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INTRODUCTION

A robot with no load at its end-effector may be properly calibrated. When it
carries an object of a certain weight moving from one pose (position and orien-
tation) to another, a significant discrepancy exists between the desired and
actual pose of the robot. For a light-weight robot manipulator, link deflection is
the primary cause of the discrepancy. Due to the distributed weights of robotic
links and a load applied at the end-effector, each robotic link and joint are
deflected. There have been some researchers on the elastic deflections of ro-
botic manipulators.

Whitney' started the pioneering work on the deflection and vibration of
jointed beams. Derby? developed a first-order compensation analysis for link
deflections. The analysis was based on the assumptions of small bending and no
radical difference in the deformed arm geometry. Zalucky and Hardt® proposed
a solution to actively control the deflection using a straightness servo. The
system employed two parallel beams, one is to act as the manipulator link and
the other one is to carry only the bending loads. Maghdari and Shahinpoor*
conducted a series of experiments of a PUMA 560 robot manipulator to deter-
mine the characteristics of its elastic deformations in various geometrical con-
figurations and modes of operations using a dial gauge with a resolution of 0.001
inch. Fenton and Reeder® also developed an elastic deflection compensating
algorithm, in which the method they used in solving for the inverse kinematics
of a deflected manipulator was analogous to the method of solving for the
inverse kinematics of a rigid manipulator. Tang and Wang® used a classical
beam theory to compute the linear displacements of robotic links and consid-
ered the robot joints as torsional springs, where the first order approximation is
applied for compliance analysis.

Whitney et al.” pointed out five causes of robotic positioning errors. They are
backlash, gear transmission error, joint drive compliance, cross coupling of
joint rotations, and base motion. The first two are due to manufacturing errors,
whereas the third one is the overall compliance between the angular encoder
and the actual angular output. When a robot is loaded at its end-effector, couple
moments in addition to the driving torques are applied to the joints causing
additional angular displacements (i.e., angular deflections). The classical
Timoshenko's beam theory has been employed to calculate the slope angle
(angular deflection) at the end of each robotic link by researchers such as
Derby,? Tang and Wang,® and Fenton and Reeder.’ The formula which they
used for the calculations was based on a cantilever beam assumption (one end
is free and the other end built-in or fixed to a rigid wall). However, all robotic
joints, except the first one, are not rigidly fixed. Even for the first joint where a
fixed pivot is located, an angular deflection is allowed.

To overcome the problem, this article presents a more accurate way to
calculate the angular deflections of robotic joints using one of energy methods.
Different methods used to calculate the link deflection of a planar two-link
robot made up of aluminum alloy are presented. Experimental data is provided
to verify the calculations. An algorithm for compensating a robot end-effector’s




pose error is developed thereafter. This article presents an improved method
for on-line calculation and compensation of the static deflection at a robot end-
effector rather than an attempt to reach the accuracy available from a finite
element technique.

TRANSFORMATION OF FORCES AND DISPLACEMENTS

Each link of a robotic manipulator may be acted upon by concentrated
forces, distributed forces and moments. It is necessary to transform a general-
ized force vector from one coordinate into another. Here the generalized force
vector is a vector which contains three force components and three moment
components. Three unit vectors are used to describe the robot end-effector’s
orientation. They are the approach vector a from which the end-effector will
approach an object, the orientation vector o from fingertip to fingertip, and the
normal vector n where n = o x a. In addition, a position vector p is used to
describe the position of the end-effector with respect to base frame. Paul® has
developed a method to transform static forces and moments between different
coordinate frames. The virtual work W resulting from the application of a
generalized force F causing a generalized displacement D is

W=F'D (1)
If the same displacement were caused by another force and moment acting at

some different points on the object, described by a coordinate frame C, then the
same virtual work would result,

W= (F)TD (2)
or
F'D = (F)T D (3)
Considering that
<D= 9%.D (4)
which is
(ca, ] [ne ny n. (pxm) (pxm)y (pxn)[d]
Cy, 0y 0y o, (pxXo0) (pxo) (pXxo)]||d
ca, | |a. ay, a. (pxa) (pxa) (pxa)l|ld. )
Cs. 0 0 0 n, n, n, 8, .
Cs, 0O 0 0 0, 0, 0. 5,
_q:J L0 0 0 a, ay a. JLé.J




where J is called the Pose Jacobian matrix and "J. denotes the Pose Jacobian of
frame C with respect to base frame. Using egs. (3) and (4), gives

F= 0y F (6)
that is

[ f. W C 0 0, a, 0 0 0[¢T

I ny 0y a, 0 0 0] ¢

fo | _ n, 0 da, 0 0 0 cr. )
me| |@xmn, (pxo), (pxa), n o al||cm '
my (pxm, (pxo) (pxa) n oy al||Cn,
L L(p X n); (P Xo0) (pxXa), n, o a:llcyl

where F is a generalized force vector described in the base frame.

The distributed force acting upon link n can be considered as a concentrated
force acting at the centroid of link n, which can be decomposed into three
components with directions consistent with the X, ¥, and Z axes of the local
frame n. For a robot manipulator subjected to a concentrated load P at the end-
effector and distributed forces W acting upon all links, the generalized force
vector at coordinate frame / in frame i — | coordinates, is given by

i=UE, = (FV )T P, + 2 (' J.07 kW, (®)
k=i

where 'J, is a pose Jacobian describing the coordinate relationship of frame n
with respect to frame i — 1, "'J,; is another pose Jacobian describing the
coordinate relationship of the centroid of link k with respect to the origin of
frame i — 1, "P, is a concentrated force acting at the origin of frame # in frame n
coordinates, and *W_ is a distributed force acting at the centroid of link A in
frame k coordinates.

For a planar two-link robot as shown in Figure | bearing distributed weights
W, and W, on links I and 2, respectively, and a concentrated weight P at the
end-effector, the generalized forces are given by

IFE: 'IJ:)]’ IP: +(IJ(A3)IJW‘: (9)
OF, = (") 2Py + ()" PtWa + (Ue) 'W,, (10)

where 'F; and °F; are the equivalent generalized force vectors at frame 2 in
frame 1 coordinates, and at frame |1 in the base frame coordinates, respectively.

:P3=[—PS|: —Png 0 0 U {)If (I[)




Figure 1. Coordinate frames for the planar two-link robot.

and likewise
3Wi.1 = [_W:L:SD _VV]LQ(‘“ 0 0 0 “]I (12)

where C; = Cosine of #,, C;; = Cosine of (8, + #,) and S = Sine of (8, + 6,),
etc., and the superscript ¢2 denotes that the weight W, is applied at the centroid
of link 2.

A systematic way to derive the above two equations is by means of the so-
called A matrix developed by Denavit and Hartenberg.” An A matrix is a
homogeneous transformation describing the relative translation and rotation
between link coordinate systems. Thus, the position and orientation of the
second link in the base frame coordinates is given by

0T, = Y4, 14, (13)
that is

Ciz =35 0 LG+ LG

S Cp 0 LS + LS,
0T, = 12 12 191 2912 (14)
0 0 I 0

0 0 0 I

where the first three elements of the second column represent the Y direction of
frame 2 in the base frame coordinates. Inversely, the first three elements of the
second row represent the Y direction of the base frame in frame 2 coordinates.
Using Jacobian expressions and substituting eqgs. (11) and (12) into eq. (9), gives




lF: — I—PS. = WngS. *PC| - W':L]C‘[
0 0 00 =PL,Cy; — 0.5W,L,2C2]" (15)

Likewise, the expression for °F, can be obtained
"Fi=[0 =P-WoL,-=W,L;, 0 0 0 m.]; (16)
where
m, = —P(L,C, + L;Cyz) — 0.5W,L,*Cy) — WaLy(L,C, + 0.5L,Cy2) (17)

The employment of the force transformation between coordinate frames pro-
vides a systematic way to calculate the equivalent force vectors. It is important
and essential for robotic manipulators with more than two links.

CALCULATIONS OF LINK DEFLECTIONS

Robotic link deflections can be calculated by at least two methods. The
Timoshenko's beam theory has been widely used as a classical method. Of
equal importance, the Castigliano’s second theorem, one of energy methods, is
another powerful method. They are briefly described as follows:

Employment of the Timoshenko's Beam Theory
Deflection of a One-Link Robot

In using the Timoshenko's beam theory, a link is treated as a cantilever
beam. Four possible loading conditions are shown in Figure 2 in which the total
deflection can be easily superimposed for a combined loading condition. The
deflection expressions for the four cases are shown as follows'?

d, = PLYI3El (18)
d, = WL*/8EI (19)
d, = ML*2El (20)
d; = FLIEA 1)

Since the deflection due to an axial load is much smaller than others, it is
assumed negligible throughout this article. For the planar two-link robot as
shown in Figure 1, link 2 is subjected to the concentrated load P and distributed
weight W, only. The deflections of link 2 (scalar form) in frame 2 coordinates
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Figure 2. Deflection of a cantilever beam with different loading conditions (Ti-
moshenko's beam theory).

due to P and W- can be derived by substituting eqgs. (11) and (12) into (18) and
(19), respectively.

*d, —PC, L3/3E; I 22)

I

:([u = —Wsl 34(--”«"‘3[2': l_‘ (23)

Deflection of a Multilink Robot via Force and
Displacement Transformations

A general methodology based on the Timoshenko’s beam theory via force
and displacement transformations to calculate the end-effector’s deflection of a
multilink robot is developed. The differential changes of deflections can be
oriented such that the deflection of each link is described in the same frame
coordinates (base frame coordinates) by multiplying a matrix, called the Orien-
tation Jacobian, J'.

D= J*D (24)

where




n, o, a, 0 0 0
n, o, a, 0 0 0
n. o. a- 0 0 0
0O 0 0 n, o, a,
0 0 O n, o, a
0O 0 0 n. o. a.

and ‘D is a displacement vector in frame C coordinates. For the robot shown in
Figure 1, the deflection of link 2 in base frame coordinates can be expressed as
follows:

04, = (“J3) 2d, + (°Jea) Ydwe (26)

where 2d, and 2dy,, are treated as 6 x 1 column vectors whose nonzero ele-

ments are the scalars shown in egs. (22) and (23), respectively. The Y or
vertical component of the deflection is

Od,, = —(PLIC/3ExLh) — (W2 L3CT,/8Ex 1)

= —L3CHL(8P + 3W,L,)/24E; 1, (27)

With the addition of a moment effect, the deflection of link 1 can be derived in a

similar way, whose y component is
0d,, = —(8PL}C} + 12PLIL,C,Cy; + 8W2LiL,Cj
+ 6WLL3LIC,Cy + 3W,LIC})/24E, I, (28)

Finally, the vertical deflection of the end-effector of the two-link robot in base
frame coordinates is given by

04 = 0, + 0, (29)

Employment of the Castigliano’s Second Theorem

There are two theorems due to Castigliano. The Castigliano’s second theo-
rem'! is stated as follows:

aY = aU/loP (30)

where U is strain energy, Y is the displacement in the direction and, at the point
of application, of an applied force P.

In applying the Castigliano’s second theorem, the strain energy musl be
expressed as a function of the load. A straight beam or link may be subjected to
a number of common loads such as axial force, bending moment, shear force
and twisting moment. For the planar two-link robot, it is mainly subjected to



bending moments M only. Axial and shear forces are assumed negligible and
there is no twisting moment in this case. The strain energy is reduced to the
following

M
U = l e e G1)

where the integration is carried out over the length of the link. Accordingly. the
vertical deflection (downward) at the end-effector is
Y = —L3CH(8P + 3W>L,)/24E, 1,

— [PL(8LiC% + 24L,L,C,Cy; + 24L3iC})

+ WL L,(8LiCT + 18L,LyCyCy2 + 12L3C})

+ W LI(3L,C3 + 4L,C,C))/24E, I,
where P is the applied load and

E, E;: modulus of elasticity of links 1 and 2, respectively

»: area moment of inertia of links 1 and 2, respectively
2t length of links 1 and 2, respectively

Comparison between Two Methods

Comparing eq. (32) with eq. (29), the difference in deflection is quite substan-
tial. The eq. (32) contains more terms which will likely result in a higher value
of deflection. The comparison between these two methods is shown in Table I1.
It should be noted that there is absolutely no difference in deflection between
these two methods for a one-link robot as shown in Table 1.

Table I. Difference in calculated deflections between two methods for a one-link robot
with one revolute joint. The robot data is as follows: Link length: 24 inches, Moment of
inertia: 1.920 in.*, Modulus of elasticity: 10E +6 psi. Load P = 3.05 |b is applied at the
robot end-effector, YC: Vertical deflection using the Castigliano’s second theorem, YT:
Vertical deflection using the Timoshenko's beam theory.*

Thetal Y€ YT
(deg.) (in.) (in.)

0 0.00122 0.00122
20 0.00107 0.00107
40 0.00071 0.00071
60 0.00030 0.00030
80 0.00004 0.00004

* The American Customary Unit System (inch-pound) is used throughout this paper since the
experimental data (listed in Table II1) was obtained using a dial gage with a resolution of 0.001 inch.
1Ib = 0.454 kg and inch = 25.4 mm in the SI Unit System. Angle thetal is with respect to the
horizontal x axis of the base frame.




Table 1. Difference in calculated deflections between two methods for a planar two-
link robot with two revolute joints. The robot data is as follows: Length of link 1: 24
inches (uniform hollow square cross section), Length of link 2: 24 inches (uniform
hollow square cross section), Area moment of inertia of link 1: 1.920 in.*, Area moment
of inertia of link 2: 0.289 in.*, Modulus of elasticity of link 1: 10E + 6 psi (aluminum
alloy), Modulus of elasticity of link 2: 10E + 6 psi (aluminum alloy). Load P = 3.05 Ib is
applied at the end-effector, YC: vertical deflection calculated using the Castigliano’s
second theorem, YT: vertical deflection calculated using the Timoshenko's beam the-
ory, PTG: (YT — YC)/YC| x 100.

Thetal Theta2 YC Wi PTG
(deg.) (deg.) (in.) (in.) (%)
0.0 0.0 0.01523 0.00959 37.03
0.0 22.5 0.01356 0.00856 36.88
0.0 90.00  0.00179 0.00179 0.0
22.5 -22.5 0.01466 0.00921 37.18
22.5 -45.0 0.01300 0.00819 37.00
22.5 67.5 0.00152 0.00152 0.00
45.0 0.0 0.00762 0.00480 37.00
45.0 —45.0 0.01313 0.00825 37.17
45.0 —67.5 0.01154 0.00725 37.18
67.5 —22.5 000604 0.00381 36.84
67.5 —45.0 0.00969 0.00616 36.36
90.0 —22.5 0.00137 0.00092 32.85
90.0 —45.0 0.00466 0.00314 32.62

* The uniformly distributed weights of links | and 2 are considered. Thetal is the angle of link 1
with respect to the horizontal axis of the base frame and theta2 is the relative angle from link | to
link 2. For the purpose of comparison, the additional link deflections resulting from angular deflec-
tions of joints 1 and 2 are not considered in the above calculations.

Tang and Wang® gave a two-link robot as a numerical example and compared
the theoretical calculations of link deflections using a classical beam theory and
the Castigliano’s second theorem. Their study showed that the two calculations
were quite close to each other. The reason is that the rotational axes of the
robotic links are perpendicular to each other and the first link always stands up
vertically. This means that link 1 is almost undeflected when a weight is applied
vertically at the end of the second link. Thus, their example was essentially to
illustrate the calculated deflections of a one-link robot using two different meth-
ods. In addition, the Castigliano’s second theorem which they used was solely
for calculating the link deflections. The angular deflections of robotic joints
were ignored in their calculations.

ADDITIONAL LINK DEFLECTIONS RESULTING FROM
ANGULAR DEFLECTIONS

Calculation of Angular Deflections Using the Castigliano's
Second Theorem

Figure 3 shows that the total vertical deflection dy comprises two parts, d,,
and d,,, where d,, is the additional vertical deflection resulting from an angular




Figure 3. Deflection of a one-link robot with a revolute joint.

deflection 48 due to an applied couple moment, and d,, is the vertical deflection
resulting from a concentrated load P at the end-effector. Traditionally, a robot
manipulator has been treated as a series of cantilever beams in order to perform
the deflection analysis. The basic assumption when employing the classical
beam theory is that a joint is considered rigidly fixed to a wall where the angular
and linear deflections are disallowed. This conflicts with the reality that all
robotic joints, except the first one, are not rigidly fixed to a stationary founda-
tion. Besides, even for the first one, a small angular deflection is still possible.

The Castigliano’s second theorem can be used to calculate link deflections or
angular deflections. For a link subjected to an applied coupled (bending or
twisting) moment C, the rotational angle of twist (angular deflection) at a spe-
cific point is given by !

0, = aUlaC; (33)

where U is strain energy. Considering a link subjected to a bending moment
only, the expression for the angle of rotation (or the angular deflection) is

I aM
9 = E—IJ M S5 d (34)

For a planar two-link robot when a load P is applied at the end-effector and
the weights of links, W, and W, are considered, the angular deflection of joint 2
can be easily calculated using eq. (34). The calculation of the angular deflection
of joint 1, however, requires the employment of a fictive bending moment at the
origin of the base frame. The fictive moment will be set to zero later.

('IH| = _(A/Ej.h) = (B/E_‘lj) (35)




where

PL{(L;Cyz + L,Cy/2) + W, LiCi/6 + WLy Ly(L,Cy + LyCy2)/2
PC,L312 + W>L3C3/6

Likewise,
df)_v . —Bf‘L"}I: (36)

It is worthwhile to note that if the Timoshenko's beam theory were em-
ployed, d#; would be the same but d#, would be always zero. The difference is
very obvious.

Calculation of Additional Link Deflections Resulting from
Angular Deflections

Since angular deflections are small, they can be considered as joint differen-
tial changes. Employing the concepts of differential relationships, the addi-
tional link deflections resulting from angular deflections can be more easily and
systematically calculated. For a six-link robot, the differential changes in the
position and orientation of a T, matrix are caused by differential changes in
joint coordinates. In the case of a revolute joint, dg; corresponds to a differen-
tial rotation, and in the case of a prismatic joint, dg; corresponds to a differen-
tial change in the joint distance.

Paul® has derived the differential change as a function of six joint coordinates
written as a six-by-six matrix consisting of differential rotation and translation
vector elements. Each column of the Jacobian consists of the differential trans-
lation and rotation vectors corresponding to the differential changes of each of
the joint coordinate.

Te,, Te,, Toyy Touy Too, Tou T;,“‘- dq,]
Té,, Tﬁ.,‘ Ta,:' Te,, To,, Te,, T, dq»
Ts,, _ Ts.,‘ Tﬁ,:: Tﬁ,‘r Z5g.! Th,,_: Th,“: dgs a7)
Ts,, Te,, T, T, Te,, T, Ts, ||das
' T, Ts,, To, To,, o, Ts,, ||das
L T LT, To, To, To,, Toi, Te JLdgel

where the first matrix on the right-hand side is called the Differential Jacobian
J". If joint i is revolute, then

To,, = (—nupy + nyp)i + (—o.py + 0yp.)j + (acpy + aypo)k (38)

T

= N+ 0.+ ak (39)




If joint 7 is prismatic, then
i, = n,i+ o.j+ a.k (40)
T, = 0i + 0j + 0k (41)

Thus, for the given two-link robot, the end-effector’s deflection vector in terms
of frame 2 coordinates is expressed by

[*d] = J"|do] (42)

where the Differential Jacobian J" is

LS, 0
Ly LGy Ls
0 0
= (43)
¢ 0 0
0 0
I 1
Thus,
Jt!, L|S3t”’|
2(!. L]C:dfh + !,:ft”’] + dﬂg)
’d, 0
e | _ (44)
7o 0
23, 0
5. dey + do,

In order to sum deflections of different links. deflection vectors are oriented
such that they are all referred to the same coordinates which are the base frame
coordinates. It should be noted that the deflections are not transformed back to
the base frame. They are still located at the end of each link. The deflection of
link 2 in terms of the base frame coordinates can be obtained by premultiplying

the above deflection vector, eq. (44) by the Orientation Jacobian, J' in eq. (25).
Thus,

d_, _L|S|d9| = L:Sg:(d9| o2 dﬂg)

d‘ L;C;dfh = L:Cn(d()] * da:}

d, N 0 45)
O, 0

8, 0

6_-_ (!91 s dﬂg




Since the concentrated load P and distributed weights W, and W, are all in
the negative y direction of the base frame coordinates, d, is the most significant
component among the six elements of the displacement vector at the end-
effector.

utIT L](}dfﬁ -+ Lg(‘ul(”}l + db)

= —A(L,C, + L.-Cp)/E I, — B(L,C, + 2L, Cp)Ex (46)

where A and B were defined in eq. (36). Finally, the total deflection at the end-
effector of the given two-link robot is the sum of the link deflection, °d and the
additional link deflection resulting from the angular deflections of joints, °d,.

ndmlul =04 + (ldl (47)

where "d is from eq. (29) and "d, is from eq. (46).

EXPERIMENT

To verify the theoretical deflection analysis, a planar two-link robot was
built. It was made up of light-weight aluminum alloy. The robot data is as
follows:

» Length of link I: 24 inches (uniform hollow square cross section)
* Length of link 2: 24 inches (uniform hollow square cross section)
» Area moment of inertia of link 1: 1.920 in.*
» Area moment of inertia of link 2: 0.289 in.*
» Modulus of elasticity of link 1: 10E + 6 psi
* Modulus of elasticity of link 2: 10E + 6 psi

To exclude the possibilities of gear backlash, gear transmission error, joint
drive compliance, and cross coupling of joint rotations, the robotic joints are
mechanical pin joints with no actuators. The robot was designed to have a finite
rotational increment of 22.5 degrees, which was accomplished by locating a pin
in a different pin hole. To avoid a possible rotational slippage of a joint, two set
screws were used to fix the joint at a specified angular position. Various
weights could be applied at the end-effector. A dial gauge of 0.001 inch (0.0254
mm) resolution was used to measure the end-effector’s deflection after a weight
has been applied. The procedure was repeated until all possible arm configura-
tions and applied weights had been tested.

Table 111 shows a comparison between theoretical calculations and experi-
mental data. As can be seen, the theoretical calculation YCD or YTD is gener-
ally in agreement with the experimental data. Notice that YD (the vertical
deflection resulting from the angular deflections of all joints) is the most domi-
nant factor. It is much greater than YC or YT.



Table I1Il.  Comparison of deflections between theoretical calculations and experimental
data. The robot data is the same as in Table I. Load P = 1.02 Ib is applied at the end-
effector. YC: vertical deflection calculated using the Castigliano’s second theorem, YT:
vertical deflection calculated using the Timoshenko's beam theory, YD: vertical deflec-
tion resulting from the angular deflections of all joints, YTD = YT + YD, YCD = YC +
YD, EXP: Experimental data (vertical deflections at the end-effector are measured
using a dial gauge with a resolution of 0.001 inch after a weight of 1.02 Ib has been
applied at the end-effector).

Thetal  Theta2 YC YT YD YTD YCD EXP
(deg.) (deg.) (in.) (in.) (in.) (in.) (in.) (in.)
0.0 0.0 0.0033 0.0022 0.0095 0.0118 0.0128 0.0150
0.0 22.5 0.0029 0.0020 0.0084 0.0104 0.0113 0.0140
22.5 =22.5 0.0032 0.0022 0.0092 0.0114 0.0124 0.0130
225 -45.0 0.0029 0.0019 0.0081 0.0100 0.0110 0.0120
45.0 0.0 0.0017 0.0011 0.0048 0.0059 0.0065 0.0060
45.0 -22.5 0.0026 0.0018 0.0073 0.0090 0.0099 0.0110
45.0 -45.0 0.0030 0.0020 0.0083 0.0103 0.0113 0.0100
45.0 —67.5 0.0026 0.0018 0.0073 0.0090 0.0099 0.0090
67.5 -22.5 0.0014 0.0009 0.0038 0.0048 0.0052 0.0050
67.5 -45.0 0.0023 0.0016 0.0061 0.0077 0.0084 0.0070
90.0 —22.5 0.0003 0.0002 0.0008 0.0010 0.0011 0.0010
90.0 —-45.0 0.0012 0.0008 0.0028 0.0036 0.0040 0.0040

* Two robotic links are predeflected due to their distributed weights before a load is applied at the
end-effector. The dial gauge used to measure the deflections is zeroed after the robot has been
predeflected. In order to compare the calculated deflections with the measured ones, the distrib-
uted weights W, and W, are not included in the theoretical calculations,

METHODOLOGY OF DEFLECTION ANALYSIS AND
COMPENSATION ALGORITHM FOR A SIX DEGREE-OF-FREEDOM
ELBOW MANIPULATOR

As a further example of the deflection analysis a six-degree-of-freedom el-
bow manipulator containing only revolute joints is investigated. The robot
manipulator is made of aluminum alloy whose coordinate frames are shown in
Figure 4 and link parameters are described in Table 1V.® where « is the twist
angle between two consecutive rotational axes, a is the common normal dis-
tance between two consecutive rotational axes, and d is the distance along the

Table IV. Link parameters of robot manipulator.

o a d
Link Variable (degree) (in.) (in.)
1 thetal 90 0 0
2 theta2 0 24 0
3 theta3 0 24 0
4 thetad —90 10 0
5 thetas 90 0 0
6 thetat 0 0 35




Figure 4. Coordinate frames for the elbow manipulator.

rotational axis between two links. The variables are joint angles thetal through
theta$. It is assumed that the robot manipulator has constant hollow circular
cross sections whose outside and inside diameters are 2.0 and 1.8 inches,
respectively.

The procedure along with numerical data is as follows:

Input data:

The applied load P is 5.0 b (2.27 kg).
The desired pose matrix (i.e., T) is

(= T — TR =
OO

Step 1:
Step 2:
Step 3:
Step 4:

Step 5:

15
20
10

1

Qo - O O

Transform forces and moments from the end-effector to each joint
through the pose Jacobian matrix described in eq. (8).

Calculate the deflection of each link using the Timoshenko’s beam
theory,

Apply the Castigliano’s second theorem, one of energy methods, to
calculate the angular deflections of joints.

Calculate the additional link defiections resulting from the angular
deflections.

Use a 6 % 6 transformation matrix (orientation Jacobian) to orient
all the link deflections into the same coordinates which are the base
frame coordinates. Finally, the total deflection is formed by sum-
ming all local deflections.




Table V. Deflections for different arm configurations.
Theta 1 Theta 2 Theta 3 Theta 4 Theta 5 Theta6  Deflection

(deg.) (deg.) (deg.) (deg.) (deg.) (deg.) (in.)
53.130 58,612 —117.224 148.612 90.000  —143.130 00329 (1)
53.130 —58.612 117.224 31.388 90.000  —143.130 00703 (2)
53.130 86.824 -96.329 279.505  —90.000 36.870 01538 (3)
53.130 —9.505 96.329 I83.176  —90.000 36.870 05824 (4)
233.130 —121.388 —117.224 328.612 90.000 36.870 0686 (5)
233.130 121.388 117.224 -148.612 90.000 36.870 00313 (6)
233.130 —170.495 -96.329 176.824  —90.000 —143.130 05828 (D

233.130 93.176 96.329 80.495  —90.000 —143.130 01542 (B)

Step 6: Compute the total deflection by adding the additional link deflection
calculated in step 4 to the link deflection calculated in step 2.

Step 7: Compute the inverse joint solutions of ail possible arm configura-
tions and their vertical deflections. Due to the kinematic design of
the given robot manipulator, there exists eight possible arm config-
urations which are listed in Table V.

Step 8:  Use a bubble sorting technique to select the optimum arm configu-
ration which has the smallest deflection. The smallest end-effec-
tor’s deflection selected is .00313 inches and the six joint angles are

Theta 1 Theta 2 Theta 3 Theta 4 Theta 5 Theta 6
233,130 121.388 117.224 —148.612 90.000 36.870

Step 9:  Using the concepts of differential relationships and the inverse of
the Differential Jacobian, the 6 x 1 total deflection vector in Carte-
sian space is transformed to a 6 x | angular deflection vector in
joint space, which is listed as follows:

Add__1 = 0.0043 deg.
Add__2 = 0.0035 deg.
Add__3 = —0.0070 deg.
Add__4 = 0.0035 deg.
Add__5 = 0.0000 deg.

Add__6 = —0.0043 deg.

Step 10: Compensate the end-effector’s deflection by subtracting the above
angles from the original joint angles. The angles in degrees before
and after the compensation are listed in Table V1.

The calculated static deflection at the end-etfector afler the compensation is
theoretically zero. Consequently, the position and orientation of the end-effec-




Table VI. Angles in degrees before and after compensation.
Joint Before Compensation After Compensation
I 233.1301 233.1258
2 121.3882 121.3847
3 117.2237 117.2307
4 —148.6118 —148.6153
5 90.0000 90.0000
6 36.8699 36.8742

tor theoretically remain the same as the desired ones. The total deflection d, at
the end-effector of the Elbow Manipulator is derived and shown in the Appen-
dix.

DISCUSSIONS

In this work. the Castigliano’s second theorem (one of energy methods) is
used to calculate link deflections and angular deflections. Table 1 shows a
comparison of calculated deflections at the end-effector of a one-link robot
between using the Timoshenko's beam theory and the Castigliano’s second
theorem. There is no difference in deflection between them for a one-link robot.
The difference becomes more obvious when the number of links increases. For
a planar two-link robot, the difference is over 30% as shown in Table II.

This study shows that the most contributory factor to the end-effector’s total
deflection is the additional link deflections resulting from the angular deflec-
tions of joints. To more accurately calculate the angular deflections, the Castig-
liano's second theorem is employed. Table Il shows a comparison of the end-
effector’s deflections for a planar two-link robot between theoretical
calculations and experimental data. When the additional link deflection YD is
added to the either YT or YC where YT and YC are the vertical deflections using
the Timoshenko's beam theory and the Castigliano’s second theorem, respec-
tively, the resultant deflection becomes reasonably close to the experimental
data. This can be reasoned that the use of an energy method should result in a
more accurate calculation of link deflection. Since the additional link deflection
YD as shown in Table III is much larger than either Y7 or YC, the total
deflections calculated by YTD = YT + YD or YCD = YC + YD are approxi-
mately the same. For a six-degree-of-freedom robot such as the elbow manipu-
lator, it is extremely tedious to derive the expression for the end-effector’s
deflection using the Castigliano’s second theorem. Hence, the Timoshenko's
beam theory is used to calculate the link deflection at the end of each link
individually.

This article presents a systematic approach to calculating deflections through
three different Jacobians. The first one is called the “*Pose Jacobian,” which is
used for transformation of forces between coordinate frames. The second one
is called the **Orientation Jacobian,”” which is used to orient a deflection vector




from a local frame to the base frame. The local deflection is not transformed
back to the origin of the base frame. It stays at the end of a link so that the
magnitude of the deflection can remain the same. The purpose of using the
orientation Jacobian is to sum the deflections of all links if they are all with
respect to the base frame coordinates. The third one is called the **Differential
Jacobian."" It is written as a 6 x 6 matrix consisting of differential rotation and
translation vector elements. The multiplication of the Jacobian and a vector
consisting of differential joint displacement changes gives the differential
changes in position and orientation of the end-effector, This concept is used to
calculate the additional link deflections resulting from angular deflections. The
additional deflections are then added to the link deflections which are calcu-
lated using the Timoshenko's beam theory. The total deflection at the end-
effector is finally transformed from Cartesian space to joint space by inverting
the differential Jacobian.

The concept of differential relationships, especially the use of the differential
Jacobian allows us to gracefully perform a transformation of differential
changes between Cartesian space and joint space. Based on the differential
joint displacement changes, the end-effector’s deflection is compensated by
adjusting the nominal joint positions.

CONCLUSIONS

The classical Timoshenko's beam theory and the Castigliano’s second theo-
rem used to calculate robotic link deflections are compared. It is found that the
additional link deflections resulting from angular deflections significantly con-
tribute the robot end-effector’s deflection. The additional deflections are more
accurately calculated using the Castigliano’s second theorem. Experiments
were carried out on a house-made planar two-link robot. As can be seen in
Table 111, with the consideration of the additional link deflections the theoreti-
cal calculations are generally in agreement with the experimental data. Al-
though this study shows only the most significant vertical deflection data, the
developed methodology can be used to find all of six deflection components.

It is also found that the end-effector’s deflection heavily depends on the arm
configuration. From the minimum deflection point of view, the configuration
which produces the smallest deflection is considered as an optimum. The de-
flection is then compensated based on the selected optimum configuration. As
shown in step 9 of the elbow manipulator example, configuration 6 (the opti-
mum) is selected whose to-be-corrected joint angles are all less than 0.01 de-
grees. A practical problem arises when these angles are less than the resolu-
tions of regular joint actuators. In this case, no compensation is necessary.
Notice that configuration 7 produces a deflection almost 19 times as much as
the configuration 6 does. If the configuration 7 were chosen, corrections in joint
angles would be substantial.

Another consideration on selecting the arm configuration can be based on the




so-called manipulator reliability developed by Bhatti and Rao.'? The manipula-
tor reliability was defined as the probability of end-effector’s pose (position and
orientation) falling within a specified range from the desired pose. If more than
one arm configuration is possible to perform a certain task, the configuration
which gives the highest reliability will be selected. The configuration thus se-
lected may not be the same as that selected for producing a minimum deflec-
tion. This will be a decision-making problem for a robot user.

The authors would like to acknowledge the support of this work by the Ohio Institu-
tional Research Challenge Program through the Cleveland State University.
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APPENDIX: THE EXPRESSION OF THE TOTAL DEFLECTION AT THE
END-EFFECTOR OF THE ELBOW MANIPULATOR

The total deflection. dy at the end-effector of the six-degree-of-freedom El-
bow Manipulator is derived. It comprises two parts, dy, and dv,, where dy, is
the sum of the additional link deflections resulting from the angular deflections



of all joints, and dy, is the sum of the link deflections calculated based on the

Timoshenko’s beam theory. The expression for the total deflection is as fol-
lows:

dy = dy, + dy,
where
d_\‘, = A(u;('g + 2(1:(.31 : = 3“4(.‘314 + 2(],.('3143} + (ig|.slg14<)/fff,f¢,
== B(ﬂ':(‘g + 2(11(3\ =+ 3(14('1;4 - 3(/;.(‘3”5()/1'.‘4’4
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= D(a,C; + a;Ca3 + a4Caaq + dgCris Ss)/ ExlL

where
A = CyCs(3Pd} + Wed})I6
B = [Pdg + (Wed3/2)]asCrySs + (P + Wedg)aiCasa/2 + WeaiCasl6
C = [P + (Weds/2)dsa;CaysSs + [P + (Wyayl2) + WedglazasCay
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a; and d; are link parameters defined in Table IV; W,, E; and /, are the weight,

modulus of elasticity, and moment of inertia of the ith link, respectively. P is
the applied load at the end-effector.

C, = Cosine of angle (8,)
Cyy = Cosine of angle (8> + 65 + 6,)
Ss = Sine of angle (85), . . . etc.

and dy, =
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