsiflexion, and an asymmetric position
were also related to higher peak ACL forces. These
results are in agreement with previous simulation results
(Gerritsen et al., 1996) and video sequences of injury
cases during landing movements in competitive downhill
skiing (Bere et al., 2011a). The inclusion of exercise
regimens in ACL injury prevention programs with
special focus on trunk control and a set of preventive
measures were suggested. Further applications of the
present model might be to study the effect of jump height
and speed, modifications of the equipment, and neuro-
muscular control strategies aiming at the prediction of
ACL risk factors during jump landing in downhill skiing.

Key words: skiing, simulation, musculo-skeletal model-
ing, multiple regression.

Supporting Information

Additional Supporting Information may be found in the
online version of this article at the publisher’s web-site:

Video S1. Animation of the baseline landing simulation.
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