
Cleveland State University
EngagedScholarship@CSU
Electrical Engineering & Computer Science Faculty
Publications

Electrical Engineering & Computer Science
Department

11-2003

OCI-Based Group Communication Support in
CORBA
Dongman Lee
Information and Communications University, dlee@icu.ac.kr

Dukyun Nam
Sung Kyun Kwan University, paichu@icu.ac.kr

Hee Yong Youn
Sung Kyun Kwan Uinversity, youn@ece.skku.ac.kr

Chansu Yu
Cleveland State University, c.yu91@csuohio.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub

Part of the Systems and Communications Commons
How does access to this work benefit you? Let us know!
Publisher's Statement
© 2003 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Repository Citation
Lee, Dongman; Nam, Dukyun; Youn, Hee Yong; and Yu, Chansu, "OCI-Based Group Communication Support in CORBA" (2003). Electrical
Engineering & Computer Science Faculty Publications. 94.
https://engagedscholarship.csuohio.edu/enece_facpub/94

This Article is brought to you for free and open access by the Electrical Engineering & Computer Science Department at EngagedScholarship@CSU. It
has been accepted for inclusion in Electrical Engineering & Computer Science Faculty Publications by an authorized administrator of
EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Original Citation
Dongman, L., Dukyun, N., Hee, Y. Y., & Chansu, Y. (2003). OCI-based group communication support in CORBA. IEEE Transactions
on Parallel and Distributed Systems, 14, 11, 1126-1139.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EngagedScholarship @ Cleveland State University

https://core.ac.uk/display/301544238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/enece_facpub/94?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

OCI-Based Group Communication Support
in CORBA

Dongman Lee, Member, IEEE Computer Society, Dukyun Nam,
Hee Yong Youn, Senior Member, IEEE Computer Society, and Chansu Yu, Member, IEEE

Abstract—Group communication is a useful mechanism guaranteeing consistency among replicated objects. The existing approaches
do not allow transparent plug-in of group communication protocols into CORBA. They either require modification of CORBA or OS, or
provide no room for incorporating group communication transport protocols into CORBA. We thus propose a generic group
communication framework that allows transparent plug-in of various group communication protocols with no modification of existing
CORBA. We extend the Open Communications Interface (OCI) to support interoperability, reusability of existing group communication,
and independency on ORB and OS. We also define the Group Communication Inter-ORB Protocol (GCIOP) as a group
communication instantiation of the General Inter-ORB Protocol (GIOP) that encapsulates underlying group communication protocols.
The proposed scheme can be exploited for fault-tolerant CORBA (FT CORBA).

Index Terms—Group communication, CORBA, open communications interface, FT CORBA.

1 INTRODUCTION

OBJECT replication is a technique enhancing fault approach supports group communication service by inter-
tolerance and high availability [7]. An object group is cepting the system calls related to group communications

a collection of object replicas that cooperatively work for a using an interceptor. It does not allow CORBA objects to
common task [16]. A consistent state for an object group can directly exploit the underlying group communication
be used for constructing highly available and fault-tolerant services since the interceptor is not part of CORBA. In
distributed applications. Group communication service summary, the existing approaches do not support trans
(GCS) is a useful mechanism guaranteeing consistency of parent plug-in of group communication protocols into
the states of all the member objects. It maintains a view, a CORBA and, thus, CORBA application programmers
list of the currently active and connected members in an cannot directly exploit the protocols. In the above examples,
object group, and also informs the running objects of the there must be a generic group communication framework
updated view whenever it changes. The consistency can be that allows transparent plug-in of various group commu
guaranteed by reliable delivery of messages to the members nication protocols via a standard CORBA interface.
in the current view. In this paper, we propose a mechanism that allows such

There have been several approaches for supporting framework with no modification of existing CORBA. We
group communication service in CORBA. In general, they leverage the OCI (Open Communications Interface) [1] to
can be categorized into three approaches—integration, support interoperability, reusability of existing group
service, and interception approach. An example of each of	 communication, and independency on ORB and OS. The

OCI provides, as part of the CORBA, a set of interfaces by the three approaches is Electra [13], Object Group Service
which various protocols instead of GIOP/IIOP over TCP/IP (OGS) [4], and Eternal [19], [22], respectively. In the
can be supported. We add new operations into the existing integration approach, the GCS module is an integral part
OCI by which an object group can be managed andof Object Request Broker (ORB) and, thus, introducing a
invocations are made to the group. We define Groupnew GCS requires modification of ORB. The service
Communication Inter-ORB Protocol (GCIOP) as a groupapproach provides group communication as Object Service
communication instantiation of GIOP that encapsulates

[5] on top of CORBA, leveraging the CORBA’s point-to
underlying group communication protocols. We then add

point communications, General Inter-ORB Protocol (GIOP).
group communication Info Object to the OCI and extend the

That is, no room exists for group communication transport interfaces of the OCI to support group semantics. The
protocols to be incorporated into CORBA. The interception existing OCI consists of a Connector, Connector Factory,

Acceptor, and Transport module [1], [10]. The existing
group communication basically requires group address . D. Lee and D. Nam are with the School of Engineering, Information and
expansion, delivery ordering, and state transfer [2]. ToCommunications University, 58-4 Hwaam-dong, Yuseong-gu, Daejeon,

305-732 Korea. E-mail: {dlee, paichu}@icu.ac.kr. satisfy these requirements of group communication, a
. H.Y. Youn is with the School of Information and Communications group name, ordering type, and state are saved in the Info

Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, object. We add an attribute to Connector’s Transport Info
Suwon 440-746 Korea. E-mail: youn@ece.skku.ac.kr. for setting the ordering-type and add group maintenance

. C. Yu is with the Department of Electrical and Computer Engineering,
operations to Acceptor. The proposed design can be used to Cleveland State University, Stilwell Hall 340, Cleveland, OH 44115.

E-mail: c.yu91@csuohio.edu. wrap or embed various group communication protocols

without any modification of ORB and the OCI. We devise a
group Interoperable Object Reference (IOR) for GCIOP in
order to support the non-FT CORBA compliant systems that

mailto:c.yu91@csuohio.edu
mailto:youn@ece.skku.ac.kr
mailto:paichu}@icu.ac.kr

Fig. 1. The structure of OCI in CORBA.

do not support group object references. The proposed
scheme can be exploited for fault-tolerant infrastructure
based on the FT-CORBA standard [25]. The Interoperable
Object Group Reference (IOGR) as a group reference is used
instead of the GCIOP-based IOR when the proposed
scheme is used by FT CORBA. For composing and invoking
an object group except resolving the IOGR, the proposed
scheme can be directly adapted to the FT CORBA standard.
Resolving the IOGR should be included in the Connector
Factory. We implement the proposed scheme on top of our
group communication protocol [15] using ORBacus Java 4.01
[10] in which the OCI is provided as part of the CORBA
interface. Experiment results show that the proposed
scheme does not incur performance degradation as the
number of members in a group increases.

The remainder of the paper is organized as follows:
Section 2 describes the proposed group communication
extension to the OCI for group communication and presents
how the proposed extension is used with applications.
Section 3 describes the implementation details of the
proposed extension. The performance analysis of the
proposed extension is presented in Section 4. Section 5
discusses the existing approaches for group communication
in CORBA. A conclusion follows in Section 6.

2 THE PROPOSED MECHANISM FOR
GROUP COMMUNICATION

In this section, we describe the requirements of supporting
group communication service and how a given transport
protocol is integrated into it. We then present the proposed
extension to OCI for group communication including the
IDL specification and execution flow of the extension.

2.1	 Communication Using OCI
The OCI [1] provides plug-in protocol interfaces for
CORBA. The interfaces are Buffer, Acceptor, Transport,
Connector, Connector Factory, Registries, and Info objects
[10]. Buffer holds data in an array of octets and maintains a
position counter. The array and counter are used in
communications between a client and a server. Info objects
provide information on Acceptor, Transport, Connector,
and Connector Factory.

Fig. 1 shows how the OCI incorporates a given transport
protocol with ORB. As a client and a server are activated, an
Acceptor Registry in Object Adapter (OA) activates an

Acceptor, and a Connector Factory Registry in ORB creates
a Connector Factory. Then, at the server side, an Acceptor
creates profile information for an Interoperable Object
Reference (IOR), and OA creates an IOR using it. At the
client side, a Connector Factory creates a Connector using
the IOR. Then, the Connector and Acceptor instantiate their
own Transport. Once a connection is made between the
Transports at each side, the communications between a
client and a group are done directly via the Transports.

At the client side, a stub exists which plays a role of a
server. When a client invokes a method on a stub, the
client’s ORB marshals the method call and sends it to the
server. In detail, ORB invokes the “send” operation of
Transport that, in turn, sends a Buffer object including a
request message via an associated transport protocol. At the
server side, Transport passes the call to the server’s ORB
that unmarshals the call and invokes a corresponding
operation in the server. All objects including each Info
object of the OCI part must be implemented to support
specific protocols. For example, a transport protocol for
IIOP is TCP. Note that a Connector Factory and an Acceptor
in OCI are exposed only to application objects.

Fig. 2 shows an IDL specification of OCI1 that was
proposed as an extension to CORBA for interworking
with intelligent networks [1]. Buffer provides an interface
for a buffer that holds an array of octets for data
exchange between a client and a server. Its pos attribute
gives information on how many octets have been sent or
received. All interfaces except Buffer have a tag asso
ciated with the transport protocol. For example, the tag
value is “org.omg.IOP.TAG_INTERNET_IOP.value” in the
case of IIOP plug-in. The Acceptor interface is used for a
server to accept a connection request from a client while
the Connector interface is used for a client to make a
connection to a server. The Transport interface provides
methods for sending and receiving octet streams. A
ConFactory serves as a factory for Connector objects. A
ConFactoryRegistry and an AccRegistry serve as a
registry for ConFactory objects and Acceptor object,
respectively. These registries are provided by the plug-
in implementors. A ConFactoryRegistry is created by the
ORB while an AccRegistry is done by the OA. The
Current interface provides methods that return Transport
and Acceptor information objects related to the current
request.

2.2	 Group Communication Service
Extension to OCI

To provide a group communication service to CORBA
objects, three aspects should be considered—group address,
group membership, and message ordering. We assume that
the underlying group communication protocol is respon
sible for reliable delivery of group messages. A client
application sending a message to the members of a group
does not supply a member list. Instead, a membership
service supplies a group address as a group identifier. It is
mapped to a current membership list, hiding the group’s
internal structure from applications. The group member
ship service provides a set of operations to create and
change the membership, and guarantees a mutually
consistent view among group members. A membership list

1. In ORBacus [10], the OCI interface is extended to support methods
such as callback and describe.

Fig. 2. IDL specification of OCI.

can be managed by a membership server or by exchanging
a view change message between the members. Delivery
ordering determines whether messages should reach all of
its members at the same time [2]. This guarantees a
consistent state among the members. Ordering types are
total and causal ordering that manage concurrent messages
and sequences of related messages.

The existing CORBA object reference denotes exactly one
CORBA object. In the proposed extension to the OCI, a group
address is provided so that a client can make a call to a group
of objects transparently as if it does to a singleton object. The
proposed extension creates a group object reference using a
group identifier provided by a group communication
protocol. A group object reference is denoted as an IOR and
expanded into a group identifier at OCI Transport. Client
establishes a communication path to a group using the
corresponding IOR. Here, concrete implementation of GIOP
is needed for group communication because GIOP is an
abstract protocol that does not have a group address available
as endpoint information. We therefore extend GIOP to Group
Communication Inter-ORB Protocol (GCIOP).

Group membership allows the currently active and
connected member objects in a group to maintain a

consistent group view by mapping a group identifier to a
membership list. The proposed extension provides a set of
interfaces to group membership operations such as group
creation, destruction, join, and leave because this extension
is the interfaces binding a group communication protocol
with ORB. Group operations are provided as part of an
Acceptor in OCI. The state transfer interface is provided via
an Acceptor, and the state information is saved in Acceptor
Info as a CORBA object type.

Message ordering is a key factor for enabling object
group members to maintain a consistent state among them
when more than one client interacts with the group. The
object group members can exist in different machines and
receive a single copy of a message in a different order. To
maintain a consistent state, arrival messages at each
member must be performed in the same order. Therefore,
the client needs to have an ability of controlling the order of
message delivery. In the proposed design, the client is able
to set an ordering type by changing the value of an ordering
type attribute in Connector’s Transport Info. Default
ordering type is “Total ordering,” and it is stored in
Transport Info.

Fig. 3 shows how the underlying group communication
protocol is encapsulated through the OCI. The following

Fig. 3. Extended OCI and group communication protocol.

sections describe the details of the proposed extensions to
the OCI for group communication service.

2.2.1 Group IOR
As a server object is represented by an IOR that ORB offers
in the existing CORBA communication, the group commu
nication OCI provides a group IOR to identify a group in
CORBA group communication. When an object exports its
service, ORB generates a corresponding IOR that includes
transport information such as an IP address and a port
number. ORB uses an IOR as a universal means of
identifying an object. As such, a group IOR consists of a
group name and a host name. An IOR is generated at
runtime by ORB at the server, and interpreted by a client
application object. It consists of Type ID, Profile Count, and
Tagged Profiles. Type ID is based on the IDL of an object
and provides the interface type of the IOR in the repository
ID format. Profile Count is the number of Tagged Profiles.
One or more Tagged Profiles exist in an IOR and the Tagged
Profile contains the information on the protocol supported
by a target object.

Fig. 4 shows the format of a Tagged Profile used in
GCIOP. Tag indicates the protocol used for object commu
nications that is represented by a constant value. Since “01”
has already been assigned for IIOP, we choose a different
number for the proposed scheme. Group Name is used as a
group identifier not only in ORB, but also in the underlying
group communication protocol. Host Name and Port
represent a group member. Object Key identifies a
particular object instance.

FT CORBA [25] defines the Interoperable Object Group
Reference (IOGR) as a group object reference. We devise the
GCIOP-based Interoperable Object Reference (IOR) for non-
FT CORBA compliant systems that do not support group
object references. When the proposed scheme is applied to
the FT CORBA infrastructure, we can use the IOGR instead

of the GCIOP-based IOR that encompasses all the attributes
required by the proposed scheme. Fig. 5 shows the IIOP
profile for the IOGR in FT CORBA.

2.2.2 OCI Information Structure
Connector, Connector Factory, Acceptor, and Transport
have a corresponding Info object, respectively. All Info
classes are derived from Info class of the existing OCI by
adding some attributes, while the operations remain the
same. This allows generic specification and implementation
of various plug-in protocols in OCI. Fig. 6 shows the IDL
specification of OCI Info classes for group communication.
ConnectorInfo stores a group name, and Connector uses
ConnectorInfo when a message is sent to a group.
ConnectorInfo is maintained at the client side’s OCI.

A server OCI maintains AcceptorInfo that consists of a
group name and a host name. The group name identifies
the group that the server either creates or joins. The host
name indicates a host where the server resides and, thus, it
is actually a server name. Both the names are used when
constructing GCIOP profile information as shown in Fig. 4.
State of AcceptorInfo represents the state of a group
member in a group. It is used for state transfer when a
new member joins a group. The replication policy of the
underlying group communication protocol can be set by
replication_style attribute of AcceptorInfo. TransportInfo is
used at both the client side and server side when a
Connector and an Acceptor create their corresponding
Transport, respectively. Connector and Acceptor have the

Fig. 4. Tagged profile in GCIOP. Fig. 5. IIOP profile for IOGR.

Fig. 6. IDL specification of information object.

same group name in Transport Info. A client object can
change the ordering type at runtime by modifying the
ordering_type attribute of Connector’s TransportInfo.

2.2.3 Group Communication Service Interface
Figs. 6 and 7 show the IDL specification of Information
Object and the proposed extension to OCI, respectively. The
Acceptor interface is exposed only to application objects. All
the existing interfaces of OCI are used without any change.
We extend only the Acceptor interface to provide group
membership and state transfer such as create_group, join,
leave, set_state, and get_state. After creating a group, the
first member provides a group reference as a group creator.
Then, other members can join or leave the group, and
execute state transfer when they join the group.

2.3 Group Membership
The group membership component provides dynamic
group membership and guarantees consistency of a group
view by using group operations, a view change mechanism,
and state transfer. Acceptor’s operations of the extended
OCI support group composition. This section describes
what kinds of messages are exchanged between member
objects and a group communication system to create a
group and, then, explains the procedure of state transfer
and a view change mechanism required when a new
member joins.

The replication style of an object group is set to one of the
replication styles such as passive replication, active replica
tion, etc., depending on its fault tolerance requirements. In
FT CORBA [25], the replication style is set by invoking the
method of the property manager within the replication
manager. The value for the replication style can be applied
to the underlying group communication protocol through
the replication_style attribute of AcceptorInfo class.

Fig. 8 shows an interaction diagram for group composi
tion for the passive replication case. Initially, a group is
empty. A primary member object calls the create_group()

Fig. 7. IDL specification of group communication extension to OCI.

method of Acceptor (1). Then, the create_group() method
internally calls a corresponding function and joins a group
using the underlying group communication protocol (2).
When a view-install message has arrived at the underlying
group communication protocol, the reference of the group
member is passed to Acceptor (3) and the group creation
procedure is finished. When the second member joins the
group as a newcomer, the state transfer mechanism is
required in addition to the composition of a group. The
newcomer object calls the join() method of Acceptor (4) and
joins a group in the underlying group communication
protocol (5). State transfer is performed before a view install
message is sent since the state of a member can contain
application-dependent data. The underlying group com
munication protocol gets the current member’s state with
the get_state() method of the primary member’s Acceptor
(6) and duplicates this state to a newcomer’s state using the
set_state() method (7). Last, a view change complete
message is multicasted to all members (8).

In FT CORBA [25], the replication manager is responsible
for managing a replica and provides interfaces for creating
object groups. To create an object group, an external object
calls the create_object() method of the replication manager
(RM) and then the RM invokes the corresponding method
of a local factory in server ORBs. Each factory creates a
server replica. In the proposed scheme, the server replica
joins a group via the Acceptor’s method after creating an
object group, i.e., the object group creation procedures of
FT CORBA. Fig. 9 depicts a group composition diagram of
the proposed scheme based on the FT CORBA standard.

2.4 Group Object Invocation
The proposed scheme assumes one-to-many multicast and,
thus, one client transmits messages to multiple servers, that
is, a group. A connection between a client and a group is
accomplished by the client’s Connector and the group’s
Acceptor. After connection establishment, one Connector
and several Acceptors instantiate a Transport object per
Connector and Acceptor, and these Transport objects use
multicast communication among them. For reply coordina
tion, we assume that one of the group members, e.g., the
primary member, collects replies from other members and
then returns the result to the client. In this section, we describe
how a connection is made between a client and group
members using Connector and Acceptors, respectively, and

Fig. 8. Interaction diagram for group membership model.

how the methods of an object group are invoked via
Transports.

Fig. 10 illustrates the procedure for group object invoca
tion. The server side’s ORB first calls the accept() method of
an Acceptor (1). The Acceptor waits for a client connect
request delivered by the underlying group communication
protocol (2). At the client side, the client maps a local proxy
onto a remote object reference contained in the IOR (3) and
invokes a method of the server (4). The client side’s ORB
initiates a Connector Factory (5). It creates a Connector based
on the IOR and, then, the Connector initiates the client
module of the underlying group communication protocol (6
9). After the client side’s ORB gets the Connector from the
Connector Factory (10), it calls the connect() method of the
Connector (11) that initiates a Transport and returns it to the
ORB (12-14). For transmitting the client’s invocation to the
server group, the client side’s ORB calls the send() method of
the Transport (15) that, in turn, calls the SendMessage()
method of the underlying group communication protocol
(16). Then, the client side’s ORB waits for a reply by calling the
receive() methods of the Transport (17). At the server side, as
the Acceptor is notified of message arrival (18), it initiates a
Transport (19-20) and returns the Transport to the ORB (21).
Then, the server side’s ORB gets a received message from the
underlying group communication protocol by calling the
receive_detect() method of the Transport (22-25). Finally, the
ORB makes a call to the server object (26). It also calls the
send_detect() method of the Transport (27) to notify the client

Fig. 9. Group composition based on a fault-tolerant CORBA.

of the success of an invocation. The server side’s Transport
sends a message to the client (28). The primary member of the
underlying group communication protocol gathers the server
objects’ replies and transmits only one reply to the client. As
the client side’s Transport recognizes message arrival (29), it
gets a message from the underlying group communication
protocol (30-31). The client side’s ORB obtains the data by
using a Buffer object as a parameter of the receive() method
(32) of the Transport and, then, the object invocation is
complete. In Fig. 10, even though specific interfaces for group
invocation are not described, they can be substituted with the
corresponding interfaces of underlying group communica
tion protocols.

FT CORBA [25] permits three implementation strategies
for the IOGR such as “access via IIOP directly to a member
of a server object group,“ “access via IIOP and a gateway,”
and “access via a proprietary multicast group communica
tion protocol.” The last two cases use a group communica
tion protocol as a transport protocol. Fig. 11 shows these
cases with the proposed scheme. When a client invokes an
object group, a Connector Factory in the client side ORB
resolves the information required by the proposed scheme
from the IOGR and then fills ConnectorInfo and Transpor
tInfo with it. If a gateway is not used, the proposed scheme
can be directly applied to the overall system like Fig. 11a.
Otherwise, the gateway should be located between a client
object and server replicas. As shown in Fig. 11b, it makes
two connections with a client object through IIOP and also
with server replicas using the proposed scheme. After the
gateway receives a request from a client, it forwards the
request to the server replicas.

2.5 Execution Flow of Group Communication OCI
To enable group communication, a client object and a server
object perform the initialization procedure by which group
communication OCI objects are plugged into ORB. They are
Connector Factory, Connector, Acceptor, and Transport.
During the initialization, an ORB and POA manager
register a GCIOP Connector and a GCIOP Acceptor,
respectively.

At the server side, a new GCIOP Acceptor and Acceptor
for group communication need to be added to OCI. For this,

Fig. 10. Procedure for group invocation.

Acceptor Registry is accessed using the OA manager (i.e.,
get_acc_registry method). Then, a new Acceptor is created
and added to ORB by calling the add_acceptor method of
Acceptor Registry. At the client side, Connector Factory is
created and added by Connector Factory Registry that is
provided by ORB. A server gets a reference to a generic
Acceptor through OA and Acceptor Registry. Therefore, the
Acceptor reference needs to be narrowed to a reference to a
GCIOP Acceptor using the narrow method of GCIOP.Ac
ceptorHelper (generated code by an IDL compiler). Then, the
“create group” method of GCIOP Acceptor is called and,
then, OA creates an IOR. We assume that the first group
member creates and publishes the IOR.

When OA is activated, Acceptor creates Transport.
Transport instantiates a process group member of the
underlying group communication service. According to the
information in Transport, i.e., TransportInfo, Transport lets
a process group member join or leave a group. Here, a key
concept is to map Transport of a server object into a process
group member. A member can dynamically join or leave a
group using the methods of GCIOP Acceptor. When a new
group member joins an existing group, the state of the
existing members should be transferred to it. A server gets
or sets a state by calling the “get_state” and “set_state”
methods of GCIOP Acceptor. The state information is saved
in Acceptor Info as an object type. When the state in

Fig. 11. Group object invocation based on a fault-tolerant CORBA. (a) A case without gateway and (b) a case with gateway.

http:GCIOP.Ac

Fig. 12. Usage of group communication OCI.

Acceptor Info is changed, the state in the underlying group
communication service is changed as well.

After the initialization of a client, Connector Factory
Registry in ORB creates Connector Factory. To get GCIOP
Connector Factory, the Connector Factory reference needs
to be narrowed to a reference to GCIOP Connector Factory.
Connector Factory creates Connector based on the IOR that
OA has published. Then, Connector creates Transport. A
client can set an ordering type using the OrderingType
attribute of GCIOP Connector’s TransportInfo. Fig. 12
depicts the overall flow of operations occurring at the
server and the client with the proposed scheme [21].

3 IMPLEMENTATION

3.1 Implementation Environments
We implemented the proposed scheme on Microsoft
Windows 2000 [14]. Each Windows machine is connected
by 10Mbps Ethernet. As the underlying group communica
tion protocol, we exploit the fault-tolerant group commu
nication service (FTGCS) implemented in Java [15] that we
proposed for CORBA. FTGCS guarantees reliable commu
nications between group members. We use ORBacus Java
4.01 [10] supporting OCI. The proposed scheme is im
plemented as a library, i.e., the Java Archive (JAR) file
format. The library consumes 213K bytes, including the files
generated by GCIOP IDL. The entire system is implemented
in JDK 1.3.

3.2 System Architecture
Fig. 13 shows the system architecture. The client part
consists of the ordering component setting an ordering type

for message delivery and the communication component
supporting multicast communication in a group. In the
proposed scheme, the ordering component and the com
munication component are implemented asTransportInfo
and Transport, respectively. At the server side, the group
membership component allows a server object to compose a
group via Acceptor operations. The state transfer compo
nent supports the state transfer mechanism and the Group
IOR component constructs a group IOR as a group
reference. The communication component as part of
Transport uses FTGCS, but other group communication
protocols can be used. Communication in OCI is performed
between Transport objects. GCIOP operations are shown in
Fig. 14 and described in detail in the following sections.

3.2.1 Group Membership Component
Group management operations are provided in Acceptor
that supports dynamic group membership. Group view and
consensus of group members rely on the underlying group
communication protocol, that is, FTGCS in our implemen
tation. When Acceptor binds an application object with
group members in FTGCS, it needs the information on the
application object and the target group. Local variables such
as group_name_, host_, and gm_ are stored in Acceptor and
used as parameters to Acceptor. An application object
assigns a group name. Then, the group name is stored in
group_name_ of Acceptor and passed to FTGCS when a
group is created or a member joins the group. host_ stores
the local machine name and is used for constructing profile
information. gm_ indicates a group member in FTGCS, and
this value is transmitted to Transport object as a parameter
of a Transport constructor. Especially, one group member is

Fig. 13. System architecture.

mapped onto only one Transport and all group members
share a group name as a static type.

The methods of Acceptor are implemented using the
corresponding methods of FTGCS, i.e., “gm_.Create_group
(group_name_),”“gm_.Join(group_name_),”“gm_.Leave(),”
set_state(),and get_state().

3.2.2 Ordering Component
ConnectorTransportInfo provides the ordering methods,
ordering_type(), and ordering_type(OrderingType value).
ConnectorTransportInfo has an ordering variable as an
OrderingType that is enumerated as causal and total
ordering. An ordering value is obtained by ordering_type().
The ordering_type(OrderingType value) method stores the
value parameter to value_. This value determines the
message delivery order in a Transport.

3.2.3 Group IOR Component
Acceptor fills up the profile information to construct an IOR at
the server side. Fig. 15 shows ProfileBody of a group IOR
generated by an IDL compiler. Actually, the add_profile(O
CI.ProfileInfo profileInfo, org.omg.IOP.IORHolder ior) method
provides the information on ProfileBody.

3.2.4 Communication Component
The send, receive, send_detect, receive_detect, send_time
out, and receive_timeout methods of Transport are imple
mented using the two methods in FTGCS, i.e., void
SendMessage(byte[] data, OrderingType ordering, int atom
ic) and McastMsg Receive(). McastMsg is a proprietary data
type defined in FTGCS and contains a sequence number, a
vector timestamp, etc. A byte array is used in FTGCS when
messages are exchanged between a client and members,
while a Buffer object is used as an assistant object in the
OCI. For this, conversion from a byte array into McastMsg
and vice versa is included in Transport. The send and
receive methods fill a Buffer object with the received data.
The send_detect and receive_detect methods perform the
same job as the send and receive methods, respectively, but
they return FALSE when an error occurs. The send_timeout
and receive_timeout methods allow ORB to set a specific
timeout value. The methods of Transport are only called by
ORB as internal operations.

3.3 Group Object Key
An IOR includes an object key that allows OA to designate a
target object instance. An object key in an IOR representing
a group is supposed to designate all the member objects of a
group. However, existing BOA and POA models do not
allow all object implementations of a group to be
represented by a single object key [3]. That is, there is no
guarantee that OA for each member object will assign the
same object key. Thus, there must be a way to map an object
key in a group IOR into an actual object key designating
each member object instance [6]. We extend OA such that it
substitutes each member’s object key with an object key
included in a client’s request message. We assume that all
members know a representative object key for a group,
which indicates the object key of a member that creates a
group, by means of some extra mechanisms such as a
naming service. Every member’s ORB creates an object key
for its own object implementation. Each member’s GCIOP
Transport keeps its object key as a local variable. When a
member’s GCIOP Transport gets a message, it checks
whether the message is sent to the group that the member
belongs to. If the object key in the message is equal to the
representative object key of the group, it replaces the key
with a local object key. Then, the operation requested by a
client will be invoked.

4 PERFORMANCE EVALUATION

This section describes the experimental results, measuring
the time taken for group object invocations using the
proposed scheme. We run the experiments using 10 hosts
(Pentium III processor with 384MB or 256MB RAM)
running Windows 2000 connected by 10Mbit Ethernet.
Each machine runs a single server object. A client runs on
one of the hosts and makes an invocation to a server object
group. We run the experiments 50 times.

Table 1 shows the latency of group invocation using the
proposed scheme that includes request/reply time, process
member instantiation time, and Connector Factory, Con
nector, and Transport object creation time at the client side.
Invocation time using GCIOP includes the cost consumed
by GCS when the proposed scheme makes multiple object
invocations. FTGCS is implemented atop UDP/IP multicast
and maintains a group view and a delivery queue to
support group communication properties such as group

Fig. 14. GCIOP operations.

membership and reliable group communication. Invocation
latency in GCIOP consists of latency in the ORB and that in
FTGCS. It depends mainly on that of FTGCS. The latency in
the ORB is almost constant, about 125.77ms on the average,
regardless of the number of server objects.

The invocation latency in the proposed scheme can be
divided into three parts—client side ORB, underlying group
communication, and server side ORB—and is measured
after composing the group. Table 2 shows the overhead
consumed by each part. The value for the server side is
measured in a member object that creates a group. The
client side’s processing time consists of client ORB proces
sing time, Connector creation time, and ConnectorTran
sport creation time. Here, the client ORB processing part is
one of most time consuming portions. When a client
invokes a method of a server group, the client ORB creates
a Connector by calling the ConnectorFactory’s create_con
nectors method and gets information about all the profiles
for which the Connector can be used from the given IOR
and a list of protocol policies. The client ORB internally
executes the Connector’s get_usable_profile method to

extract the profile information from the IOR and determine
if its profile is usable with the protocol policies or not. In the
proposed scheme, the protocol policy indicates that GCIOP
is the protocol used in the ORB. The time taken in the
creation of a Connector and a ConnectorTransport is
relatively small and the proposed scheme incurs no extra
overhead into them.

The time taken in the underlying group communication
is composed of FTGCS client initiation and data transmis
sion. The time varies depending on the underlying group
communication protocol. The time taken in the server ORB
processing and AcceptorTransport creation is not a major
portion. In summary, the most time consuming operations
in the proposed scheme are the client side’s ORB processing
and the client initiation and data exchange in FTGCS as
shown in Table 2.

5 RELATED WORK

In this section, we describe the existing approaches
supporting group communication service for CORBA.

Fig. 15. ProfileBody class.

Electra [13] integrates group communication service with
CORBA by extending Basic Object Adapter (BOA). The
group membership relies on underlying group communica
tion systems. Here, in order to support object group
abstraction, group reference is specifically designed. Users
can set call semantics such as synchronous, asynchronous,
and deferred synchronous calls using the ORB Environment
class. The implementation and performance of the system
are efficient since there is no intermediate object between
ORB and the group communication system. However, this
approach requires modification of an ORB for creating
group reference and supporting group communication.

Object Group Service (OGS) [4], [5] was proposed as a
CORBA object service for group communication. OGS
consists of three interfaces: Groupable, GroupAdministrator,
and GroupAccessor. Groupable has interfaces for message
reception, group composition notification, and state transfer
operation, which are used by the member objects. Group-
Administrator has interfaces for group operations, which are
join_group and leave_group. GroupAccessor has interfaces
related to a multicast operation [4]. In OGS, a group view is
managed by the service itself. Message multicast is
supported by using a proprietary messaging service. This
approach is independent of ORB and guarantees portability
with the CORBA Object Service. However, it does not
utilize existing group communication protocols and, thus,
has a potential drawback in terms of performance.

Mishra et al. [18] also designed CORBA group commu
nication service as a service approach and evaluated the effect

of CORBA on the performance of group communication
service. For this, they implemented atomic broadcast protocol
and group membership protocol in three ways. The first one
uses the UDP socket interface as the communication interface
between group members that are implemented by a single
process. The second one, called the pure CORBA implemen
tation, uses the CORBA instead of UDP socket. The last one
also uses the CORBA, but the group member is composed of
two separate processes—a client process and a server process.
Interprocess communication between client and server
processes uses UDP socket and, therefore, this case is called
the hybrid CORBA implementation. In terms of performance,
the UDP socket-based implementation of a group commu
nication service is most efficient and the pure CORBA
implementation is the worst. However, they conclude that
the CORBA is suitable for implementing heterogeneous
group communication services and the performance degra
dation can be reduced by controlling the protocol parameters
such as buffer sizes and timer values.

Eternal [19] and Eternal interceptor [22] capture and
transmit an Internet Inter-ORB Protocol (IIOP) message to
the replication mechanism that maps messages onto the
group communication system. Especially, join/leave group
and send/receive operations are mapped to open/close and
write/read system calls, respectively. Here, a unique object
group identifier is associated with each interface name. The
replication manager maintains a mapping table that
contains group identifiers and interface names and is
globally accessible [19]. Message multicast is performed
using underlying group communication system. This
approach need not modify ORB as in the case of using the
interceptor. However, it is dependent on OS since the
interceptor is implemented in the system call level.

The Multicast Group Internet Inter-ORB Protocol
(MGIOP) engine was designed with MGIOP specification
in [20]. MGIOP consists of group ID and domain ID.
Especially, it does not instantiate GIOP, but encapsulates a
GIOP message itself. The MGIOP engine concurrently
supports different group communication protocols. It,
however, requires modification of ORB because its engine
must be included in ORB or connected to it.

Fault Tolerant CORBA (FT CORBA) [25] is composed of
replication management, fault management, and logging
and recovery management to support entity redundancy,
fault detection, and recovery. For group addresses, an
Interoperable Object Reference (IOR) is extended such that
clients transparently access an object group with a single
object reference called Interoperable Object Group Refer
ence (IOGR). Group operations, e.g., create_member,
add_member, remove_member, set_primary_member, etc.,
are provided by ObjectGroupManager of the replication
manager. For the IOGR implementation, the FT CORBA
specification recommends usage of a proprietary group

TABLE 1

Group Object Invocation Using GCIOP (MSEC)

TABLE 2
Analysis of Invocation Latency of the Proposed Scheme

communication protocol as the strategies, i.e., “access via
IIOP and gateway” and “access via a proprietary multicast
group communication protocol,” for connecting a client to a
server object group. However, it does not describe how to
integrate a group communication protocol into the ORB.

DOORS (Distributed Object-Oriented Reliable Service)
[23], Eternal [19], [22], and IRL (Interoperable Replication
Logic) [17] implement all or part of the FT CORBA
standard. To provide fault tolerance, DOORS proposes a
framework that is implemented as a CORBA service and
IRL defines Replication Logic that is a set of protocols,
mechanisms, and services allowing a CORBA system to
handle object replication. FTS [9] consists of portable
interceptors and Group Object Adapter (GOA) [8]. It does
not follow the FT CORBA standard. The GOA is imple
mented atop standard POAs and uses the underlying group
communication protocol through the Group Communica
tion Interface (GCI).

To apply various protocols into CORBA rather than
GIOP/IIOP over TCP/IP, a plug-in framework was
proposed, e.g., Open Communications Interface (OCI) [1]
and TAO’s Pluggable Protocol Framework (PPF) [12]. The
OCI provides open interfaces that can substitute TCP/IP in
CORBA. It implements the Acceptor/Connector module
[26] in ORB. The module distinguishes connection establish
ment from service initialization occurring in the commu
nication of a client/server model. The OCI consists of an
acceptor (at the server side) and a connector (at the client
side) for connection establishment, and a transport as a
communication component. TAO’s PPF is based on the OCI
and, therefore, the basic mechanism of that is the same as
the OCI. But, it enhances the OCI for high-performance and
real-time systems.

Halteren et al. [27] applied IP Multicast to CORBA by
extending the OCI. In order to meet the requirements on the
transport layer such as connection-oriented, reliable data
transport, transported data as a stream, and notification of
connection loss in the CORBA specification [24], this
approach adds the schemes for acknowledgement and
retransmission of packets to the intermediate protocol. It
uses the modified Interoperable Object Reference (IOR) that
includes an IP multicast address (D class) and a sequence
number. However, the approach does not provide a generic
framework that can accommodate various group commu
nication protocols in CORBA. Moreover, dynamic group
membership is not supported because Java IP Multicast API
is directly used as group operations.

Pluggable FT CORBA Infrastructure [28] is a FT CORBA
compliant implementation using a TAO’s PPF. To apply the

group communication protocol into the ORB, the FT adaptor
of server-side FT protocol plug-in is proposed. The FT adaptor
manages the connection and exchanging messages to the
underlying group communication protocol. In viewpoint of
extending the plug-in framework, this approach is similar to
the proposed scheme in this paper. However, the pluggable
FT CORBA infrastructure focuses on the FT CORBA
compliant framework, whereas the proposed scheme pro
vides extended interfaces for group communication service
to both FT CORBA and non-FT CORBA.

6 CONCLUSION

Group communication is one of the key components
supporting object replication. Here, we have extended
OCI, the proposed CORBA standard for intelligent network
systems [1], in order to provide a generic group commu
nication framework for CORBA. We first define GCIOP that
has end-point information such as group name. Then, we
design the group communication Info Object and the OCI to
use group semantics. The proposed scheme consists of a
group membership component, a group IOR component,
and a group multicast component. The group membership
component provides operations for dynamic group mem
bership and guarantees the consistency of a group view
through Acceptor’s operations. To identify a group in
CORBA, the group IOR component constructs a group IOR
that is filled up based on the GCIOP information in an
Acceptor. The group multicast component provides multi
cast communication within a group via each Transport
object under a client and server objects. All group semantics
are exposed to CORBA application objects by mapping
group operations in the proposed scheme into the corre
sponding operations in the underlying group communica
tion protocol. The proposed scheme can be used to support
FT-CORBA compliant applications. In that case, the IOGR
in FT CORBA is used instead of the GCIOP-based group
IOR. To create an object group, the replication manager of
FT CORBA invokes the create_object() method of a local
factory in server ORBs. Server replicas created by the
factory join the group through the group membership
procedure of the proposed scheme. When a client invokes
the object group atop FT CORBA regardless of a gateway,
the group object invocation procedure is the same as that in
the proposed scheme. The experiment results show that the
proposed scheme does not incur performance degradation,
even though the number of server objects increases.

We assume that the group communication model is one
to-many at present. Here, a sender is located atop a
Connector with multiple receivers atop an Acceptor. If
application objects are constructed as a reactive client/
server playing a role of both a client and a server, the
proposed design can also be applied to a peer model.
Furthermore, it supports not only group communication in
CORBA, but also existing group communication without
any modification of ORB and dependency on the OS. We
plan to apply other group communication protocols to the
ORB using the proposed approach and evaluate the
performance comparing with existing group communica
tion systems in CORBA. We are currently exploring a
mechanism for transparent manipulation of a group object

key [11], since the existing BOA and POA models do not
allow member object implementations for a group to be
represented by a single object key. We also plan to design a
gateway for FT CORBA so that FT CORBA compliant
objects can be supported.

ACKNOWLEDGMENTS

This work was supported in part by the National Research
Laboratory Program funded by the Ministry of Science and
Technology, the Republic of Korea.

REFERENCES
[1]	 AT&T, Internetworking between CORBA and Intelligent Network

Systems, OMG Document telecom/98-06-03, 1998.
[2]	 K.P. Birman, “The Process Group Approach to Reliable Distrib

uted Computing,” Comm. ACM, vol. 36, no. 12, pp. 37-53, Dec.
1993.

[3]	 Eternal Systems, Inc., Unreliable Multicast Inter-ORB Protocol:
Initial Submission, OMG Document orbos/2000-02-03, 2000.

[4]	 P. Felber, B. Garbinato, and R. Guerraoui, “The Design of a
CORBA Group Communication Service,” Proc. 15th Symp. Reliable
Distributed Systems, pp. 150-159, Oct. 1996.

[5]	 P. Felber and R. Guerraoui, “Programming with Object Groups in
CORBA,” IEEE Concurrency, vol. 8, no. 1, pp. 48-58, Jan./Mar.
2000.

[6]	 R. Guerraoui, P. Eugster, P. Felber, B. Garbinato, and K. Mazouni,
“Experiences with Object Group Systems,” Software-Practice and
Experience, vol. 30, no. 12, pp. 1375-1404, Oct. 2000.

[7]	 R. Guerraoui and A. Schiper, “Software-Based Replication for
Fault Tolerance,” Computer, vol. 30, no. 4, pp. 68-74, Sept. 1999.

[8]	 R. Friedman and E. Hadad, “A Group Object Adaptor-Based
Approach to CORBA Fault-Tolerance,” IEEE Distributed Sys
tems Online, vol. 2, no. 7, http://dsonline.computer.org/0107/
features/fri0107.htm, Nov. 2001.

[9]	 R. Friedman and E. Hadad, “FTS: A High-Performance CORBA
Fault-Tolerance Service,” Proc. Seventh Int’l Workshop Object-
Oriented Real-Time Dependable Systems, pp. 61-68, Jan. 2002.

[10]	 IONA’s ORBacus page, http://www.iona.com/products/orba
cus_home.htm, 2003.

[11]	 Y. Joe, D. Lee, and D. Nam, “A Transparent Object Group
Reference Management Scheme for Group Communication in
CORBA,” Proc. Confederated Int’l Confs. CoopIS, DOA, and
ODBASE, pp. 25-28, Oct. 2002.

[12]	 F. Kuhns, C. O’Ryan, D.C. Schmidt, O. Othman, and J. Parsons,
“The Design and Performance of a Pluggable Protocols Frame
work for Object Request Broker Middleware,” Proc. IFIP Sixth Int’l
Workshop Protocols for High-Speed Networks, pp. 81-98, Aug. 1999.

[13]	 S. Landis and S. Maffeis, “Building Reliable Distributed Systems
with CORBA,” Theory and Practice of Object Systems, vol. 3, no. 1,
pp. 31-43, 1997.

[14]	 D. Lee, D. Nam, H.Y. Youn, and C. Yu, “The Implementation and
Analysis of OCI-Based Group Communication Support in
CORBA,” Proc. Pacific Rim Int’l Symp. Dependable Computing,
pp. 281-288, Dec. 2001.

[15]	 D. Lee et al., “Development of Reliable Group Communication
Module for Object Group,” ICU CDS&N Laboratory, Daejeon,
Korea, Technical Report CDSN-1999-TR005, http://cds.icu.ac.kr/,
June 1999.

[16]	 S. Maffeis, “The Object Group Design Pattern,” Proc. USENIX
Conf. Object-Oriented Technologies, June 1996.

[17]	 C. Marchetti, M. Mecella, A. Virgillito, and R. Baldoni, “An
Interoperable Replication Logic for CORBA Systems,” Proc. Int’l
Symp. Distributed Objects and Applications, pp. 7-16, Sept. 2000.

[18]	 S. Mishra, L. Fei, X. Lin, and G. Xing, “On Group Communication
Support in CORBA,” IEEE Trans. Parallel and Distributed Systems,
vol. 12, no. 2, pp. 193-208, Feb. 2001.

[19]	 L.E. Moser, P.M. Melliar-Smith, and P. Narasimhan, “Consistent
Object Replication in the Eternal System,” Theory and Practice of
Object Systems, vol. 4, no. 2, pp. 81-92, 1998.

[20]	 L.E. Moser, P.M. Melliar-Smith, P. Narasimhan, R.R. Koch, and K.
Berket, “Multicast Group Communication for CORBA,” Proc. Int’l
Symp. Distributed Objects and Applications, pp. 98-107, Sept. 1999.

[21]	 D. Nam, D. Lee, H.Y. Youn, and C. Yu, “Group Communication
Support for CORBA Using OCI,” Proc. 12th IASTED Int’l Conf.
Parallel and Distributed Computing and Systems, pp. 106-111, Nov.
2000.

[22]	 P. Narasimhan, L.E. Moser, and P.M. Melliar-Smith, “Using
Interceptors to Enhance CORBA,” Computer, vol. 32, no. 7,
pp. 62-68, July 1999.

[23]	 B. Natarajan, A. Gokhale, S. Yajnik, and D.C. Schmidt, “DOORS:
Towards High-Performance Fault-Tolerant CORBA,” Proc. Int’l
Symp. Distributed Objects and Applications, pp. 39-48, Sept. 2000.

[24]	 Object Management Group, The Common Object Request Broker:
Architecture and Specification, Rev. 2.3, OMG Document formal/
98-12-01, June 1999.

[25]	 Object Management Group, Fault Tolerant CORBA, OMG Docu
ment formal/2001-09-29, Sept. 2001.

[26]	 D.C. Schmidt, “Acceptor-Connector: An Object Creational Pattern
for Connecting and Initializing Communication Services,” Pattern
Languages of Program Design 3, R. Martin, F. Buschman, and
D. Riehle, eds., Addison-Wesley, 1997.

[27]	 A.T. van Halteren, A. Noutash, L.J.M. Nieuwenhuis, and M.
Wegdam, “Extending CORBA with Specialised Protocols for QoS
Provisioning,” Proc. Int’l Symp. Distributed Objects and Applications,
pp. 318-327, Sept. 1999.

[28]	 W. Zhao, L.E. Moser, and P.M. Melliar-Smith, “Design and
Implementation of a Pluggable Fault-Tolerant CORBA Infrastruc
ture,” Proc. Int’l Parallel and Distributed Processing Symp., pp. 343
352, Apr. 2002.

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2014

http:http://cds.icu.ac.kr
http://www.iona.com/products/orba
http://dsonline.computer.org/0107

	Cleveland State University
	EngagedScholarship@CSU
	11-2003

	OCI-Based Group Communication Support in CORBA
	Dongman Lee
	Dukyun Nam
	Hee Yong Youn
	Chansu Yu
	Publisher's Statement
	Original Citation
	Repository Citation

	OCI-based group communication support in CORBA - Parallel and Distributed Systems, IEEE Transactions on

