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INTRODUCTION 

A robot with no load at its end-effector may be properly calibrated. When it 
carries an object of a certain weight moving from one pose (position and orien­
tation) to another. a significant discrepancy exists between the desired and 
actual pose of the robot. For a light-weight robot manipulator. link deflection is 
the primary cause of the discrepancy. Due to the distributed weights of robotic 
links and a load applied at the end-effector, each robotic link and joint arc 
deflected. There have been some researchers on the elastic deflections of ro­
botic manipu lators. 

Whitney' started the pioneering work on the deflection and vibration of 
jointed beams. Derby' developed a first-order compensation analysis for link 
deflections. The analysis was based on the assumptions of small bending and no 
radical difference in the deformed arm geometry . Zalucky and Hardt' proposed 
a solution to actively control the deflection using a straightness servo. The 
system employed two parallel beams. one is 10 act as the manipulator link and 
the other one is to carry only the bending loads. Maghdari and Shahinpoor" 
conducted a series of experiments of a PUMA 560 robot manipulator to deter­
mine the characteristics of its elastic deformations in various geometrical con­
figurations and modes of operations using a dial gauge with a resolution 01'0.00 I 
inch. Fenton and Reeder' also developed an elastic deflection compensating 
algorithm, in which the method they used in ,olving for the inverse kinematics 
of a deflected manipulator was ana logous to the method of solving for the 
inverse kinematics of a rigid manipulator. Tang and Wang' used a classical 
beam theory to compute the linear displacements of robotic links and consid­
ered the robot joints as torsional springs. where the first order approximation is 
applied for compliance analysis. 

Whitney et al. 7 pointed out five causes of robotic positioning crrors. They are 
backlash. gear transmission error. joint drive compliance. cross coupling of 
joint rotations. and base motion. The fir,t two arc due to manufacturing errors. 
whereas the third one is the overall compliance between the angular encoder 
and the actual angular output. When a robot i, loaded at its end-effector. couple 
moments in addition to the driving torques arc applied to the joints causing 
additional angular displacements (i.e. , angular deflections). The classical 
Timoshenko's beam theory has been employed to calculate the slope angle 
(angular deflection) at the end of each robotic link by researchers such as 
Derby,' Tang and Wang," and Fenton and Reeder. ' The formula which they 
used for the calculations was based on a cantilever beam a sumption (one end 
is free and the other end built-in or fixed to a rigid wall). However, all robotic 
joints. cxceptthe first one, are not rigidly fixed. Even for the first joint where a 
fixed pivot is located, an angular deflection is allowed. 

To overcome the problem. this article presents a more accurate way to 
calculate the angular deflections of robotic joints using one of energy mcthod,. 
Different methods used to calculate the link deflection of a planar two-link 
robot made up of aluminum alloy are pre,cnlcd. Experimental data is provided 
to verify the calculations. An algorithm for compensating a robot end-effector's 



pose error is developed thereafter. This article presents an improved method 
for on-line calculation and compensation of the static deflection at a robot end­
effector rather than an allempt to reach the accuracy available from a finite 
clement technique. 

TRANSFORMATION OF FORCES AND DISPLACEMENTS 

Each link of a robotic manipulator may be acted upon by concentrated 
forces. distributed forces and moments. It is necessary to transform a ge neral­
ized force vector from one coordinate into another. Here the generalized force 
vector is a vector which contains three force components and three moment 
components. Three unit vectors arc used to describe the robot end-effector's 
orientation. They are the approach vector a from which the end-effector will 
approach an object , the orientation vector 0 from fingertip to fingertip , and the 
normal vector n where n = 0 x a. In addition . a position vector p is used to 
describe the position of the end-effector with respect to base frame. Paul' has 
developed a method to transform static force and moments between different 
coordinate frames. The virtual work W resulting from the application of a 
generalized force F causing a generalized displacement D is 

W = FTD ( I) 

If the same displacement were caused by anot her force and moment acting at 
some different points on the object, described by a coordinate frame C, then the 
same virtual work would resull. 

W = (' F)T ' D (2) 

or 

FTD = (' F)T , D (3) 

Considering that 

'D = "J, D (4) 

which is 
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where J is called the Pose Jacobian malrix and oJ ,. denoles Ihe Po,e Jacobian of 
frame C wilh respeci to base frame. Using eqs. (3) and (4), gives 

F = ("J,.)' ' F (6) 

that is 

Ix 
f,. 
h = 
I11r 

111,. 

In :. 

Ill: 0 .\ (I, 0 0 0 <J. 
II )' 0)' a,. 0 0 0 Cj~ 

II , 0 , a ~ 0 0 0 ci (7)
(p x 0), (p x 0), (p x a)., /I , 0, at em, 

(p x 0), (p X 0), (p x a), /I, 0, [I ), em, 
(p x n), (p X 0 ), (p X a), Il l. 0, 0 , em, 

where F is a generalized force veelor described in Ihe base frame. 
The distribuled force acting upon link /I can be con,idered as a concenlrated 

force acting at the centroid of link /I. which can be decomposed into three 
componenls with direclions consistent wilh the X. Y, and Z axes of the local 
frame /I . For a robot manipulator subjecled 10 a concenlraled load Pal the end­
effector and dislribuled forces W aeling upon all links, Ihe generalized force 
veclor al coordinate frame i in frame i-I coordinates. is given by 

, 
i-IFj = (i-1 J )T "PI'! + 2: e- 11dJT kWd (8)n , , 

where i ' J" is a pose Jacobian describing the coordinale relation hip of frame /I 

with respect to frame i-I, i-' J"k is another pose Jacobian describing the 
coordinate relalionship of the centroid of link k wilh respeci to Ihe origin of 
frame i-I, ' P" is a concentraled force acting al Ihe origin of frame /I in frame /I 
coordinales. and I Wrl i ' a distribuled force aCling at Ihe centroid of link I. in 
frame k coordinales. 

For a planar two-link robot as shown in Figure I bearing distributed" eights 
W, and W, on links I and 2. respeclivel y, and a concentraled weigh I Pat Ihe 
end-effector, the generalized force s are given by 

'F, = ('1,)T 'P, + ('In )' ' w" (9) 

"F, = (01,)T 'P, + (oJn )' 'w" + (Ojn)1 'W" ( 10) 

where' F, and OF, are Ihe equivalent generalized force vectors al frame 2 in 
frame I coordinales. and at frame I in the base frame coordinales, respectively. 

' P, = r- ps" -PC" 0 0 0 Orr ( II) 
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Figure 1. Coordinate frames for (he planar Iwo-link robot. 

and likewise 

' W,., = l-W,L,S" - W, L,C" 0 0 0 Olr ( 12) 

where C, = Cosine of 8, . C" = Cosine of (8, + 8,) and S" = Sine of (8, + 8,), 
etc.• and the superscript c2 denotes that the weight W, is applied at the cenlroid 
of link 2. 

A systematic way to derive the above two equation is by means of the so­
called A matrix developed by Denavit and Hartenberg.' An A matrix is a 
homogeneous transformation describing the relative translation and rotation 
between link coordinate systems . Thus. the position and orientation of the 
second link in the base frame coordinates is given by 

( 13) 

that is 

C" -S" 0 L, c, L'C") 
0T = S" C" 0 L, S, + L,SIl ( 14) 

, 0 0 I 0( 
o 0 0 I 

where the first three elements of the second column represent the Y direction of 
frame 2 in the base frame coordinates. Inversely . the first three elements of the 
second row represent the Y direction of the base frame in frame 2 coordinates. 
Using Jacobian expressions and substituting eqs. ( II ) and (12) into eq. (9). gives 



'F, = [- PS, - W, L,S, -PC, - W, L, C, 

o 0 0 - PL, C" - 0.5W, L,'C,, ]T (15) 

Likewise, the expression for of, can be obtained 

°F, = [O -P - W, L,- W,L, 000 /IIJ , ( 16) 

where 

111, = -P(L,C, + L, C,,) - 0.5W,L, ' C, - W, L, (L,C , + 0.5L, C,, ) (17) 

The employment of the force transformation between coordinate frames pro­
vides a systematic way to calculate the equivalent force vectors . It is important 
and essential for robotic manipulators with more than two links. 

CALCULATIONS OF LINK DEFLECTIONS 

Robotic link deHections can be calculated by at least two methods. The 
Timoshenko 's beam theory has been widely used as a classical method. Of 
equal importance, the Ca tigliano's second theorem. one of energy methods, is 
anot her powerful method. They are briefly described as follows; 

Employment of the Timoshenko's Beam Theory 

Deflection of a One-Link Robot 

In using the Timoshenko's beam theory. a link is treated as a cantilever 
beam. Four possible loading conditions are shown in Figure 2 in which the total 
deflection can be easily superimposed for a combined loading condition . The 
deflection expressions for the four cases are shown as foll ows 'o 

dp = PL'/3EI ( 18) 

d, = WL 4/8£1 (19) 

d", = ML'/2EI (20) 

(21 ) 

Since the deflection due to an axial load is much smaller than others. it is 
assumed negligible throughout this articie . For the planar two-link robot as 
shown in Figure I, link 2 is ubjected to the concentrated load P and di stributed 
weight W, only . The deflections of link 2 (scalar form) in frame 2 coordinates 
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Figure 2. Deflection of a cantilever beam with different loading conditions (Ti-
moshenko's beam theory). 

due to P and W, can be derived by substituting eqs. (II) and (12) into (18) and 
(19) , respectively . 

(22) 

'd w = - W, L,'C 12/8E, I, (23) 

Deflection of a Multilink Robot via Force and 
Displacement Transformations 

A general methodology based on the Timoshenko's beam theory via force 
and displacement transformations to calculate the end-effectors deflection of a 
multilink robot is developed. The differential changes of deflections can be 
oriented such that the deflection of each link is described in the same frame 
coordinates (base frame coordinates) by mUltiplying a matrix , called the Orien-
tation Jacobian, 1'. 

D = 1"D (24) 

where 
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"\. 0,. a,. 0 0 0 
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(I :: 
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II, 
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(25) 

0 0 0 II , 0, ll ). 

0 0 0 ":. 0, (I t. 

and ''0 is a displacement vector in fram e C coordinates . For the robot shown in 
Figure I. the deflection of link 2 in base frame coordinates can be expressed as 
follows: 

(26) 

where ' d and 'dw" are treated as 6 x I column vectors whose non ze ro ele­p 
ments are the scalars shown in eqs. (22) and (23) , respectively . The r or 
vertical component of the deflection is 

Od" = -(PL jcl,/3E, I,) - (W, L jcl,/8E, I ,) 

= - L jcl,(8P + 3W, L,)/24E, /, (27) 

With the addition of a moment effect, the deflection of link I can be derived in a 
similar way, whose y component is 

Od, y = -(8PL1Cl + 12PL1L,C,C" + 8w, L1L,cl 

+ 6w,L1L l c,c" + 3w,L jcl)/24E,/ , (28) 

Finally , the vertical deflection of the end-effector of the two-link robot in ba e 
frame coordinates is given by 

(29) 

Employment of the Castigliano's Second Theorem 

There arc two theorems due to Castigliano. The Castigliano's second theo­
rem" is stated as follows : 

ar = aUlap (30) 

where U is strain energy, Y is the displacement in the direction and , at the point 
of application , of an applied force P. 

In applying the Castigliano's second theorem, the strain energy must be 
expressed as a function of the load. A straight beam or link may be subjected to 
a number of common loads such as axial force , bending moment , shear force 
and twisting moment. For the planar two-link robot , it is mainl y subjected to 



bending moments M only. Axial and shear forces are assumed negligible and 
there is no twisting moment in this case. The strain energy i reduced to the 
following 

(31 ) 

where the integration is carried out over the lengt h of the link . Accordi ngly, the 
vertical deflection (downward) at the end-efTector is 

Y = - Llcl,(8P + 3W,L,)124E,I, 

- jPL,(8L1Cl + 24L,L,C,C" + 24LjCl,) 

+ W, L, L,(8L jcl + 18L,L,C,C" + 12Ljcl,) 

+ W,Li(3L,Cl + 4L,C,C,,)JI24E, /, (32) 

where P is the applied load and 

E" E,: modulus of elasticity of links I and 2, respectively 
I " I , : area moment of inertia of links I and 2, respectively 

L" L,: length of links I and 2, respectively 

Comparison between Two Methods 

Comparing eq. (32) with eq. (29), the differe nce in deflection is quite substan­
tial. The eq. (32) contains more terms which wi li likely result in a higher value 
of deflection. The comparison between these two methods is shown in Table II . 
It should be noted that there is absolutel y no difTerence in deflection between 
these two methods for a one-link robot as shown in Table I. 

Tab le J. Difference in calculated deflections between two methods ror a one·link robot 
with one revolute joint . The robot data is as [ollows: Link length : 24 inches , Moment of 
inertia: t .920 in ." Modulus of elasticity: tOE +6 psi . Load P = 3.05 Ib is applied at the 
robot end-effector, YC: Vertical deflection using the Castiglia no's second theorem , YT: 
Venical deflection using the Timoshenko's beam theory.' 

Thetal YC YT 
(deg.) (in.) (i n.) 

o 0.00122 0.oot22 
20 0.oot07 0.00107 
40 0.00071 0.0007t 
60 0.00030 0.00030 
80 0.00004 0.00004 

• The American Customary Unit System (inch-pound) is used throughout this paper since the 
experimental data (listed in Table III) was obtained using a dial gage with a resolution of 0.00 I inch. 
I Ib = 0.454 kg and inch = 25.4 mm in the 51 Unit System. Angle the ta! is with respec t to the 
horizontal x axis of the base frame. 



Table II . Difference in calculated deHections between two methods for a planar two. 
link robot with two revolute joints. The robot data is as follows: Length of link I: 24 
inches (uniform hollow square cross section), Length of link 2: 24 inches (uniform 
hollow square cross section), Area moment of inertia of link I: 1.920 in,4, Area moment 
of inertia of link 2: 0.289 in ', Modulus of elasticity of link I: 10E + 6 psi (aluminum 
alloy), Modulus of elasticity of link 2: 10E + 6 psi (aluminum alloy). Load P = 3.05 Ib is 
applied at the end·effector, YC: vertical deflection calculated using the Castigliano's 
second theorem, YT: vertical deflection calculated using the Timoshenko's beam the­
ory, PTO: i(YT - YC) /YC[ x 100. 

Theta I Theta2 YC YT PTO 
(deg.) (deg.) (in.) (in.) (%) 

0.0 0.0 0.0 1523 0.00959 37.03 
0.0 22.5 0.01356 0.00856 36.88 
0.0 90.00 0.00179 0.00179 0.0 

22.5 -22.5 0.01466 0.00921 37.18 
22.5 - 45.0 0.01300 0.00819 37.00 
22.5 67.5 0.00152 0.00152 0.00 
45.0 0.0 0.00762 0.00480 37.00 
45.0 -45.0 0.01313 0.00825 37.17 
45.0 -67.5 0.01154 0.00725 37.18 
67.5 -22.5 000604 0.00381 36.84 
67.5 -45.0 0.00969 0.00616 36.36 
90.0 -22.5 0.00137 0.00092 32.85 
90.0 - 45.0 0.00466 0.00314 32.62 

a The uniformly di stributed weights of link :.. I a mI 2 a re considered . Theta I i!l the angle of link I 
with respect to the hori zontal axis of the base frame and theta2 is the relative angle from link I to 
link 2. For the purpose of comparison. the uddilionallink deflection :.. resulting from angular deflec­
tions of joints I and 2 are not con'iidered in the above c:'llcuJatioll 'i. 

Tang and Wang6 gave a two-link robot as a numerical example and compared 
the theoretical calculations of link deflections using a classical beam theory and 
the Castigliano's econd theorem. Their study showed that the two calculations 
were quite close to each other. The reason is that the rotational axes of the 
robotic links are perpendicular to each olhcr and Ihe first link always stands up 
vertica ll y. This means that link I is almost undeflected when a weight is applied 
vertica ll y at the end of the second link . Thus. their example was essentially 10 
il lustrate the calcu lated deflections of a one-link robot using two different meth­
ods . In addition, the Castigliano's second theorem which they used was solely 
for calculating the link deflections. The angular deflections of robotic joints 
were ignored in their calculations. 

ADDITIONAL LINK DEFLECTIONS RESULTING FROM 
ANGULAR DEFLECTIONS 

Calculation of Angular Deflections Using the Castigllano' s 
Second Theorem 

Figure 3 shows thaI the IOtal vertical deflection <ly comprise Iwo parts . <I" 
and <I,." where <I" is the additional vertical deflection resulting from an angular 
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Figure 3. Deflection of a one-link robot with a revolute joint. 

deflection dO due to an applied couple moment , and d" is the vertical deflection 
resulting from a concentrated load P at the end-effector. Traditionally, a robot 
manipulator has been treated as a series of cantilever beams in order to perform 
the deflection analysis. The basic assumption when employing the classical 
beam theory is that ajoint is considered rigidly fixed to a wall where the angular 
and linear deflection, arc disallowed. This conflicts with the reality that a ll 
robotic joints. except the first one, are not rigidly fixed to a stationary founda­
tion . Besides , even for the first one, a small angular deflection is still possible. 

The Castigliano's second theorem can be u 'ed to calculate link deflections or 
angular deflections . For a link subjected to an applied coupled (bending or 
twisting) moment C. the rotational angle of twis t (angular deflection) at a spe­
cific point is given by" 

0, = aUlae, (33) 

where U is strain energy. Considering a link subjected to a bending moment 
only, the expression for the angle of rotation (or the angular deflection) is 

(34) 

For a planar two-link robot when a load Pi applied at the end-effector and 
the weights of links, WI and W, are considered. the angular deflection of joint 2 
can be easily calculated using eq. (34). The calculation of the angular deflection 
ofjoint I , however, requires the employment ofa fictive bending moment at the 
origin of the base frame . The fictive moment will be set to zero later. 

dOl = -(A IE,/,) - (RIE,I,) (35) 



where 

A = PL,(L,C" + L,C, /2) + W,L:C, /6 + W, L,L, (L,C, + L,C,,)/2 

B = PC"Ll/2 + W,LlC,, /6 

Likewise. 

dO, ~ - 111£ , 1, (36) 

It is wort hwhile to note that if the Timoshenko's beam theory were em­
ployed . dO, would be the same but dO, would be alway, Lero. The difference is 
very obvious. 

Calculation of Additional link Deflections Resulting from 
Angular Deflections 

Since angu lar deflections are small . they can be considered as joint differen­
tial changes. Employing the conceph of differential relation hips. the addi­
tionallink deflections resulting from angu lar deflections can be more easil y and 
systemati call y calcu lated. For a six-link robot. the differential changes in the 
position and orientation of a T. matrix are caused by differential changes in 
joint coordinates. In the case of a revolute joint, dq, corresponds to a difTeren­
tial rotation, and in the case of a prismatic joint. dq, corresponds to a difTeren­
tial change in the joint distance. 

PaulS has derived the difTerential change as a function of six joint coordinates 
written as a six-by-six matrix consisting of differential rotation and translation 
vector elements. Each column of the Jacobian consists of the differential trans­
lation and rotation vectors corresponding to the difTerential changes of each of 
the joint coordinate. 

T6. , 

'/6 •. 
T6• • 

T66, 

T66• 

T6.: 

To, '. T6. :. 764 ., T6.~ , T6 , \, 76•" 
To, T6.~. T6.\, To,'. T6• • , To,

0, 

" 76. \ T6.~, T6" , T6 •• 76., T6.~ 

T6~ T6.:, 761>1, T., 7b•• , T68~ 
" '. 

T68 \., T6.~, T6 61, Tn/> T6h, T .... '. 
7 6&1 76&~: T6A• T 16h: T6,,~.'" 

dq, 
dq, 
dq, 

(37)dq, 
dq, 
dq, 

where the first matrix on the right-hand side is called the DifTcrential Jacobian 
1". If joint; is revolute . then 

T.o, = (-II,p , + lI,p,); + (-o,p, + o,.p,)} + (a,p,. + a , p , )k (38) 



If joint i is prismatic, then 

(40) 

T. = Oi + OJ + Ok (41 )" 
Thus, for the given two-link robot, the end-effector' s deflection vector in terms 
of frame 2 coordinates is expressed by 

I' d) = 1"ldO I (42) 

where the Differential Jacobian 1" is 

Thus , 

' d , 
2d" 
"'l d :: 

'5, 
"'l o v 

' 5, 

Thus , 

d, 
dy 
d, 
5, 
Sy 
5, 

L,S, 0 

L, + L,C, L, 
0 0) " = 

= 

(43)0 0 


0 0 


L,S,dO, 
L, C, dO , + L,(dO, + dO,) 

0 
(44)0 

0 

dO, + dO , 

In order to Sum deflections of different links , deflection vectors are oriented 
such that they are all referred to the same coordinates which are the base frame 
coordinates. It should be noted that the deflections are not transformed back to 
the base frame. They are still located at the end of each link. The deflection of 
link 2 in terms of the base frame coordinates Can be obtained by premuHiplying 
the above deflection vector, eq . (44) by the Orientation Jacobian, J ' in eq. (25). 

-L,S,dO, - L, S,,(dO, + dO,) 
L,C,dO, - L, C ,,(dO, + dO,) 

0 
(45)

0 

0  
dO, + dO ,  



Since the concentrated load P and distributed weights W, and W, are all in 
the negative y direction of the base frame coordinates. d, is the most significant 
component among the six elements of the displacement vector at the end­
effector. 

Od, = L,C,dO, + L,CddO, + dO,) 

= - A(L,C, + L,CdIE,i, - B(L,C, + 2L,C 12 )IE, i , (46) 

where A and B were defined in eq. (36). Finally, the total deflection at the end­
effector of the given two-link robot is the sum of the link deflection, od and the 
additional link deflection resulting from the angular deflections of joints. od,. 

odcO(al = 0d + 0d \ (47) 

where °d is from eq. (29) and od, is from eq. (46). 

EXPERIMENT 

To verify the theoretical deflection analysis, a planar two-l ink robot was 
buill. It was made up of light-weight aluminum alloy. The robot data is as 
follows: 

Length of link I: 24 inches (uniform hollow square cross section) 
Length of link 2: 24 inche (uniform hollow square cross section) 
Area moment of inertia of link I: 1.920 in' 
Area moment of inertia of link 2: 0.289 in' 
Modulu of elasticity of link I: 10E + 6 psi 
Modulus of elasticity of link 2: 10E + 6 psi 

To exclude the possibilities of gear backlash. gear transmission error, joint 
drive compliance, and cross coupling of joint rotations. the robot ic joints are 
mechanical pin joints with no ac tuators. The robot was designed to have a finite 
rotational increment of22.5 degrees , which was accomplished by locating a pin 
in a different pin hole . To avoid a possible rotational slippage of ajoint , two set 
screws were used to fix the joint at a specified angular position. Various 
weights could be applied at the end-effector. A dial gauge of 0.001 inch (0.0254 
mm) resolution was used to measure the end-effector's deflection after a weight 
has been applied. The procedure was repeated until all possible arm configura­
tions and applied weights had been tested . 

Tab le III shows a comparison between theoretical calculations and experi­
mental data. As can be seen. the theoretical calculation YCO or YTO is gener­
ally in agreement with the experimental data. Notice that YO (t he vertical 
deflection resu lting from the angular deflections of all joints) is the most domi­
nant factor. It is much greater than YC or YT. 



Table Ill . Comparison of deflections between theoretical calculations and experimental 
data. The robot data is the same as in Table I. Load P = 1.02 Ib is applied at the end­
effector. YC: vertical deflection calculated using the Casligliano's second theorem. YT: 
vertical deflection calculated using the Timoshenko's beam theory , YD : vertical deftec-
tion resulting from the angular deftections of all joints. YTD = YT + YD, YCD = YC + 
YD, EXP: Experimental data (venical deftections at the end-elTector are measured 
using a dial gauge with a resolution of 0.001 inch aftcr a weight of 1.02 Ib has been 
applied at the end-elTector). 

Thetal Theta2 YC YT YD YTD YCD EXP 
(deg.) (deg.) (in .) (in.) (i n.) (in.) (in .) (in.) 

0.0 0.0 0.0033 0.0022 0,0095 0.0118 0.0128 0.0150 
0.0 22.5 0.0029 0.0020 0.0084 0.0104 0.0113 0.0140 

22.5 - 22.5 0.0032 0.0022 0.0092 0.0114 0.0124 0.0130 
22.5 -45.0 0.0029 0.0019 0.0081 0.0100 0.0110 0.0120 
45 .0 0.0 0.0017 0.0011 0.0048 0.0059 0.0065 0.0060 
45 .0 -22.5 0.0026 0.0018 0.0073 0.0090 0.0099 0.0110 
45.0 -45 .0 0.0030 0.0020 0.0083 0.0103 0.0113 0.0100 
45 .0 -67.5 0,0026 0.0018 0.0073 0.0090 0.0099 0.0090 
67.5 - 22.5 0.0014 0.0009 0.0038 0.0048 0.0052 0.0050 
67.5 - 45 .0 0.0023 0.0016 0.0061 0.0077 0.0084 0.0070 
90.0 -22.5 0.0003 0.0002 0,0008 0.0010 0.0011 0.0010 
90,0 - 45.0 0.0012 0.0008 0.0028 0.0036 0.0040 0.0040 

• Two robotic links are predeftecled due to their distributed weights before a load is applied at the 
end-effec tor. The dial gauge used to measure the deflections is zeroed aner the robot has been 
predeflected . In order to compare the calculated deflections with the measured ones. the distrib-
uted weights Wt and Wz are not included in [he theorelical calculations. 

METHODOLOGY OF DEFLECTION ANALYSIS AND 
COMPENSATION ALGORITHM FOR A SIX DEGREE-OF-FREEDOM 
ELBOW MANIPULATOR 

As a further example of the deflection analysis a six-degree-of-freedom el­
bow manipulator containing only revolute joint is investigated. The robot 
manipulator is made of aluminum alloy whose coordinate frames are shown in 
Figure 4 and link parameters are described in Table IV,' where a is the twist 
angle between two consecutive rotational axes, {/ is the common normal dis­
tance between two consecutive rotational axes, and d is the di tance along the 

Table IV. Link parameters of robot manipulator. 
0/ a d 

Link Variable (degree) (in.) (in.) 

I theta I 90 0 0 
2 lheta2 0 24 0 
3 theta3 0 24 0 
4 theta4 -90 10 0 
5 thetaS 90 0 0 
6 theta6 0 0 3.5 



Zo 


Zz 

Coordinate frames for the elbow manipulator. Figure 4. 

rotational axis between two links. The variables are joint angles theta I through 
thetaS. It is assumed that the robot manipulator has constant hollow circular 
cross sections whose outside and inside diameters are 2.0 and 1.8 inches. 
respectively . 

The procedure along with numerical data is as follows : 

Input data: 

The applied load P is 5.0 Ib (2.27 kg). 
The desired pose matrix (i.e., 7.) is 

I 0 0 15)

o I 0 20 

(o 0 I 10 
o 0 0 I 

Step I: Transform forces and moments from the end-effector to each joint 
through the pose Jacobian matrix described in eq. (8). 

Slep 2: Calculate the defleclion of each link using the Timoshenko's beam 
theory. 

Step 3: Apply the Castigliano's second theorem. one of energy methods. to 
calcu late the angu lar deflections of joints. 

Step 4: Calculate the additional lin k deflections resulting from the angular 
deflections. 

Step 5: Use a 6 x 6 transformation matrix (orientation Jacobian) to orient 
all the link deflections into the same coordinates which are the base 
frame coordinates . Finally, the total deflection is formed by sum­
ming all local deflections. 



Table V. Deflections for different arm configurations. 

Theta I Theta 2 Theta 3 Theta 4 Theta 5 Theta 6 Deflection 
(deg.) (deg.) (deg.) (deg.) (deg.) (deg.) (in.) 

53. t30 58.6)2 - 11 7.224 148.6 12 90.000 - 143. 130 .00329 (I) 
53.130 - 58.612 117.224 31.388 90.000 - 143.\30 .00703 (2) 
53 . 130 86.824 - 96.329 279.505 - 90.000 36.870 .0 1538 (3) 
53.130 - 9.505 96.329 183.176 - 90.000 36.870 .05824 (4) 

233. \30 - 121.388 - 11 7.224 328.612 90.000 36.870 .00686 (5) 
233 . \30 121.388 117.224 - 148.612 90.000 36.870 .003 13 (6) 
233. \30 - 170.495 - 96.329 176.824 - 90.000 - 143 . 130 .05828 (7) 
233. \30 93.176 %.329 80.495 - 90.000 - 143 . \30 .01542 (8) 

Step 6: Compute Ihe IOta) defleclion by adding the additional link deflection 
calculated in step 4 to the link deflection calculated in step 2. 

Step 7: Compule Ihe inverse joint ,olulions of . :, possible arm configura­
lions and Iheir vertical deflections. Due to the kinemalic design of 
Ihe given robot manipulator, Ihere exists eight possible arm config­
urations which are lisled in Table V. 

Step 8: Use a bubble sorting lechnique 10 selecl Ihe 0Plimum arm configu­
ralion which has Ihe smallest defleclion. The smallesl end-effec­
tor's defteclion seleCled is .00313 inches and Ihe six joint angles are 

Theta I Theta 2 Theta 3 Theta 4 Theta 5 Theta 6 

233 . 130 121.388 117.224 - 148.612 90.000 36.870 

Step 9: 	 Using the concepls of differential relationships and Ihe inve"e of 
Ihe Differentia) Jacobian, Ihe 6 x I total defleclion veclor in Carte­
sian space is transformed 10 a 6 x I angular deflection veclor in 
joinl space, which is listed .\ follows : 

Add_I = 0.0043 deg. 
Add 2 = 0.0035 deg. 
Add_3 = -0.0070 deg. 
Add 4 = 0.0035 deg. 
Add 5 = 0.0000 deg. 
Add_6 = -0.0043 deg. 

Step 10: Compensate Ihe end-effeclors defleclion by subtracling Ihe above 
angles from the original joint angles. The angles in degrees before 
and after the compensation are listed in Table VI. 

The calculated static deflection at the end-elrector after the compensation is 
theoretically zero. Con,equently. the position and orientation of the end-effec­



Table VI. 

Joint 

I 
2 
3 
4 
5 
6 

Angles in degrees before and after compensation. 

Before Compensation After Compensation 
233.1301 233.1258 
121.3882 121.3847 
117.2237 117.2307 

-148 .6118 - 148.6153 
90.()()()() 90. ()()()() 
36.8699 36.8742 

tor theoretically remain the same as the desired ones . The total deflection d, at 
the end-effector of the Elbow Manipulator is derived and shown in the Appen­
dix. 

DISCUSSIONS 

In this work, the Castigliano's second theorem (one of energy methods) is 
used to calculate link deflections and angular deflections. Table I shows a 
comparison of calculaled deflections at the end-effector of a one-link robot 
between using the Timoshenko's beam theory and the Castigliano's second 
theorem. There is no difference in denection between them for a one-link robot. 
The difference becomes more obvious when the number of links increases. For 
a planar two-link robot, the difference is over 30% as shown in Table II. 

This stud y shows that the most conlributory factor to the end-effector's total 
deflection is the additional link deflections resulting from Ihe angular deflec­
tions ofjoints. To more accurately calculate the angular denections, the Castig­
liano's second theorem is employed . Table III shows a comparison of the end­
effector's denections for a planar two-link robot betwcen theoretical 
calcu lations and experimental data. When the additional link deflection YO is 
added to the either YTor YC where YTand YC are the vertical deflections using 
the Timoshenko's beam theory and the Castigliano's second theorem, respec­
tively, the resultant deflection becomes reasonably close to the experimental 
data. This can be reasoned that the usc of an energy method should result in a 
more accurate calculation of link deflection. Since the additional link deflection 
YD as shown in Table ill is much larger than either YT or Yc' the total 
deflections calculated by YTD = YT + YD or YCD = YC + YD are approxi­
mately the same. For a ix-degree-of-freedom robot such as the elbow manipu­
lator, it is extremely tedious to derive the expression for the end-effector's 
deflection using the Castigliano's second theorem. Hence, the Timoshenko's 
beam theory is used to calcu late Ihe link deflection at the end of each link 
individually. 

This article presents a systematic approach to calculating deflections through 
three different Jacobians. The firsl one is called the "Pose Jacobian." which is 
used for transformation of forces between coordinate frames. The econd one 
is called the "Orientation Jacobian." which is used to orient a deflection vector 



from a local frame to the ba e frame. The local deflection is not transformed 
back to the origin of the base frame. It stays at the end of a link so that the 
magnitude of the deflection can remain the same. The purpose of using the 
orientation Jacobian is to sum the deflections of all links if they are all with 
respect to the base frame coordinates. The third one is called the "Differential 
Jacobian ." It is written as a 6 x 6 matrix consisting of differential rotation and 
translation vector elements. The multiplication of the Jacobian and a vector 
consisting of differential joint displacement changes gives the differemial 
changes in position and orientation of the end-effector. This concept is used to 
calculate the additional link deflections resulting from angular deflections. The 
additional deflections are then added to the link deflections which are calcu­
lated using the Timoshenko's beam theory. The total deflection at the end­
effector i finally transformed from Cartesian space to joint space by inverting 
the differential Jacobian . 

The concept of differential relationships. especially the use of the differential 
Jacobian allows u ' to gracefully perform a transformation of differential 
changes between Cartesian space and joint space. Based on the differential 
joint displacement changes, the end-effector's deflection is compensated by 
adjusting the nominal joint positions . 

CONCLUSIONS 

The cia"ical Timo,henko', beam theory and the Castigliano', second theo­
rem used to ca lculate robotic link deflections are compared. It i~ found that the 
additional link dcflection~ resulting from angular deflections significantly con­
tributc the robot end-effector', deflection. The additional deflections arc more 
accurately calculated using the Castigliano', second theorem . Experiments 
were carried out on a house-made planar two-link robot. As can be seen in 
Table III. with the cOlhideration of the additional link deflections the theoreti­
cal calculation,) are generally in agreement 'With the experimental data . Al-
though thi, stud y ,hows only the mo,t ,ignifieant vertical deflection data. the 
developed methodology can be used to find all of ,ix deflection components. 

It is al,o found that the end-effector, deflection heavily depend, on the arm 
configuration. From the minimum deflection point of view. the configuration 
which produces the smallest deflection i, eOlhidered a, an optimum. The de­
flection i.... then compcn'iatcd ba~ccJ 011 the ~dcctcd optimum configuration. As 
shown in ,tep 9 of the elbow manipulator example. configuration 6 (the opti­
mum) i, selected whose to-be-corrected joint angle, arc all Ie" than 0.01 de­
grees. A practical problem ari,es when the,c angles are Ie,s than the resolu­
tions of regular joint aCllIalors. In thi~ ca~e. no cOl11pen~ation is l1\!ccssary . 
Notice that configuration 7 prodllcc~ a dcncction all11o,( 19 time"" a-; much 3'i 

the configuration 6 docs . If the configuration 7 were chosen. correction, in joint 
angles would be sub;tantia!. 

Another con;ideration on selecting the arm configuration can be based on the 



so-called manipula tor re liability developed by Bhalti and Rao ." The manipula­
tor reliability was defined as the probability of end-effector', po;e (po ition and 
orientation) falling within a specified range from the desired pose . If more than 
one arm configuration is possible to perform a certain task. the configuration 
which gives the highest reliability will be selected. The configuration thus se­
lected may not be the same as that selected for producing a minimum deflec­
tion . This will be a decision-making problem for a robot user. 

The author!'! would like to acknowledge the ~upport of this work by the Ohio In ~ litll ­
tional Research C hallenge Program through the Cle ve land State University. 
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APPENDIX : THE EXPRESSION OF THE TOTAL DEFLECTION AT THE 
END-EFFECTOR OF THE ELBOW MANIPULATOR 

The total deflection . dy at the end-effeclor of the \ ix-degree-of-freedom El­
bow Manipulator is derived. It compri ~es lWO parl ... , dYI and ely'!. where dYI is 
the sum or the additional link deflections resu lting rrom the angula r deflec tions 



of all joints , and dy, is the sum of the link deflections calculated based on the 
Timoshenko' beam theory. The ex pression for the total deflection is as fol ­
lows: 

dy = dy , + dy, 

where 

dy, = A(a, C, + 2a,C" + 3a,C'14 + 2d, C2]4 S, + ,/oS" ,,)IE,I,  

- B(a, C, + 2a, C" + 3a,C'14 + 3d,C,J4 S ,)IE. I,  

- C(a , C, + 2a, C21 + 2a,C214 + 2d, C" .S,)IE, /,  

- D(a,C, + a, C" + a,C", + d, C" .S,)IE, I,  

where 

A = Cll• C,(3 Pdl + W.d~) /6 

B = [Pd. + (W. dV 2)]a,C", S, + (P + W. d. )alC,J4 /2 + W. aJC,J4 /6  

C = IP + (W. d./2)d. a, Ca2]4 S, + IP + (W,a, /2) + W.d, Ja , a,C21,  

+ (P + W,a, + W. d,)a l C2112 + W,a lC,,/6  

D = [(P + (W.d,/2)]a, d"C,J4 S., + IP + W.d. + (W,a,/2J1a, a.C" ,  

+ [P + W, d, + W,a, + (W,a,/2)Ja, a, Cll 

+ (P + W, d, + W,a. + W,a,)a l C,/2 + W, a jC,/6 

a, and di are link parameters defined in Table IV ; Wi. E, and I, are the weight, 
modulus of elas ticity, and moment of inertia of the ith link, respect ively . Pis 
the applied load at the end-effector. 

C, = Cosi ne of angle (8,) 

C'" = Cosine of angle (8, + 0, + 8,) 

S, = Sine of angle (8,) . ... etc . 


and dy, = 

- (PdM3 - Pd!s l14s j/3 + W,d~/S - w, d:s l"S VS) /E. " 

- (PalCl,.13 - Pald.Ch.s,/2 + W, aJd, c l,,/3 

- w" ,Jdl c h,s,/4 + W,a:C j,,/8)IE, I, 

- (Pa l Cl,/3 + Pa ja,C", C,,/2 + PlI jd, C21.C" S,/2 

+ W. ,,jd. c l,/3 + W, a ja,d, C" .C,/2 + w,a jd l C'14 C21 S ,/4 

+ W.a l a,C l,/3 + W,a i alC" ,C21/4 + W, a~C l , /8) IE, / , 

http:PalCl,.13


- (PalCj /3 + Pa jo,C"C,12 + Pajtl,C",C,12 + Pald.C,,,C,S,/2 

+ W,o jd.Cl/3 + W,{,ja ,d.C"C,/2 + W,{,ja,d,C",C,/2 

+ W6a}dicn,C2S~/4 + W4a ~ 1I4C~13 + W"fl3nJa"Cn C;!12 

+ W4a ja~C2HC2/4 + W,lI i ll,CY3 + W, {I ~ a ~ C!3C2/4 

+ W,tljCj/8)IE, I, 

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2014

libuser
Typewritten Text

libuser
Typewritten Text


	Cleveland State University
	EngagedScholarship@CSU
	4-1991

	An Improved Method for Online Calculation and Compensation of the Static Deflection at a Robot End-Effector
	Paul P. Lin
	Hsiang-Dih Chiang
	Xiu Xun Cui
	Publisher's Statement
	Original Citation


	An Improved Method for On-Line Calculation and Compensation of the Static Deflection at a Robot End-Effector.

