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Effect of time-dependent material properties on the mechanical behavior of PFSA 
membranes subjected to humidity cycling 

dNarinder S. Khattra <l , Anette M. Karlsson a.", Michael H. Santare , Peter Walsh b, F. Colin Busby b 
' Depal1mem of Mechonirol fngina'ring. 126 Spt'nrer Laboratory. Unil't'rsi!y of /Jo>/aware, Nfwar~, Of 19716. USA 
bCore fuel Cell Technologies. flkroll. MD 21922. USA 

1. Introduction 

Fuel cells represent a clean alternative to current technologies 
utilizing hydrocarbon fuel resources. However, key challenges to 
wide-spread commercializat ion of fuel cell technology include the 
high cost of materials and the relatively low durability [1 1. The u.s. 
Department of Energy (DoE) has set a durability target of 5000 h of 
operation for PEM fue l cells [21 (corresponding to 150,000 mites 
equivalent in a vehicle). Since the membrane life can be a limiting 
factor in r EM fuel cell durability. this work focuses on the durability 
of the PFSA membranes commonly used in polymer electrolyte 
membrane (PEM) fuel cells. 

During operation. heat and water are generated due to the 
electrochemical reaction associated with power generation. When 

• 	COlTl'S ponding author. T ...I.: + 1 3028312423: fax: + 1 302 831 3619. 

E·moif oddress: karlsson(lludeledu (A.M. Karlsson). 


the power requirements change during use. the fuel cell structure is 
subjected to fluctuations in temperature and humidity. As 
a consequence. the structure is subjected to hygro-thermal cycl ic 
loading. causing stresses in the membrane. which affect the 
mechanical durability. 

Chemical and mechanical degradation mechanisms are coupled 
in actual fuel cell operation. Therefore. a full understanding of the 
durability of rEM fuel cell membranes must include both the 
chemical and mechanical factors that contribute to material 
degradation as functions of time. and their interaction with hygro-
thermal load conditions experienced during the operating and non-
operating periods [1 I. However. this work will focus on the 
mechanical aspects of degradation. since this degradation has not 
been studied as comprehensively as chemical degradation. 

Mechanical damage is typically manifested as pinhole formation 
or cracking and can be accelerated by RH cycling as well as low 
humidificat ion of the feed stream 13.41. Once these flaws are 

mailto:karlsson@udel.edu
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http://www.elsevier.com/locate/jpowsour
http://dx.doi.org/10.1016/j.jpowsour.2012.04.065
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formed, gasses may pass through the membrane compromising the 
fuel cell function [3,4]. In general, the mechanical damage is caused 
by the cyclic hygro-thermal loading in the cell [5]. In an uncon­
strained state, the membrane experiences swelling and shrinkage 
during water sorption, desorption and thermal cycling. However, the 
membrane electrode assembly (MEA) is constrained from defor­
mation by the stiffer gas diffusion media and bipolar plates in a fuel 
cell. These constraints cause the membrane to develop compressive 
stress at higher levels of water uptake and high temperature during 
operation [6e8]. If these compressive stresses are high enough to 
cause inelastic deformation, tensile residual stresses may develop 
upon dehydration and cooling of the membrane [6,9]. 

There are several cyclical, hygro-thermal accelerated aging tests, 
which are used to assess the mechanical durability of membranes 
in the absence of electrochemical activity [2,10]. These test proto­
cols provide a basis for comparison of the purely mechanical 
behavior of different membrane material compositions and 
designs. In this work, we will focus on the stress response of PFSA-
based membranes under these standardized RH cycling conditions. 
In order to determine how the stresses evolve during loading, the 
mechanical properties of the PFSA membrane must be established. 

In our previous work, time-independent linear-elasticeplastic 
models were used to characterize the long-term membrane 
behavior [6,9]. However, our recent experiments [11] have shown 
significant time dependence that may have a significant effect on 
the stresses in the membrane during fuel cell loading. Recent work 
has also been published on time-dependent models for PFSA 
membranes [12e14]. Most of the models assume that the response 
is viscoelastic, therefore inelastic effects have been not been 
studied thoroughly. Patankar et al. [15] investigated the viscoelastic 
properties of Gore-Select® 57 PFSA membrane using dynamic 
mechanical analysis (DMA). They used timeetemperature super­
position to create a hygro-thermal master curve. Solasi et al. [12] 
used a viscoplastic constitutive model for investigating the 
behavior of a dispersion cast PFSA membrane. They measured the 
uniaxial stress response of the membrane for a few temperature 
and hydration levels in the fuel cell operating range. The model did 
not account for strain rate dependence of the instantaneous elastic 
modulus, a phenomenon observed in their experiments and in our 
test data [11]. Silberstein et al. [13] used a micromechanically 
motivated constitutive model to capture the monotonic and cyclic 
stress response of a dispersion cast membrane. The measurements 
were conducted using DMA and therefore do not measure the long-
term stress-relaxation behavior. Yoon et al. [14] used a phenome­
nological constitutive model for ionomer membranes based on 
micromechanisms of polymer deformation. The long-term stress-
relaxation behavior was not considered while validating the model. 
Yan et al. [16] characterized the material response of the PFSA 
membrane using a non-linear viscoelastic model based on Schap­
ery’s single integral method. Lai et al. [17] used a linear viscoelastic 
theory with time, temperature and hydration dependent material 
properties to simulate the stresses developed in the membrane 
under RH cycling. They predicted residual tensile stresses in the 
membrane to be as high as 10.6 MPa, which is near or higher than 
the proportional limit stress at various conditions [11] suggesting 
the need for a viscoplastic approach to modeling of the membrane 
material. Silberstein et al. [18] used elasticeviscoplastic properties 
for the PFSA membrane and investigated the membrane response 
via experiments under partially constrained swelling in a bimate­
rial strip and report plastic deformation in the membrane. Their RH 
cycle simulations predicted maximum in-plane stress of around 
12 MPa. Li et al. [19] also used a bimaterial strip to measure hygral 
stresses in the membrane and attribute the tensile stress in the 
membrane upon dehydration to the viscoelastic nature of the 
membrane instead of plastic deformation. 

From the above discussed studies, it appears that there is no 
consensus regarding plastic deformation in the membrane. 
However, on the basis of our experimental data [11] and numerical 
evaluation of strain in the membrane during fuel cell RH cycling 
(around 15%), we believe that there is inelastic deformation in the 
membrane and it can play a critical role in the failure mechanisms 
of the membrane. Therefore, a viscoelastic-plastic constitutive 
behavior for the membrane will be investigated in the current 
work. 

In a companion study [11], we describe the set of uniaxial tension 
and stress-relaxation tests conducted at various load rates and hold 
strains to determine the viscoelastic-plastic material parameters 
over a range of environmental conditions. In the current work, we 
use these properties to develop a modified two-layer viscoelastic­
plastic constitutive model for the membrane. Section 2 describes the 
two-layer viscoelastic-plastic model used and in section 3, the  
experimentally determined mechanical properties [11] are pre­
sented and compared to the constitutive model predictions. Simu­
lations of the uniaxial tensile and stress-relaxation experiments are 
discussed in Appendix A and Appendix B respectively. In section 4 
we incorporate the two-layer model into a finite element simula­
tion of a volume element in a typical fuel cell to explore the effects of 
these properties on the stress evolution. Finally, the finite element 
simulation results for a membrane undergoing two standardized RH 
cycle tests are presented and discussed in section 5. The  in-plane  
stresses in the membrane, which have been shown to be the crit­
ical stresses [7,8], are reported for a selected range of temperature 
and humidity cycle time parameters. 

2. Constitutive model of the membrane 

In this section, we present a constitutive model capable of 
capturing the hygro-thermo-mechanical time-dependent response 
of the membrane. The model extends the linear-elastic [9], the 
linear-elastic, perfectly-plastic [6] and the linear-elastic-plastic 
with isotropic hardening [7] models we have previously devel­
oped to simulate the mechanical response of the membrane. 
The constitutive material parameters are all functions of 
relative humidity (RH) and temperature as determined in the 
experiments [11]. 

We assume that the total strain tensor, εij, is given as the sum 

H T M 
εij ¼ εij þ εij þ εij ; ði ¼ 1; 2; 3Þ; (1) 

H T Mwhere ε ij and εij are the swelling, thermal and mechanical strain ij , ε 
contributions, respectively. Each of these strains is discussed below. 

2.1. Swelling strains 

Assuming isotropic swelling, the swelling strains in the 
membrane, caused by water uptake, are calculated using the 
empirical relationship from Kusoglu et al. [20], 

1 q 1 
ε H ¼ ln ; (2)iso 3 qo fP 

where q and qo are the current and reference temperature 
(expressed in degrees K), respectively. fP is the polymer volume 
fraction given by 

EW=rPfP ¼ ; (3)
18l þ EW=rP 

where l is the number of water molecules attached to each sul­
phonic acid group, EW is the equivalent weight of the ionomer and 
rP is the density of the dry ionomer material. 



   

         
            

  
    

             
    

 
    

  
     

 

   

            
          

          
       

       
          

       
          

           

          
        
           

       
      

      

  
           

         
      
             

     
 

            

         
 

             
    

        
             

            
     

        

            

  
          

          
        

     

 
 

     

             
      

    

        
          

     

           
             

   

          

             
         

          
         

    
     

          
   

         
       
      

      

       

       

        
          

        
        

          
          

              

2.2. Thermal strains 

Assuming isotropic thermal expansion, the thermal strains in the 
membrane caused by a change in temperature ðq - qoÞ are given by 

ε T ¼ aðq - (4)ij q0Þdij; 
where a is the linear coefficient of thermal expansion and dij is the 
Kronecker delta given by {

1 ; i ¼ j
dij ¼ (5)0 ; i s j 

: 

2.3. Mechanical strains 

MIn this study, the mechanical strains, εij , are defined in the 
context of the viscoelastic-plastic model [21,22] shown in Fig. 1. 
This model consists of two “layers”, one corresponding to the time-
independent elasticeplastic response and the other corresponding 
to the time-dependent elastic-viscous response. The two-layer 
model was chosen due to its relative simplicity, containing 6 
empirically determined material parameters. By definition, the 

Mtotal mechanical strain, εij , is equal in both layers 

M EP EV 
ε ¼ ε ¼ ε ; (6)ij ij ij 

where the superscripts EP and EV refer to elasticeplastic and 
elastic-viscous layers of the model, respectively. In the 
elasticeplastic layer, the total strain is the sum of the linear-elastic 

strain in the spring element ðε EPÞel and the rate-independent plastic ij 
EPstrain in the slider elementðεij Þpl ( ) ( ) 

EP EP EP 
ε ¼ ε þ ε : (7)ij ij ijel pl 

Extrapolating the spring concept in the elasticeplastic layer to 
represent a generalized three-dimensional isotropic Hooke’s law  
response, the elastic strain can be written as a function of the stress 
in the elasticeplastic layer, sEP 

ij ( ) 1 þ n nEP EP EP 
ε ¼ s - (8)ij ij dijskk ;el KP KP 

Fig. 1. One-dimensional idealization of the two-layer viscoelastic-plastic model 
[21,22]. 

where n is Poisson’s ratio and KP is the stiffness of the elastic 
element in this layer. 

Assuming isotropic strain hardening (represented by the spring, 
H, parallel to the slider element), the yield strength is a function of 
the plastic strain as well as being a function of the relative 
humidity, <, and temperature, q, (( ) )
sy ¼ sy ε EP ; <; q : (9)ij pl

EPIn this expression, ðεij Þpl is the equivalent plastic strain given by 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Z ( ) 2 ( ) ( ) 
EP EP EP 
ε ¼ d ε d ε ; (10)ij ij ijpl 3 pl pl 

EPwhere dðεij Þpl are the increments of plastic strain tensor. 
Using von Mises’ yield criterion [23], the rate-independent 

plastic flow is given by 

rffiffiffiffiffiffiffiffiffiffiffiffiffi ( ) 3
f sij ¼ SijSij - sy; (11)

2

where sy is the yield strength of the material and Sij are the 
deviatoric stress tensor components defined by 

1
Sij ¼ sij - skkdij: (12)

3 

Under von Mises’ yield criterion, the material deforms elasti­
cally for f ðsijÞ < 0 and yielding occurs when ( )

plf 0: (13)sij; εij 

The total strain in the elastic-viscous layer is the sum of linear-
elastic strain in the spring Kv and the viscous strain in the dashpot 
element given by ( ) ( ) 
EV EV EV 
ε ¼ ε þ ε ; (14)ij ij ijel vi 

where subscript el refers to the elastic portion and vi refers to the 
viscous portion of the strain. Again, assuming isotropic Hooke’s law  
for the linear-elastic constitutive response of the spring in this 
layer, the generalized, three-dimensional elastic strain as a function 
of the stress, sEV 

ij , is given by 

( ) 1 þ n nEV EV EV 
ε ¼ s - (15)ij ij dijskk : el KV KV 

For the dashpot element, the Norton-Hoff stress-strain rate law 
[24] is used, the generalized three-dimensional time-dependent 
form of which is written as 

( )nvi vi 
ε_ ¼ A s ; (16)ij ij 

where A and n are material parameters. 

3. Mechanical properties of the PFSA membrane 

The mechanical response of PFSA membrane depends on 
temperature, water content and loading rate [11]. In this section, 
the experimental data from the uniaxial tensile and stress-
relaxation tests conducted on PFSA Nafion®2111 membrane are 
fitted to the two-layer model introduced in the previous section 
using the equations presented in Appendix A and Appendix B. 

1 Nafion is a registered trademark of E.I. du Pont de Nemours, Inc. Co. 



           
          

             
           

           
       

            
          

           
           

           
            

          
           

        
         

         
           

           

 

 

 

 

 

      

           
        

            
 

           
         

           
           
        

           
        

 
        

          
          

         
          

    

   

 

 

 

 

 

      

                          

                     
                    

 
          

        
        
        
        
        
        
        
        
        
        
        
        

155 181 40 6.4 -19.11 -17.32 1.5 16.7 
145 150 20 4.5 -13.03 -11.74 0.2 14.4 

        
        

         

The material parameters thus obtained (Fig. 2) were used in FE 
A 

model simulations of the test specimens to compare the model 
predictions to test data. To do this, a plane stress ABAQUS [22] finite 
element model was developed with gauge length of 50 mm and 
width of 20 mm, and meshed using CPS8R elements (plane stress, 
8-node biquadratic, reduced integration). Selected sample results 
are shown in Fig. 3. The figure shows that the constitutive model 
captures the initial elastic and non-linear behavior well. We assume 
that the onset of nonlinearity corresponds to the onset of inelastic 
behavior of the membrane. It also captures the variation in the 
initial stiffness and the overall increase in stress due to changing 
load rates fairly well. This capability is not present in the original 
two-layer model [21,22], but was accomplished in the present work 
by adding strain rate dependence to the spring element in the 
elastic-viscous layer of the viscoelastic-plastic model. The strain 
rate dependence was incorporated into the model by introducing 
a strain rate dependent function for the elastic-viscous stiffness 
element, Kv and using values for the stiffness determined from the 
tensile tests conducted at various load rates. In the finite element 

Model 

80oC,90%RH 

45oC,50%RH 

65oC,70%RH 

T
r
u

e
 
S

t
r
e

s
s

 
[
M

P
a

]
 

25oC,30%RH 

. . . . . .  Experimental, strain rate = 3.3•10-3 s-1 

True Strain model, the strain rate dependence is handled via an ABAQUS user 
subroutine USDFLD [22] which assigns the instantaneous stiffness B 
values to the material depending on the current strain rate in the 
model. 

In Fig. 4, the model predictions of the stress-relaxation test are 
compared with the experimental data for selected conditions. The 
model captures the stress peak and the relaxation behavior for the 
observed time frame of about 1e1.5 h. The trend suggests that 
relaxation continues beyond the test time although at 
a decreasing rate. Due to limitations of the testing equipment and 
practical considerations, relaxation beyond 1.5 h was not 
considered. 

Thus, the FE simulations, using the relatively-simple, two-layer 
model with properties shown in Fig. 2, capture the experimentally 
measured [11] membrane behavior fairly well. In the next section 
we will incorporate these material properties into finite element 
simulations of a representative volume element of a fuel cell, 
subjected to humidity cycling. 

4. Numerical implementation 

T
r
u

e
 
S

t
r
e

s
s

 
[
M

P
a

]
 

True Strain 

25oC,30%RH 

45oC,50%RH 

65oC,70%RH 

80oC,90%RH 

Model 

. . . . . .  Experimental, strain rate = 8.3•10-2 s-1 

In this section, the effect of time-dependent properties on the Fig. 3. [A] True stress vs. true strain uniaxial tensile response of the PFSA membrane at 

behavior of PFSA membranes in a fuel cell unit operating under RH various environmental conditions obtained experimentally [2] compared with the 
-1constitutive model predictions for strain rate 3.3∙10-3 s and [B] strain rate cycling is investigated via numerical simulations. The simulations -18.3∙10-2 s .

are based on finite element analyses using the commercial software 

Temp RH Kv [MPa] Kp [MPa] n Ln(A) σ 
y H 

o 

C % 10mm/min 250mm/min 10mm/min 250mm/min 

25 30 220 256 50 6.2 -19.47 -18.64 2.0 25.2 
45 30 161 233 30 4.4 -14.55 -12.90 0.8 21.8 
65 30 135 165 18 3.4 -11.42 -9.72 0.15 14.3 
80 30 80 114 12 4.5 -12.51 -11.62 0.1 8.4 
25 50 200 252 35 6 -19.18 -17.50 1.7 19.8 
45 50 170 190 20 5.6 -16.55 -15.02 0.6 19.2 
65 50 120 150 15 4.7 -13.87 -12.43 0.1 11.3 
80 50 71 100 11 4.5 -11.76 -10.82 0.1 8.2 
25 70 160 207 40 6.2 -19.11 -17.50 1.6 19.7 
45 70 155 180 23 5.9 -16.92 -15.42 0.4 16.9 
65 70 100 125 12 4.6 -13.03 -11.74 0.1 10.4 
80 70 60 90 10.6 3.6 -10.48 -8.80 0.1 8.9 
25 90 

45 90 

65 90 70 85 12 4.6 -13.72 -12.02 0.1 11.1 
80 90 54 67 10.6 4.4 -11.51 -9.72 0.1 8.4 

Fig. 2. Constitutive model parameters for the PFSA membrane. 



A 

. . . . . .  Experimental at 0.05 hold strain 
Model 

The right edge and bottom have symmetric boundary conditions 
imposed. To account for possible displacement in the in-plane 
(x) direction, a continuous boundary condition is applied 
under which all the nodes on left edge of the model can move in 
unison. A uniform pressure of 1 MPa is applied from the top 
edge of bipolar plate to simulate a typical spring-loaded 
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s
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[
M
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a

]
 

25oC,30%RH 

45oC,50%RH 

65oC,70%RH 

80oC,90%RH 

Time [s] 

clamping pressure for a fuel cell. 

4.2. Properties 

The followingmaterial properties and behaviors are used for the 
various components in the finite element model: 

1. Viscoelasticeplastic properties derived from the experiments 
are used for the PFSA membrane (section 3). The material 
properties and the sorption coefficient for the membrane are 
incorporated into the model as functions of water content and 
temperature. Poisson’s ratio of 0.4 is assumed for the 
membrane [25]. 

2. The membrane is the only component that is assumed to swell 
due to water absorption. 

B 3. Thermal expansion and swelling of themembrane are assumed 

. . . . . .  Experimental at 0.1 hold strain 
isotropic for simplicity. 

4. The bipolar plates are assumed to be linear-elastic and isotropic 
Model with elastic modulus and Poisson’s ratio of 10 GPa and 0.25 

respectively. Thermal expansion is neglected. 
5. The gas diffusion layer (GDL) is assumed to be linear-elastic and 

T
r
u

e
 
S

t
r
e

s
s

 
[
M

P
a

]
 

25oC,30%RH 

45oC,50%RH 

65oC,70%RH 

80oC,90%RH 

Time [s] 

transversely isotropic with in-plane and the out-of-plane 
elastic moduli of 1500 MPa and 9 MPa respectively [26]. The 
coefficient of thermal expansion is 2.6 x 10-9 K-1. 

6. The	 electrodes are assumed to have time-independent 
isotropic, elasticeplastic response with isotropic hardening. 

4.3. Load cases 

Standard test protocols have been established by the US 
Department of Energy (DoE) to assess the performance and 
durability of fuel cell components under cyclic loading [2,27]. The  
test protocol that targets mechanical durability is used for inves­
tigation of membrane performance in this work. This cycle is 
referred to as the “DoE cycle” in Fig. 6 and involves a constant 

Fig. 4. [A] True stress vs. true strain stress-relaxation response of the PFSA membrane 
at various environmental conditions obtained experimentally [2] compared with the 
constitutive model predictions for hold strain 0.05 and [B] hold strain 0.1. 

ABAQUS 6.9 [22] with 8-noded biquadratic coupled temperature-
displacement generalized plane strain elements (CPEG8T) and 
consists of 23,805 elements and 74,449 nodes with 10 elements 
along the thickness direction of the membrane (Fig. 5). Numerical 
convergence was verified using progressively finer meshes until no 
appreciable change was observed in the results. 

4.1. Geometry 

The geometry used for the numerical model is shown in 
Fig. 5. This model is adapted from our previous work [6,7,9] 
where the time-independent response was studied. General­
ized plane strain conditions are assumed, corresponding to 
a uniform strain in the out-of-plane (z) direction. A typical fuel 
cell unit contains repetitive grooves and lands forming the gas 
channels in the bipolar plate. We constructed a model for 
a representative repeating element consisting of a half of a land 
and a half of a groove with the dimensions as shown in Fig. 5. 

temperature of 80 DC while the humidity is cycled equally on both 
the anode and cathode sides, between dry and supersaturated 
conditions (corresponding to the dewpoint at 90 DC). The 
maximumwater volume fraction used in the analysis is F ¼ 0.32. 
Using Eq. (3), this corresponds to a water content in the 
membrane (l) of around 14. The cell is held at the dry and wet 
state for 2min each, and the transition is assumed to take place in 
a very short time (1s in the simulation). 

An alternative RH cycling test, developed by W. L. Gore, 
referred to as the “Gore cycle” in Fig. 6, is also investigated in this 
work [28]. This cycle involves similar conditions as the DoE cycle 
except that the cell is held in the wet state for 10s and in the dry 
state for 50s. 

In both tests, humid and dry air are alternately forced into the 
flow channels, and therefore the actual water profile at the 
membrane is mediated by the diffusion through GDL, electrode and 
the membrane itself. The water volume fraction in the membrane 
and the other fuel cell components is modeled as an additional 
degree of freedom in addition to the nodal displacements in the 
finite element analysis. The water volume fraction for the 
membrane at the interface with the electrodes has a time-lag as 
shown in Fig. 7. Snapshots of the water content contours during 
hydration and dehydration are shown in Fig. 8. 



              

    

           
           

          
            

          
          

          
            

              
           

          
            

             
          

            
           

           
     

          
             

        
         

           
              
        

              
          

           
           

           

Fig. 5. Schematic of the 2D generalization of fuel cell unit (not to scale). 

5. Results and discussion 

In our previous work [6,20,29] we have shown that the in-plane 
stress is the dominant stress in the membrane during fuel cell 
operation. Consequently, we will focus on that component only. The 
in-plane stress varies both as a function of time and location. The 
snapshots displaying the spatial variation of the in-plane stresses in 
the membrane during the fuel cell simulations under standard RH 
cycle loading condition (section 4.3) are shown in Fig. 9. The  
evolution of the in-plane stress in the membrane for an element on 
the groove side of the fuel cell is presented in Fig. 10. The particular 
‘observation point’ as chosen in Fig. 10 is a representative element 
selected to show the general stress evolution behavior. The in-plane 
stresses caused by the initial clamping pressure of 1 MPa, applied at 
the top of bipolar plate are small in magnitude (Fig. 9A). A parametric 
study was conducted to investigate the effect of clamping pressure 

(not shown for brevity). The increased pressure up to 3 MPa results 
in a minor increase (<5%) in the compressive stresses after clamping 
and hydration and therefore, a similar decrease was found in the 
residual tensile stress after dehydration. 

When the system is subjected to hydration, the membrane takes 
on water and attempts to swell (from AeB in  Fig. 10). Due to the 
mechanical constraints, the membrane is mostly prevented from 
deforming in the in-plane direction, resulting in relatively large 
compressive stresses, on the order of 9e10 MPa (Fig. 9B). During 
hold at high humidity (10s duration from point B to C in Fig. 10), 
these compressive, in-plane stresses begin to relax. The redis­
tributed stress profile is shown in Fig. 9C and it is clear that the 
overall level of compressive stress is reduced, along with a signifi­
cant redistribution of the stresses. After hold at high humidity, the 
system is flushed with dry nitrogen (CeD in  Fig. 10) resulting in 
a decrease in water content and a decrease in compressive stresses. 
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Fig. 6. DoE and GORE RH Cycling Test profile. 

This decrease eventually leads to residual tensile in-plane stresses, 
on the order of 7e8 MPa, as shown in Fig. 9D. During the holding at 
dry conditions (50s), the membrane in-plane tensile stresses relax 
considerably (DeE in  Fig. 10) and are finally redistributed as shown 
in Fig. 9E. The figures show that residual stresses under the groove 
are higher than those under the land. This confirms the trend from 
our previous work with time-independent properties [6,9,20,29]. 
However, the time-dependent properties implemented here, result 
in larger peak for the in-plane stresses after hydration and dehy­
dration compared to the time-independent predictions. During the 
hold phases, these peak stresses relax to levels below those seen in 
time-independent simulations. 

The hold time at constant hydration and dehydration is longer in 
the DoE RH cycle than the Gore RH cycle, allowing for more 
relaxation (Fig. 10). This results in larger residual tensile stresses 
after dehydration at the end of the cycle. However, the Gore RH 
cycling test involves a higher frequency of loading, which produces 
more reversals of the stresses for a given period of testing. There­
fore, without more information on the fatigue resistance of the 
membranes, it is not possible to determine from these simulations 
which test cycle will cause earlier failure in the membrane. 

The typical strain evolution in the membrane during Gore RH 
cycling, for a representative element on the groove side is shown in qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

P pl : εplFig. 11. The plastic strain magnitude, ε ¼ 2=3ε is about 

0.15, and therefore, can be instrumental in eventual failure of the 
membrane. 

The transition time (that is, the time assumed for the input RH 
load to change linearly from dry to saturated conditions in the 
standardized RH cycles) is not clearly defined by the testing 
protocol and may vary for different regions of the fuel cell stack. 
Therefore, we will study the effect of this transition by varying this 
time and observing the resulting in-plane stress evolution. The 
peak in-plane compressive and tensile stresses (corresponding to 
points B and D in Fig. 10, respectively) for the cycle simulations 
conducted using selected transition times are shown in Fig. 12. The 
results indicate that longer transition times result in reductions of 
both the peak compressive stresses after hydration and peak tensile 
stresses after dehydration. 

In the standard RH cycle protocols, the humidified air is fed 
simultaneously into both the anode and the cathode side of the fuel 
cell. However, during real fuel cell operation, the anode side is often 
less hydrated due to the production of water at the cathode and the 
electro-osmotic drag, creating a water content gradient [30]. To  
investigate the effect of loading with gradient water content, we 

Time [s] 

Fig. 7. Water volume fraction variation as seen at membrane-electrode interface 
compared to input at flow channels indicating swelling time-lag. 

Fig. 8. FE results showing water content in the MEA at the end of [A] hydration and [B] 
dehydration step of the RH cycle. 



               
          

           
           

             
           

          

 

 

 

 

 

 

 

 

              
             

       

          
            
           

        
   

        
          

            
             

          
         

       
           

            
           

         
          

                           
            

Fig. 9. Contours of the in-plane stress in the membrane during Gore RH cycling (first 
cycle); [AeE] refer to time instants as in Fig. 10. 

simulated the case where the cathode side of the membrane is 
continually subjected to saturated air, while the air at the anode 
side is cycled according to the Gore RH cycle at a temperature of 
80 DC. The contours displaying the spatial variation of the in-plane 
stress through the thickness are given in Fig. 13. Asymmetric 
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Fig. 11. Typical strain evolution during Gore RH cycling for an element in the 
membrane on the groove side. In-plane swelling, elastic, viscous and plastic strain is 
shown along with total plastic strain magnitude. 

distribution of in-plane stress due to non-uniform water content is 
observed (Fig. 13B, C). After dehydration, a mixed state of stress is 
observed with the portion of the membrane under the land in 
compression and the portion under the groove experiencing 
tension (Fig. 13C). 

To further explore this phenomenon, the water content varia­
tion, in-plane strain and resulting in-plane stress evolution for two 
elements under the groove, one on the anode and one on the 
cathode side of membrane are shown in Fig. 14. It is evident that 
due to the continual hydration at the cathode, the membrane 
experiences a smaller differential of water content and less 
swelling-shrinkage strain, leading to lower overall stress. 

As the humidified and dry air are alternatively fed into the 
channels, the sorption process limits the rate of change in the water 
content in the GDL, catalyst and membrane. In the present work, 
the sorption phenomenon is modeled using a diffusion coefficient 
for the membrane as an empirically derived temperature and water 

Fig. 10. In-plane stress evolution comparing elasticeplastic to viscoelasticeplastic properties during [A] Gore and [B] DoE RH cycling test in a groove side element of the membrane. 
The markers [AeE] correspond to the stress contours shown in Fig. 9. 



     

            

 

 

 

 
 

  

  

 

 

 

 

 

          

          
          

            
         

          
          

         
           

           

             
                 

            
         

               
                        

           

Uniform Non-uniform (Anode) Non-uniform (Cathode) MPa 

M
a

x
 
C

o
m

p
.
 S

t
r
e

s
s

Gore 

DoE 

Gore 

DoE

M
a

x
 
T

e
n

s
i
l
e

 
S

t
r
e

s
s

 

Time (s) 

Fig. 12. Effect of hydration/dehydration time on the in-plane compressive and tensile 

I
n

-
p

l
a

n
e

 
S

t
r
a

i
n

 
W

a
t
e

r
 V

o
l
u

m
e

 F
r
a

c
t
i
o

n
I
n

-
p

l
a

n
e

 
S

t
r
e

s
s

 
[
M

P
a

]
 

0.36 

0.30 

0.24 

0.18 

0.12 

0.06 

0.15 

0.10 

0.05 

0.00 

-0.05 

0  10  20  30  40  50  60  70  

A 

B 

C 

D 
E 

cathode side 

anode side 

Viscous 
Strains 

Swelling 
Strains 

Membrane 

-0.10 stresses in the membrane for Gore and DoE RH cycling. 

-0.15 

content dependent function taken from the work of Weber and 
Newman [31]. This coefficient affects the dynamic water uptake for 
the membrane that in turn affects the stress levels. In order to 
investigate this effect, we ran the simulation with different frac­
tional values of this coefficient [31]. Since the original coefficient 
values from the literature [31] give relatively fast water uptake, 
smaller (slower) coefficient values were chosen for the parametric 
analysis. The resulting water profile variation is shown in Fig. 15A 

5.5 

0.0 

-5.5 

-11.0 and the in-plane stress evolution in Fig. 15B. The results indicate 

Time [s] 

Fig. 14. Water volume fraction, in-plane strain and in-plane stress variation for an 
element under the groove on the anode side and one on the cathode side of the PFSA 
membrane for the first cycle under non-uniform (gradient) loading the markers [AeE] 
correspond to the stress contours shown in Fig. 13. 

Fig. 15. For three values of sorption coefficient D(F,T) obtained from Weber et al. [31], 
Fig. 13. In-plane stress contours in the membrane under non-uniform (gradient) [A] Water volume fraction variation in the membrane during RH cycling; [B] In-plane 
loading. [AeE] refer to time instants in Fig. 14. stress evolution. 



  

           
         

            
          

            
         

 

   

        
        

        
          

        
        

     
         

          
          

       
         
          

      
        

         
      

          
        
          

        
         

         
         

               
           

          
      

        
           

          
          

          
          
           

        
        

      

 

            
          

          
             

         
            

         
             

           
           

       

    

          

 
 

   
  

    

              
            
            

         
             

         

          
      
        

          

  
   

           
          

 

        

              

      
 

          
                

           
  

 
   

 

 
  

          
                    

                   
  

    
    

                      

           

 
                    

                      
               
  

  
          

        
 

 
            

 

 

that with a decreasing value of the coefficient, D, the membrane 
never gets fully saturated (corresponding to water volume fraction, 
F ¼ 0.32) during the hydration phase of the cycle and therefore, the 
stress levels are significantly reduced. In addition, for the lower 
sorption rate D/50, the membrane does not reach the dry state (F 
¼ 0.06) during the dehydration phase, further reducing the stress 
levels. 

6. Concluding remarks 

In this work, a two-layer viscoelastic-plastic constitutive model 
[21,22] was adapted to characterize the time-dependent and rate-
dependent mechanical response of PFSA membrane under various 
environmental conditions and load rates spanning a range of fuel 
cell operation conditions. We modified the standard constitutive 
model [21,22] by adding strain-rate dependence and determined 
the specific time-temperature-humidity dependent parameters 
from our tensile and stress-relaxation experimental data [11] for 
Nafion®211 membrane. The simulations in section 2 show that the 
resulting model captures the material response well over the range 
of temperature, humidity and load rates studied. 

The constitutive model was incorporated into a finite element 
analysis to study the stresses developed in a PFSA membrane, 
including time-dependent effects, during accelerated mechanical 
testing. The analysis was conducted as a coupled sorption-
displacement problem [20] enabling us to model the water 
content profile and mechanical stresses simultaneously. 

The results of the simulations show that (i) the time-dependent 
models predict larger peak compressive and residual tensile 
stresses in the membrane as compared to earlier predictions using 
time-independent properties; (ii) slower feed rates for the 
humidified air reduce the overall in-plane stresses; (iii) slower 
sorption rates decrease the swelling strain considerably and hence 
lower the stresses; (iv) residual in-plane tensile stresses developed 
in the DoE RH cycles are higher than for the Gore RH cycle, owing to 
the longer relaxation at constant strains in the former; (v) Uniform 
moisture feed on both sides of the membrane produces higher 
stresses as compared to non-uniform loading. 

In conclusion, these results suggest that the mechanical degra­
dation and hence the membrane lifetime may be influenced by the 
inherent time rates of humidity variation during real fuel cell 
operation. The sites of the largest stress magnitude and cyclic 
reversals may act as potential damage initiation points and trigger 
ultimate failure of the membrane. This study adds to the under­
standing of the mechanical aspects of durability of PEM fuel cells. 
The numerical model along with carefully determined material 
properties helps ascertain severe loading cases for the hygro­
thermal cycling in a fuel cell. 
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Appendix A. Tensile simulation 

In this section, derivation of the stresses in individual layers of 
the two-layer viscoelastic-plastic model [21,22] for tensile loading 
is explained. In order to visualize the individual effects of the 
parameters in the two-layer model (see Fig. 1), we investigate the 
model response during a generic tensile test simulation, using 
generic properties. 

In a displacement-controlled tensile test, the strain rate, ε_ , is  
nearly constant. The strain evolution for each of the individual 
parameters of the constitutive model is shown in Fig. A1-A. In the 

elasticeplastic layer, the strain, ε EP in the elastic element, KP,el , 
changes linearly until the elastic limit is reached. Thereafter, the 
elastic strain increases monotonically at a reduced rate. The plastic 
strain, ε EP appears after the proportional limit is reached and pl , 
increases linearly beyond this limit. Similarly, in the elastic-viscous 

EVlayer, the strain, εel , in the elastic element, KV, initially increases 
linearly until the time-dependent dashpot is activated. Once the 
dashpot is activated, there is no further increase in the strain for the 

EVelastic element, while the viscous strain, εvi , increases linearly. For 
one-dimensional loading, the total stress is given by the sum of 
stresses in the two layers (Fig. A1-B), 

EP þ EVs ¼ s s : A-1 

The stress sEP in the elasticeplastic layer is given by 

{ EP � syEP KPε ; s 
s ¼ EP ; A-2 

sy þ Hðε - εcÞ ; s >sy 

where εc ¼ sy =KP, KP is the elastic stiffness and H is the post-yield 
slope of the true stress vs. true strain curve for the elasticeplastic 
layer. H can generally be any function of strain in addition to 
having hygral and thermal dependence. Using the information from 
our experiments, the form of H used in this work is such that 

H ¼ Hðε; l; qÞ ¼ Hðl; qÞ ; ε < 0:3: A-3 

The stress in the elastic-viscous layer results in a first-order 
inhomogeneous, non-linear differential equation. Again, assuming 
one-dimensional loading, the individual elastic and viscous stresses 
in the elastic-viscous layer are equal to the total stress 

EV EV EVs ¼ s ¼ s A-4el vi : 

The strain in the elastic-viscous layer, given by Eq. (14) when 
written in one-dimensional form ði; j ¼ 1Þ gives the following 
expression 

EV EV EV 
ε ¼ ε þ ε A-5el vi ; 

where the elastic strain is related to the stiffness, KV and is given by 

EVsEV el 
ε ¼ : A-6el KV 

Differentiating Eq. A-5 with respect to time, t, and substituting 
EV EVthe viscous strain ε from Eq. (16) and elastic strain ε from Eq. vi el 

(A-6), we get a relationship between the strain rate, stress and 
stress rate, 

EV ( )n_EV sel EV 
ε_ ¼ þ A s ; A-7

KV 
vi 

where a “dot” above the quantity represents its derivative with 
respect to time. Rearranging Eq. (A-7), and using Eq. (A-4) we can 
write the resulting constitutive equation for the elastic-viscous 
layer as 

( )nEV EV EVs_ þ AKV s -KVε_ ¼ 0; A-8 

EV Mwhere ε_ ¼ ε_ ¼ ε_ is the total strain rate. The solution to this 
equation is found numerically using illustrative properties and the 
resulting stress (Fig. A1-B) shows an increase with an increase in KV 

to a constant maximum value of 

1=n
 
EV
s ¼ ε_

: A-9
A 



  

   

   

                      
                    

              
              

 
           

     
       

    

          
            

           
         

         
               
            

          
           

          
             

           
          

          
           

 
           

          
           

  

        

        
        

        

       
            

           
             

         
     

             
    

 
              

          
    

      

           

    

         
    

  

 
 
 

  

     

          
       

  

    
  

    
  
 

            
             

Eq. (A-9), when combined with Eq. (A-2) gives the total stress recovered from the Eq. (B-6) by substituting t ¼ 0. During 
for the model under constant strain rate loading (assuming stress-relaxation, which occurs for t > 0, the stress in the elastic-
inelastic deformation) as viscous layer, sEV, given by Eq. (B-5) decreases as shown in 

Fig. B1-B, and as a result the total stress, s given by Eq. (B-6)
1=n 

ε relaxes to an equilibrium value equal to the stress in _ 
sy þ Hð A-10s ¼ ε - εcÞ þ  : elasticeplastic layer given by Eq. (A-2).A 

Appendix B. Relaxation simulation 

In a typical stress-relaxation test, the specimen is quickly loaded 
to a desired strain. The strain is then held constant and the 
reduction in stress is measured as a function of time. During 
a stress-relaxation simulation using generic properties, the strain in 
the individual components of the constitutive model varies as 
shown in Fig. B1-A. The stress in the model at the end of the initial 
loading (tension) can be determined by Eq. (A-10), which is also the 
initial stress for the relaxation phase. During the relaxation period, 
the stress in the elasticeplastic layer, sEP, is unchanged, while the 
stress in the elastic-viscous layer, sEV, decreases due to dissipation 
in the viscous element, as illustrated in Fig. B1-B. The stress in the 
elasticeplastic layer is still given by Eq. (A-2), but during relaxation, 
the stress in the elastic-viscous layer evolves as the strain compo­
nents are redistributed. Therefore, to determine total stress for the 
model, the stress in the elastic-viscous layer alone needs to be 
evaluated. 

EVDuring the stress-relaxation period, the strain, εel , in the elastic 
element, KV, of the elastic-viscous layer decreases as the dashpot 
lengthens, such that the total strain in the layer remains constant 
(Fig. B1-A), 

EV EV 
ε þ ε ¼ ε: B-1el vi 

Thus, upon differentiating and rearranging Eq. (B-1), the 
following relationship between the strain rates is obtained, 

EV EV 
ε ¼ -ε B-2vi el : _ _ 

The stress-relaxation data obtained at each environmental 
condition is fit to the Eq. (B-6) and the elastic-viscous parameters A, 
n and Kv are determined. The time-independent portion of the Eq. 
(B-6) which is also given by Eq. (A-2), is then used to construct 
a ‘quasi-static’ curve from which the elasticeplastic parameters sy, 
H and Kp are determined. 

Fig. A1. [A] Typical strain evolution and [B] typical stress evolution during uniaxial 
displacement-controlled tensile test simulation. 

EV 
vi Þ is governed by Eq. (16), in which it The viscous strain rate ð_ε 

can be replaced by the corresponding negative elastic strain rate 
using Eq. (B-2), giving 

( )nEV EV¼ A s : B-3-εel_ 

Eq. (B-3) can be simplified using Eqs. (A-4) and (A-6) to 

_
( )nEV EVs þ AKV s ¼ 0: B-4 

Eq. (B-4) is a first-order homogeneous non-linear equation in 
sEV with the solution 

ð1-nÞ 1 

EVs ¼
[

_ε 
A 

]
n ð1-nÞ 

n - 1 AKvt : B-5þ 

Therefore the total stress during stress-relaxation is given by the 
sum of Eqs. (A-2) and (B-5) as 

ð1-nÞ 1 

s ¼ sy þ Hðε - εcÞ þ
[ ]

n ð1-nÞ
ε 

n - 1 AKvt : B-6
_ þ
A 

The maximum value of the total stress s at the end of 
a tensile pull with strain ε as given by Eq. (A-10) can be 



             
   

 

               
              

              
            
       

    
               

     
            

            
         

            
             

     
             

     
             

       
             

        
                

  
               

        
            

    
            
            
               

       
               

             
          

          
      

             
      

            
             

          
             

      
             

 
      
         

  
            

   
               

   
              

    
             

             
  

         
             

         
 	         

           
 

            
 

Fig. B1. [A] Typical strain evolution and [B] typical stress evolution during uniaxial 
stress-relaxation test simulation. 
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