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STORAGE AND DELIVERY CONSTRAINED UNIT COMMITMENT 

Y. Al-kalaani, Student Member IEEE F. E. Villaseca, Member IEEE F. Renovich, Jr., Member IEEE 
Department of Electrical Engineering 
Cleveland State University 

Abstract- A general formulation and the development of a 
dynamic programming algorithm to solve a fuel-constrained unit 
commitment problem is presented. The system under consider-
ation has oil units with storage constraints, gas units with delivery 
constraints, and unconstrained coal units. An optimal approach 
to transfer the fuel delivery constraints into unit capacity limits 
using a closed-form dual dispatch is introduced. As a result, the 
gas units can be viewed as fuel-unconstrained, thus greatly 
reducing complexity. It is shown that the optimization problem, 
which requires that storage levels be parameterized, leads to two 
different dispatch rules. The oil units are dispatched to maximize 
the power they generate for a binding fuel amount or cost, 
whereas the gas and coal units are economically dispatched to 
provide for the remaining power. In addition to the standard 
constraints, the system is required to meet a minimum system 
spinning reserve. Test results are provided to illustrate the merits 
of the proposed method. 

Keywords: Short-term unit commitment, dynamic program-
ming, fuel constraints, spinning reserve, economic dispatch, 
dual dispatch, fuel-limited capacity units. 

I. INTRODUCTION 

In power systems, fuel availability is constrained by various 
factors such as contractual obligations and storage restrictions. 
For instance, take-or-pay contracts, which due to economics 
and limitations of the fuel transmission systems. have usually 
added provisions that specify, at any given period, the mini-
mum amount of fuel that must be delivered with an upper cap 
on fuel deliverability. Also, regulatory or physical restrictions 
impose limitations on the amount of fuel that can be stored. 
These fuel considerations, in addition to the traditional con-
straints, such as system demand, unit generation capacities, and 

spinning reserve, can extensively complicate the unit commit-
ment problem and its embedded economic dispatch. Several 
methods have been proposed to solve the fuel-constrained unit 
commitment problem which can be classified into two trade-off 
categories. In the first [1-6] fuel constraints are integrated into 
a single problem which can be solved for a global solution. In 
the other category [7-11 J, the scheduling problem is separated 
into two, namely fuel dispatch and unit commitment which are 
iteratively solved using suitable optimization techniques. 
Although both approaches may accommodate for different fuel 
constraints, the first is applicable to greatly simplified prob-
lems, while the other can only yield suboptimal solutions. 
Converting fuel and/or emission constraints into the corre-
sponding generator limits as mentioned in [12,13J is only 
possible on an individual basis. that is. if the constraints on 
each unit are known. However, this method will fail when the 
constraints, such as those imposed by the take-or-pay contracts, 
are shared among all the affected units. 

In this paper, a new approach to solve the unit commitment 
problem using a dynamic programming based algorithm is 
presented. The novelty of this method is that system fuel 
constraints can be optimally transformed into new bounds on 
the lower and upper power output of the generating units using 
the dual dispatch concept which renders the problem fuel-
unconstrained. The system under consideration has oil units fed 
from a common tank with a constant hourly flow rate input, 
gas units fed from a common pipeline subject to hourly 
minimum and maximum fuel flow, as well as daily minimum 
(take-or-pay) and maximum fuel consumption, and fuel-uncon-
strained coal units. This study shows that the use of dynamic 
programming, which requires that storage level be parameteriz-
ed, induces two different dispatch problems. At any given 
stage, the oil units are dispatched to maximize the power th~y 
generate for a fixed cost, whereas the coal and the gas umts 
are dispatched to generate the power not provided by the oil 
units, to minimize their production cost. In addition to the 
standard constraints. the system is required to meet a minimum 
system spinning reserve, which must be considered by both 
dispatch problems. 

II. PROBLEM FORMULATION 

Unit commitment is a constrained optimization problem 
whose solution determines the set of generating units, among 
those owned by the utility, that should be connected to the grid 
at any hourly interval over a period of time, lasting from a day 
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to a week, such that an objective function -usually, cost of 
operation-, is minimized. To state the problem mathematically 
we need the following definitions. 

A. Definitions 
Let the time horizon be divided into M hourly stages. Then 

the set of all stages is K ={O, ], 2, .... , k, ..... , M}. 
Assume that a utility has N generating units. Then the set of 

all units, or the universal set, is I ={I, 2, .... , i,....., N}. 
Since a generating unit may be on or off let the status of 

unit i, or commitment variable, be defined by the binary set d; 
E {O, 1 J. The set of all units may be divided into two 
mutually exclusive sets: 

ION = {i E I Id; = ] 1, the set of units on-line, and 
IOF = fi E I Id;= 0 J, the set of units off-line that is, 

satisfying ION U IOF =I and ION 11 IOF =<1>. 
Since the status of any unit is described by a digit in the 

binary set, then the set of all possible unit combinations at 
each stage is given by U = {1, 2, .., j,.., J J 
where: J =~ - ]. 

Given the status d; of every unit iE I, the unit combination 
number may readily be obtained by the binary to decimal 
transformation j =E 2;·1 d. =E 2;·1. 

iEI iEloNI 

The dynamic programming formulation requires that storage 
be parameterized into L levels. Let the set of all parameterized 
levels be W = { 1, 2,.., I, .. , 14 }. Therefore the state of the 
system with fuel storage constraints is a function of three 
parameters, unit combination j, level I, and stage k. Let the 
state variable be defined by x(jk> Ik). then the set of all possible 
states over the scheduling horizon is S = ( ], 2,.., x,.. , X J. 
where: X = M x N x J x L. 

If p; is the power allocated to unit i then the fuel cost for 
this unit. assuming quadratic functions, is 

CI(PI) =a, pt- +b, PI +c, ($/h) (1) 

where: a;. b; • and c; are the cost coefficients of unit i. 

Since the amount of fuel consumed depends on the differ-
ence between the level at the current stage Ik and the level at 
the previous stage lk.l' then the production cost associated with 
state x (jk>lk) at any given j, I, and k is 

N 

PCOST[xU.,I.),l._t] =E C,(P,)d, 
,: 1 

The transitional cost associated with the change from state 
X(jW1k.l) to state x(jk>/i) is 

N 

E Id,(lt) -d,(lt-l) I TC,[l.,t,(lt_I)] 
':1 

where: 
TC j{.] is the transitional cost (start-up or shutdown) ($/h) of 

unit i at stage k and level I. from stage k·1 and level 1
k·l' 

t;(.) is the number of hours that unit i at stage k·] and level Ik·l 

has been on or off up to stage k-1. 

B. Problem SlJltement 
The commitment problem can be stated as 

If 

arg min Z(x) = E PCOST[xU.,I.),lk-I1 
1:1 

+ TCOST[xU._I'Ik-l),xU.,lt)] 

where: Z (.) is the total cost of operation ($). 
This optimization problem is subject to the following 

constraints: 

1. Power Balance Constraint 
PG[xUt ,I.),lt_l] ::: PDt (MW), 'r/x (2) 

where: N 

PG[.] = LPj d, 
1:1 

is the total power allocated to state x (j/cJl.) given lk.l' and 
PDk is the system demand plus transmission losses at stage k. 
These losses are included as a percent of the system demand. 

2. Unit Capacity Constraints 

Pt,AUN s: P, s: PI,MAX (MW), 'Vi, 'r/I, 'r/k (3) 

3. Spinning Reserve Constraint 
SSR[xUk,lt),lk_1] ~ MSSR (MW), 'r/x (4) 

where: 

SSR[.] '" L min ( MSRI ' PI,MAX - P, ) 
IIiiION 

MSR; is the maximum spinning reserve for unit i, 
MSSR is the minimum system spinning reserve. 

4. Fuel Storage Constraints 
(5)

(I 1 )::: Q(lk-l) - Q(I,) ~ 0 
qs t' .-1 qc + T 

where: LAUN s: I s: LMAX (m 3 ), VI 

qs(') is the amount of fuel (m3Ih) that can be drawn out of the 
tank given levels lk and 1•.1, 

Q(lk) is the amount of fuel (m3
) stored at level lk and stage k, 

Q(li;./) is the amount of fuel (m3
) stored at level Ik•1 and stage 

k-], 
qc is a constant fuel flow rate (m3/h) into the tank, 
T is the time interval (h) between two consecutive stages. 

is the tank maximum level, and LMAX  

LMIN is the tank minimum level not necessarily zero.  



Typically, there are two types of delivery constraints 
associated with fuel contracts which must be considered: 

5. Hourly Fuel Delivery Constraints 

qmln ~ qd(k) ~ qmax (m 3/h), Vk (6) 

where:  
qik) is the amount of fuel to be allocated at each stage k. and  

the constraints imposed by the fuel transmission system 
qmi. is the hourly minimum fuel rate that must be consumed, 
qnwx is the hourly maximum fuel deliverabilty rate, 

6. Daily Fuel Delivery Constraints 
M 

~ I:qd(k) (m 3 ) (7)QMIN ~ QMAX 
k'=l 

where: 
QMIN is the daily minimum fuel (take-or-pay), and 
QMAX is the daily maximum fuel amount that can be delivered. 

In addition to the above constraints, the following must also 
be considered: 

7. Unit Minimum-Up and Downtime Constraints 
8. Must Run Unit Constraints 
9. Units Assigned to Fixed Generation 
10. Unit Startup and Shutdown Constraints 
11. Crew Constraints 
11. Changes in Unit Status and Characteristics. 
The recursion required. at every stage and level. to solve this 

optimization problem using dynamic programming is given by 
CCOST[xU.),)] "" min{CCOST[xUk_l'lt_l)] 

+ PCOST[xUk,lk),lk_tl 

+ TCOST[xUk_I,I,,_l),xU/c,I,,) ]} 
where: 
CCOST[.j is the cumulative cost ($) associated with every 

state x (jt,lk) subject to all the problem constraints. 

UI. FUEL·CONSTRAINED ECONOMIC DISPATCH 

When considering fuel storage constraints. the standard 
economic dispatch which uses Kuhn-Tucker optimality 
conditions to minimize system production cosl, musl be 
modified to include these equality constraints. Assume a 
system with N generating units. Ns of which are supplied from 
a common storage tank, No from a common delivery pipeline, 
and Nu are fuel unconstrained units. That is N = Ns + No + 
Nu. Let the set of all units supplied from the storage tank be 
Is = ( 1 J 2,.., i,u, Ns ). the set supplied from delivery pipeline 
be In = ( Ns + I, ••, i,.., Ns + Nn ). and the set of fuel-uncon-
strained units be lu = ( N s + No + 1,.. ,i ,.., N ). Therefore the 
sel of all units is I =Is U In U lu. If a set of on-line units ION 
in state x(jt,l.) is to be dispatched at stage k to meet a system 

load PDt. then the production cost for this state is 
Ns 

PCOST[xU",I,,),IH] = I: C,CP,)d, 
i~l (8)

Ns+ND N 

+ I: C,(p,)d, + I: C,CP,)d, 
'~N.+I j~N-NIJ 

Consider that Is units, on-line at stage k. draw fuel from the 
storage at a total consumption rate (5) which is fixed by the 
level It being considered and by each level It-I' the total cost 
of consuming fuel is also fixed at 

N, 
(9)I: C,CP,)d, '" FC(lk,IH) 

i~1 

where: 

in which CS is the fuel cost per cubic meter ($lm3
). 

The economic dispatch problem is to determine the value of 
Pi' i E I = Is U (ID U lu), such that (8) is minimized subject 
to the system constraints (disregarding for the moment fuel 
delivery and system spinning reserve constraints which will be 
considered later): 

Ns N 

PDk - I:p,d, - I: p,d, = 0 (10) 
i~l '~N.+I 

and N, 

I: Cj(p,)dj - FC(IJc.1k_l) '" 0 (11) 
1:1 

Since (l0) and (11) are equality constraints. they can be 
incorporated in the cost function via LaGrange multipliers A. 
and y to form the objective function 

N 

J '" FC(lk.1k_l) + I: C,(p,)d, 
':Ns+l 

Ns N 

+A(PD,,-I:p,d,- I: p,d,) 
'=1 I=N,.I 

N,
A 

+- [I: C,(p,)d, FC(l•• lk_l)] 
Y 1:1 

from which the optimality conditions are obtained as 

y = dCiCP,) d ($/MWh) , lEIs (12) 
dp, i 

and 

(13) 

Notice that (12) and (13) are independent of each other, that 
is Is n (In U 1[1 } =<P. 



IV. OPTIl\'lAL DISPATCH POLICY 

Since the fuel cost (9) is already fixed by the storage levels 
being considered at each stage, the optimal dispatch policy, 
which has the overall objective of meeting the system demand 
at minimum production cost, would be to generate as much 
power as possible out of this fixed cost so that Iv and Iu units 
have less power to generate for the remaining load not 
provided by the Is units. Of course, the above policy is optimal 
only if such power maximization dispatch exists. 

The equal incremental cost functions can be used to achieve 
different dispatch objectives. For instance a dispatch using (13) 
and (10) is the well known economic dispatch which minimiz-
es production cost for a given load, whereas a dispatch using 
(I2) and (II) is a dual dispatch which maximizes power 
generation for a given cost, closed-form solutions for the 
dispatch problem may be derived as follows. 

From (13), the power allocated to unit i is determined by 
taking the derivative of (1) with respect to Pi as 

A - bl 	 (14)P =--
I 2a 

I 

By substituting (14) into (2), the system load may be written 
as A - b 

PDt = 	 .E __I 

IEJON 2ai 

from which a closed-form expression for A. is obtained 
1 blA = --(2PDt +.E -) (15).E ..!. IE/ON a/ 

ie/ON al 

In a similar fashion, by substituting (14) into (l) and (9) a 
closed-form expression for y can be readily derived as 

b2 

FC(.) + .E I -c/) 
Ie/ON 4a/ (16) 

y 

Thus knowledge of A. and y uniquely specifies the generation 
level of each unit. since the system load. fuel cost, and the cost 
coefficients in (15) and (16) are known. 

Since (12) and (13) are decoupled as indicated earlier. the 
dispatch of the on-line units can be performed separately as 
follows: 
• Dispatch Is units using (16). This results in the maximiza-
tion of the total power PGs generated by these units for a fixed 
cost given by (11) 

Ns Ns by - 1 
PGs = .EpA = .E -- d l 

(17) 
j-l '~1 2al 

that is, any power allocation other than (17) will result in less 
total generation for the same fuel cost, and 
• Dispatch the Iv and Iu units using (15). This is a standard 

economic dispatch. where these units assume the generation 
not provided by Is units, that is 

N 

.E P1dl =PDt - PGs (18) 
i=Ns~l 

These dispatch problems are also constrained by the limits 
on unit generation (3), so that if one or several units in either 
set reach their limit values, the optimal strategy requires that 
the remaining units in the set operate so as to satisfy their 
respective optimality conditions [14]. 

V. CHANGING DISPATCH OBJECTIVES 

Consideration of the fuel delivery limits requires that 
constraints (6) be checked every time the on-line units in set 
I D • which must not be empty. are dispatched. However, since 
(7) is a daily constraint, a cumulative fuel consumption 
associated with each state must also be checked at each stage. 
If the right side of (7) is violated at any stage, then the corre-
sponding state is infeasible and therefore must be removed 
from the dynamic optimization path. On the other hand, if (6) 
is violated and I u =<I> , then the dispatch of these units is not 
feasible. Furthermore, if (6) is violated but Iu #- <I> in that unit 
combination, then the dispatch of the Iv units may be rendered 
feasible as follows: 
• If (6) is violated at ils lower limit, then the cost of fuel to 
be consumed by Iv units is set equal to this limit, that is 

No 

.E C/CP1)dj = CD·qmJn (19) 
/=NS~l 

where: CD is the fuel cost per cubic meter ($lmJ
). 

• If (6) is violated at its upper limit, then the cost of fuel to 
be consumed by ID units is set equal to this limit, that is 

No

.E c/cp/)d/ = CD.qrou (20) 
t~Ns+1 

Since (19) and (20) are fixed costs. the dispatch objectives 
of Iv units must be changed from cost minimization, as posed 
earlier, to power maximization. 

Therefore, the dispatch of the Iv and Iv units will be 
modified as follows: 
• Dispatch Iv units using (16) with the objective of maximiz-
ing their total generation PGv for a fixed cost given by (19) or 
(20) depending on the case 

No No y-b
t (21)PGD = .E pA = .E -- dj 

/=N .l I=Ns~l 2a ls

• Dispatch Iv units using (15) to economically meet the 
remaining load not provided by Is and ID units, that is 

N.E p/dl = PDt - PGs PDD (22) 
I=N-Nu 



VI. FUEL·LlMITED CAPACfrV UNfrS 

Although the above dispatching scheme can perfectly 
account for any type of fuel constraints encountered in this 
study, its practical implementation is somewhat cumbersome 
because the dispatch objectives have to be constantly changing, 
every time constraints (6) are not met. Since violations of these 
constraints cannot be known a priori, it is required that the on· 
line units be dispatched first before any dispatch policy can be 
adopted. With thousands of dispatches to consider at every 
stage and level over the scheduling horizon, this method is 
highly inefficient in the use of computer time and memory. 

An optimal but simple technique to solve this complex 
multi-dispatching problem is presented here by using the 
closed-form dual dispatch which maximizes generation for 
fixed fuel cost, to incorporate the fuel delivery constraints 
directly into the units generation capacities, thus rendering the 
problem fuel-unconstrained. That is 

• For fixed cost (19), the unit generation levels, as determined 
by (16), are to become the new minimum generation capacities 
for these units 

(23) 

• For a fixed cost (20), the unit generation levels, as deter-
mined by (16), are to become the new maximum generation 
capacities for these units 

N d I (24)P"MAX = P" iE D 

The computational effort, due to forms (23) and (24). is 
greatly reduced. Dispatches (17) and (18) could both be 
performed as indicated with the fuel constraints guaranteed to 
be met. The iterative process, which was required in steps (19-
22) to check the fuel delivery limits after each dispatch, is no 
longer needed here since I v units and I D units with their new 
capacity limits are now economically dispatched as fuel-
unconstrained, that is IDE I v' with (6) automatically met. 

VII. SPINNING RESERVE REDISPATCH 

In this study. the minimum system spinning reserve MSSR 
is considered a hard constraint which must always be met. 
There are instances in which the economic dispatch of a set of 
units may violate constraint (4) by an amount ,1 = MSSR
SSR[uJ. However, with the division of set ION into two subsets 
defined as 11 = ( iE ION: SRi = MSR) and 12 = { iE ION: SRi = 
Pj,MAX - Pi}' it is possible to meet MSSR by bringing up and 
down the generations of these sets by UPG = E ({Pi/,IAX 
MSR) - p} iEll and DNG = E {Pi - ( Pi,'>fAX - MSR;J] iE/2 • 

respectively, if the conditions of the following theorem are 
satisfied. 

Theorem 1 - When ,1 > O. the redispatch of units 1/ and 12 
will yield a new system spillning reserve SSRN ;::: MSSR if and 

only if UPG ;::: ,1 alld DNG ;::: ,1. 

Proof: Provided in reference [IS]. 

The conditions of Theorem 1 can only be tested on-line, that 
is after a dispatch has been performed. Such an a posteriori 
test is very inefficient in terms of computer memory and time. 
The following theorem provides an a prior; test for feasibility. 

Theorem 2 - If a set ION is infeasible by violating MSSR. it 
can still be rendered feasible by redispatch if and only if 

L PI,MIN s PDt S L PI •MAX - MSSR (25) 
UION I "'ION 

and (26) 

Proof: Provided in reference [16J. 

Due to the inclusion of storage constraints, conditions (25) 
and (26) become only necessary to meet (4). However, these 
conditions can be tested off-line. that is before the start of the 
unit commitment algorithm, to eliminate all the infeasible sets 
that cannot meet constraints (23,4), thereby truncating drasti-
cally the number of decisions to be considered in the solution 
space. In other words, the necessary and sufficient conditions 
of Theorem 1 need only tested on those sets ION that satisfy 
(25) and (26). 

Specifically, the proposed spinning reserve redispatch 
algorithm, which exploits the separability of the fuel con-
strained model, proceeds as follows. 

Once a dispatch of a set of on-line units, satisfying (25) and 
(26), is performed as described above, then constraint (4) is 
checked for compliance. If MSSR is not met, then the redisp-
alch of these units will depend on the number and type of units 
involved as follows. If the set lONE (Is ulul includes: 

• One I unit and one I" unit. redispatch is not feasible, that s ~ 

is the conditions of Theorem 1 are not satisfied, and this ION 
is discarded. 

• One Is unit and more than one Iu unit dispatch the Iv units 
if feasible. 

• One Iv unit and more than one Is unit, dispatch the Is units 
if feasible. 

• More than one unit in both sets, dispatch Is units if feasible. 
This may result in two different situations: 
I) The Is units are capable of meeting (4) by themselves, 

and the Iv unils are dispatched to meet the remaining 
generation, or 

2) The Is units while increasing their contribution to the 
spinning reserve, it is insufficient to meet MSSR, and the 
IIJ units are redispatched to provide for the remaining 
generation and spinning reserve. 



VIII. SYSTEM DATA 

Although the computer program can accommodate any 
number of units, for illustration purposes, the system chosen in 
this study, has ten units. 3 oil units, 3 gas units, and 4 coal 
units. The unit characteristics are given in Table I. 

The parameters of the production, startup and shutdown 
costs are given in Table II. The oil units are fed from a 
common storage tank which receives oil at a constant rate of 
1000 ($Ih). For illustration, storage is parameterized into five 
levels specified in terms of cost as 2000, 2500, 3000. 3500. 
and 4000 ($). The initial and final tank levels over a 24 (h) 
time horizon are required to be 3000 ($). The gas units are fed 
from a common pipeline which continuously delivers gas at a 
minimum rate of 500 ($Ih) but not to excecd 2500 ($Ih). The 
daily minimum and maximum gas costs are set to 12,000 ($) 
and 24,000 ($) respectively. The system load profile over a 24 
(h) horizon is shown in Table III. The system spinning reserve 
MSSR is set to 750 (MW) which is equal to the capacity of the 
largest unit in the system. 

TABLE I. Unit characteristics 

NO TYPB PMAX PMIN MSR MU MD PUS RON ROP 

1 oil 400 80 100 2 1 0 0 2 
2 oil 400 85 100 2 1 0 0 2 
3 oil 450 90 120 3 2 0 0 2 
4 Gaa 420 100 100 0 0 0 0 2 
5 Gaa 280 75 120 0 0 0 0 2 
6 Gas 320 80 90 0 0 1 4 0 
7 Coal 443 125 250 2 1 1 3 0 
8 Coal 750 250 430 3 2 1 4 0 
9 Coal 543 125 120 2 1 0 0 2 

10 Coal 443 125 60 2 1 0 0 1 

~ 
NO: number; TYPE: fuel type; PMAX: maximum generation capacity (MW): 
PMTN: minimum generation capacity (MW): MSR: maximum spinning reserve 
(Mill); MU: minimum up time (h); MD: minimum down time (h); PUS: 0.1. 
indicating unit previously off or on respectively; HON: number of hours unit 
has been on previously; HOF: number of hours unit has been off previously. 

TABLE II. Parameters, Startup, and Shutdown Costs 

NO a b c CCS CR PC SD 

1 .00500 1.000 50 100 .2 15 30 
2 .00250 2.000 30 100 .1 20 40 
3 .00350 1.500 40 120 .2 8 50 
4 .00489 2.345 69 120 .1 22 80 
5 .00443 2.335 72 115 .1 17 65 
6 .00480 2.328 92 110 .2 18 60 
7 .00148 1.114 82 130 .1 21 85 
8 .00100 1.000 50 110 .2 19 72 
9 .00135 1.100 49 100 .1 22 70 

10 .00138 1.114 72 100 .2 19 75 

Notes: 
SC(T) :; CCS(l . e ·l'"CR ) + FC ($), is the startup cost function 
T time the unit has been down (It) 
CCS :; cost of a cold start (It) 
CR =cooling rate (h·1) 

FC = fixed cost involved with a startup ($) 
SD :; fixed cost involved with a shutdown ($), 

TABLE Ill. Optimal Hourly Allocations for Case 1 

Stage 
(h) 

LOAD 
(MW) 

Gaa 
($/h) 

oil 
($/h) 

RESBRVE 
(MW) 

1 1200 500.0 500 800.0 
2 1300 500.0 500 900.0 
3 1450 500.0 1000 1000.0 
4 1550 500.0 1000 1000.0 
5 1810 500.0 1000 1000.0 
6 1950 500.0 1000 1000.0 
7 2200 500.0 1000 950.0 
8 2310 500.0 1000 873.5 
9 2450 500.0 1000 757.8 

10 2600 624.4 1000 788.8 
11 2850 1083.5 1000 750.0 
12 2900 993.4 1500 831.1 
13 3000 991.4 1500 750.0 
14 3030 1087.5 1500 750.0 
15 3020 1055.0 1500 750.0 
16 2850 1083.5 1000 750.0 
17 2350 500.0 1000 843.0 
18 2100 500.0 1000 998.5 
19 2050 500.0 1000 1000.0 
20 2000 500.0 1000 1000.0 
21 1900 500.0 1000 1000.0 
22 1810 500.0 1000 1000.0 
23 1720 500.0 500 900.0 
24 1215 500.0 500 900.0 

IX. COMPUTER RESULTS AND DISCUSSION. 

The computer code is a full dynamic programming imple-
mentation of the algorithm. A VAX series 6000, Model 410, 
computer was utilized to solve the fuel-constrained unit 
commitment problem. To clearly illustrate the implication of 
these different fuel constraints, only three cases were presented 
in this paper. Case I has system constraints as provided in 
section VIII. The results are presented in Table III where for 
each stage, system load. fuel cost rates, and reserve are 
provided. For Case 2, the daily minimum and maximum fuel 
delivery costs were increased to 16,000 ($) and 32,000 ($) 
respectively. whereas in Case 3, the hourly minimum gas rate 
is increased from 500 ($Ih) to 800 ($Ih) with the daily limits 
as those of Case I. For the entire horizon, the oil costs, the gas 
costs, and the optimal costs which include those of the coal 
units are presented in Table IV for comparison. Finally optimal 
schedule for Case I is presented in Table V. 

As shown in Table III, the hourly fuel costs of the oil units 
match exactly the fuel cost rates which are fixed by the tank 
levels between stages. whereas, the hourly fuel costs of the gas 
units are within the allowable cost limits. Since in this study, 
gas is relatively more expensive than coal, the optimal solution 
calls for the gas units to generate at the minimum take-or-pay 
cost, unless the system demands more generation to meet the 
load at peak hours. As expected, the system spinning reserve 
is shown to be higher than the minimum requirement when 
redispatch is not needed, and exactly equal to 750 (MW) when 
redispatch is performed. 

Since the tank initial and final levels are identical, the oil 
cost for all three cases, shown in Table IV to be 24,000 ($), is 
equal to the total cost of fuel fed to the tank during 24 (h). For 



TABLE IV. Total Operation Costs 

Case Oil Cost Gas Cost Optimal Cost 
No. ( $) ($ ) ($ ) 

1 24,000 15,359 105,444 

2 24,000 16,226 106,109 

3 24,000 20,634 107,685 

TABLE V. Optimal Schedule for Case 1 

Unit Number 

Stage 1 2 3 4 5 6 7 8 9 10 

1 1 0 1 0 1 0 1 1 1 0 
2 1 0 1 0 1 0 1 1 1 1 
3 1 1 1 0 1 0 1 1 1 1 
4 1 1 1 0 1 0 1 1 1 1 
5 1 1 1 0 1 0 1 1 1 1 
6 1 1 1 0 1 0 1 1 1 1 
7 1 1 1 0 1 0 1 1 1 1 
8 1 1 1 0 1 0 1 1 1 1 
9 1 1 1 0 1 0 1 1 1 1 

10 1 1 1 1 1 0 1 1 1 1 
11 1 1 1 1 1 1 1 1 1 1 
12 1 1 1 1 1 1 1 1 1 1 
13 1 1 1 1 1 1 1 1 1 1 
14 1 1 1 1 1 1 1 1 1 1 
15 1 1 1 1 1 1 1 1 1 1 
16 1 1 1 1 1 1 1 1 1 1 
17 1 1 1 0 1 0 1 1 1 1 
18 1 1 1 0 1 0 1 1 1 1 
19 1 1 1 0 1 0 1 1 1 1 
20 1 1 1 0 1 0 1 1 1 1 
21 1 1 1 0 1 0 1 1 1 1 
22 1 1 1 0 1 0 1 1 1 1 
23 1 0 1 0 1 0 1 1 1 1 
24 1 0 1 0 1 0 1 1 1 1 

Notes:  
~it on-line: 0 = unit off-line.  

Case 2, the gas cost is shown to be greater than in Case I due 
to the increase in the daily fuel delivery limits which results, 
as expected, in a higher optimal cost. Since the optimal costs 
shown in Table IV are different, the optimal schedules for 
cases 2 and 3 (which are not included due to space limitation), 
are also different. 

X. ApPLICATIONS TO LARGE SCALE SYSTE~fS 

Since fuel costs command a large portion of a utility's 
operating budget, slight variations from optimal solutions can 
result over time in considerable wasteful expenditures_ 

Dynamic programming (DP) algorithms guarantee optimality 
of solutions, but are affected by the "curse of dimensionality", 
that is by the number of unit combinations to be considered in 
the solution process. In spite of the ever increa<;ing speed and 
memory of computers, at affordable cost, the efficiency of DP 
algorithms should always be a goal. 

There are three means by which computational time and 

memory requirements of DP algorithms can be drastically 
reduced. The first is the off-line exclusion of all infeasible unit 
combinations. as presented here and in [16). Another is the 
elimination of all iterative procedures, which we achieved in 
the proposed technique by problem decomposition. The third 
deals with techniques that limit the solution space to be 
searched. Although we do not address these here for reasons 
of space, we have presented them in (17-19), and we are in the 
process of implementing them for the algorithm proposed here. 

The example presented above was provided for illustration 
purposes. The proposed algorithm may also be generalized to 
handle multiple fuel constraints in large scale systems. For 
instance, the single tank problem can easily be extended to a 
multiple storage problem, because the fuel to be allocated for 
each tank is fixed by its own parameterization and thus each 
problem is solvable separately. The resulting total generation 
is then subtracted from the load and the difference must be met 
by the remaining units as described above. Similarly, the single 
delivery point can also be extended to multiple terminals 
supplying several units in different plants. In this case, the fuel 
constraints imposed by each transmission system are trans-
ferred into the corresponding unit capacity limits using the dual 
dispatch theory. thus rendering these sets of units fuel-uncon-
strained. 

XI. CONCLUSIONS 

In this paper, we have presented a new technique to solve 
the fuel-constrained unit commitment using dynamic program-
ming based algorithm. The system under consideration has 
storage-constrained oil units, delivery-constrained gas units, 
and fuel-unconstrained coal units. 

It was shown that the use of dynamic programming, which 
requires that the stored resource be parameterized, induced two 
different dispatch schemes. At any given stage, the oil units 
were dispatched to maximize the power they generate at a 
binding fixed fuel cost, whereas the coal and the gas units 
were economically dispatched to generate the remaining power, 
to minimize their production cost. Both dispatch strategies 
were modified to meet a minimum system spinning reserve 
requirement. 

We have also shown that the complex multi-dispatching 
process introduced by the fuel delivery constraints was virtu-
ally eliminated by employing the dual dispatch concept which 
optimally converted these constraints into new unit capacity 
limits. thus rendering the gas unit economic dispatches fuel-
unconstrained. 

Three examples were provided to illustrate the use of the 
algorithm and test results confirmed the merits of the new 
method. 

Use of the algorithm, as described, can easily be extended 
to handle multiple fuel storage and delivery constraints that 
might be experienced in more complex systems. 
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