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On active disturbance rejection based control design for 
superconducting RF cavities 
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1. Introduction 

The National Superconducting Cyclotron Laboratory (NSCL) is 
currently constructing a 3 MeV/u fe-accelerator (ReA3). expand­
able to 12 MeV/u, using superconducting RF (SRF) cavities [11. 
The project is cooperatively funded by the Michigan State Uni­
versity (MSU) and the National Science Foundation (NSF). In 
addition, MSU has been selected to build the Facility for Rare 
Isotope Beams (FRIB) national user facility that features a 400 kW, 
200 MeV/u SRF linac requiring over 340 sRF cavities [2[. FRIB is 
funded through a cooperative agreement between MsU and the 
Office of Nuclear PhysiCS in the Department of Energy (DOE) 
Office of Science. Maximizing the performance and decreaSing the 
overall costs of these systems are the ongoing goals of both 
projects. 

The cont rol of lightly loaded SRF cavities is an ongoing topic in 
the accelerator community due to the extreme sensitivity of these 
cavities to dis turbances and other detuning forces. A dominant 
method applied is to over-couple these cavities. thereby reducing 
the sensitivity by increasing the bandwidth and applying standard 
proportional-integral-derivative (PID) controls [3[. Adaptive control 
algorithms are sought that can minimize the required drive 
power and improve the overall performance of these systems. 
This paper describes our experience applying a seemingly ideal 

solution to this problem known as "Active Disturbance Rejection 
Control" (ADRC) [4.5[. 

The nature of many. if not most. control problems is distur­
bance rejection. particularly the microphonics problem discussed 
here. and the key question in design is how to deal with it. The 
PIO control strategy. by defaul t. deals with the disturbances in a 
passive way as it merely reacts to the tracking errors ca used by 
the disturbances. An alternative. and better. solution is to reject 
the disturbances actively by estimating the disturbances directly 
and canceling it out. before it affects the system in a significant 
way. and this is at the core of AORC. 

In the ADRC design. the dis turbance is estimated using the so 
called state observer. wh ich is commonly used in the framework 
of modern control theory to estimate the immeasurable internal 
states of a system. Note that states. also known as state variables. 
refer to physical variables of a system. such as current. voltage. 
temperature. pressure, etc.. and state observer. usually imple­
mented in a computer algorithm. and uses the input and outpu t 
data of a system. and its model. to reconstruct in real time the 
values of state variables 161. 

The uniqueness of the ADRC design is that the total distur­
bance. which includes both externa l disturbances and unknown 
interna l dynamics. is defined as an extended state of the system 
and estimated using a state observer. known as the extended 
state observer (ESO). Unl ike the standard state observers. the 
state in ESC is extended beyond the regular physical variables to 
include the effects of unknown disturbance and dynamics in 
their [Otality. Once estimated. the total disturbance can be 



12 

readily canceled by the control signal, transforming elegantly the 
original system to a disturbance-free one, which can easily be 
controlled [4,5]. 

ARDC is practical because it requires very little knowledge 
about the plant dynamics, which in real systems may be both 
unknown and non-stationary. In the case of a linear time 
invariant system, it requires only the knowledge of the relative 
degree of the system and an estimation of the high frequency 
gain [5]. For example, given the general transfer function below 
(1), the information needed is the relative degree n-m and bm: 

bmsðmÞ þbm-1sðm-1Þ þ . . . þb1sþb0GðsÞ ¼  ð1Þ 
sðnÞ þan-1sðn-1Þ þ . . . þa1sþa0 

Additionally, the number of ARDC tuning parameters may be 
reduced to one [7], further simplifying the control design. 

2. ADRC solution for the SRF cavity problem 

In accelerator applications, the cavity voltage must be pre­
cisely controlled in the presence of vibrations referred to as 
‘‘microphonics’’. The problem is acute here at NSCL since the 
ReA3 accelerator has been mounted on a balcony, making it even 
more susceptible to microphonic disturbances from the environ­
ment. The previously explored adaptive feedforward cancellation 
method [8] is found to be not sufficient in this case. We are thus 
motivated to explore more effective disturbance rejection tech­
nology beyond a standard PID and our search leads to ADRC. 
In this section the standard SRF cavity model [9] is first intro­
duced, followed by a new problem formulation and the corre­
sponding control design. Tuning of the new controller is also 
discussed. 

2.1. Ideal voltage vector I–Q model 

The cavity dynamics can be represented by a parallel RLC 
, 

circuit as shown in Fig. 1, where V 
, 

c is the cavity voltage and Ig is 

_and Ig 5ogIg . Together with o0 "og and 1=2Q 51, (2) can be 
simplified to the following two first-order differential equations: 

_V cI þo1=2VcI þDoVcQ ¼o1=2VgI ð5Þ 

_V cQ þo1=2VcQ -DoVcI ¼o1=2VgQ ð6Þ 

where o1=2 ¼o0=2Q is the cavity half bandwidth; Do ¼o0-og is 
the cavity detuning frequency; VgI 9IgIR and VgQ 9IgQ R. 

Note that the quadrature components in Eq. (5) and the in-
phase components in Eq. (6) represent the coupling between the 
two channels, which is ignored in the existing PID design. This 
microphonic induced coupling is what makes the control design 
challenging for the SRF cavities. 

2.2. Total disturbance rejection formulation and the corresponding 
ADRC design 

The key problem in SRF cavity control is to maintain the 
constant amplitude and phase in Vc , which is a very challenging 
task as the resonant frequency o0 changes due to the Lorenz force 
and microphonics. Here the microphonics are part of external 
disturbances, denoted as d and the Lorenz force is field induced 
within the cavities and is a function of the system variable Vc . 
Therefore, the controller must mitigate both the external distur­
bances and the internal dynamics. Since the cavity resonant 
frequency o0ðd,VcÞ is actually a function of both the external 
disturbance (primarily microphonics) and the cavity voltage, a 
more realistic model of the cavity is 

_V cI þo1=2VcI þDoðd,Vc ÞVcQ ¼o1=2VgI ð7Þ 

_V cQ þo1=2VcQ -Doðd,VcÞVcI ¼o1=2VgQ ð8Þ 

For such a nonlinear, time-varying and coupled system, the 
control design using regular methods could be very complicated. 
In the ADRC framework, however, all the nonlinear, time-varying 

the generator current. and coupling terms are parts of the total disturbance to be 

According to Kirchhoff’s law, we get the following second estimated and mitigated, greatly simplifying the design task. 

order differential equation: Considering the realistic model (7) and defining the output as 
y ¼ VcI , input as u ¼ VgI and the total disturbance as f ¼-o1=2VcI-

, , 
d2V 

, 

dt2 

dV Ro0 dIo0 2
, 
V0 

c c g
þ þo c ¼ 

Q dt Q dt 
ð2Þ 

Doðd,VcÞVcQ , the in-phase component of the I–Q model can be 
reformulated as 

pffiffiffiffiffiffi 
where o0 ¼ 1= LC is the cavity resonant frequency and pffiffiffiffiffiffiffiffi 
Q ¼ R C=L is the quality factor. 

For a fixed frequency RF system, transforming the cavity 
voltage and the driving current to a reference frame that rotates 
at the generator frequency og , can greatly simplify the calculation 
[10]. The transformations are given below: 

y_ ¼ f þbu ð9Þ 

where b ¼o1=2. Now the task of ADRC comes down to a critical 
subtask: estimate f in real time. This is where the state observer 
from the modern control theory becomes a tool of choice. Define 
states as x1 ¼ y and x2 ¼ f , where x2 is called the extended state; 
thus Eq. (9) can be put into the matrix form as 

,
jog tV cðtÞ ¼ ½VcI ðtÞþ jVcQ ðtÞ e

" # " # [ ] [ ] [ ]ð3Þ _x1 0 1  x1 b 0 _¼ þ uþ f 
_x2 0 0  x2 0 1 

,
jog tIg ðtÞ ¼ ½IgIðtÞþ jIgQ ðtÞ e ð4Þ 

y ¼ x1 ð10Þ 
where VcI and IgI are the in-phase components and VcQ and IgQ are 
the quadrature components. 

The amplitude of the cavity voltage and generator current are 
_slowly changing compared to the RF component; thus V c 5ogVc 

Fig. 1. Equivalent circuit model for cavity dynamics. 

An ESO can be built to give the estimation of the states " 
_z1 

_z2 

# 
¼ 

0 1  

0 0

[ ]" 
z1 

z2 

# 
þ 

b 

0

[ ]
uþ 

" # 
b1 

b2 
ðy-ŷÞ 

ŷ ¼ z1 ð11Þ 

where b1 and b2 are the observer gains. 
A well-tuned observer in Eq. (11) provides the estimation of 

the total disturbance z2, and the control law 

-z2 þu0 u ¼ ð12Þ 
b 
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where u0 is a virtual control signal, reduces the original plant in 
Eq. (9) to a simple integrator plant of the form 

y_ ¼ u0 þðf -z2Þ " u0 ð13Þ 

which can be easily controlled using a proportional controller. 

u0 ¼ kpðr-z1Þ ð14Þ 

Here kp is the controller gain and r is the reference signal. 

Fig. 2. Diagram of the PID control. 

Fig. 3. Diagram of the ADRC control. 

To simplify the tuning process, the observer gains are chosen 
as b1 ¼ 2oob and b2 ¼o2 to put the poles of the observer at ob 
-oob. Similarly the controller gains are chosen as kp ¼oc to put 
the pole of the control loop at -oc. oob and oc are called the 
observer bandwidth and controller bandwidth, respectively. 
For further simplification, we can set oob ¼ ð3-10Þoc and oc 

becomes the only tuning parameter [7]. 
The control design for the quadrature component can be 

carried out similarly by defining y ¼ VcQ , u ¼ VgQ and f ¼-o1=2 

VcQ þDoðd,VcÞVcI . 

2.3. Amplitude and phase control 

As shown above, the cavity dynamics can be clearly described 
by the IQ model. However, in the real test environment, the electric 
field is normally measured in terms of amplitude and phase. The 
relationship between the IQ components and amplitude/phase is 
merely a linear coordinate transformation, from Cartesian to polar. 
For the sake of convenience and without loss of generality, the 
proposed ADRC solution is implemented to control the amplitude 
and phase directly instead of the IQ components, as the transfor­
mation does not affect the cavity dynamics. However a difficulty 
exists in phase control, since the phase can jump between -1801 
and 1801, which is referred to as the ‘‘wrap-around’’ problem. The 
problem is addressed in more detail in subsection D of Section III, 
while implementing the ADRC for phase loop. 

Two diagrams are given in Figs. 2 and 3 to show the difference 
between the PID and ADRC for amplitude and phase control of the 
cavity, respectively. In a PID control structure, the amplitude and 
phase coupling, the disturbance and dynamic uncertainties are 
dealt with passively in the form of parameter tuning. In the ADRC 
design, however, they are lumped together as the total distur­
bance, estimated in real time, and actively canceled out in the 
corresponding control signal. In other words, another benefit of 
ADRC is that two coupled loops, such as the amplitude and phase 
loops in this application, are decoupled naturally. 

3. Simulation and measured responses 

3.1. Simulation model 

A MATLAB simulation model is built to test the control design, 
as shown in Fig. 4. The cavity half bandwidth is 219 rad/s (35 Hz). 
The sampling rate is 54.6 kHz; the controller and observer 

Fig. 4. MATLAB simulation model with ADRC control. 
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bandwidths are set to 600 and 3000 rad/s, respectively. For 
comparison, a PI controller is tuned with a proportional gain of 
3 and an integral gain of 5474. The parameters were tuned to 
achieve the best stable response. The same values were used for 
simulations and measurements. 

3.2. Hardware implementation 

The RF control is implemented on a digital low-level RF con­
troller developed at the NSCL. The controller produces a low-level RF 
output at the cavity drive frequency and directly controls the phase 
and amplitude of the output. This low-level RF signal is fed into a 
solid-state linear amplifier and the output of the amplifier is coupled 
to the cavity. The cavity used for these tests is a SRF quarter wave 
resonator with a loaded bandwidth of 70 Hz (440 rad/s). This 
particular cavity is especially susceptible to microphonics because 
its mechanical damper does not work as well as anticipated. During 
the tests, intermittent microphonics were present, which detuned 
the cavity by more than 40 Hz. The discrete implementation of the 
ADRC control algorithm can be found in Ref. [11]. 

3.3. Simulation and measured results 

Step signals were introduced as a reference for both the 
amplitude and phase components. For the simulations, a constant 
detuning frequency of 40 rad/s was used. The simulated and 
measured response curves for a step in amplitude (6-8 MV/m) 
are shown in Fig. 5. The response curves for a step in phase 
(75-901) are shown in Fig. 6. With the ADRC controller, the 
ripple and overshoot are greatly reduced. 

The steady-state probability density functions for amplitude 
and phase are shown in Fig. 7. The steady-state model includes a 
Gaussian detuning frequency, which was varied in order to match 
the measured data. 

Fig. 5. Amplitude step response: simulation (top) and measured (bottom). 

Fig. 6. Phase step response: simulation (top) and measured (bottom). 

Fig. 7. Steady-state probability density function: simulation (top) and measured 
(bottom). 

3.4. Implementation issues 

Physical limitations always exist for the actuators. For exam­
ple, in the amplitude loop, the output voltage of the amplifier is 
limited to 0–10 V, which results in a difference between the 
actual applied and the calculated control signal. In the observer 
based design, the control signal is needed for the state estimation. 
Normally feeding back the control signal that is actually applied 
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on the real system to the observer will give us a more accurate 
estimation. It works very well with the amplitude loop. 

In the phase loop, however, feeding back the actual applied 
control signal gives us unexpected results. The phase output 
cannot get to the setpoint in some special cases. A simulation 
example for the case is shown in Fig. 8. 

The reason for it is that the phase loop is different from the 
amplitude loop in the sense of how the control signal is handled 
due to the physical limitation. In the amplitude loop, the control 
signal is saturated between a lower bound and an upper bound. In 
the phase loop, the 2701 control signal will have the same effect 
as that of -901 control signal. So a wrap-around method is used 
instead of the saturation method. In the wrap-around method, 
whenever the control signal goes beyond the range from -1801 
to 1801, 3601 is added to or subtracted from the control signal to 
make it fall back into this range. The effect of the saturation and 
wrap-around is graphed in Figs. 9 and 10. It is the non-monotonic 
behavior of the phase loop that causes the multi-equilibrium 
points of the system, and hence the above problem. 

To solve the problem, we first tried the saturation method for 
the phase loop to avoid the non-monotonic behavior, but it did 
not work. The phase saturates at either the upper limit or the 
lower limit and cannot recover from the saturation point. This is 
because naturally the phase can approach its setpoint in both 
directions. In the saturation method, we manually block one of 
the directions. So once the phase initially goes in the wrong 
direction, it will always saturate. 

So we switched back to the wrap-around method that pre­
serves the feature of the phase behavior. We finally solved the 
problem in simulation by feeding back the calculated control 

Fig. 8. Undesired response for phase loop. 

Fig. 9. Saturation effect for amplitude loop. 

Fig. 10. Wrap-around effect for phase loop. 

Fig. 11. Desired response for phase loop. 

signal (before the wrap-around) instead of the actually applied 
control signal (after the wrap-around) to the ESO. In this way we 
actually consider the wrap-around effect (adding or subtracting 
3601 to or from the calculated control signal) as an input 
disturbance, and use the disturbance rejection ability of the ADRC 
to deal with it. A simulation result is given in Fig. 11 to show the 
effectiveness of this method. 

The new wrap-around implementation has been tested on 
several superconducting cavities, and it solves the problems 
found in the previous implementations. When running the new 
design, large disturbances do not cause control problems and the 
phase setpoint can be changed arbitrarily without causing the 
saturation problem illustrated in Fig. 8. 

4. Conclusion 

The initial tests of the ADRC control on a SRF cavity at the NSCL 
have shown a significant improvement over the PID control under 
the same conditions. We expect that as we continue to work with 
the implementation, we may improve the response even further. 
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