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OCI-Based Group Communication Support 
in CORBA 

Dongman Lee, Member, IEEE Computer Society, Dukyun Nam, 
Hee Yong Youn, Senior Member, IEEE Computer Society, and Chansu Yu, Member, IEEE 

Abstract—Group communication is a useful mechanism guaranteeing consistency among replicated objects. The existing approaches 
do not allow transparent plug-in of group communication protocols into CORBA. They either require modification of CORBA or OS, or 
provide no room for incorporating group communication transport protocols into CORBA. We thus propose a generic group 
communication framework that allows transparent plug-in of various group communication protocols with no modification of existing 
CORBA. We extend the Open Communications Interface (OCI) to support interoperability, reusability of existing group communication, 
and independency on ORB and OS. We also define the Group Communication Inter-ORB Protocol (GCIOP) as a group 
communication instantiation of the General Inter-ORB Protocol (GIOP) that encapsulates underlying group communication protocols. 
The proposed scheme can be exploited for fault-tolerant CORBA (FT CORBA). 

Index Terms—Group communication, CORBA, open communications interface, FT CORBA.

 

1 INTRODUCTION 

OBJECT replication is a technique enhancing fault approach supports group communication service by inter-
tolerance and high availability [7]. An object group is cepting the system calls related to group communications 

a collection of object replicas that cooperatively work for a using an interceptor. It does not allow CORBA objects to 
common task [16]. A consistent state for an object group can directly exploit the underlying group communication 
be used for constructing highly available and fault-tolerant services since the interceptor is not part of CORBA. In 
distributed applications. Group communication service summary, the existing approaches do not support trans
(GCS) is a useful mechanism guaranteeing consistency of parent plug-in of group communication protocols into 
the states of all the member objects. It maintains a view, a CORBA and, thus, CORBA application programmers 
list of the currently active and connected members in an cannot directly exploit the protocols. In the above examples, 
object group, and also informs the running objects of the there must be a generic group communication framework 
updated view whenever it changes. The consistency can be that allows transparent plug-in of various group commu
guaranteed by reliable delivery of messages to the members nication protocols via a standard CORBA interface. 
in the current view. In this paper, we propose a mechanism that allows such 

There have been several approaches for supporting framework with no modification of existing CORBA. We 
group communication service in CORBA. In general, they leverage the OCI (Open Communications Interface) [1] to 
can be categorized into three approaches—integration, support interoperability, reusability of existing group 
service, and interception approach. An example of each of	 communication, and independency on ORB and OS. The 

OCI provides, as part of the CORBA, a set of interfaces by the three approaches is Electra [13], Object Group Service 
which various protocols instead of GIOP/IIOP over TCP/IP (OGS) [4], and Eternal [19], [22], respectively. In the 
can be supported. We add new operations into the existing integration approach, the GCS module is an integral part 
OCI by which an object group can be managed andof Object Request Broker (ORB) and, thus, introducing a 
invocations are made to the group. We define Groupnew GCS requires modification of ORB. The service 
Communication Inter-ORB Protocol (GCIOP) as a groupapproach provides group communication as Object Service 
communication instantiation of GIOP that encapsulates

[5] on top of CORBA, leveraging the CORBA’s point-to
underlying group communication protocols. We then add 

point communications, General Inter-ORB Protocol (GIOP). 
group communication Info Object to the OCI and extend the 

That is, no room exists for group communication transport interfaces of the OCI to support group semantics. The 
protocols to be incorporated into CORBA. The interception existing OCI consists of a Connector, Connector Factory, 

Acceptor, and Transport module [1], [10]. The existing 
group communication basically requires group address . D. Lee and D. Nam are with the School of Engineering, Information and 
expansion, delivery ordering, and state transfer [2]. ToCommunications University, 58-4 Hwaam-dong, Yuseong-gu, Daejeon, 

305-732 Korea. E-mail: {dlee, paichu}@icu.ac.kr. satisfy these requirements of group communication, a 
. H.Y. Youn is with the School of Information and Communications group name, ordering type, and state are saved in the Info 

Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, object. We add an attribute to Connector’s Transport Info 
Suwon 440-746 Korea. E-mail: youn@ece.skku.ac.kr. for setting the ordering-type and add group maintenance 

. C. Yu is with the Department of Electrical and Computer Engineering, 
operations to Acceptor. The proposed design can be used to Cleveland State University, Stilwell Hall 340, Cleveland, OH 44115.  

E-mail: c.yu91@csuohio.edu. wrap or embed various group communication protocols
 
without any modification of ORB and the OCI. We devise a 
group Interoperable Object Reference (IOR) for GCIOP in 
order to support the non-FT CORBA compliant systems that 
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Fig. 1. The structure of OCI in CORBA. 

do not support group object references. The proposed 
scheme can be exploited for fault-tolerant infrastructure 
based on the FT-CORBA standard [25]. The Interoperable 
Object Group Reference (IOGR) as a group reference is used 
instead of the GCIOP-based IOR when the proposed 
scheme is used by FT CORBA. For composing and invoking 
an object group except resolving the IOGR, the proposed 
scheme can be directly adapted to the FT CORBA standard. 
Resolving the IOGR should be included in the Connector 
Factory. We implement the proposed scheme on top of our 
group communication protocol [15] using ORBacus Java 4.01 
[10] in which the OCI is provided as part of the CORBA 
interface. Experiment results show that the proposed 
scheme does not incur performance degradation as the 
number of members in a group increases. 

The remainder of the paper is organized as follows: 
Section 2 describes the proposed group communication 
extension to the OCI for group communication and presents 
how the proposed extension is used with applications. 
Section 3 describes the implementation details of the 
proposed extension. The performance analysis of the 
proposed extension is presented in Section 4. Section 5 
discusses the existing approaches for group communication 
in CORBA. A conclusion follows in Section 6. 

2 THE PROPOSED MECHANISM FOR 
GROUP COMMUNICATION 

In this section, we describe the requirements of supporting 
group communication service and how a given transport 
protocol is integrated into it. We then present the proposed 
extension to OCI for group communication including the 
IDL specification and execution flow of the extension. 

2.1	 Communication Using OCI 
The OCI [1] provides plug-in protocol interfaces for 
CORBA. The interfaces are Buffer, Acceptor, Transport, 
Connector, Connector Factory, Registries, and Info objects 
[10]. Buffer holds data in an array of octets and maintains a 
position counter. The array and counter are used in 
communications between a client and a server. Info objects 
provide information on Acceptor, Transport, Connector, 
and Connector Factory. 

Fig. 1 shows how the OCI incorporates a given transport 
protocol with ORB. As a client and a server are activated, an 
Acceptor Registry in Object Adapter (OA) activates an 

Acceptor, and a Connector Factory Registry in ORB creates 
a Connector Factory. Then, at the server side, an Acceptor 
creates profile information for an Interoperable Object 
Reference (IOR), and OA creates an IOR using it. At the 
client side, a Connector Factory creates a Connector using 
the IOR. Then, the Connector and Acceptor instantiate their 
own Transport. Once a connection is made between the 
Transports at each side, the communications between a 
client and a group are done directly via the Transports. 

At the client side, a stub exists which plays a role of a 
server. When a client invokes a method on a stub, the 
client’s ORB marshals the method call and sends it to the 
server. In detail, ORB invokes the “send” operation of 
Transport that, in turn, sends a Buffer object including a 
request message via an associated transport protocol. At the 
server side, Transport passes the call to the server’s ORB 
that unmarshals the call and invokes a corresponding 
operation in the server. All objects including each Info 
object of the OCI part must be implemented to support 
specific protocols. For example, a transport protocol for 
IIOP is TCP. Note that a Connector Factory and an Acceptor 
in OCI are exposed only to application objects. 

Fig. 2 shows an IDL specification of OCI1 that was 
proposed as an extension to CORBA for interworking 
with intelligent networks [1]. Buffer provides an interface 
for a buffer that holds an array of octets for data 
exchange between a client and a server. Its pos attribute 
gives information on how many octets have been sent or 
received. All interfaces except Buffer have a tag asso
ciated with the transport protocol. For example, the tag 
value is “org.omg.IOP.TAG_INTERNET_IOP.value” in the 
case of IIOP plug-in. The Acceptor interface is used for a 
server to accept a connection request from a client while 
the Connector interface is used for a client to make a 
connection to a server. The Transport interface provides 
methods for sending and receiving octet streams. A 
ConFactory serves as a factory for Connector objects. A 
ConFactoryRegistry and an AccRegistry serve as a 
registry for ConFactory objects and Acceptor object, 
respectively. These registries are provided by the plug-
in implementors. A ConFactoryRegistry is created by the 
ORB while an AccRegistry is done by the OA. The 
Current interface provides methods that return Transport 
and Acceptor information objects related to the current 
request. 

2.2	 Group Communication Service 
Extension to OCI 

To provide a group communication service to CORBA 
objects, three aspects should be considered—group address, 
group membership, and message ordering. We assume that 
the underlying group communication protocol is respon
sible for reliable delivery of group messages. A client 
application sending a message to the members of a group 
does not supply a member list. Instead, a membership 
service supplies a group address as a group identifier. It is 
mapped to a current membership list, hiding the group’s 
internal structure from applications. The group member
ship service provides a set of operations to create and 
change the membership, and guarantees a  mutually  
consistent view among group members. A membership list 

1. In ORBacus [10], the OCI interface is extended to support methods 
such as callback and describe. 



Fig. 2. IDL specification of OCI. 

can be managed by a membership server or by exchanging 
a view change message between the members. Delivery 
ordering determines whether messages should reach all of 
its members at the same time [2]. This guarantees a 
consistent state among the members. Ordering types are 
total and causal ordering that manage concurrent messages 
and sequences of related messages. 

The existing CORBA object reference denotes exactly one 
CORBA object. In the proposed extension to the OCI, a group 
address is provided so that a client can make a call to a group 
of objects transparently as if it does to a singleton object. The 
proposed extension creates a group object reference using a 
group identifier provided by a group communication 
protocol. A group object reference is denoted as an IOR and 
expanded into a group identifier at OCI Transport. Client 
establishes a communication path to a group using the 
corresponding IOR. Here, concrete implementation of GIOP 
is needed for group communication because GIOP is an 
abstract protocol that does not have a group address available 
as endpoint information. We therefore extend GIOP to Group 
Communication Inter-ORB Protocol (GCIOP). 

Group membership allows the currently active and 
connected member objects in a group to maintain a 

consistent group view by mapping a group identifier to a 
membership list. The proposed extension provides a set of 
interfaces to group membership operations such as group 
creation, destruction, join, and leave because this extension 
is the interfaces binding a group communication protocol 
with ORB. Group operations are provided as part of an 
Acceptor in OCI. The state transfer interface is provided via 
an Acceptor, and the state information is saved in Acceptor 
Info as a CORBA object type. 

Message ordering is a key factor for enabling object 
group members to maintain a consistent state among them 
when more than one client interacts with the group. The 
object group members can exist in different machines and 
receive a single copy of a message in a different order. To 
maintain a consistent state, arrival messages at each 
member must be performed in the same order. Therefore, 
the client needs to have an ability of controlling the order of 
message delivery. In the proposed design, the client is able 
to set an ordering type by changing the value of an ordering 
type attribute in Connector’s Transport Info. Default 
ordering type is “Total ordering,” and it is stored in 
Transport Info. 

Fig. 3 shows how the underlying group communication 
protocol is encapsulated through the OCI. The following 



Fig. 3. Extended OCI and group communication protocol. 

sections describe the details of the proposed extensions to 
the OCI for group communication service. 

2.2.1 Group IOR 
As a server object is represented by an IOR that ORB offers 
in the existing CORBA communication, the group commu
nication OCI provides a group IOR to identify a group in 
CORBA group communication. When an object exports its 
service, ORB generates a corresponding IOR that includes 
transport information such as an IP address and a port 
number. ORB uses an IOR as a universal means of 
identifying an object. As such, a group IOR consists of a 
group name and a host name. An IOR is generated at 
runtime by ORB at the server, and interpreted by a client 
application object. It consists of Type ID, Profile Count, and 
Tagged Profiles. Type ID is based on the IDL of an object 
and provides the interface type of the IOR in the repository 
ID format. Profile Count is the number of Tagged Profiles. 
One or more Tagged Profiles exist in an IOR and the Tagged 
Profile contains the information on the protocol supported 
by a target object. 

Fig. 4 shows the format of a Tagged Profile used in 
GCIOP. Tag indicates the protocol used for object commu
nications that is represented by a constant value. Since “01” 
has already been assigned for IIOP, we choose a different 
number for the proposed scheme. Group Name is used as a 
group identifier not only in ORB, but also in the underlying 
group communication protocol. Host Name and Port 
represent a group member. Object Key identifies a 
particular object instance. 

FT CORBA [25] defines the Interoperable Object Group 
Reference (IOGR) as a group object reference. We devise the 
GCIOP-based Interoperable Object Reference (IOR) for non-
FT CORBA compliant systems that do not support group 
object references. When the proposed scheme is applied to 
the FT CORBA infrastructure, we can use the IOGR instead 

of the GCIOP-based IOR that encompasses all the attributes 
required by the proposed scheme. Fig. 5 shows the IIOP 
profile for the IOGR in FT CORBA. 

2.2.2 OCI Information Structure 
Connector, Connector Factory, Acceptor, and Transport 
have a corresponding Info object, respectively. All Info 
classes are derived from Info class of the existing OCI by 
adding some attributes, while the operations remain the 
same. This allows generic specification and implementation 
of various plug-in protocols in OCI. Fig. 6 shows the IDL 
specification of OCI Info classes for group communication. 
ConnectorInfo stores a group name, and Connector uses 
ConnectorInfo when a message is sent to a group. 
ConnectorInfo is maintained at the client side’s OCI. 

A server OCI maintains AcceptorInfo that consists of a 
group name and a host name. The group name identifies 
the group that the server either creates or joins. The host 
name indicates a host where the server resides and, thus, it 
is actually a server name. Both the names are used when 
constructing GCIOP profile information as shown in Fig. 4. 
State of AcceptorInfo represents the state of a group 
member in a group. It is used for state transfer when a 
new member joins a group. The replication policy of the 
underlying group communication protocol can be set by 
replication_style attribute of AcceptorInfo. TransportInfo is 
used at both the client side and server side when a 
Connector and an Acceptor create their corresponding 
Transport, respectively. Connector and Acceptor have the 

Fig. 4. Tagged profile in GCIOP. Fig. 5. IIOP profile for IOGR. 



Fig. 6. IDL specification of information object. 

same group name in Transport Info. A client object can 
change the ordering type at runtime by modifying the 
ordering_type attribute of Connector’s TransportInfo. 

2.2.3 Group Communication Service Interface 
Figs. 6 and 7 show the IDL specification of Information 
Object and the proposed extension to OCI, respectively. The 
Acceptor interface is exposed only to application objects. All 
the existing interfaces of OCI are used without any change. 
We extend only the Acceptor interface to provide group 
membership and state transfer such as create_group, join, 
leave, set_state, and get_state. After creating a group, the 
first member provides a group reference as a group creator. 
Then, other members can join or leave the group, and 
execute state transfer when they join the group. 

2.3 Group Membership 
The group membership component provides dynamic 
group membership and guarantees consistency of a group 
view by using group operations, a view change mechanism, 
and state transfer. Acceptor’s operations of the extended 
OCI support group composition. This section describes 
what kinds of messages are exchanged between member 
objects and a group communication system to create a 
group and, then, explains the procedure of state transfer 
and a view change mechanism required when a new 
member joins. 

The replication style of an object group is set to one of the 
replication styles such as passive replication, active replica
tion, etc., depending on its fault tolerance requirements. In 
FT CORBA [25], the replication style is set by invoking the 
method of the property manager within the replication 
manager. The value for the replication style can be applied 
to the underlying group communication protocol through 
the replication_style attribute of AcceptorInfo class. 

Fig. 8 shows an interaction diagram for group composi
tion for the passive replication case. Initially, a group is 
empty. A primary member object calls the create_group() 

Fig. 7. IDL specification of group communication extension to OCI. 

method of Acceptor (1). Then, the create_group() method 
internally calls a corresponding function and joins a group 
using the underlying group communication protocol (2). 
When a view-install message has arrived at the underlying 
group communication protocol, the reference of the group 
member is passed to Acceptor (3) and the group creation 
procedure is finished. When the second member joins the 
group as a newcomer, the state transfer mechanism is 
required in addition to the composition of a group. The 
newcomer object calls the join() method of Acceptor (4) and 
joins a group in the underlying group communication 
protocol (5). State transfer is performed before a view install 
message is sent since the state of a member can contain 
application-dependent data. The underlying group com
munication protocol gets the current member’s state with 
the get_state() method of the primary member’s Acceptor 
(6) and duplicates this state to a newcomer’s state using the 
set_state() method (7). Last, a view change complete 
message is multicasted to all members (8). 

In FT CORBA [25], the replication manager is responsible 
for managing a replica and provides interfaces for creating 
object groups. To create an object group, an external object 
calls the create_object() method of the replication manager 
(RM) and then the RM invokes the corresponding method 
of a local factory in server ORBs. Each factory creates a 
server replica. In the proposed scheme, the server replica 
joins a group via the Acceptor’s method after creating an 
object group, i.e., the object group creation procedures of 
FT CORBA. Fig. 9 depicts a group composition diagram of 
the proposed scheme based on the FT CORBA standard. 

2.4 Group Object Invocation 
The proposed scheme assumes one-to-many multicast and, 
thus, one client transmits messages to multiple servers, that 
is, a group. A connection between a client and a group is 
accomplished by the client’s Connector and the group’s 
Acceptor. After connection establishment, one Connector 
and several Acceptors instantiate a Transport object per 
Connector and Acceptor, and these Transport objects use 
multicast communication among them. For reply coordina
tion, we assume that one of the group members, e.g., the 
primary member, collects replies from other members and 
then returns the result to the client. In this section, we describe 
how a connection is made between a client and group 
members using Connector and Acceptors, respectively, and 



Fig. 8. Interaction diagram for group membership model. 

how the methods of an object group are invoked via 
Transports. 

Fig. 10 illustrates the procedure for group object invoca
tion. The server side’s ORB first calls the accept() method of 
an Acceptor (1). The Acceptor waits for a client connect 
request delivered by the underlying group communication 
protocol (2). At the client side, the client maps a local proxy 
onto a remote object reference contained in the IOR (3) and 
invokes a method of the server (4). The client side’s ORB 
initiates a Connector Factory (5). It creates a Connector based 
on the IOR and, then, the Connector initiates the client 
module of the underlying group communication protocol (6
9). After the client side’s ORB gets the Connector from the 
Connector Factory (10), it calls the connect() method of the 
Connector (11) that initiates a Transport and returns it to the 
ORB (12-14). For transmitting the client’s invocation to the 
server group, the client side’s ORB calls the send() method of 
the Transport (15) that, in turn, calls the SendMessage() 
method of the underlying group communication protocol 
(16). Then, the client side’s ORB waits for a reply by calling the 
receive() methods of the Transport (17). At the server side, as 
the Acceptor is notified of message arrival (18), it initiates a 
Transport (19-20) and returns the Transport to the ORB (21). 
Then, the server side’s ORB gets a received message from the 
underlying group communication protocol by calling the 
receive_detect() method of the Transport (22-25). Finally, the 
ORB makes a call to the server object (26). It also calls the 
send_detect() method of the Transport (27) to notify the client 

Fig. 9. Group composition based on a fault-tolerant CORBA. 

of the success of an invocation. The server side’s Transport 
sends a message to the client (28). The primary member of the 
underlying group communication protocol gathers the server 
objects’ replies and transmits only one reply to the client. As 
the client side’s Transport recognizes message arrival (29), it 
gets a message from the underlying group communication 
protocol (30-31). The client side’s ORB obtains the data by 
using a Buffer object as a parameter of the receive() method 
(32) of the Transport and, then, the object invocation is 
complete. In Fig. 10, even though specific interfaces for group 
invocation are not described, they can be substituted with the 
corresponding interfaces of underlying group communica
tion protocols. 

FT CORBA [25] permits three implementation strategies 
for the IOGR such as “access via IIOP directly to a member 
of a server object group,“ “access via IIOP and a gateway,” 
and “access via a proprietary multicast group communica
tion protocol.” The last two cases use a group communica
tion protocol as a transport protocol. Fig. 11 shows these 
cases with the proposed scheme. When a client invokes an 
object group, a Connector Factory in the client side ORB 
resolves the information required by the proposed scheme 
from the IOGR and then fills ConnectorInfo and Transpor
tInfo with it. If a gateway is not used, the proposed scheme 
can be directly applied to the overall system like Fig. 11a. 
Otherwise, the gateway should be located between a client 
object and server replicas. As shown in Fig. 11b, it makes 
two connections with a client object through IIOP and also 
with server replicas using the proposed scheme. After the 
gateway receives a request from a client, it forwards the 
request to the server replicas. 

2.5 Execution Flow of Group Communication OCI 
To enable group communication, a client object and a server 
object perform the initialization procedure by which group 
communication OCI objects are plugged into ORB. They are 
Connector Factory, Connector, Acceptor, and Transport. 
During the initialization, an ORB and POA manager 
register a GCIOP Connector and a GCIOP Acceptor, 
respectively. 

At the server side, a new GCIOP Acceptor and Acceptor 
for group communication need to be added to OCI. For this, 



Fig. 10. Procedure for group invocation. 

Acceptor Registry is accessed using the OA manager (i.e., 
get_acc_registry method). Then, a new Acceptor is created 
and added to ORB by calling the add_acceptor method of 
Acceptor Registry. At the client side, Connector Factory is 
created and added by Connector Factory Registry that is 
provided by ORB. A server gets a reference to a generic 
Acceptor through OA and Acceptor Registry. Therefore, the 
Acceptor reference needs to be narrowed to a reference to a 
GCIOP Acceptor using the narrow method of GCIOP.Ac 
ceptorHelper (generated code by an IDL compiler). Then, the 
“create group” method of GCIOP Acceptor is called and, 
then, OA creates an IOR. We assume that the first group 
member creates and publishes the IOR. 

When OA is activated, Acceptor creates Transport. 
Transport instantiates a process group member of the 
underlying group communication service. According to the 
information in Transport, i.e., TransportInfo, Transport lets 
a process group member join or leave a group. Here, a key 
concept is to map Transport of a server object into a process 
group member. A member can dynamically join or leave a 
group using the methods of GCIOP Acceptor. When a new 
group member joins an existing group, the state of the 
existing members should be transferred to it. A server gets 
or sets a state by calling the “get_state” and “set_state” 
methods of GCIOP Acceptor. The state information is saved 
in Acceptor Info as an object type. When the state in 

Fig. 11. Group object invocation based on a fault-tolerant CORBA. (a) A case without gateway and (b) a case with gateway. 
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Fig. 12. Usage of group communication OCI. 

Acceptor Info is changed, the state in the underlying group 
communication service is changed as well. 

After the initialization of a client, Connector Factory 
Registry in ORB creates Connector Factory. To get GCIOP 
Connector Factory, the Connector Factory reference needs 
to be narrowed to a reference to GCIOP Connector Factory. 
Connector Factory creates Connector based on the IOR that 
OA has published. Then, Connector creates Transport. A 
client can set an ordering type using the OrderingType 
attribute of GCIOP Connector’s TransportInfo. Fig. 12 
depicts the overall flow of operations occurring at the 
server and the client with the proposed scheme [21]. 

3 IMPLEMENTATION 

3.1 Implementation Environments 
We implemented the proposed scheme on Microsoft 
Windows 2000 [14]. Each Windows machine is connected 
by 10Mbps Ethernet. As the underlying group communica
tion protocol, we exploit the fault-tolerant group commu
nication service (FTGCS) implemented in Java [15] that we 
proposed for CORBA. FTGCS guarantees reliable commu
nications between group members. We use ORBacus Java 
4.01 [10] supporting OCI. The proposed scheme is im
plemented as a library, i.e., the Java Archive (JAR) file 
format. The library consumes 213K bytes, including the files 
generated by GCIOP IDL. The entire system is implemented 
in JDK 1.3. 

3.2 System Architecture 
Fig. 13 shows the system architecture. The client part 
consists of the ordering component setting an ordering type 

for message delivery and the communication component 
supporting multicast communication in a group. In the 
proposed scheme, the ordering component and the com
munication component are implemented asTransportInfo 
and Transport, respectively. At the server side, the group 
membership component allows a server object to compose a 
group via Acceptor operations. The state transfer compo
nent supports the state transfer mechanism and the Group 
IOR component constructs a group IOR as a group 
reference. The communication component as part of 
Transport uses FTGCS, but other group communication 
protocols can be used. Communication in OCI is performed 
between Transport objects. GCIOP operations are shown in 
Fig. 14 and described in detail in the following sections. 

3.2.1 Group Membership Component 
Group management operations are provided in Acceptor 
that supports dynamic group membership. Group view and 
consensus of group members rely on the underlying group 
communication protocol, that is, FTGCS in our implemen
tation. When Acceptor binds an application object with 
group members in FTGCS, it needs the information on the 
application object and the target group. Local variables such 
as group_name_, host_, and gm_ are stored in Acceptor and 
used as parameters to Acceptor. An application object 
assigns a group name. Then, the group name is stored in 
group_name_ of Acceptor and passed to FTGCS when a 
group is created or a member joins the group. host_ stores 
the local machine name and is used for constructing profile 
information. gm_ indicates a group member in FTGCS, and 
this value is transmitted to Transport object as a parameter 
of a Transport constructor. Especially, one group member is 



Fig. 13. System architecture. 

mapped onto only one Transport and all group members 
share a group name as a static type. 

The methods of Acceptor are implemented using the 
corresponding methods of FTGCS, i.e., “gm_.Create_group 
(group_name_),”“gm_.Join(group_name_),”“gm_.Leave(),” 
set_state(),and get_state(). 

3.2.2 Ordering Component 
ConnectorTransportInfo provides the ordering methods, 
ordering_type(), and  ordering_type(OrderingType value). 
ConnectorTransportInfo has an ordering variable as an 
OrderingType that is enumerated as causal and total 
ordering. An ordering value is obtained by ordering_type(). 
The ordering_type(OrderingType value) method stores the 
value parameter to value_. This value determines the 
message delivery order in a Transport. 

3.2.3 Group IOR Component 
Acceptor fills up the profile information to construct an IOR at 
the server side. Fig. 15 shows ProfileBody of a group IOR 
generated by an IDL compiler. Actually, the add_profile(O 
CI.ProfileInfo profileInfo, org.omg.IOP.IORHolder ior) method 
provides the information on ProfileBody. 

3.2.4 Communication Component 
The send, receive, send_detect, receive_detect, send_time
out, and receive_timeout methods of Transport are imple
mented using the two methods in FTGCS, i.e., void 
SendMessage(byte[] data, OrderingType ordering, int atom 
ic) and McastMsg Receive(). McastMsg is a proprietary data 
type defined in FTGCS and contains a sequence number, a 
vector timestamp, etc. A byte array is used in FTGCS when 
messages are exchanged between a client and members, 
while a Buffer object is used as an assistant object in the 
OCI. For this, conversion from a byte array into McastMsg 
and vice versa is included in Transport. The send and 
receive methods fill a Buffer object with the received data. 
The send_detect and receive_detect methods perform the 
same job as the send and receive methods, respectively, but 
they return FALSE when an error occurs. The send_timeout 
and receive_timeout methods allow ORB to set a specific 
timeout value. The methods of Transport are only called by 
ORB as internal operations. 

3.3 Group Object Key 
An IOR includes an object key that allows OA to designate a 
target object instance. An object key in an IOR representing 
a group is supposed to designate all the member objects of a 
group. However, existing BOA and POA models do not 
allow all object implementations of a group to be 
represented by a single object key [3]. That is, there is no 
guarantee that OA for each member object will assign the 
same object key. Thus, there must be a way to map an object 
key in a group IOR into an actual object key designating 
each member object instance [6]. We extend OA such that it 
substitutes each member’s object key with an object key 
included in a client’s request message. We assume that all 
members know a representative object key for a group, 
which indicates the object key of a member that creates a 
group, by means of some extra mechanisms such as a 
naming service. Every member’s ORB creates an object key 
for its own object implementation. Each member’s GCIOP 
Transport keeps its object key as a local variable. When a 
member’s GCIOP Transport gets a message, it checks 
whether the message is sent to the group that the member 
belongs to. If the object key in the message is equal to the 
representative object key of the group, it replaces the key 
with a local object key. Then, the operation requested by a 
client will be invoked. 

4 PERFORMANCE EVALUATION 

This section describes the experimental results, measuring 
the time taken for group object invocations using the 
proposed scheme. We run the experiments using 10 hosts 
(Pentium III processor with 384MB or 256MB RAM) 
running Windows 2000 connected by 10Mbit Ethernet. 
Each machine runs a single server object. A client runs on 
one of the hosts and makes an invocation to a server object 
group. We run the experiments 50 times. 

Table 1 shows the latency of group invocation using the 
proposed scheme that includes request/reply time, process 
member instantiation time, and Connector Factory, Con
nector, and Transport object creation time at the client side. 
Invocation time using GCIOP includes the cost consumed 
by GCS when the proposed scheme makes multiple object 
invocations. FTGCS is implemented atop UDP/IP multicast 
and maintains a group view and a delivery queue to 
support group communication properties such as group 



Fig. 14. GCIOP operations. 

membership and reliable group communication. Invocation 
latency in GCIOP consists of latency in the ORB and that in 
FTGCS. It depends mainly on that of FTGCS. The latency in 
the ORB is almost constant, about 125.77ms on the average, 
regardless of the number of server objects. 

The invocation latency in the proposed scheme can be 
divided into three parts—client side ORB, underlying group 
communication, and server side ORB—and is measured 
after composing the group. Table 2 shows the overhead 
consumed by each part. The value for the server side is 
measured in a member object that creates a group. The 
client side’s processing time consists of client ORB proces
sing time, Connector creation time, and ConnectorTran
sport creation time. Here, the client ORB processing part is 
one of most time consuming portions. When a client 
invokes a method of a server group, the client ORB creates 
a Connector by calling the ConnectorFactory’s create_con
nectors method and gets information about all the profiles 
for which the Connector can be used from the given IOR 
and a list of protocol policies. The client ORB internally 
executes the Connector’s get_usable_profile method to 

extract the profile information from the IOR and determine 
if its profile is usable with the protocol policies or not. In the 
proposed scheme, the protocol policy indicates that GCIOP 
is the protocol used in the ORB. The time taken in the 
creation of a Connector and a ConnectorTransport is 
relatively small and the proposed scheme incurs no extra 
overhead into them. 

The time taken in the underlying group communication 
is composed of FTGCS client initiation and data transmis
sion. The time varies depending on the underlying group 
communication protocol. The time taken in the server ORB 
processing and AcceptorTransport creation is not a major 
portion. In summary, the most time consuming operations 
in the proposed scheme are the client side’s ORB processing 
and the client initiation and data exchange in FTGCS as 
shown in Table 2. 

5 RELATED WORK 

In this section, we describe the existing approaches 
supporting group communication service for CORBA. 



Fig. 15. ProfileBody class. 

Electra [13] integrates group communication service with 
CORBA by extending Basic Object Adapter (BOA). The 
group membership relies on underlying group communica
tion systems. Here, in order to support object group 
abstraction, group reference is specifically designed. Users 
can set call semantics such as synchronous, asynchronous, 
and deferred synchronous calls using the ORB Environment 
class. The implementation and performance of the system 
are efficient since there is no intermediate object between 
ORB and the group communication system. However, this 
approach requires modification of an ORB for creating 
group reference and supporting group communication. 

Object Group Service (OGS) [4], [5] was proposed as a 
CORBA object service for group communication. OGS 
consists of three interfaces: Groupable, GroupAdministrator, 
and GroupAccessor. Groupable has interfaces for message 
reception, group composition notification, and state transfer 
operation, which are used by the member objects. Group-
Administrator has interfaces for group operations, which are 
join_group and leave_group. GroupAccessor has interfaces 
related to a multicast operation [4]. In OGS, a group view is 
managed by the service itself. Message multicast is 
supported by using a proprietary messaging service. This 
approach is independent of ORB and guarantees portability 
with the CORBA Object Service. However, it does not 
utilize existing group communication protocols and, thus, 
has a potential drawback in terms of performance. 

Mishra et al. [18] also designed CORBA group commu
nication service as a service approach and evaluated the effect 

of CORBA on the performance of group communication 
service. For this, they implemented atomic broadcast protocol 
and group membership protocol in three ways. The first one 
uses the UDP socket interface as the communication interface 
between group members that are implemented by a single 
process. The second one, called the pure CORBA implemen
tation, uses the CORBA instead of UDP socket. The last one 
also uses the CORBA, but the group member is composed of 
two separate processes—a client process and a server process. 
Interprocess communication between client and server 
processes uses UDP socket and, therefore, this case is called 
the hybrid CORBA implementation. In terms of performance, 
the UDP socket-based implementation of a group commu
nication service is most efficient and the pure CORBA 
implementation is the worst. However, they conclude that 
the CORBA is suitable for implementing heterogeneous 
group communication services and the performance degra
dation can be reduced by controlling the protocol parameters 
such as buffer sizes and timer values. 

Eternal [19] and Eternal interceptor [22] capture and 
transmit an Internet Inter-ORB Protocol (IIOP) message to 
the replication mechanism that maps messages onto the 
group communication system. Especially, join/leave group 
and send/receive operations are mapped to open/close and 
write/read system calls, respectively. Here, a unique object 
group identifier is associated with each interface name. The 
replication manager maintains a mapping table that 
contains group identifiers and interface names and is 
globally accessible [19]. Message multicast is performed 
using underlying group communication system. This 
approach need not modify ORB as in the case of using the 
interceptor. However, it is dependent on OS since the 
interceptor is implemented in the system call level. 

The Multicast Group Internet Inter-ORB Protocol 
(MGIOP) engine was designed with MGIOP specification 
in [20]. MGIOP consists of group ID and domain ID. 
Especially, it does not instantiate GIOP, but encapsulates a 
GIOP message itself. The MGIOP engine concurrently 
supports different group communication protocols. It, 
however, requires modification of ORB because its engine 
must be included in ORB or connected to it. 

Fault Tolerant CORBA (FT CORBA) [25] is composed of 
replication management, fault management, and logging 
and recovery management to support entity redundancy, 
fault detection, and recovery. For group addresses, an 
Interoperable Object Reference (IOR) is extended such that 
clients transparently access an object group with a single 
object reference called Interoperable Object Group Refer
ence (IOGR). Group operations, e.g., create_member, 
add_member, remove_member, set_primary_member, etc., 
are provided by ObjectGroupManager of the replication 
manager. For the IOGR implementation, the FT CORBA 
specification recommends usage of a proprietary group 
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communication protocol as the strategies, i.e., “access via 
IIOP and gateway” and “access via a proprietary multicast 
group communication protocol,” for connecting a client to a 
server object group. However, it does not describe how to 
integrate a group communication protocol into the ORB. 

DOORS (Distributed Object-Oriented Reliable Service) 
[23], Eternal [19], [22], and IRL (Interoperable Replication 
Logic) [17] implement all or part of the FT CORBA 
standard. To provide fault tolerance, DOORS proposes a 
framework that is implemented as a CORBA service and 
IRL defines Replication Logic that is a set of protocols, 
mechanisms, and services allowing a CORBA system to 
handle object replication. FTS [9] consists of portable 
interceptors and Group Object Adapter (GOA) [8]. It does 
not follow the FT CORBA standard. The GOA is imple
mented atop standard POAs and uses the underlying group 
communication protocol through the Group Communica
tion Interface (GCI). 

To apply various protocols into CORBA rather than 
GIOP/IIOP over TCP/IP, a plug-in framework was 
proposed, e.g., Open Communications Interface (OCI) [1] 
and TAO’s Pluggable Protocol Framework (PPF) [12]. The 
OCI provides open interfaces that can substitute TCP/IP in 
CORBA. It implements the Acceptor/Connector module 
[26] in ORB. The module distinguishes connection establish
ment from service initialization occurring in the commu
nication of a client/server model. The OCI consists of an 
acceptor (at the server side) and a connector (at the client 
side) for connection establishment, and a transport as a 
communication component. TAO’s PPF is based on the OCI 
and, therefore, the basic mechanism of that is the same as 
the OCI. But, it enhances the OCI for high-performance and 
real-time systems. 

Halteren et al. [27] applied IP Multicast to CORBA by 
extending the OCI. In order to meet the requirements on the 
transport layer such as connection-oriented, reliable data 
transport, transported data as a stream, and notification of 
connection loss in the CORBA specification [24], this 
approach adds the schemes for acknowledgement and 
retransmission of packets to the intermediate protocol. It 
uses the modified Interoperable Object Reference (IOR) that 
includes an IP multicast address (D class) and a sequence 
number. However, the approach does not provide a generic 
framework that can accommodate various group commu
nication protocols in CORBA. Moreover, dynamic group 
membership is not supported because Java IP Multicast API 
is directly used as group operations. 

Pluggable FT CORBA Infrastructure [28] is a FT CORBA 
compliant implementation using a TAO’s PPF. To apply the 

group communication protocol into the ORB, the FT adaptor 
of server-side FT protocol plug-in is proposed. The FT adaptor 
manages the connection and exchanging messages to the 
underlying group communication protocol. In viewpoint of 
extending the plug-in framework, this approach is similar to 
the proposed scheme in this paper. However, the pluggable 
FT CORBA infrastructure focuses on the FT CORBA 
compliant framework, whereas the proposed scheme pro
vides extended interfaces for group communication service 
to both FT CORBA and non-FT CORBA. 

6 CONCLUSION 

Group communication is one of the key components 
supporting object replication. Here, we have extended 
OCI, the proposed CORBA standard for intelligent network 
systems [1], in order to provide a generic group commu
nication framework for CORBA. We first define GCIOP that 
has end-point information such as group name. Then, we 
design the group communication Info Object and the OCI to 
use group semantics. The proposed scheme consists of a 
group membership component, a group IOR component, 
and a group multicast component. The group membership 
component provides operations for dynamic group mem
bership and guarantees the consistency of a group view 
through Acceptor’s operations. To identify a group in 
CORBA, the group IOR component constructs a group IOR 
that is filled up based on the GCIOP information in an 
Acceptor. The group multicast component provides multi
cast communication within a group via each Transport 
object under a client and server objects. All group semantics 
are exposed to CORBA application objects by mapping 
group operations in the proposed scheme into the corre
sponding operations in the underlying group communica
tion protocol. The proposed scheme can be used to support 
FT-CORBA compliant applications. In that case, the IOGR 
in FT CORBA is used instead of the GCIOP-based group 
IOR. To create an object group, the replication manager of 
FT CORBA invokes the create_object() method of a local 
factory in server ORBs. Server replicas created by the 
factory join the group through the group membership 
procedure of the proposed scheme. When a client invokes 
the object group atop FT CORBA regardless of a gateway, 
the group object invocation procedure is the same as that in 
the proposed scheme. The experiment results show that the 
proposed scheme does not incur performance degradation, 
even though the number of server objects increases. 

We assume that the group communication model is one
to-many at present. Here, a sender is located atop a 
Connector with multiple receivers atop an Acceptor. If 
application objects are constructed as a reactive client/ 
server playing a role of both a client and a server, the 
proposed design can also be applied to a peer model. 
Furthermore, it supports not only group communication in 
CORBA, but also existing group communication without 
any modification of ORB and dependency on the OS. We 
plan to apply other group communication protocols to the 
ORB using the proposed approach and evaluate the 
performance comparing with existing group communica
tion systems in CORBA. We are currently exploring a 
mechanism for transparent manipulation of a group object 



key [11], since the existing BOA and POA models do not 
allow member object implementations for a group to be 
represented by a single object key. We also plan to design a 
gateway for FT CORBA so that FT CORBA compliant 
objects can be supported. 
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