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Unified forms for Kalman and finite impulse response filtering 

and smoothing' 

Dan Simon ,)·I, Yuriy S. Shmaliyb 
'Ckvekmd SIOlt Urriwrsiry. Cltwland, OH. USA 
t Univm,h1ad de GlUmajua/o. Salamanca. Mexico 

1. Introduction 

We assume that we have a linear system described as 

Xi = f /Xl_ l + WI  

y, = HiX, + VI ( 1) 


where the time index i ~ I, XI is the K-dimensional state vector. 
Yi is the M-dimensional measurement. Iwd is a process noise 
sequence, {vii is a measurement noise sequence. and system 
matrices F/ and HI are known. Our objective is to estimate Xi based 
on the measurements and our knowledge of the system dynamics. 

We use the term estimator 10 refer to the class of algorithms 
that includes filtering, prediction, and smoothing. Aft/reT estimates 
XI based on measurements up to and including time i. A predictor 
estimates XI based on measurements prior to time i. A smoother 
estimates Xi based on measurements prior to time i, at time i, and 
later than time i. 
Kalman estimation 

The Kalman smoother can be written in fixed-lag form. fi xed­
interval fo rm, or fixed-point form. These algorithms ca n be 

described as follows (Anderson & Moore. 2005 ) and (Simon. 
2006, ch. 9). 

• Afixed-lag smoother estimatesxI for i ~ I using measurements 
up to and including time i + q for a fixed value of q > O. 

• A fixed-interval smoother estimates Xi fo r i E [1. NJ usi ng 
measurements up to and including time N. 

• A fixed-point smoother estimates Xi using measurements up to 
and includingtime i+ q for a fixed valueofiand forq = 1.2..... 

As we will see in Section 2. the form of the Kalman smoother 
is much different than that of the Kalman filt er. Section 2.1 de­
rives a Kalman smoother that is in the same form as the predic­
tor/corrector form of the Kalman filter. 

The Kalman fill er is an infini te impulse response (IIR) filte r; that 
is. each measurement y", affects each estimate Xi for all m .::: i. The 
IIR nature of the Kalman fill er makes it sensitive to modeling errors 
(Heffes. 1966; Nishimura. 1966; Soong, 1965). Over the pilst few 
decades, researchers have proposed many methods of making the 
Kalman estimator more robust (Pena & Guttman. 1988 ). Kalman 
estimation with uncertain ties in the system matrices has been 
considered by many authors (Kosanam & Simon. 2004; Theodor & 
Shaked, 1996: Xie. Lu, Zhang, & Zhang. 2004; Zhang, Heemink, & 
Van Eijkeren. 1995); this is often called adaptive or robust Kalman 
estimation (Hide, Moore, & Smith , 2003). Methods for identifying 
noise covariances are presented in Alspach (1974): Mehra (1972) 
and Myers and Tapley ( 1976 ), 



Finite impulse response estimation 
Whereas the research efforts mentioned above aimed to im­

prove the Kalman estimator in the presence of mismodeling, we 
propose instead to use a finite impulse response (FIR) estimator. 
The advantages of transversal FIR estimators over Kalman esti­
mators were recognized as far back as the 1960s, particularly in 
the areas of stability and robustness (Jazwinski, 1970). In spite of 
their history, FIR filters are not commonly used for state estima­
tion. This is probably due to their analytical complexity and large 
computational burden. FIR smoothers can be used for polynomial 
models (Wang, 1991; Zhou & Wang, 2004). Order-recursive FIR 
smoothers were proposed for state space (Yuan & Stuller, 1994). 
General receding horizon FIR smoother theory has been developed 
(Ahn & Kim, 2008; Han & Kwon, 2007, 2008; Kwon, Han, Kwon, 
& Kwon, 2007). More recently, unbiased FIR (UFIR) smoothing of 
polynomial state space models has been considered (Shmaliy & 
Morales-Mendoza, 2010), and FIR smoothing was developed from 
the general p-shift estimator (Shmaliy, 2010, 2011; Shmaliy & 
Ibarra-Manzano, 2012). Iterative UFIR algorithms have also been 
developed (Shmaliy, 2010, 2011). These algorithms have the same 
predictor/corrector structure as the Kalman filter, often ignore the 
statistics of the noise and initial estimation errors, and become vir­
tually optimal as the length of the FIR window increases. 

Overview of the paper 
Section 2 gives a brief review of Kalman filtering and smooth­

ing, and derives a unified form for the two algorithms. Section 3 
gives a review of UFIR filtering and smoothing, and derives two 
distinct but mathematically equivalent unified forms for the two 
algorithms. It also derives upper and lower bounds for the es­
timation error covariance. Section 4 presents some simulation 
results. 

2. Kalman filtering and smoothing 

If our estimate of xi is based on measurements up to and 
including time t , we denote the estimate as x̂i|t . If t = i then we 
have x̂i|i, which is called the a posteriori state estimate. If t = i − 1 
then we have x̂i|i−1, which is called the a priori state estimate. If 
t > i, then we have a non-causal smoothed estimate. Suppose the 
following conditions hold: 

(1)	 {wi} and {vi} are zero-mean, Gaussian, white, and uncorre­
lated, with known covariances Qi and Ri respectively; 

(2) We have an initial state estimate before any measurements are 
processed that we denote as x̂0|0; 

(3)	 (x0 −x̂0|0) ∼ N(0, P0|0), which means that the initial estimation 
error is Gaussian and zero-mean with covariance P0|0. 

Then the Kalman filter output is the mean of the state conditioned 
on measurements up to and including the current time: 

x̂i|i = E(xi|y1, y2, . . . , yi)	 (2) 

for i ≥ 1. Furthermore, the Kalman filter estimate is the one that 
minimizes the trace of the covariance of the estimation error. 
The Kalman filter algorithm can be described as shown in Fig. 1, 
although there are also other equivalent formulations of the 
Kalman filter (Simon, 2006). 

In the case of smoothing, we use future measurements to obtain 
the state estimate. One well-known smoothing algorithm is called 
the Rauch–Tung–Striebel (RTS) smoother, which is a type of fixed-
interval smoother (Rauch, Tung, & Striebel, 1965) and (Simon, 
2006, Section 9.4.2). Given measurements yi for i ∈ [1, N], the 
RTS smoother outputs x̂i|N for all i ∈ [0, N]. The RTS smoother 
algorithm is summarized in Fig. 2. 

Fig. 1. The Kalman filter. Ki is the Kalman gain, Pi|i is the a posteriori estimation 
error covariance, and Pi|i−1 is the a priori estimation error covariance. 

Fig. 2. The RTS smoother. Ks is the Kalman smoother gain, and Ps is the covariance i	 i 
of the error of the smoothed estimate at time i. 

2.1. Unified Kalman filtering and smoothing 

Fig. 1 shows that the Kalman filter estimate can be written in 
the form 

x̂i|i = γix̂i−1|i−1 + Kiyi 
where γi = (I − KiHi)Fi	 (3) 

for i ≥ 1. This is called a predictor/corrector form. However, the 
smoothed estimate in Fig. 2 does not have this form. We would 
like to find a similar form for the smoothed estimate: 

n 
x̂n−q|n = γn,qx̂n−1|n−1 + βn,q,mym (4) 

m=n−q+1 

where the smoother lag q > 0. Such a form could serve at least two 
purposes. 

First, we find it mathematically attractive to obtain unified 
forms for different algorithms. We see this in many areas of science 
and engineering (Fonseca & Fleming, 1998; Guerreiro & Trigueiros, 
2010; Miller & Boxer, 1999), so the parallel form of (3) and (4) is 
intuitively appealing. 

Second, the smoother form of (4) may have practical benefits 
because it directly shows the additional sensitivity of the smoothed 
estimate to each measurement, beyond the sensitivity already 
incorporated in x̂n−1|n−1. βn,q,m is the sensitivity of x̂n−q|n to ym for 
m ∈ [n−q+1, n] beyond the sensitivity that is implicit in x̂n−1|n−1. 
These sensitivities could be used to process measurements in order 
of decreasing sensitivity so that the most important measurements 
are processed first, in case the timeliness of the smoothed estimate 
is important. 

Note that all of the measurements up to and including time n−1 
are incorporated in the filtered estimate x̂n−1|n−1 in (4). However, 
the additional contribution of those measurements to obtain the 
smoothed estimate x̂n−q|n is determined by the βn,q,m coefficients. 
We suppose that the estimate x̂n−1|n−1 is available and that the user 
may want to process only a subset of the measurements to obtain 
the smoothed estimate. 

To be more specific, (4) can be written algorithmically by 
computing 

µ(l) = value of m in the l-th largest value of βn,q,m (5) 

for m ∈ [n−q+1, n] and l ∈ [1, q]. When we say ‘‘l-th largest value 
of βn,q,m’’, we implicitly assume some matrix or vector norm. After 



Fig. 3. This algorithm gives a smoothed estimate that improves with each iteration. 

computing (5), we perform the algorithm of Fig. 3. This algorithm 
gives a smoothed estimate that improves with each iteration so 

(q)that at the end of the loop, x̂n−q|n = x̂n−q|n is the optimal Kalman 
smoother output. More importantly, the algorithm processes the 
measurements in an optimal order; they are processed in the 
order of their influence on the estimate. We give an example in 
Section 2.2. 

As a counterpoint to the above discussion, we note that it is 
βn,q,mym rather than only βn,q,m that contributes to the estimate 
x̂n−q|n in (4). Therefore, the user may prefer to prioritize larger 
βn,q,mym terms rather than larger βn,q,m terms. According to this 
perspective, (5) would be rewritten as 

µ(l) = value of m in l-th largest value of βn,q,mym (6) 

before performing the smoothing algorithm that follows (5). 
However, if the measurements are not available to the user before 
designing the smoothing algorithm, then the best approach that 
the user can take is given by (5). 

Another possible use for the form of (4) is sensor selection or 
design. Before we implement a filtering or smoothing algorithm, 
we need to select or design measurement sensors. We can use 
the Kalman filter algorithm of Fig. 1 to see how much a given 
sensor contributes to the filtered state estimate, and we can use 
the unified smoother form of (4) to see how much the sensor 
contributes to the further improvement of the smoothed estimate. 

To write the RTS smoother algorithm of Fig. 2 in the form of (4), 
we note from Fig. 2 that 

x̂n−1|n = x̂n−1|n−1 + Kn
s 
−1(x̂n|n − x̂n|n−1). (7) 

Proceeding inductively, it can be shown that 
q 

x̂n−q|n = x̂n−q|n−q + Ln,q,l(x̂n−q+l|n−q+l − x̂n−q+l|n−q+l−1) 
l=1 

l−1 
where Ln,q,l = Kn

s 
−q+r (8) 

r=0 

for q ≥ 0. Now notice from Fig. 1 that 

x̂n|n = (I − KnHn)Fnx̂n−1|n−1 + Knyn 

= (I − KnHn)Fn(I − Kn−1Hn−1)Fn−1x̂n−2|n−2 

+ (I − KnHn)FnKn−1yn−1 + Knyn. (9) 

Proceeding inductively, it can be shown that 
q 

x̂n|n = Jn−jFn−jx̂n−q−1|n−q−1 

j=0   
q l−1  

+ Jn−jFn−j Kn−lyn−l + Knyn 

l=1 j=0 

where Jn = I − KnHn (10) 

for q ≥ 0. Now replace n with n − 1 and replace q with q − 2 in 
(10) to obtain 

x̂n−1|n−1 = Mq−2x̂n−q|n−q 

q−2 
+ Ml−1Kn−1−lyn−1−l + Kn−1yn−1 

l=1 

 r Jn−1−jFn−1−j if r ≥ 0 

where Mr = j=0 (11)I if r = −1 
(JnFn)−1 if r = −2. 

Now write (8) as 
p  

x̂n−q|n = x̂n−q|n−q + Ln,q,l x̂n−q+l|n−q+l 
l=1 

− J−1 
 

n−q+lx̂n−q+l|n−q+l + Jn
−

−

1 
q+lKn−q+lyn−q+l 

q  
= x̂n−q|n−q + Ln,q,l (I − Jn

−

−

1 
q+l)x̂n−q+l|n−q+l 

l=1  
+ Jn

−

−

1 
q+lKn−q+lyn−q+l . (12) 

Now use (11) to find x̂n−q+l|n−q+l for l ∈ [0, q] in terms of x̂n−1|n−1 

and yj for j ∈ [n − q + l + 1, n − 1], and substitute for x̂n−q+l|n−q+l 
in the above equation. After some lengthy algebra, we obtain 

n 
x̂n−q|n = γn,qx̂n−1|n−1 + βn,q,mym (q ≥ 0) 

m=n−q+1 

q 
where γn,q = Mq

−

−

1
2 + Ln,q,l(I − Jn

−

−

1 
q+l)Mq

−

−

1 
l−2 

l=1 

βn,q,m = Ln,q,qKn if m = n (13) 

βn,q,m = Ln,q,q+m−nJ−1 
− Mq

−

−

1
2Mn−2−mm  

q+m−n−1 
− Ln,q,l(I − Jn

−

−

1 
q+l)Mq

−

−

1 
l−2Mn−2−m Km 

l=1 

if m < n. 
This algorithm, which we call the unified Kalman filter/smoother, is 
mathematically identical to the Kalman filter of Fig. 1 for q = 0, 
and mathematically identical to the RTS smoother of Fig. 2 for 
q > 0. Some similarities and differences between the RTS and 
unified forms of the smoother are as follows. 
(1) Both forms require that the Kalman filter execute before 

smoothing. Both forms require the forward error covariances 
Pi|i and Pi+1|i, for all i ∈ [0, n − 1]. 

(2) The RTS smoother requires saving the forward state estimates 
x̂i+1|i for i ∈ [0, n − 1]. The unified Kalman smoother requires 
saving the measurements yi for i ∈ [1, n]. Therefore, if the 
measurement dimension is much smaller than the state 
dimension, the unified form may require less memory. 

2.2. Unified Kalman filter/smoother example 

Consider the time-invariant system of (1) with    1 ∆tF = H = 1 00 1   
1 0Q = R = 100 1   

1 0 x0 = 
 
1 0 

T P0|0 = (14)0 1 

where ∆t = 0.1. Suppose the system runs until time index n = 41 
and that we want to find the smoothed estimate with a lag q = 20. 
Eq. (13) gives the following values for ∥βn,q,m∥2 for m ∈ [22, 41]: 
∥β∥ = {0.10, 0.21, 0.34, 0.50, 0.71, 0.98, 1.34, 1.83, 

2.49, 3.37, 4.56, 6.15, 8.30, 11.20, 15.10, 20.34, 
27.40, 36.91, 49.71, 0.05} . (15) 

http:���={0.10


Fig. 4. This figure illustrates the effect of neglecting increasingly important 
measurements in a smoothed estimate. 

This means that y40 is the most important measurement for the 
x̂n−q estimate, y39 is the second most important measurement, 
and so on. Suppose we need to neglect one of the measurements 
in (13) due to computational constraints. It stands to reason that 
neglecting y41 would result in the smallest degradation of x̂n−q 

from its optimal value, neglecting y22 would result in the second 
smallest degradation, and so on. We can numerically confirm this 
by using (13) to calculate 

r−1 
x̂n−q|n,r = γn,qx̂n−1|n−1 + βn,q,mym 

m=n−q+1 

n 
+ βn,q,mym (16) 

m=r+1 

for r ∈ [22, 41]. That is, x̂n−q|n,r is calculated in the same way as 
the optimal smoothed estimate, except it does not use yr . Fig. 4 
shows the RMS estimation error of 100 Monte Carlo simulations 
of x̂n−q|n,r as a function of the missing measurement index r . The 
left-most point corresponds to the optimal smoothed estimate, 
and the other elements on the horizontal axis are in order of 
increasing ∥β∥. As predicted, the estimation error gets worse 
as we leave out more important measurements. We further see 
that if we neglect one of the few least important measurements, 
then smoothing performance degrades only slightly relative to the 
optimal performance. 

3. Unified UFIR filtering and smoothing 

This section presents two forms for unified UFIR filtering 
and smoothing based on the p-shift UFIR estimator (Shmaliy, 
2010; Shmaliy & Ibarra-Manzano, 2012). We begin with some 
preliminaries, and then derive the two unified forms in Section 3.1. 
We derive estimation error bounds in Section 3.2. 

Suppose we have the linear system (1) where yn is the most 
recent measurement. The UFIR estimator uses the N most recent 
measurements to obtain the filtered estimate x̂n, or the smoothed 
estimate x̂n−q for some value of lag q ∈ [1, N − 1], where N is a 
user-specified smoothing interval. We often set q = ⌊N/2⌋, where 
⌊·⌋ is the floor function. However, other values of q may provide 
lower estimation errors (Shmaliy & Morales-Mendoza, 2010). Since 
x̂n and x̂n−q are functions of N , we sometimes write them as x̂n(N) 
and x̂n−q(N). 

The UFIR filter/smoother in this section ignores noise statistics 
and initial estimation errors. The UFIR estimator requires an 

optimal averaging interval of Nopt points in order for the mean 
square error (MSE) of the estimate to be minimal. It was recently 
shown in Shmaliy (2012) that Nopt can be estimated with high 
accuracy by minimizing the derivative of E{[yn − Hnx̂n(N)][yn − 
Hnx̂n(N)]T 

} with respect to N . An example of this approach is given 
in Section 4.1. 

Like the Kalman filter, the UFIR estimator can be given in a 
fast iterative form for filtering and prediction (Shmaliy, 2011). 
For smoothing, however, we need to modify the estimator to 
obtain an iterative form. To provide this modification, we write the 
smoothed estimate (Shmaliy & Ibarra-Manzano, 2012, Eq. (27)) at 
the first time point in the smoothing interval as 

x̂m = H−1 Yn,m (17)n,m

where m = n − N + 1, and H−1 
= (HT Hn,m)−1HT 

∈n,m n,m n,m 

RK ×M(n−m+1) is the generalized left inverse of Hn,m, and 

Hn,m = H̄n,mFn,m ∈ RMα×K  TT T T 
∈ RMα×1Yn,m = y y · · · yn n−1 m
  T
 

F m+1T 
F m+1T 

FT 
∈ RK α×K

= · · ·Fn,m n,0 n,1 m+1 I    
n−m+1   

H̄n,m = diag Hn Hn−1 · · · Hm ∈ RMα×K α    
n−m+1 

g 
r−g

Fr,h = Fr−i ∈ RK ×K (18) 
i=h 

where α = n − m + 1. To provide a unified UFIR smoothing 
equation for arbitrary lag q, the transition matrix Bn,m(q) must be 
specified such that x̂n−q = Bn,m(q)x̂m, where x̂m is given in (17). By 
combining the forward-time and backward-time solutions (Stark 
& Woods, 1994), this matrix can be found as  

F m+1 n−q,0, q s n − m − 1 
I, q = n − mBn,m(q) =  −1 

(19) n−q+1
F , q � n − m + 1.m,0 

The most general batch form of the unified UFIR filter (q = 0) and 
smoother (q > 0) is thus 

x̂n−q = Bn,m(q)H−1 Yn,m (20)n,m

where q � 0. Assuming 0 s q < N − 1, one may also use the 
form of (20) given in Shmaliy (2011, Eq. (20)), although that form 
has the limitations discussed in Section 3.1.1 below. Note that (20) 
is similar to Shmaliy (2010, Eq. (42)), although that result is for 
time-invariant systems; and it is also similar to Shmaliy and Ibarra-
Manzano (2012, Eq. (29)), although that result uses noise statistics. 

If we observe that the filter estimate (q = 0) is 

= F m+1H−1x̂n Yn,m (21)n,0 n,m

then (20) can be written as 

x̂n−q = Bn,m(q)(Fn
m
,0 
+1)−1x̂n. (22) 

This equation plays a key role in the derivation of the second form 
of the UFIR estimator discussed in Section 3.1.2. 

3.1. Iterative UFIR filtering and smoothing 

This section derives two forms of the iterative unified UFIR 
filter/smoother, which are similar in form to the unified Kalman 
filter/smoother. 



I 

3.1.1. The first form of the unified UFIR filter/smoother 
Following the derivations given in Shmaliy (2010, Appendices I 

and II), (20) becomes 

x̂l−q = Fl−qx̂l−q−1 + Kl(yl − HlYlx̂l−q−1)	 (23) 

for l ∈ [m + K , n], where  
q−1  l−q+1

F = Fl−i if q > 0¯ l,0Yl =  i=0	 if q = 0 

Yl = ȲlFl−q.	 (24) 

Since Ȳl and Yl are functions of q, we sometimes write them as 
Ȳl(q) and Yl(q). Note that (23) defines an iterative procedure, so 
x̂l−q is not optimal for l < n. The iteration (23) leads to the optimal 
UFIR q-lag smoothed estimate (assuming that N = Nopt) when 
l = n. When l = n, (23) gives x̂n−q (or, to be more explicit, 
x̂n−q|n). However, when l < n, x̂l−q in (23) is simply an intermediate 
variable that we use to eventually obtain x̂n−q. This is because x̂l−q 

in (23) is not equal to the batch form of (20) unless l = n. 
The bias correction gain Kl � Kl,m(q) is 

Kl = GlȲl
T HT	 (25)l 

where the generalized noise power gain (GNPG) Gl � Gl,m(q) can 
be computed iteratively using  
Gl = Fl−q Yl

T Hl
T HlYl + G−

l−
1
1 

−1 
Fl
T 
−q 	 
−1−1 

= Ȳl
T Hl

T HlȲl + (Fl−qGl−1Fl
T 
−q) .	 (26) 

The initial values for this iteration, x̂m+K −1−q and Gm+K −1, are 

x̂s−q = Bs,m(q)Hs
−

,m
1Ys,m (27) 

−1BTGs = Bs,m(q)(HT Hs,m) (q)	 (28)s,m s,m

where s = m + K − 1. The index variable l in (23) ranges from 
m +K to n, and the smoothed estimate x̂n−q is obtained when l = n 
in (23). 

The UFIR estimator does not depend strongly on initial 
conditions. This is similar to the Kalman filter where the effect 
of initial conditions decays as we process more measurements. 
Therefore, in many practical applications, we can approximately 
set (27) to zero and (28) to the identity matrix. This simplification 
gives relatively good estimates if N ≫ 1, although it may not be 
accurate otherwise. 

The first unified UFIR filter/smoother form (23) is summarized 
in Fig. 5. If q = 0 the algorithm becomes the UFIR filter, and 
if q > 0 the algorithm becomes the UFIR smoother. For time-
invariant systems the algorithm is greatly simplified, though we 
do not show the simplified version here. 

3.1.2. The second form of the unified UFIR filter/smoother 
We see from (23) that when q = 0, 

x̂l	 = Flx̂l−1 + Kl(yl − HlFlx̂l−1) 

= GlHTKl l   −1 

Gl = Hl
T Hl + FlGl−1Fl

T 
−1	 

(29) 

for l ∈ [m + K , n], with initial values 

x̂s = F m+1 
s,0 H−1 

s,mYs,m (30) 

Gs = F m+1 
s,0 

 
HT 

s,mHs,m 

−1  
F m+1 

s,0 

T 
(31) 

Fig. 5. The first form of the iterative unified UFIR filter/smoother. The optimal value 
of N can be obtained as shown in Section 4.1. 

Fig. 6. The second form of the iterative unified UFIR filter/smoother. The optimal 
value of N can be obtained as shown in Section 4.1. 

where s = m+K −1. After the index l finishes iterating from m+K 
to n, (29) provides the filtered estimate x̂n, and the q-lag smoother 
estimate is computed by retrodicting x̂n to time n − q using (22). 

The second unified UFIR filter/smoother form is summarized in 
Fig. 6. As with the first form, if q = 0 the algorithm is the UFIR 
filter, and if q > 0 the algorithm is the UFIR smoother. As with 
the first form, the algorithm is greatly simplified for time-invariant 
systems, although we do not show the simplified version here. 

3.1.3. Comparison between the two unified UFIR forms 
There are slight but definite differences between the two uni­

fied UFIR filter/smoother forms. The first form of Fig. 5 computes 
smoothed estimates x̂n−N+K −q, x̂n−N+K −q+1, . . ., x̂n−q, and only the 
final smoothed estimate is optimal. The second form of Fig. 6 com­
putes filtered estimates x̂n−N+K , x̂n−N+K +1, . . . , x̂n, only the last one 
of which is optimal, and the optimal smoothed estimate x̂n−q is 
retrodicted from the filtered estimate x̂n. The second form requires 
slightly more computational effort because of the retrodiction, but 
also allows optimal smoothed estimates to be retrodicted from x̂n 

for any smoothing lag q ∈ [0, N]. In summary, the most distinc­
tive differences between the two forms are the following: (1) the 
first form calculates some intermediate smoothed estimates prior 
to the averaging interval, but the second form does not; and (2) the 
second form involves two stages of processing (an iterative loop 
and a retrodiction), but the first form produces the smoothed es­
timate in only one stage of processing (an iterative loop). The pre­
ferred form therefore depends on the application. 

3.2. Estimation error covariance bounds 

This section derives bounds for the UFIR filter and smoother 
estimation errors. Define the instantaneous error and its co­
variance as 



ϵl−q = xl−q − x̂l−q 

TPl−q = E{ϵl−qϵ }. (32)l−q

If we try to calculate (32) iteratively using (23), then the calculation 
of Pl−q will require continually expanding matrix operations at 
each iteration. Finding a rigorous closed-form analytical solution 
for the UFIR smoother covariance via (20) is a topic of current 
research. Instead, reasonably accurate covariance bounds may be 
sufficient for practical applications. We discuss upper and lower 
UFIR smoother covariance bounds below. 

3.2.1. Upper bound of UFIR covariance 
This section derives an upper bound (UB) for the UFIR smoother 

covariance PUB . We start by substituting x̂l−q from (23) in (32) ton−q
obtain 

TPl−q = E{ϵl−qϵl−q}  
= E Fl−qϵl−q−1 + wl−q − Kl(yl − HlYlx̂l−q−1)  

[· · ·]T . (33) 

To find an iterative computation of (33), we express yl in terms of 
xl−q−1 as 

yl = Hl(Flxl−1 + wl) + vl 

= HlFl(Fl−1xl−2 + wl−1) + Hlwl + vl 

. . . 
q 

= HlYlxl−q−1 + Hl Yl(q − j)wl−q−1+j 
j=1 

+ Hlwl + vl (34) 

which can be written as 

yl = Hl(Ylxl−q−1 + Ml) + vl (35) 
where Ml � Ml(q) 

q 
Yl(q − j)wl−q−1+j + wl if q > 0 

=  
w
j=

l 

1 

if q = 0. 

Now we substitute (35) in (33) to get an iteration of Pl from l = 
m + K to l = n. This iteration gives an upper bound for Pn because 
it is based on the iteration of (23), but x̂l−q in (23) is not optimal for 
any value of l < n. Substituting (35) in (33) gives the following: 

PUB 
= E{[Fl−qϵl−q−1 + wl−q − Klyl + KlHlYlx̂l−q−1][· · ·]

T 
}l−q 

= E{[Fl−qϵl−q−1 + wl−q − KlHlYlxl−q−1 

− KlHlMl − Klvl + KlHlYlx̂l−q−1][· · ·]
T 
} 

= E{[Fl−qϵl−q−1 − KlHlYlϵl−q−1 + wl−q 

− KlHlMl − Klvl][· · ·]
T 
} 

= E{[(Fl−q − KlHlYl)ϵl−q−1 + wl−q 

− Kl(HlMl + vl)][· · ·]
T 
}. (36) 

Expanding this equation for q > 0 gives 

PUB Yl)Fl−qPUB T
= (I − KlHl ¯ l−q−1F

T (· · ·)l−q l−q

+ Ql−q + KlRT
l K T 

+ KlHlE{MlMl
T 
}Hl

TK T 
l l 

T
− E{wl−qMl

T 
}Hl

TK T 
− Kl−qHlE{Mlw }l−q l−q

Yl)Fl−qPUB T
= (I − KlHl ¯ l−q−1Fl

T 
−q(· · ·)

+ Ql−q + KlRT
l K T 

+ KlHl(Q̄l + Ql)Hl
T K T 

l l 

− Ql−qȲl
T Hl

T K T 
− KlHlȲlQl−ql 

TYl)(Fl−qPUB
= (I − KlHl ¯ l−q−1Fl

T 
−q + Ql−q)(· · ·)

+ KlRT
l K T 

+ KlHl[Q̄l + Ql − ȲlQl−qȲl
T 
]Hl

T K T (37)l l 

where Q̄l � Q̄l(q) can be written as 

q 
Q̄l = Yl(q − j)Ql−q−1+jYl

T (q − j). (38) 
j=1 

This upper bound involves accumulating process noise covariances 
at each iteration. Therefore, the upper bound is relatively tight for 
small N , and is more conservative when N ≫ 1. In a similar way, 
the conservativeness of the upper bound increases with q. This 
means that the upper bound is most useful (that is, most strict) 
for applications in which both N and q are small. 

3.2.2. Lower bound of UFIR covariance 
We can find the lower bound (LB) of the UFIR smoother 

covariance Pn
LB 
−q in two different ways. First, we use (37), which was 

derived from the first UFIR form of Section 3.1.1. We neglect the 
process noise covariances in (37) to obtain 

PLB Yl)Fl−qPLB T 
+ KlRT

l K T= (I − KlHl ¯ l−q−1F
T (· · ·) . (39)l−q l−q l 

For time-invariant models, (39) becomes 

PLB )FPLB T 
+ KlRT K T= (I − KlHFq

l−q−1F
T (· · ·) . (40)l−q l 

Both (39) and (40) correspond to the first UFIR estimator form (23). 
We can also use the second UFIR form of Section 3.1.2 to find 

the LB of the UFIR smoother covariance. We first find the LB for 
filtering (q = 0) as 

PLB 
= (I − KlHl)FlPLB 

l−1Fl
T (· · ·)T 

+ KlRT
l K T (41)l l 

and then use (22) to compute the LB for smoothing:  −1  −T
PLB F m+1 PLB F m+1 
n−q = Bn,m(q) n,0 n n,0 Bn

T 
,m(q) (42) 

for time-varying models, and 

PLB 
= F −qPLBF −qT (43)n−q n 

for time-invariant models, where PLB is provided by (41) whenn 
l = n. Note that the LBs can also be computed via the noise power 
gain to serve well in the three-sigma sense (Shmaliy & Ibarra-
Manzano, 2011). 

4. Simulation results 

This section presents simulation results to illustrate the theory 
of the preceding sections. 

4.1. Example of Nopt estimation 

Recall from the UFIR algorithms of Figs. 5 and 6 that the user 
needs to select N , which is the number of measurements used 
in the UFIR estimator. If N is too small, then there is too little 
information to form a reliable estimate of the state. However, if 
N is too large, then bias errors enter the estimate. As described in 
Shmaliy (2012), 

∂V (N)
Nopt ≈ arg min (44)

N ∂N  
where V (N) = E [yn − Hnx̂n(N)][yn − Hnx̂n(N)]T . 

We can numerically estimate the above derivative for various 
values of N , and then use any optimization algorithm to minimize 
it. In this example we use    1 ∆tF = H = 1 00 1   

0 0 2Q = R = (5/6) (45)0 1 



Fig. 7. This figure illustrates the strategy of finding the optimal measurement 
interval N for the UFIR filter. The estimation error is minimized at about the same 
value of N as the derivative of V (N). 

Table 1 
RMS estimation errors for the first state. The true value of Q (2, 2) is 1. For each value 
of assumed Q (2, 2), the smaller error between the Kalman and UFIR filter, and the 
smaller error between the Kalman and UFIR smoother, is shown in bold font. 

Assumed value of Q (2, 2) 
0.01 0.1 1 10 100 

Kalman filter 
UFIR filter 

1.56 
0.56 

0.71 
0.56 

0.53 
0.56 

0.60 
0.56 

0.71 
0.56 

Kalman smoother 
UFIR smoother 

0.84 
0.34 

0.40 
0.34 

0.30 
0.34 

0.35 
0.34 

0.47 
0.34 

where ∆t = 0.1. Fig. 7 shows ∂V /∂N along with the RMS value of 
the estimation error, which was obtained from 10,000 UFIR filter 
time steps. We see that ∂V /∂N is minimum at N = 10, while 
the estimation error is minimum at N = 9. The estimation error 
is relatively flat near its minimum, which indicates that the UFIR 
filter is robust for this example. A more accurate estimate of Nopt 
can be obtained by using more time steps to approximate V (N). 

4.2. Comparisons between Kalman and UFIR estimators 

Next we compare Kalman and UFIR estimator performance. We 
use the same system parameters as in the previous example. For 
the UFIR estimators, we set N = 12 to simulate an error in our 
approximation of Nopt and to explore its robustness. This gives a 
UFIR smoother lag q = N/2 = 6. We vary the value of Q (2, 2) 
assumed by the Kalman estimator. Process noise is often difficult 
to characterize, so errors in the Kalman estimator value of Q are 
common. We run the estimator simulations for n = 10, 000 time 
steps. The Kalman smoother uses all n measurements to find the 
smoothed estimate x̂i|n for i ∈ [1, 10000] (see Fig. 2). The UFIR 
smoother uses yk for k ∈ [i − 11, i] to find the smoothed estimate 
x̂i−6, where i ∈ [7, 10000] (see Figs. 5 and 6). Tables 1 and 2 
compare the performance of the Kalman and UFIR estimators based 
on 20 Monte Carlo simulations. 

We make the following observations about Tables 1 and 2. 

(1) When the Kalman estimator assumes the correct statistics 
of the system, it is optimal and outperforms the UFIR filter/ 
smoother. 

(2) The Kalman smoother always outperforms the Kalman filter, 
and the UFIR smoother always outperforms the UFIR filter. 

Table 2 
RMS estimation errors for the second state. The true value of Q (2, 2) is 1. For each 
value of assumed Q (2, 2), the smaller error between the Kalman and UFIR filter, and 
the smaller error between the Kalman and UFIR smoother, is shown in bold font. 

Assumed value of Q (2, 2) 
0.01 0.1 1 10 100 

Kalman filter 3.15 2.42 2.07 2.74 5.35 
UFIR filter 2.26 2.26 2.26 2.26 2.26 

Kalman smoother 1.58 1.20 1.01 1.40 3.18 
UFIR smoother 1.10 1.10 1.10 1.10 1.10 

(3) As the Kalman estimator assumed value of Q (2, 2) deviates 
from the true value, performance suffers. For this example, 
performance suffers more when Q (2, 2) is smaller than the 
true value. This agrees with intuition. If we know that we 
have modeling errors, we should put more emphasis on 
the measurements rather than on the model information. 
However, when Q (2, 2) decreases, the Kalman gain increases. 

(4) UFIR estimator performance is invariant with respect to errors 
in the Kalman estimator assumed value of Q (2, 2). Tables 1 and 
2 show that the UFIR estimator clearly outperforms the Kalman 
estimator when the assumed noise statistics are incorrect. 

5. Conclusion 

We derived a unified form for the Kalman filter and smoother 
that explicitly shows the sensitivity of the smoothed estimate 
to each measurement between the smoothing time point and 
the end of the smoothing interval. We derived two unified 
forms for the UFIR filter and smoother, along with bounds for 
their estimation error covariances. We have seen that although 
the Kalman estimator is optimal when the system matrices are 
known, the UFIR estimator can provide better robustness in the 
case of modeling errors. The UFIR estimator does not require 
any knowledge of noise statistics, which makes it an attractive 
alternative to the Kalman estimator. The UFIR estimator requires 
more computational effort than the Kalman estimator, although 

⃝

this could be circumvented through parallel processing. MATLAB 
R

source code is available on the internet to replicate our examples 
(Simon, 2012). 

Although the unified Kalman estimator is mathematically 
equivalent to the standard form, we have observed numerical 
difficulties under certain conditions, which future research should 
focus on characterizing and correcting. Other future research 
should focus on obtaining an exact equation for the UFIR 
estimation error covariance. 
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