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1. Introduction 

The electrical windings of a permanent magnet synchronous motor are 
spaced on the stator (the fxed part of the motor) at regular angles. When 
excited with current, the windings produce magnetic fuxes that add vectorially 
to produce the stator fux. The controlling variables are the proportions of 
currents in the motor windings, which determine fux magnitude and orienta
tion. Rotating rotor magnets produce the rotor fux and interact with the stator 
fux to produce torque. When the stator and rotor fuxes are aligned, the 
magnetic felds are in equilibrium at the minimum energy position and no 
torque is produced. When the stator and rotor fuxes are not aligned, the rotor 
magnets are pulled toward the stator electromagnets. This torque is maximum 
when the rotor fux is 90° behind the stator fux in the direction of motion. At 
this point the fux vectors are said to be feld-oriented for maximum torque at a 
given current. This is also the most efcient operating region of the motor, 
because in this mode the power input to the mechanical side of the motor is 
maximized. For continuous rotation at the highest torque and efciency, the 
stator fux is rotated in the desired direction of motion, keeping 90° ahead of 
the rotor fux. The stator fux is produced by controlling the current in the 
stator windings. Krause and Wasynczuk [1] provide a good overview of per
manent magnet synchronous motors. 

In order to implement an efective closedloop current controller we need an 
accurate estimate of the current [2]. Current estimation is thus an important 
problem. It is also a challenging problem because the measured winding cur
rents are strongly afected by electrical noise in the motor drive. 

The motor"s winding currents are generally shaped like sinusoids. Knowing 
this, we can formulate common sense fuzzy membership functions for use in a 
predictor-corrector type of estimator. The fuzzy winding current estimator is 
recursive and nonlinear. Its inputs comprises past estimates, and present and 
past measurements. The use of fuzzy logic for motor winding current estima
tion was frst explored by Simon [3]. 

We begin the fuzzy flter design process by gathering noisy experimental 
motor winding current data from a motor. Next we construct initial mem
bership functions for a fuzzy current estimator on the basis of common sense 
and experience. We then use human expertise to guess the true motor currents 
underlying the experimental data. Finally we use these   true"" motor currents 
as the basis with which to fnetune the membership functions of the fuzzy 
current estimator. The membership functions are fnetuned (i.e., optimized) 
using an iterative gradientdescent method. 



After the membership functions are optimized, we can use singular value 
decomposition (SVD) to reduce the rule set of the fuzzy estimator. Rule base 
reduction is important in view of the challenge of real time implementation in a 
digital signal processor. The SVD method of rule reduction generates appro
priate linear combinations of membership functions in order to obtain new 
membership functions for a reduced rule base. 

The fuzzy estimator is applied to real motor winding currents in this paper. 
The results presented establish fuzzy estimation as a viable option for stator 
winding current estimation. 

Section 2 gives a general algorithm for estimating a signal in the presence of 
noise using a fuzzy flter. Section 3 presents a technique for optimizing fuzzy 
membership functions using gradient descent, and Section 4 summarizes an 
algorithm that can be used to reduce a fuzzy rule base. Section 5 contains 
experimental results, and Section 6 contains some concluding remarks and 
suggestions for further research. 

2. Fuzzy estimation 

We begin with a standard discrete, timeinvariant system given by 

xk+1 = f (xk) + vk (1) 
zk = h(xk) + Wk (2) 

where k is the time index, xk the state vector, zk the measurement, and vk and Wk 
are the noise processes. The problem of fnding an estimate ]xk for the state 
vector based on past and present measurements is known as the a posteriori 
fltering problem. One commonly used estimator architecture is the recursive 
predictor-corrector, given by 

x]k = f](x]k 1) + g(zk x]k 1) (3) 
where ]f (-) is an estimate of f (-), and g(-) is the correction function. The 
process model f (-) is often known, or it can be found using system identif
cation methods. If ]f (-) is available, only the correction mapping g(-) needs to 
be determined. Various analytic methods have been used for obtaining the 
correction mapping [4]. As an alternative to analytic methods, the correction 
mapping could be implemented as a fuzzy function [5]. 

2.1. Current estimation 

Consider the problem of estimating a discretetime signal {x} corrupted by 
noise. The fuzzy estimator structure that we use to obtain an estimate of the 
signal is given by 



 
   
    

 

   

 

 

  

x]k = x]+ + r v]k 1 (4)k 1 

x]+ = x]k + g(zk x]k ) (5)k 

where x]k denotes the estimate of x at time k before the measurement at time k is 
processed, and x]+ denotes the estimate of x at time k after the measurement at k 
time k is processed. T is the update period of the estimator, zk the noisy 
measurement of the winding current, and v] is the estimate of current rate. (The 
determination of the rate estimate is discussed in Section 2.2.) The fuzzy cor
rection mapping g(-) has two inputs 

(input 1)k = zk x]k (6)
(input 2)k = (input 1)k  (input 1)k . (7)1 

So the correction mapping depends on the diference between the measurement 
and the a priori estimate, and the amount by which that diference has changed 
since the last time step. The output of the correction mapping is a fuzzy 
variable which is determined by correlationproduct inference. The fuzzy rule 
base for the mapping g(-) was chosen as shown in Table 1. In this paper, tri
angular input and output membership functions are used. 

The initial rule base and triangular membership functions were constructed 
on the imprecise basis of experience, and trial and error. An appropriate initial 
knowledge base is critical, because without an initial knowledge we cannot 
proceed further with any optimization schemes. In spite of its importance, the 
generation of initial knowledge remains a difcult and illdefned task in the 
construction of fuzzy logic systems. 

In general, we denote the centroid and the two halfwidths of the ith fuzzy 
membership function of the jth input by ci1, bi1 , and b+i1 . The membership 
function attains a value of 1 when the input is ci1 . As the input decreases from 
ci1, the membership function reaches a value of 0 at ci1 As the input bi1 . 

Table 1 
Rule base for fuzzy fltera 

Input 1 Input 2 

NL NM NS z PS PM PL 

NL NL NL NM NM NS NS z 
NM NL NM NM NS NS z PS 
NS NM NM NS NS z PS PS 
z NM NS NS z PS PS PM 
PS NS NS z PS PS PM PM 
PM NS z PS PS PM PM PL 
PL  z  PS  PS  PM  PM  PL  PL  

a NL = negative large, NM = negative medium, NS = negative small, z = zero, PS = positive small, 
PM = positive medium, PL = positive large. 



      

   

   

 

 

 

Fig. 1. Triangular membership function. 

increases from ci1, the membership function reaches a value of 0 at ci1 + b+ 
i1 . A  

generic triangular membership function is shown in Fig. 1. The degree of 
membership of a crisp input x in the ith category of the jth input is given by 

fi1(x) =
   

1 + (x ci1) bi1 if bi1 � (x ci1)� 0 

1  (x ci1) b+ if 0 � (x ci1)� b+ 
i1 i1 

0 otherwise.

(8) 

The fuzzy output is mapped into a crisp numerical value using centroid de
fuzzifcation [6].  ; m(y1)y1J1

g(zk x]k ) =  1=;1 (9)
m(y1)J11=1 

where y1 and J1 are the centroid and area of the jth output fuzzy membership 
function and n is the number of fuzzy output sets. (Note that for the triangular 
membership functions that we are using, J1 is equal to onehalf of the sum of 
the two halfwidths of the jth output fuzzy membership function.) The fuzzy 
output function m(y) is computed as  

m(y) = fuzzy output function = mik (y) (10)
i k 

where mik (y) is defned as the consequent fuzzy output function when input 1 is 
in class i and input 2 is in class k. 

mik (y) = Wik moik (y) (11) 
Wik is defned as the activation level of the consequent when input 1 is in class i 
and input 2 is in class k, and moik (y) is the fuzzy function of the consequent that 
is activated when input 1 is in class i and input 2 is in class k. 



 

   
   

   

    

  

  

    

    

 

    

Wik = min[fi1(input 1) fk2(input 2)]. (12) 
See Eq. (8) for the defnition of the f (-) functions. 

2.2. Current rate estimation 

One of the inputs to the fuzzy estimator discussed above is the current rate 
estimate v] (see Eq. (4)). This estimate must be computed causally from motor 
winding current estimates using numerical diferentiation, which is in itself a 
challenging task. We will somewhat arbitrarily assume that we have the present 
and past three current estimates available. With this in mind, we use the 
method of undetermined coefcients [7] to obtain an expression for the current 
rate. The method of undetermined coefcients is a simple but elegant approach 
to deriving formulas for numerical diferentiation. It consists of expanding x(t)
about available values of t using Taylor series expansions. For instance, if 
we have x(t) available at times t T, t 2T, and t 3T, then we write Taylor 
series expansions for x(t T), x(t 2T), and x(t 3T). We then write 
x'(t) = A1x(t) + A2x(t T) + A3x(t 2T) + A4x(t 3T), where the Ai"s are  un
determined coefcients"". We can solve for the Ai"s by substituting the Taylor 
series expansions in the x'(t) equation and simply setting the result equal to 
x'(t). This approach gives us the following expression for the current rate    

1 3 11 
v(t) = x(t 3T) +  x(t 2T) 3x(t T) +  x(t) T 

3 2 6 
193T3 

x(4)(() (13)
72 

where T is a time step (some multiple of T in Section 2.1) to be determined later, 
and ( is an unknown constant in [t 3T t]. It is our objective in the remainder 
of this section to determine an appropriate time step T. Denoting the error in 
the current estimate as xx, we obtain    

1 3 11 
v(t) = x](t 3T) +  x](t 2T) 3x](t T) +  x](t) T 

3 2 6    
1 3 11 + xx(t 3T) +  xx(t 2T) 3xx(t T) +  xx(t) T 
3 2 6 

193T3 
x(4)((). (14)

72 
So if we estimate v as    

1 3 11 
v](t) = x](t 3T) +  x](t 2T) 3x](t T) +  x](t) T (15)

3 2 6 



 

 
    

  
we obtain the following expression for the current rate estimation error: 

193T3 
vx(t) =  x(4)(()

72 

1 3 11 + 
3 
xx(t 3T) +

2 
xx(t 2T) 3xx(t T) +  

6 
xx(t) T. (16) 

Now if we treat the time functions in the above equation as random processes 
and make the simplifying assumption that x(4)(t) and xx(t) are independent, we 
obtain the following expression for the variance of the current rate estimation 
error:

 (xv2) =  
193T3 

72 

� �2

 ([x(4)]2) +  
530 
36T2

 (xx2). (17) 

This equation shows that there is a tradeof in using larger or smaller values of 
T to estimate the current rate. The frst part of Eq. (17) refects the efect of 
using current estimates that are separated too much in time to estimate the 
current rate. As T increases, the frst term in Eq. (17) increases due to the 
uncorrelatedness between the current estimates that are being used to estimate 
the current rate. The second part of Eq. (17) refects the efect of using current 
estimates that are too noisy to estimate the current rate. As T decreases, the 
second term in Eq. (17) increases due to the noise in the current estimates that 
are being used to estimate the current rate. An appropriate value of T needs to 
be used in Eq. (15) based on the relative magnitudes of the current dynamics 
and the current estimation error. 

Based on our knowledge of the current waveforms, we will assume that we 
have a onesigma current estimation error that corresponds to about 0.01 V. 
(The current is measured by an analogtodigital converter [ADC] on the 
motor drive, so the acquired voltage is directly proportional to the motor 
winding current.) Again based on our knowledge of the current waveforms, 
we will assume that the standard deviation of the fourth derivative of the 
current is about 80 V/(ms)4 . Our ADC operates at a rate of 200 fs, so T must 
be a multiple of 200 fs. We can then compute the rate estimation variance 
from Eq. (17) as a function of T. The results are shown in Fig. 2. We see that 
the variance of the rate estimation error is minimized for T = r . This shows 
that the frst term in Eq. (17) dominates the variance of the current rate 
estimation error. In other words, the current rate estimation error is domi
nated by the high dynamics of the motor current rather than the error in the 
motor current estimate. The rate estimation error is strongly dependent on T. 
So we will use T = r in Eq. (15) (where r = 200 fs is the ADC period) to 
estimate the current rate. This fnding is critical to the success of the fuzzy 
estimator. 



 
 

  

   

  
  

 
 

Fig. 2. Standard deviation of current rate estimation error. 

3. Optimization 

If the fuzzy membership functions are triangular as shown in Fig. 1, gradient 
descent can be used to optimize the centroids and the widths of the input and 
output membership functions. The work in this section builds on and extends 
similar eforts in [5,8]. Consider an error function given by 

N1 2=  (18)
2N 

 =1 

  x] x (19) 
where N is the number of training samples. We can optimize E by using the 
partial derivatives of E with respect to the centroids and halfwidths of the 
input and output fuzzy membership functions. 

3.1. Input centroids 

Using the relationships of Eq. (8) we obtain

 1 N  x] =  (20)
 ci1 N 

 =1
 ci1 

 x] 
;  x]  m = [m  m(y )] (21)

 ci1  =1
 m  ci1 
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x] J1(y1 x] )= ; (22)
m1 i=1 miJi 

m Wkz = rkz . (23)
ci1 ci1k z 

In Eq. (21), n is the number of fuzzy output sets. In Eq. (23), k goes from 1 to 
the number of fuzzy sets for input 1, and l goes from 1 to the number of fuzzy 
sets for input 2. Eq. (23) is valid for = 1 . . .  ;. In Eq. (23), rkz = 1 if  
[(input 1) E class k and (input 2) E class z] = (output E class ), and 0 oth
erwise. In Eq. (23), Wkz ci1 is given as  

Wkz fk1 ci1 if fk1(input 1) fz2(input 2)= 
fz2 otherwise.ci1 ci1 

The partials of the membership functions f (-) with respect to the input cent
roids are 

fk1(input 1)
ci2 

= 0 (24) 
fz2(input 2)

ci1 
= 0 (25) 

fk1(input 1)
ci1 

= 

bik bi1
bik b+ 

i1 

0 

{
{ 

if ci1 bi1 input 1 ci1 

if ci1 input 1 ci1 + b+ 
i1 

otherwise 

(26) 

fz2(input 2)
ci2 

= 

biz bi2 

biz b+ 
i2 

0 

{
{ 

if ci2 bi2 input 2 ci2 

if ci2 input 2 ci2 + b+ 
i2 

otherwise 

(27) 

where bik is the Kronecker delta function (bik = 1 for i = k, 0 otherwise). 

3.2. Input half-widths 

Again using Eq. (8) it can be shown that 

1 N x]= (28)
bi1 N bi1=1 

x] ; x] m = (29)
mbi1 bi1=1 

m Wkz = rkz (30)
bi1 bi1k z 
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1 N x]= (31)
b+ b+Ni1 i1=1 

x] ; x] m = (32)
b+ b+mi1 i1=1 

m Wkz = rkz (33)
b+ b+ 
i1 i1k z 

x] J1(y1 x] )= ; (34)
m1 i=1 miJi 

b+where m m(y ) and rkz is given above in Eq. (23). Wkz bi1 and Wkz i1 are 
given as 

Wkz fk1 if fk1(input 1) fz2(input 2)= 
bi1 (35)

otherwise bi1 fz2 bi1 

Wkz fk1 b+ if fk1(input 1) fz2(input 2)= i1 (36)
b+ fz2 b+ otherwise.
i1 i1 

The partials of the membership functions f (-) with respect to the halfwidths of 
the input fuzzy membership functions are given as 

fk1(input 1) fz2(input 2)= = 0 (37)
bi2 bi1 

fk1(input 1) bik [1 fk1(input 1)] bi1 if ci1 bi1 input 1 ci1 = (38)
bi1 0 otherwise 

fz2(input 2) biz[1 fz2(input 2)] bi2 if ci2 bi2 input 2 ci2 = (39)
bi2 0 otherwise  

fk1(input 1) fz2(input 2) = = 0 (40)
b+ b+ 
i2 i1 

fk1(input 1) bik [1 fk1(input 1)] b+ if ci1 input 1 ci1 + b+ 
i1 i1 = (41)

b+ 0 otherwise 
fz2(input 2) biz[1 fz2(input 2)] b+ if ci2 input 2 ci2 + b+ 

i2 

i1 

= i2 (42)
b+ 0 otherwise.i2 

3.3. Output centroids 

The partials of the objective function E with respect to the centroids of the 
output fuzzy membership functions are given as 



  
 

 
 

  
  

 
 

  

 
 

 
  

  
  

 
 

  
  

   

  
 

 
 

  
  

 
 

 
 

      

 
   
        

  
 

 

    
   

1 N x]=	 (43)
y1 N =1 y1 

x]	 m1J1 
y1 
=	 ; miJi 

. (44)
i=1 

3.4. Output half-widths 

In this section, we will denote the centroids and halfwidths of the jth output 
membership function as y1, f1 , and f+ 

1 . In other words, an output membership 
function looks like Fig. 1 with c replaced by y, b replaced by f , and b+ re
placed by f+. The partials of the objective function E with respect to the half
widths of the output membership functions are 

1 N x]=	 (45)
f N f1 =1 1 

1 N x]=	 (46)
f+ N f+ 
1 =1 1 

x] ; 

= 
m1	 i=1 mifi (y1 yi) (47); 2f1 ( mifi )i=1 

x] m1 
; mifi 

+(y1 yi)
f+ = i=1 

; 2 .	 (48)
1 ( i )i=1 mif

+ 

In the above equations, n is the number of output membership grades. Note 
from the above equations that if we start with symmetric output membership 
functions (i.e., f1 = f1 

+), then x] = x] f+ . Therefore, if we start ourf1 1 
optimization with symmetric output membership functions, we will always 
have symmetric output membership functions because the derivatives of the 
error function with respect to the lower and upper halfwidths will always be 
equal. 

3.5. Gradient descent 

After the partial derivatives are computed as described in the above sections, 
the gradient descent rule is used to update the independent variables from one 
iteration to the next as follows: 

(k)
ci1(k + 1) = ci1(k)  	 (49)c ci1 

(k)
bi1 (k + 1) = bi1 (k)  b (50)

bi1 



 
  
 

 

 
  
 

 

   
  
   

 
  
 

 

    

 

 

 

 

(k)
b+ 
i1 (k + 1) = b+ 

i1 (k) b b+ (51)
i1 

(k)
y1(k + 1) = y1(k) (52)y y1 

(k)
fi1 (k + 1) = fi1 (k) f (53)

fi1 

(k)
f+ 
i1 (k + 1) = f+ 

i1 (k) f (54)
f+ 
i1 

where , and are gradient descent step sizes. c, b, y f 

4. Rule base reduction 

Wang et al. [9] have recently used an SVD method to reduce the dimension 
of the input space of a fuzzy system, assuming that the membership functions 
are Bsplines. The present paper, on the other hand, follows the work of Yam 
et al. [10] in applying SVD directly to the consequents of the rule set. This 
section briefy describes the rule base reduction algorithm used in this paper. 

Consider a fuzzy rule base with two inputs a and b and a single fuzzy 
consequent r. We have  ;a fuzzy sets for the frst input and ;b fuzzy sets for the 
second input. In this paper, we assume that ;a and ;b are odd numbers. The 
more general case is treated in [10] 

fi1(a) and f12(b) - ri1 (55) 
where ri1 is the centroid of the output membership function corresponding to 
the (i 1)th fuzzy rule. To perform rule base reduction, we form the following 
;a x ;b matrix   11 1. (56) 

r11 r12 - - - r1;b 

r21 r22 - - - r2;b 
. . . 

. . . 
. . . 

. . . 

    R = 

r;a 1 r;a2 - - - r;a;b

We then perform singular value decomposition on R. 

R =   V T (57) 
where U is ;a x ;a and V is ;b x ;b. The magnitudes of the singular values in  
indicate the relative importance of the corresponding columns of U and V in 
the formation of R. A close approximation to R can be obtained by keeping the 
;r largest singular values. 

V TR   r r (58)r 
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where r is ;a x ;r , r is ;r x ;r, and Vr is ;b x ;r. We then partition U and V 
into the parts that are to be retained and the parts that are to be discarded as 
follows: 

= [  r  U ]
V = [Vr  VU ]. 

(59)
(60) 

We next form ;r x ;r matrices  and  V as follows:

;a 
r(i 1) 0 - - - 0i=1 111111

;a 
r(i 2)i=10 - - - 0 

 (61)= . . . 
. . . 

. . . 
. . . 

0 0 - - - ;a 
r(i ;r )i=1 

;b Vr (i 1) 0 - - - 0i=1 111111 
;b Vr (i 2)i=10 - - - 0 

 V (62)= . . . . 
. . . 

. . . 
. . . 

0 0 - - - ;b Vr(i ;r )i=1 

 

Actually,  and  V can be chosen as any invertible matrices whose row sums 
are equal to the column sums of r and Vr, respectively [10]. We choose the 
above forms for ease of computation. We defne the (;a ;r ) x 1 vector ]U and 
the (;b ;r ) x 1 vector V] asU  T;a ;a 

]
U 

V] = - - - VU (i ;b . (64)U VU (i 1) ;r) 
i=1 i=1  

We next form the ;a x (;r + 1) matrix S and the ;b x (;r + 1) matrix SV as 
follows: 

 0;r x1
S = [  r  U x ]U ] x (65)

01x;r 1 
 V 0;r x1

SV = [Vr  VU x V]U ] x (66)
01x;r 1 

where 0ix1 is defned as the i x 1 matrix comprised of all zeros. We next form 
the (;r + 1) x (;r + 1) matrices N and NV as follows: 

= U (i 1)  - - - U (i ;a ;r ) (63)
i=1 i=1   T;b ;b 



  
     

      

     

   
 

 

 
 

 

 

 

      
 
  

      
 
 

 

    

 

 

 
 

 

 

   

 
 
 

 
         

 

    

 
1 if mini 1 S (i 1)� 1 

( (67)
mini 1 S (i 1) 1 

otherwise 
1 if mini 1 SV (i 1)� 1 

(V 1 (68)
mini 1 SV (i 1) otherwise

1 + ( 1 - - - 1 11111 1 + ( - - - 11
N (69)= x 

;r + 1 + ( ... 
... 

... 
... 
1 1 - - - 1 + ( 

1 + (V 1 - - - 1 
1 1 + (V - - - 11 

1111.NV (70)= x 
;r + 1 + (V 

... 
... 

... 
... 
1 1 - - - 1 + (V 

xV 

x = S N (71) 
Vx

We next form the ;a x (;r + 1) matrix x and the ;b x (;r + 1) matrix
follows: 

as 

= SV NV . (72) 

We next consider the ;a rows in x and the ;b rows in Vx as points in an (;r + 1)
dimensional space. 

We form an (;r + 1) x (;r + 1) matrix whose ;r + 1 rows represent points 
which comprise a convex hull that approximately bounds the ;a points rep
resented in x . We likewise form an (;r + 1) x (;r + 1) matrix whose ;r + 1 
rows represent points which comprise a convex hull that approximately bounds 

xV . These two matrices are denoted as Q 
respectively. Finally we form the ;a x (;r + 1) matrix R , the (;r + 1) x (;r + 1)
matrix RR, and the ;b x (;r + 1) matrix VR as follows: 

1 and QV 
1the ;b points represented in , 

R = xQ (73)
RV  
RR =  
= xV QV (74)

1 1 T T TQ 1N r N QV . (75)V V 

Now the reduced rule base can be defned. If our initial twoinput rule base is 

fi1(a) and f12(b) - ri1 (76) 
where i = 1 . . .  ;a and 1 = 1 . . .  ;b, then the membership functions for our 
reduced rule base are defned as 



 
     

 
   

    

;a 

fRR (a) =  fi1(a) R(i Ri) (Ri = 1 . . .  ;r + 1) (77)i1 
i=1 
;b 

fR 
1R2(b) =  f12(b)VR(1 1R) (1R= 1 . . .  ;r + 1). (78)

1=1 

The centroids of the consequents for the reduced rule base are defned in the matrix 
RR. The reduced rule base has (;r + 1)2 

rules instead of the original ;a;b rules. 

5. Experimental results 

The fuzzy estimator and optimizer discussed in this paper was implemented 
in Visual Basic and was used to flter the winding currents of a permanent 
magnet synchronous motor. The motor winding currents were collected with a 
digital oscilloscope at a rate of one sample every 200 fs. The gradient descent 
method was used to optimize the fuzzy membership functions. The training 
data for the gradient descent optimization consisted of a simple symmetric 
noncausal 51point moving average. The fuzzy flter was causal and was im
plemented as described earlier in this paper. The error function of Eq. (18) 
consisted of the error between the noncausal moving average and the output 
of the causal fuzzy flter. 

The rule base was defned as shown in Table 1. These are common sense 
rules, such as, if the error between the measured value and the extrapolated 
estimate is positive medium, and the change in error is zero, then change the 
estimate by a positive small amount. There was no attempt in this paper to 
optimize the rule base. This is an important area of current fuzzy systems re
search [11], but is not addressed in this paper. 

The gradient descent learning parameters c, b, , and were all initialy f 
ized to 4. There were seven membership functions for the two inputs and the 
output. The membership functions were constrained to be nonsymmetric tri
angles, so the error function E in Eq. (18) was optimized with respect to 63 
parameters - the centroids of each of the membership functions (21 total), and 
the two halfwidths of each of the membership functions (42 total). 

Fig. 3 shows the training data that was used for the gradient descent opti
mization. Fig. 3 shows 2500 samples of raw current and the output of the 51
point moving average that was used to optimize the fuzzy flter. (The vertical 
axis of the fgures is labelled  Volts" because the current is acquired with an 
ADC, which measures the current with a proportional voltage.) Fig. 4 shows 
the seven initial membership functions for the two inputs and the output. (The 
two inputs and the output were all initialized with the same seven membership 
functions.) Fig. 5 shows the decrease of the objective function as training 
progressed. The algorithm reached a local minimum after about 40 iterations. 



Fig. 3. Training data: (a) unfltered; (b) 51point moving average. 

The optimization required about two minutes on a Pentium 233 MHz PC 
running Visual Basic in design mode. Fig. 6 shows the membership functions 
that resulted from the gradient descent optimization. A comparison with Fig. 4 
shows that the membership functions did not change dramatically during the 
optimization process. But the changes in the membership functions can be 



Fig. 4. Default membership functions for input 1, input 2, and output. 

Fig. 5. Gradient descent training of membership functions. 
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seen, and the membership functions for the two inputs became slightly asym
metric as a result of the optimization. 

Fig. 7 shows the test data before and after being fltered with the fuzzy es
timator. Comparison with Fig. 3 shows that the resultant curve is not as 
smooth as the moving average curve; nevertheless, the data that came out of 
the fuzzy flter is noticeably smoother than the raw data, and there is no visible 
time delay in the fltered data. 

The rule base reduction scheme discussed in Section 4 was implemented in 
MATLAB and applied to the optimized fuzzy membership functions. The 
initial membership functions are shown in Fig. 6. We form a 7 x 7 R matrix 
based on Eq. (56), Table 1, and the centroids of the output membership 
functions shown in Fig. 6. The singular values of the resulting R matrix are 
{234 232 34 34 10 10 1} mV. We choose to keep the two largest singular 
values and go through the algorithm described in Section 4. This results in 
three fuzzy sets each for the inputs instead of the original seven sets each. The 
Q 1 matrices were chosen using a graphical method described in [12] 

x(1 1)	 x(1 2) x(1 3) 11Q 1 =	 x(4 1) x(4 2) x(4 3) (79) 
x(7 1) x(7 2) x(7 3) 
x	 x xV (1 1)	 V (1 2) V (1 3) 1 

1 x x x 1Q =	 V (4 1) V (4 2) V (4 3) . (80)V 

x	 x xV (7 1)	 V (7 2) V (7 3) 

The RR matrix that results from the rule base reduction algorithm has fve 
distinct values 

0.09255 0.05447 0.0004669 1RR = 0.05447 0.0004669 0.05429 . (81) 
0.0004669 0.05429 0.09255 

The new reduced membership functions are shown in Fig. 8, and the reduced 
rule base is shown in Table 2. Instead of the original 49 rules, we now have 9 
rules in our rule base. Note from Fig. 8 that some of the membership functions 
are less than zero for some values of the input. This is somewhat nonintuitive, 
but the mathematics of fuzzy inference is still valid. If it is important to the user 
to have membership function values that are always greater than zero, Yam 
et al. [10] present a way of accomplishing this. 

Table 3 summarizes the performance of the fuzzy flter for various sets of 
membership functions. As expected, the performance gets better as we go from 
no fltering to nominal fltering to optimal fltering. As expected, the perfor
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Table 2 
Reduced rule base for fuzzy fltera 

Input 1 Input 2 

N z P 

N  NL  NS  z  
z  NS  z  PS  
P z PS PL 

a NL = negative large, n = negative, ns = negative small, z = zero, PS = positive small, P = positive, 
PL = positive large. 

Table 3 
Error function values for test data 

Error function value 

Raw data 18.0 
Nominal membership functions 10.7 
Optimized membership functions 7.4 
Reduced membership functions 7.7 

mance of the reduced rule base is worse than the performance of the optimal 
flter, but the performance degradation is not as severe as we might expect from 
reducing a 49rule rule base to a 9rule rule base. 

�. �onclusion 

A fuzzy flter has been applied to the estimation of motor winding currents. 
The fuzzy estimator ofers the possibility of training if a nominal current his
tory is known a priori. The gradient descent optimization discussed in this 
paper is attractive because of its conceptual straightforwardness, but one of its 
primary disadvantages is its convergence to a local minimum. Considering the 
fact that in this paper we optimized with respect to 63 variables, it would be 
very surprising if we were anywhere close to a global minimum. Further work 
on the topic of this paper is focusing on optimization methods that do better at 
fnding the global minimum (e.g., genetic algorithms), integration of the fl
tering scheme with motor control, and real time implementation issues. 

The SVDbased rule base reduction was shown to be efective at decreasing 
the number of rules used in the fuzzy flter. This reduction could be important 
for real time implementation where cycle time is at a premium. It is not difcult 
to program a general purpose rule base reduction algorithm if we can make the 
following assumptions: (1) There are an odd number of membership functions 
for the two inputs and the output; (2) the membership functions are symmetric 



triangles; and (3) we desire to keep the two largest singular values in the R 
matrix of Eq. (56). A MATLAB mfle for rule base reduction (based on the 
algorithms presented in [10] and summarized here) of a general twoinput, one
output fuzzy logic system can be downloaded from http:jjcsaxp.csuo
hio.eduj�simonjreducej. 
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