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1. Introduction 

The approximation of an input matrix by a correlation matrix is a fundamental problem in applied 
mathematics. A correlation matrix is a symmetric positive semidefinite matrix with unit diagonal, and 
any symmetric positive semidefinite matrix with unit diagonal is a correlation matrix. Sometimes it is 
also desired that the correlation matrix be rank-deficient. Applications ofthis problem occur in finance 
[11 1. resource allocation 19 1. industrial process monitoring [20[, image processing [18 [, reduced order 
state estimation [29 [, and quality function deployment [ to [. Correlation matrix approximation is a 
special type of matrix nearness problem. of which a classic survey is given in [16 1. 



The input matrix R is nominally a correlation matrix, but for a variety of reasons it might not be 
positive semidefinite [28]. First, the data used to generate the matrix might be incomplete, or might 
contain noise and outliers that pollute the matrix. Second, the data used to generate the matrix might 
be asynchronous. Third, the matrix might be adjusted by humans on the basis of intuition. All of these 
factors, and possibly others, could give rise to a matrix that is not positive semidefinite, but that humans 
intend to use as a correlation matrix. This gives rise to the problem of finding a correlation matrix that 
is as close as possible to the given indefinite matrix. 

Recall that any n × n correlation matrix with rank d can be decomposed as RR = XXT , where X is an 
n × d matrix. This is called the Cholesky decomposition of RR [4]. We want to find the matrix RR that is as 
close to possible to some n × n symmetric input matrix R, which might not be positive semidefinite. 
We assume that both R and RR have ones on the diagonal. 

This problem has been solved in several ways. First, perhaps the simplest way is principal component 
analysis (PCA) [13]. In this approach we find the Jordan form decomposition R = Q ΛQT , where the 
columns of the orthogonal matrix Q contain the eigenvectors of R, and Λ is a diagonal matrix that 
contains the eigenvalues of R. Assuming that the eigenvalues are in descending order, we define Qd as 
the first d columns of Q , and Λd as the upper-left d × d block of Λ, where d is the number of positive 

1/2 
eigenvalues of R. Denote the n rows of QdΛd as z1, . . . , zn. Find X as   T 

X = zT / z1 2 · · ·  zT / zn . (1)1 n  2
X is an n × d matrix, and XXT is an n × n matrix with d positive eigenvalues and (n − d) zero eigen­
values. PCA gives the least squares approximation to R, and it is relatively simple and straightforward, 
but it cannot be extended to weighted least squares or constrained least squares. 

The second approach to solving the correlation matrix approximation problem is geometric opti­
mization [15], which is based on Riemannian geometry and the mathematics of topology and mani­

folds. This approach solves the problem 

min  R − XXT (2) 
X

for any seminorm  ·  . The approach is actually even more general and can be used to minimize 
any sufficiently smooth objective function, although the algorithm is quite complicated. The objective 
function might have multiple local minima, but the geometric approach includes a way of checking 
if a local minimum is global. In [15] geometric optimization is compared with majorization [26], 
parameterization [28], alternating projections [14], Lagrange multipliers [30], and Matlab’s “fmincon” 
function (a general constrained function minimizer). The results presented in [15] indicated that 
geometric optimization was the most efficient algorithm for the test cases considered. 

The third approach applies only to problems in which the input matrix R contains correlations 
between financial currencies [8]. This assumes that R is already positive definite. If the data from 
which R was obtained are changed, a statistical method is given to modify R in order to ensure that it 
is consistent with the changed data, and the modified matrix remains positive definite. This method 
is not optimal in any sense. 

The fourth approach, called hypersphere decomposition, is a trigonometric parameterization of 
the elements of X , recognizing that if XXT is a correlation matrix, then the rows of X can be viewed as 
vectors in a unit hypersphere [28]. The correlation matrix approximation problem is thus transformed 
to a parametric optimization problem in which correlation matrix related constraints are naturally and 
automatically satisfied due to the parameterization. An extension of this approach which uses Jacobi 
rotations to reduce the parameterization and thus reduce computational effort is discussed in [7]. 

The fifth approach uses alternating projections based on convex analysis [17]. This approach is 
based on iteratively projecting R onto the closest positive semidefinite matrix, and then setting the 
diagonal elements of the result to ones. It is shown that (2) has a unique solution if the Frobenius norm 
is used, as long as RR = XXT is full rank. Local linear convergence of the alternating projections method 
is guaranteed. 

The sixth approach is to pose the approximation problem as a constrained semidefinite program­

ming problem [2]. This problem can then be solved using a specially formulated interior-exterior 
point algorithm designed specifically for sparse R. Local quadratic convergence is guaranteed, although 



computational cost is quite high. The search direction of this iterative algorithm is determined with a 
Gauss-Newton method. 

The seventh approach [12] is based on the decomposition X = ΛZ where Λ is diagonal and each 
row of Z has unit length. Then optimization is alternated over elements of Λ and rows of Z . This 
method is particularly suited if (2) is changed to a weighted Frobenius norm and the weighting matrix 
has certain special properties. 

The eighth approach is a method to generate random numbers from a general symmetric pseudo-
correlation matrix R (possibly indefinite) [1]. The method is based on a Cholesky factorization of R 
which is modified to work with indefinite R matrices. The experimental correlation of the Monte Carlo 
generation of random numbers implicitly generates a positive semidefinite approximation to R. 

The ninth approach is to use a random walk method to solve the approximation problem [21]. This 
is very general and can be used with any norm in (2). It uses PCA to find an initial guess for RR, and then 
uses a random walk on a particular factorization of RR to minimize the specified norm. The method is 
demonstrated in [21] with the least maximum norm and the Frobenius norm. However, random walk 
is an ad-hoc optimization approach that is relatively simple and slow. 

The 10th approach is to use methods from computer intelligence to solve the approximation 
problem. For example, differential evolution can be used to either fill in an incomplete correlation 
matrix [22] or to find an approximating correlation matrix [23]. The idea that is proposed in [22,23] 
uses differential evolution, but it can be adapted to any population based optimization method, such 
as a genetic algorithm, particle swarm optimization, ant colony optimization, etc. This approach can 
take advantage of the results of computer intelligence, but population based optimizers are typically 
slow and require a lot of tuning. Correlation matrix approximation using differential evolution is 
demonstrated in [23] for the absolute norm, the Frobenius norm, and the Chebyshev norm. 

The 11th approach is to combine gradient descent with Lagrange multiplier methods [30] to convert  
a constrained optimization problem into an unconstrained min–max problem to obtain a low rank 
approximation of R. The maximizing problem is solved with closed form spectral decomposition, and 
the minimization problem is solved with gradient descent. 

The 12th approach is to project R onto the closest matrix with ones on the diagonal, and then project 
the result onto a semidefinite matrix of rank d or less [14,15,25]. This method does not necessarily 
converge to a minimum of the problem, but it always converges to a feasible solution. 

The 13th approach is presented in [27] and relies on the theory of strongly semismooth matrix 
valued functions. It can minimize (2) subject toRRij = 0 constraints by using a Lagrangian dual approach 
to extend a generalized Newton’s method. In fact, the constraints do not have to be zeros, they can 
be any constants that are consistent with a feasible solution. This method is closest to solving the 
problem discussed in this paper. However it has not been generalized to weighted minimization of the 
type discussed below in (3), and it has not been generalized to low rank approximations of R. That is, RR = XXT is assumed to be full rank. Low rank approximations to R may be particularly desirable for 
applications such as data compression and image processing. 

Finally we discuss correlation matrix approximation using majorization [5, Section 8.4, 26]. In 
general, a majorization algorithm to minimize some function f (x) can be summarized as follows. 

1.	 Initialize x0 as an initial guess for the minimizing value of x. Initialize the iteration number 
k = 0. 

2. Find a function gk(x), called a majorization function, that satisfies three criteria. 

(a) First, gk(x) is analytically simpler than f (x). 
(b) Second, gk(xk) = f (xk). 
(c) Third, gk(x) � f (x) for all x. 

3. Minimize gk(x). The minimizing value of x is equal to xk+1. Increment k by one and go to step 2 
for the next iteration. 

The iteration can be terminated after gk(x) converges within some tolerance, or if its derivative falls 
below some threshold, or if the iteration count exceeds some threshold. This algorithm guarantees that 
f (xk+1) � f (xk). An example of a few iterations are illustrated in Fig. 1. 



 

 

f(x)g1(x) 

g0(x) 

x2 x1 x0 

Fig. 1. Illustration of majorization, adapted from [26]. The minimization process starts with an initial guess x0. g0(x) is a function 
that matches f (x) at x = x0. We minimize g0 (x) to obtain x1. g1(x) is a function that matches f (x) at x = x1. We minimize g1(x) 
to obtain x2. The process continues until convergence. 

An algorithm is presented in [26] to find an approximating correlation matrix using majorization. 
The algorithm has the flexibility to minimize a weighted Frobenius norm of the difference between 
the input and output matrices. The optimization problem can be written as 

min 
X 

f (X), where 

f (X) = WW ◦ (R − XXT ) 2 
F =

  
Wij (Rij − XiX

T 
j )

2 , (3) 
i j /=i 

where A ◦ B is the Hadamard product of A and B, WW is a symmetric weighting matrix, Wij = WWij 
2, and 

Xi is the ith row of X . We used the fact that Rii = XiX
T = 1 (by assumption) to derive the third parti 

of (3). 
Now suppose that we want to find a rank deficient correlation matrix RR to approximate R. In that 

case we want to solve (3) for the n × d matrix X . This will give an approximation XXT to R such that 
XXT has d nonnegative eigenvalues, plus an addition n − d zero eigenvalues. 

We might also want to solve (3) subject to the constraint that specified elements of XXT are zero. In 
many cases an algorithm or human decision maker tries to generate a correlation matrix on the basis 
of some data, but the resulting matrix R is not quite positive semidefinite. An algorithm is needed to 
find a matrix X such that XXT (which is positive semidefinite by construction) is close to R. However, it  
is desired that if Rij = 0, then (XXT )ij = 0 also. This constraint could arise for one of several reasons. 
For example, the human decision maker may know a priori that the correlation between two random 
variables is zero, so it would be nonintuitive and aesthetically unpleasant to see nonzero values at 
certain elements of XXT . Another reason for enforcing zeros at specific locations in XXT may be to  
reduce subsequent computational effort associated with calculations that use the matrix. The problem 
of (3) can therefore be modified to 

Tmin f (X) such that XiXj = 0 for all (i, j) ∈ S, (4) 
X 

where S is a user-specified set of row/column indices. Although many correlation matrix approximation 
approaches have been proposed as summarized earlier in this paper, this specific correlation matrix 
approximation problem, with the low rank specification and the RRij = 0 constraints, has not been 
studied until now. 
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2. Constrained correlation matrix approximation 

In this section we propose a solution to (4) using majorization. The approach presented here closely 
parallels [26]. Note that f (X) in (3) can be written as     22 T Tf (X) = Wij Rij + XiX − 2RijXiXj j 

i j=/ i        
T T T= c1 + Wij XiXj XiXj − 2WijRijXiXj 

i j=/ i       
T T T= c1 + Wij XiXj XjXi − 2WijRijXiXj 

i j=/ i     
T T T= c1 + WijXi X Xj X − 2WijRijXiX , (5)j i j 

i j=/ i 

where c1 is constant with respect to X . The above can be written as ⎛ ⎞ ⎛ ⎞ 
T T Tf (X) = c1 + Xi ⎝ WijXj Xj

⎠ Xi − 2 Xi ⎝ WijRijXj 
⎠  

i j=/ i i j=/ i  ⎛ ⎞ 
T T⎝ ⎠= c1 + XiBiXi − 2 Xi WijRijXj , (6) 

i i j=/ i 

where Bi is defined by the above equation. Now treat f (X) as a function of Xi, where all the rows of X 
besides Xi are fixed. We can rewrite the above equation as 

f (X) = c1 + fi(Xi),  
i  ⎛ ⎞ 

T⎝ ⎠fi(x) = xBixT − 2x WijRijXj . (7) 
j=/ i 

Now we will find a majorization function for fi(x). Suppose that λi is the largest eigenvalue of Bi. Then 
Bi − λiI is negative semidefinite and 

(x − Xi)(Bi − λiI)(x − Xi)
T 0 (8) 

for any 1 × d vector x. If  x 2 = 1 then the above can be written as 
T T T TxBix 2λi − 2x(λiX − BiX ) − XiBiXi , (9)i i 

with equality for x = Xi. Combining this inequality with (7) gives  

fi(x) gi(x), (10) 

with equality for x = Xi, where gi(x) is given as ⎛ ⎞ 
T T T ⎠gi(x) = c2 − 2x ⎝λiX − BiX + WijRijXj ,  (11)  i i  

j=/ i  

where c2 is constant with respect to x. We see that gi(x) is a majorization function for fi(x). The function 
gi(x) is an attractive majorization function because it is linear in x and therefore easy to minimize. 
Our majorization approach to minimizing f (X) is to minimize gi(x) for each i, and then repeat until 
convergence. 

Now recall that S is the set of (i, j) indices in XXT such that the constraint XiXj
T = 0 holds. To set up 

the constrained minimization of gi(x), we define Si as the set of column indices in S that are less than 
their corresponding row indices. That is, 
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Si = {j : j < i, (i, j) ∈ S}. (12) 

The constrained minimization of gi(x) can be written as   
min 
x

gi(x) : x 2 = 1, xXT 
j = 0 for all j ∈ Si . (13) 

The constraint xXT 
j = 0 for all j ∈ Si means that 

x = αkvk , (14) 
k 

where {αk} is a set of unknown constants, and {vk} is a set of linearly independent row vectors that 
form a basis for the subspace that is orthogonal to Xj . According to the principle of orthogonality [24], 
the solution of (13) can be written as 

T T T z = λiXi − BiXi + WijRijXj , 
j=/ i 

vkz 
q = vk ,T vkvk k 

x = q/ q 2. (15) 

Implementing (15) requires finding the vectors {vk}. This can be done several ways, among which is 
QR decomposition [24]. First we find the Xj vectors for which j ∈ Si. Suppose that there are ni of these 
vectors, each containing d elements. We collect all of these vectors in a d × ni matrix A. 

XT XT
A = · · ·  , (16) j(1) j(ni ) 

where j(k) is the kth element of Si. Now suppose that the rank of A is equal to m (note that m ni < d). 
QR decomposition finds a d × d matrix Q and a d × ni upper triangular matrix ϒ such that A = Q ϒ . 
The first m columns of Q form an orthogonal basis for the columns of A, and the last d − m columns 
of Q form an orthogonal basis for the subspace that is orthogonal to the columns of A. The transposes 
of the last d − m columns of Q therefore comprise the vk vectors of (15). The upper index of the k 
summations in (14) and (15) is therefore d − m. 

Note that if Si is empty, then this algorithm reduces to that given in [26]. That is, (15) becomes 

x = z/ z 2. (17) 

Based on these ideas, a majorization algorithm for constrained correlation matrix approximation can 
be given as follows. 

Algorithm 1. The problem solved by this algorithm is to find an n × d matrix X such that RR = XXT 

minimizes (3), subject to the constraints RRii = 1 for all i, and RRij = 0 for all {i, j} ∈ S. (Typically S = 
{i, j} : Rij = 0.) 

1. Use the PCA method of (1), or some other method, to find an initial guess for X , denoted X(0). 
Note that X(0) need not necessarily satisfy the constraint RRij = 0 for all {i, j} ∈ S. 

2. For each iteration (l = 0, 1, 2, . . .): 

(a) For each row Xi of X(l) (i = 1, . . . , n): e 
i. Compute Bi = j=/ i WijXj

TXj , where Xj is the jth row of X(l). 
ii. Compute λi as the largest eigenvalue of Bi.e 
iii. Compute z = λiXi − XiBi

T + j=/ i WijRijXj . 
iv. Compute Si as the set of all j < i such that {i, j} ∈ S. Denote this set as Si = {Si(1) · · · Si(m)}. 
v. If Si is empty and z =/ 0, then set Xi = z/ z 2. 
vi. If Si is not empty, then perform the following: 



  

    

  

�

A. Concatenate the transposes of the Xj rows for which j ∈ Si into a matrix �X . That is, � XT XT
X = · · ·  Si (1) Si (m) . 

B. Find a set of linearly independent row vectors that form a basis for the subspace that 
is orthogonal to the columns of �X . (This can be performed, for example, using QR 
decomposition.) Denote these basis vectors as {vk}. e TC. Compute q = k(vkz)vk/(vkvk ). 

D. If q =/ 0, then set Xi = q/ q 2. 
T

l+1) XT XT(b) Set X( = · · ·  .1 n 
(c) Check for a termination criterion. This can be done, for example, by limiting the maximum 

iteration count l, or checking how much X(l) has changed from the previous iteration. 

3. Feasibility and convergence issues 

Now we consider the feasibility of the correlation approximation problem, and the ability of the 
majorization algorithm to find a feasible solution. X is an n × d matrix, so depending on the value of 
d and the set S, (4) may not have a solution. As a simple example, consider the 2 × 2 matrix R = I. 
Suppose that we want to use d = 1 and find a 2 × 1 matrix X such that RR = XXT is a correlation matrix 
that minimizes f (X) such that RR12 = RR21 = 0. This means that RR must be full rank, but since X has a 
rank of 1, XXT also has a rank of 1. There is no 2 × 1 matrix X such that RR = XXT is a correlation matrix 
satisfying the constraint RR12 = RR21 = 0. 

The cost function f (X) may actually increase from one iteration of Algorithm 1 to the next. The 
majorization algorithm guarantees a decrease in fi(Xi) at each iteration as shown in [26], but only if Xi 
is unconstrained with respect to previous rows of X; that is, only if there are no constraints XiXj

T = 0 
for j < i. 

As an example of how the cost function can increase from one iteration to the next, consider a 3 × 3 
matrix X with the constraint X2X

T = X3X
T = 0. We begin the algorithm with 3 2 

T(0) (0) T (0) T (0) TX = (X ) (X ) (X ) . (18) 
1 2 3 

(1) (1) (0)
At the first row iteration we find X such that f1(X ) < f1(X ). At the second row iteration we 1 1 1 

(1) (1) (0)
find X such that f2(X ) < f2(X ). But at the third row iteration we have to enforce the constraint 2 2 2 

(1) (0)
X3X

T = 0. X2 changed in the previous step, so the X3 that we find may result in f3(X ) > f3(X ). This 2 3 3 
could then result in f (X(1)) > f (X(0)). This possibility is an unavoidable consequence of the row-wise 
minimization of f (X), combined with the constraint RRij = 0 for all {i, j} ∈ S. 

When the optimization algorithm converges, it converges to a local minimum, not necessarily a 
global minimum. f (X) in (3) is convex, and the constraint XiXj

T = 0 for all (i, j) ∈ S is convex, but the 
constraint XiX

T = 1 for all i is not convex. Therefore the constrained minimization problem is not i 
convex and it may have multiple local minima. The limit of the sequence f (X(l)) of the optimization 
algorithm will thus depend on the initial guess X(0). 

In the derivation of the optimization algorithm, we used λi, the maximum eigenvalue of Bi, starting 
in (8). However, instead of using λi we could have used αλi for any α 1. As α increases the difference 
between fi(x)and gi(x) increases. This causes gi(x) to be steeper at the starting point of its minimization, 
which typically results in its constrained minimum being closer to its starting point, which results 
in more iterations before convergence, which increases computational effort. However, if an upper 
bound is used for λi rather than an exact calculation of λi [26], this could result in a net decrease of 
computational effort even though more iterations are required for convergence. 

Xi is modified in Steps 2(a)v and 2(a)vi(D) of the algorithm, but only if z or q respectively are nonzero. 
If z or q are zero in those steps, then Xi should be set to any row vector with a norm of one. 
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Fig. 2. Constrained and unconstrained majorization results for a 5 × 5 matrix. 

The algorithm assumes that each row of X has unity norm. When the algorithm modifies Xi, it  
always does so in a way that maintains the unity norm of Xi. But if rows other than Xi do not have unity 
norm, then this assumption will be violated. Therefore the initial guess for X should be such that each 
row of X has unity norm. 

Step 2(a) of the algorithm loops from i = 1 to  n, where n is the number of rows in X . However, there 
is no reason why the row index needs to run from 1 to n in sequential order. The row index could just as 
well run from p(1) to p(n), where p is any permutation of the numbers {1, . . . , n}. Since the algorithm 
converges to a local minimum of the objective function (rather than a global minimum), changes like 
this will, in general, result in different solutions at convergence. This has been discussed in [26]. 

Wij for (i, j) ∈ S does not affect the minimum of f (X), but it does affect the majorization algorithm. 
So the values of Wij for (i, j) ∈ S can be considered as tuning parameters that can take any nonnegative 
values. 

4. Numerical results 

The unconstrained majorization approach to correlation matrix approximation has been compared 
in [26] to the Lagrange multiplier approach [30], geometric programming [15], and parameterization 
[28]. It was concluded in [26] that majorization was the most efficient of the four algorithms. That is, 
on average, the majorization approach converged to the best solution within a given CPU time. In this 
section we explore the use of majorization with and without the RRij = 0 constraints. We terminated 
the majorization iterations when the cost function decreased by less than 0.01% from one iteration to 
the next, or when the cost function decreased to less than 0.0001. The initial guess for X was obtained 
using PCA as defined in (1). 

The first matrix we consider is from [1]. ⎤⎡ 

R = 
⎢⎢⎢⎢⎣ 

1 0.5 0.5 0 0 
0.5 1 0.8 0.8 0.8 
0.5 0.8 1 0.8 0.8 
0 0.8 0.8 1 0.8 
0 0.8 0.8 0.8 1 

⎥⎥⎥⎥⎦ 
(19) 

This matrix has one negative eigenvalue and so it is not a correlation matrix. We can use constrained 
and unconstrained majorization to find anRR of a given rank d that is close to R. Constrained majorization 
has two RRij = 0 constraints. Fig. 2 shows the cost function obtained with constrained majorization and 
unconstrained majorization for various values of d, which is the number of columns of X , and which is 

http:00.80.80.81
http:10.50.50
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Fig. 3. Constrained and unconstrained majorization results for a 10 × 10 matrix. Constrained majorization requires rank (X) 4 
because of the arrangement of the constraints. Both cost functions for rank (X) = 10 are zero (since R is a valid full rank correlation 
matrix) and so are not shown in the figure. 

also the rank of RR. Note that the constrained cost function increases slightly from d = 4 to  d = 5, even 
though theoretically the global minimum of f (X)when d = 5 is clearly less than or equal to the global 
minimum when d = 4. This illustrates the fact that the majorization algorithm does not necessarily 
find a global minimum of the cost function. 

The second matrix we consider is based on [6, Section 6.9]. We create a 10 × 10 matrix R such that  
exp(−|i − j|) if exp(−|i − j|) > 0.001, 

Rij = (20)
0 otherwise. 

This is the type of matrix that arises in financial applications, and it results in a valid correlation matrix. 
This matrix has six correlations that are zero. Fig. 3 shows the cost function obtained with constrained 
majorization and unconstrained majorization for various values of d. Constrained majorization requires 
d 4 because of the arrangement of theRRij = 0 constraints. The last row of R has three elements Rij = 0 
for j < i, which means that d 4 for a solution to exist, as discussed in the first paragraph of Section 3. 

The third matrix we consider is a 12 × 12 matrix from a financial example [28], where we have 
replaced with zeros all elements whose magnitudes are less than 0.01. This matrix has two negative 
eigenvalues and so it is not a correlation matrix. This matrix has six correlations that are zero. Fig. 4 
shows the cost function obtained with constrained majorization and unconstrained majorization for 
various values of d. Constrained majorization requires d 3 because of the arrangement of RRij = 0 
constraints. The 8th, 10th, and 12th rows of R each have two elements Rij = 0 for  j < i, which means 
that d 3 for a solution to exist, as discussed in the first paragraph of Section 3. 

The fourth matrix we consider is a 100 × 100 random correlation matrix generated with Matlab’s 
“gallery” function, where we have replaced with zeros all elements whose magnitudes are less than 
0.01. The matrix is a valid full-rank correlation matrix and has 1434 correlations that are zero. Fig. 5 
shows the cost function obtained with constrained majorization and unconstrained majorization for 
various values of d. Constrained majorization requires d 18 because of the arrangement of RRij = 0 
constraints. 

The fifth matrix we consider is a 31 × 31 correlation matrix defined from a House of Quality for 
a refrigerator product plan [19]. The rows and columns in the matrix define correlations between 
31 metrics such as compressor efficiency, freezer shelf height, and warranty period. The matrix is 
extremely sparse, with only 66 off-diagonal nonzero correlations and 864 zero correlations. The matrix 
is indefinite with 29 positive and two negative eigenvalues. Fig. 6 shows the cost function obtained 
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Fig. 4. Constrained and unconstrained majorization results for a 12 × 12 matrix. Constrained majorization requires rank (X) 3 
because of the arrangement of the constraints. 
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Fig. 5. Constrained and unconstrained majorization results for a 100 × 100 matrix. Constrained majorization requires rank 
(X) 18 because of the arrangement of the constraints. Both cost functions for rank (X) = 100 are zero (since R is a valid full 
rank correlation matrix) and so are not shown in the figure. 

with constrained majorization and unconstrained majorization for various values of d. Constrained 
majorization requires d 29 because there are so many RRij = 0 constraints. 

Computational effort per iteration is greater with constrained than unconstrained majorization. 
Tables 1 and 2 show the CPU effort required for unconstrained and constrained majorization for the 
five test matrices discussed in this section. Table 1 shows the results when RR has the largest possible 
rank (5, 10, 12, 31, and 100, respectively). Table 2 shows the results whenRR has the smallest possible rank 
(2, 4, 3, 29, and 18, respectively). We see that constrained majorization can take significantly longer per 
iteration than unconstrained majorization. This is due to the QR decomposition in Step 2(a)vi(B) of the 
algorithm. However, we also see that when the rank ofRR is small as in Table 2, constrained majorization 
can take significantly fewer iterations to converge than unconstrained majorization. This is because 
the combination of constraints and low-rank RR results in fewer degrees of freedom in the optimization 
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Fig. 6. Constrained and unconstrained majorization results for a 31 × 31 matrix. Constrained majorization requires rank (X) 29 
because of the constraints. 

Table 1 
Number of iterations and CPU time (s) for unconstrained and constrained majorization for five test matrices. The rank of the 
approximating correlation matrix RR was specified to be the same as the dimension of the input matrix R. 
dim(R) Unconstrained 

#iter CPU CPU/iter 
Constrained 
#iter CPU CPU/iter 

5 × 5 
10 × 10 
12 × 12 
31 × 31 
100 × 100 

124 
70 
20 
19 
183 

0.48 
1.04 
0.43 
2.42 
1618 

0.0039 
0.0149 
0.0215 
0.1274 
8.8415 

177 
73 
20 
2 
187 

4.01 
1.80 
0.86 
1.09 
2229 

0.0227 
0.0247 
0.0430 
0.5450 
11.9198 

Table 2 
Number of iterations and CPU time (s) for unconstrained and constrained majorization for five test matrices. The rank of the 
approximating correlation matrixRR was specified to be the minimum possible value while still allowing for a feasible constrained 
solution (rank(RR) = 2, 4, 3, 29, and 18, respectively). 

dim(R) Unconstrained 
#iter CPU CPU/iter 

Constrained 
#iter CPU CPU/iter 

5 × 5 
10 × 10 
12 × 12 
31 × 31 
100 × 100 

8 
24 
18 
17 
27 

0.07 
0.43 
0.44 
2.24 
26.26 

0.0088 
0.0179 
0.0244 
0.1318 
0.9726 

8 
9 
6 
3 
10 

0.22 
0.43 
0.35 
1.60 
22.60 

0.0275 
0.0478 
0.0583 
0.5333 
2.2600 

problem. This can also be seen in the 31 × 31 matrix in Table 1, which has many constraints and 
therefore converges in only two iterations with constrained majorization. 

5. Conclusion 

We have derived a majorization approach for finding the closest correlation matrix RR of a user-
specified rank to a given input matrix R, where “closest” is defined in terms of the weighted Frobenius 
norm of the error, and user-specified elements of RR are constrained to be zero. This is the first time 
that this particular problem has been studied. If there are no constraints then our method reduces 
to that proposed in [26] and convergence is guaranteed. If constraints are specified in the problem 



then we cannot guarantee convergence, or even feasibility, depending on the constraints and the 
rank of RR. However, for the sample problems explored in this paper, performance of the algorithm 
was good, with only a slight loss of estimation accuracy for the constrained problem compared to 
the unconstrained problem. Matlab source code for the algorithm presented in this paper can be 
downloaded from http://academic.csuohio.edu/simond/corr. 

Future work along these lines could explore the effect of the Wij weights for those values of i and j 
for which the constraint RRij = 0 holds. These values of Wij do not affect the minimum of the objective 
function, but they do affect the progress of the majorization algorithm and thus can be considered as 
tuning parameters. Another important area for future work is modifying the algorithm to guarantee 
convergence, or finding conditions under which convergence can be guaranteed. 

One of the primary considerations of the majorization algorithm for real applications might be 
its large computational effort. There are two main sources of computational effort in the algorithm. 
The first is the solution of the largest eigenvalue of Bi. The second is the solution of a set of linearly 
independent basis vectors for the orthogonal complement of �X , which can be accomplished with QR 
factorization. The first problem could be solved by using an upper bound for λi in the majorization 
algorithm. One easy but conservative upper bound is n − 1 due to the unit length bound of the columns 
of �X [26]. This would remove the O(n 3) eigenvalue calculation from the majorization algorithm. The 
O(n 3) effort of the QR factorization step of the majorization algorithm could be alleviated with one of 
the fast O(n) QR algorithms that have been proposed in the literature [3]. 
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