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An experimental investigation of humidity and temperature effects 

on the mechanical properties of perftuorosulfonic acid membrane 


Yaliang Tang 3, Anette M. Karlsson 'l.*, Michae l H. Santare 3 , Michael Gilbert a, 
Simon Cleghorn b, William B. Johnson b 

• DelXlrlmem ofMec/rall;m/ Engineering. U";"l'rsiry oflJefa"Y,re. DE 19716. Unite(/ Sillies 
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1. Introduction 

Proton exchange membrane fu el cells (PEMFCs) are 
expected to become a prominent technology in a variety of power 
generation applications, including stat ionary, ponable, and auto­
motive appl ications. The ir potentially high energy density. high 
e ffic iency and clean operations offer allractive advantages over 
traditional methods of power generation I i ,2 1. 

The central function in a PEMFC is performed bYlhe polymer 
electrolyte membrane. In use, the polymer electrolyte mem­
brane serves to conduct proto ns from the anode electrode to 
the cathode electrode, while acting as an electronic insu lato r 
and a gas barrier to prevent mixing of oxygen and hydrogen 
(Fig. I). Any discontinuity of the membrane will compromise 
the function of the fu el cell. A typical auto motive duty cycle 
imposes rapid changes in the c urrent density and voltage o f 
the fu el cell. as well as rapid changes in the cell temperature, 
pressure and relative humidity. The polymer electrolyte mem­
brane. gas d iffusion layers and graphite plates will all experience 

• Corresponding author. Tel.: +1 302831 6437: fax: + I 302 831 3619. 

E' IIwi/ (l(/dress: Karl sson@rnc .udcl.cdu (A.M. Karlsson).  

expansion and contract ion as a function oftemperature and mois­
ture. The different thermal ex pansion and swelling coeffi cients 
of these various mate rials introduce hygro-thermal stresses as 
the system is cycled, potentia lly leading to deterioration and 
eventual malfunction of the fuel cell [3- 51 . A rational approach 
to developing an improved lifetime for PEMFC membranes 
necessitates that the fai lure mechan isms be clearly understood 
and life prediction models be developed so that new desig ns 
can be introduced. A crit ical step toward this understanding 
is to fully chamcterize the membrane 's mechanical behavior 
under in situ operating environments. Th is work foc uses on such 
characterization. 

Several publications have reported the importance of the 
membmnes mechan ical properties on operational life [3-91 . 
Me mbrane fa ilures in the membrane electrode assembly (MEA) 
have been precipitated solely by cycling between weI and dry 
operating conditions without electric potential or reactive gases 
[31. These fa ilures can appear as pinholes in the membrane 
or de lamination between polymer membrane and gas diffusion 
layers l6,7 j. Several analytical studies l4,5,8j have shown how 
hygro-themlal stresses might plllY an important role in these fail­
ures. Thus, it is important to characterize the hydro-mechanical 
properties of the constituents. 

mailto:Karlsson@me.udel.edu
dx.doi.org/10.1016/j.msea.2006.03.055
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Fig. 1. Schematic of a proton exchange membrane fuel cell. 

PEMFCs operate at temperatures ranging from ambient to 
100 ◦C and a variety of humidification levels. The membranes 
absorb up to 50 wt.% water and experience significant volu­
metric swelling. Upon moisture absorption, the strength of the 
membrane drops dramatically due to the plasticization of the 
ionomer [10]. Although effects of temperature and humidity on 
the strength of PFSA membrane have been reported [11,12], 
to the knowledge of the authors, only conditions at ambient 
humidity or in liquid water are published in the open literature. 
Intermediate humidity and the coupled effects of temperature 
and humidity have yet to be studied. 

State-of-the-art PEMFCs, such as Nafion® membranes1 and 
GORE-SELECT® membranes,2 utilize perfluorosulfonic acid 
polymers. In this paper, influences of temperature and humidity 
on the mechanical properties of Nafion®112 are systematically 
studied. The properties studied are the Young’s modulus, pro­
portional limit stress, break stress and the elongation at break. 
The in-plane swelling behavior of the membrane at different 
temperatures and humidity is also investigated. 

2. Experimental 

2.1. Preparation of membrane samples 

The perfluorosulfonic acid membrane, Nafion®112 was used 
in all of the experiments. Nafion®112 has the following phys­
ical properties: a nominal equivalent weight of 1100 g/mol of 
sulfonic group and a thickness of two thousandths of an inch 
(52 �m). Prior to use, the membrane was pre-treated by boiling, 
for one hour each, in 3% hydrogen peroxide, 0.5 M sulfuric acid 
and deionized water (DI). Between each step, the membrane was 

1 Nafion® is a registered trademark of E.I. DuPont De Nemours & Co. 
2 GORE-SELECT® is a registered trademark of W.L. Gore & Associates, Inc. 

rinsed with DI water. The pre-treatment was conducted to obtain 
a common material state for all samples. After pre-treatment, the 
membrane was dried at room temperature for 24 h, and then cut 
along both the machine and transverse directions into rectangu­
lar specimens with length of 100 mm and width of 10 mm. 

2.2. Experimental apparatus 

Tensile tests were conducted with an MTS AllianceTM RT/5 
material testing system with an ESPEC custom-designed envi­
ronmental chamber (Fig. 2A). The chamber can operate in condi­
tions from –70 to 170 ◦C and relative humidity between 30% and 
95%. Besides the sensors installed in the chamber to control the 
temperature (copper/copper–nickel type ‘T’ thermocouple) and 
humidity (Rotronic H290 humidity transmitter) of the chamber, 
an additional Testo 645 humidity sensor was positioned close to 
the specimen in order to measure the temperature and humidity 
as close to the specimen as possible. 

2.3. Testing procedures 

Membrane properties were measured at 16 temperature and 
humidity combinations, i.e., at four different temperatures (25, 
45, 65, 85 ◦C) and four different relative humidities (30%, 50%, 
70%, 90%) each. Five specimens were tested at each tempera­
ture and humidity combination. For each specimen, the thickness 
and width were taken as the average of three measurements dis­
tributed over the sample. The specimen was aligned with the 
extension rod by a pair of vise-action grips (Fig. 2B), and the 
gauge length was adjusted to 50 mm as determined by the grip 
separation. 

To achieve the desired environmental conditions in the cham­
ber the temperature was increased to the set point and allowed to 
stabilize, where after the humidity was slowly increased to the 
desired RH-set point. During this process, the length of the spec­
imen changes due to the thermal and swelling expansions of the 
membrane. Before testing, the crosshead was manually adjusted 
until the initial load applied to the specimen was brought back 
to zero, eliminating the slack caused by thermal and swelling 
expansions. Thus, the gauge length of the specimen was now 
the original length plus the displacement of the crosshead. The 
recorded value of the crosshead change is taken as a measure 
of the dimensional change of the membrane due to a change 
in temperature and humidity. For all tests, the strain rate was 
0.2 mm/mm per minute. 

3. Results and discussions 

3.1. Stress–strain curves at different temperature and 
humidity 

Fig. 3 shows typical results for the engineering stress–strain 
curves of Nafion®112 along the transverse direction at the 
fixed relative humidity of 50% for a range of temperatures 
(the stress–strain curves along machine direction are similar to 
transverse direction). As the temperature decreases, the curves 
monotonically shift upward corresponding to increasing tensile 



Fig. 2. (A) Experimental equipments: MTS alliance RT/5 material testing system with custom-designed environmental chamber from ESPEC Inc. (B) Tensile tests 
of the membrane. Specimen was aligned with the extension rod by a pair of vise-action grips. 

strength. The elongation at break increases with increasing cantly. Although the tensile strength decreases as the humidity 
temperature. Fig. 4 shows the stress–strain curves along the increases, it is not clear if the break stress and the elongation at 
transverse direction at fixed temperature 45 ◦C, for a range of break point are affected much by humidity change. Figs. 3 and 4 
relative humidities. At higher humidity, more water is absorbed indicate that, in the range of values studied, temperature gener­
in the hydrophilic sulfonic acid clusters, which weaken the ally has a more significant effect on the mechanical behavior of 
ionic interactions and change the mechanical stability signifi- Nafion® membrane than humidity. 

Fig. 3. Engineering stress–strain curves of tensile tests at different temperatures Fig. 4. Engineering stress–strain curves of tensile tests at different relative 
at 50% relative humidity (transverse direction). humidity at 45 ◦C (transverse direction). 



Fig. 5. Definition of proportional limit stress and Young’s modulus. 

Based on these monotonic engineering stress–strain curves 
of tensile tests (Figs. 3 and 4), it is not possible to identify the 
onset of yielding. Instead, a “proportional limit” stress is defined 
in this paper to describe the onset of non-linearity. To determine 
the proportional limit stress, the tangents to the regions on either 
side of the “bend” are extended until they intersect, as indicated 
in Fig. 5. This point is defined as the proportional limit stress. 
Young’s modulus is taken as the linear regression of the initial 
linear part of stress–strain curve. 

3.2. Effects of temperature and humidity on the mechanical 
properties of the membrane 

The Young’s modulus, proportional limit stress, break 
stress and break strain are determined from each engineering 
stress–strain curve and the average value for each of these param­
eters is evaluated at each temperature–humidity combination. 
These average values are plotted in Figs. 6–13 to show each 
parameter as a function of either temperature or relative humid­
ity. Properties in both the transverse and the machine directions 
have been investigated. 

The effects of temperature and humidity on the Young’s mod­
ulus on both the machine and transverse directions are shown 
in Figs. 6 and 7, respectively. The results indicate that higher 
temperature and relative humidity lead to lower Young’s modu­
lus. Since water has a very low glass transition temperature Tg 
(estimated value at −130 ◦C) [11], it acts as a very good plas­
ticizer even in small quantities. In the presence of water, the 
interference between water and the chain-to-chain secondary 
bonding reduces the intermolecular forces. As a result, chains 
acquire greater mobility and the free volume increases, lead­
ing to a decrease in the glass transition temperature and the 
strength [13]. Although the glass transition temperatures of 
perflurosulfonic acid membranes such as Nafion® are usually 
between 100 and 150 ◦C [14], with increasing temperature, the 
amorphous domain (with higher strength) decreases, leading 
to lower Young’s modulus and proportional limit stress. From 

Fig. 6. Young’s modulus as a function of temperature at various relative humidi­
ties: (A) transverse direction and (B) machine direction. 

Figs. 8 and 9, we see that the proportional limit stress of Nafion® 

membrane decreases as the temperature and humidity increase. 
Although relative humidity apparently affects Young’s mod­

ulus and the proportional stress, no obvious effects can be seen 
for break stress and break strain (Figs. 10 and 11). However, 
higher temperature does tend to cause to lower break stress and 
may lead to higher break strain, at least in the machine direction 
(Figs. 12 and 13). 

Fracture surface morphologies of two extreme cases are 
shown in Figs. 14 and 15 (temperature at 25 ◦C and humidity at 
30% (T25-RH30), and temperature at 85 ◦C and humidity at 90% 

Fig. 7. Young’s modulus as a function of humidity at various temperatures: (A) 
transverse direction and (B) machine direction. 



Fig. 8. Proportional limit stress as a function temperature at various relative 
humidities: (A) transverse direction and (B) machine direction. 

(T85-RH90)). Both show a typical ductile polymer tensile frac­
ture surface [15], however, at higher magnification (Fig. 15), the 
fracture surface of the membrane tested at 25 ◦C and 30% RH 
shows smaller “cavities” and corresponding “pull-outs”, thus 
indicating a less ductile behavior than for the membrane tested 
at 85 ◦C and 90%. 

The mechanical property changes with respect to temper­
ature and humidity, in the transverse direction are similar to 
those on the machine direction. However, at the same temper­
ature and humidity, the Young’s modulus, proportional stress 

Fig. 10. Break stress as a function of humidity at various temperatures: (A) 
transverse direction and (B) machine direction. 

and break stress on the machine direction are all slightly larger 
than those on the transverse direction. The break strain in the 
machine direction, however, is smaller than that in the transverse 
direction. 

3.3. Swelling behaviors of the membrane at different 
temperatures 

Dimensional changes with relative humidity at different tem­
peratures along the transverse and machine directions are shown 

Fig. 9. Proportional limit stress as a function of humidity at various tempera- Fig. 11. Break strain as a function humidity at various temperatures: (A) trans­
tures: (A) transverse direction and (B) machine direction. verse direction and (B) machine direction. 



Fig. 12. Break stress as a function temperature at various relative humidities: 
(A) transverse direction and (B) machine direction. 

in Fig. 16. With increasing humidity, the swelling coefficient 
(the derivative of the curve) increases; the swelling coefficient 
at higher relative humidity, above 70%, increases dramatically 
compared with the intermediate humidity range. It is clear from 
Fig. 16 that the swelling coefficients at higher temperatures are 
larger than that at lower temperatures. At the same tempera­
ture and humidity, the dimensional change percentage along the 
transverse direction is larger than that along the machine direc­
tion, although the trends are similar. 

Fig. 13. Break stain as a function temperature at various relative humidities: (A) 
transverse direction and (B) machine direction. 

Fig. 14. SEM images at low magnification of the fracture surface of the mem­
brane at: (A) temperature 25 ◦C and relative humidity 30%; (B) temperature 
85 ◦C and relative humidity 90%. 

3.4. Effect of pre-treatment procedures on the membrane 
properties 

Finally, we compare the Young’s modulus at 50% RH of 
the as-received membrane with that of the pre-treated mem-

Fig. 15. SEM images at higher magnification of the fracture surface of the 
membrane at: (A) temperature 25 ◦C and relative humidity 30%; (B) temperature 
85 ◦C and relative humidity 90%. 



Fig. 16. Dimensional changes as a function of relative humidity at various tem­
peratures: (A) transverse direction and (B) machine direction. 

brane in Fig. 17. It is evident that the as-received membrane 
has higher Young’s modulus than that of the pre-treated mem­
brane. The pre-treatment procedure in this study involves boil­
ing membrane samples in hydrogen peroxide, sulfuric acid 
solutions, and deionized water, as described in Section 2. 
According to Zawodzinski et al. [16], whereas the conduc­
tivity of Nafion® membrane is improved upon pre-treatment 
due to removal of low-molecular weight impurities left dur­
ing processing, boiling Nafion® membrane during the pre-

Fig. 17. Comparison of Young’s modulus at 50% relative humidity between the 
as-received membrane and the membrane which was pre-treated. 

treatment steps also promotes creation and growth of hydrated 
ionic clusters which leads to an increase in water content 
of the membrane. The rejuvenation of the membrane, along 
with the formation of ionic clusters, is responsible for the 
higher water content of pre-treated samples [16]. Comparing 
with as-received Nafion® membranes, pre-treated samples have 
lower tensile strength at the same temperature and humidity 
conditions. 

3.5. Kruskal–Wallis tests of the experimental results 

A nonparametric statistical analysis, Kruskal–Wallis test 
[17], has been applied to the experimental results in order to 
examine the significance of temperature and humidity effects 
on the mechanical properties of the tested material. The 
Kruskal–Wallis test is primarily a rank test where all the data for 
a given temperature or relative humidity is collected and ordered 
from the smallest to the largest value, regardless of the group 
which the data came from. An H-value can be found by applying 
Kruskal–Wallis equation: 

k12 � R2 
iH = − 3(n + 1) (1) 

n(n + 1) ni
i=1 

In which ni (i = 1,  2,  . . ., k) represent the sample sizes for each of 
the k groups (i.e., samples) in the data. Ri is the sum of the ranks �kfor group i. n = =1ni. Each of the ni should be at least 5 for i

the approximation to be valid. This statistic approximates a χ2­
distribution with k − 1 degrees of freedom under the significance 
level alpha (typically set to 0.05). The corresponding χ2-value 
can be found in the χ2-distribution table [17]. In this study, the 
χ2-value is 7.815. If the H-value is greater than the χ2-value, the 
input being tested is significantly affecting the data. Table 1 lists 
the H-values of the humidity effects on the membrane properties 
in the transverse direction at four different temperatures. From 
the results, it is clear that Young’s modulus and proportional 
limit stress of Nafion® are affected by humidity significantly, 
however, the break stress and break strain of the membrane are 
not affected much. The H-values from Kruskal–Wallis tests on 
the temperature effects at four different humidities are listed 
in Table 2. These results show that temperature change affects 
the Young’s modulus, proportional limit stress and break stress. 
However, the break strain is not significantly affected under tem­
perature change. A similar analysis on the mechanical properties 
in the machine direction showed that the same conclusions are 
valid for this set of materials. 

Table 1
 
The Kruskal–Wallis statistical H-values for humidity at various temperatures*
 

Temperature 
(◦C) 

Young’s 
modulus 

Proportional 
limit stress 

Break stress Break strain 

25 
45 
65 
85 

15.647 
16.592 
14.776 
14.951 

14.763 
15.303 
16.282 
10.432 

3.360 
3.309 
1.571 
9.477 

3.274 
3.753 
1.355 
3.994 

* A value greater 7.815 indicates statistical significance for this sample set. 



Table 2
 
The Kruskal–Wallis statistical H-values for temperature at various humidities*
 

Relative 
humidity (%) 

Young’s 
modulus 

Proportional 
limit stress 

Break stress Break strain 

30 
50 
70 
90 

15.109 
16.895 
17.857 
13.150 

17.108 
16.592 
17.857 
12.829 

13.703 
15.071 
14.314 

8.725 

9.852 
8.136 
5.811 
0.079 

* A value greater 7.815 indicates statistical significance for this sample set. 

4. Concluding remarks 

The mechanical properties of perfluorosulforic acid (PFSA) 
membrane Nafion®112 have been investigated at different 
humidities and temperatures in a custom-designed environmen­
tal chamber. The results show that Young’s modulus and the 
proportional limit stress of the membrane decrease as humid­
ity and temperature increase. Higher temperature leads to lower 
break stress and higher break strain. However, humidity has little 
effect on the break stress and elongation at break. The dimen­
sional changes of the membrane at different temperature and 
humidity are also studied. Membranes at higher temperature 
experience higher swelling coefficient. 

Only a minor, but consistent, difference in mechanical proper­
ties was detected between the transverse and machine directions: 
the Young’s modulus, proportional stress and break stress in 
the machine direction are all larger than those on the transverse 
direction at the same temperature and humidity. The break strain 
in the machine direction is smaller than that in the transverse 
direction. The dimensional change percentage along the trans­
verse direction is larger than that along the machine direction, 
although the trends are similar. 

The statistical analyses show consistent temperature and 
humidity effects on the membrane mechanical properties: 
the temperature and relative humidity significantly affect the 
Young’s modulus and proportional limit stress. Additionally, the 
break stress was significantly affected by the temperature but not 
the humidity and the break strain was not significantly affected 
by either the temperature or the relative humidity. 
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