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 Introduction 1.

 Plum production worldwide 1.1.

The plum (Prunus domestica L.) belongs to the Rosaceae family in the genus Prunus, 

which covers all of the stone fruits, such as apricot (P. armeniaca), peach and 

nectarine (P. persica), sweet cherry (P. avium) and almond (P. dolcis). The genus 

Prunus includes 40 species, which are highly diverse from a taxonomical 

perspective. The most important commercial species of plum are classified into 

European (e.g. P. domestica) and Asian (e.g. P. salicina) groups around the world 

Topp et al. (2012). 

In recent years, the production of stone fruit such as plums has increased due to 

successes in implementing long distance transport to receiving markets (Crisosto et 

al., 1995). Plum marketing has improved by creating new cultivars and 

advancements in postharvest technology (Crisosto et al., 1995).  According to the 

FAO, world production of plums in 2012 was about 11 million tons, and produced 

from an area of 2.5 million hectares (Tab.1; FAOSTAT, 2014). As shown in Tab. 1, 

China is the world’s largest producer of plums with about 55% (6 Mt) of total 

production. In Germany, the most important tree fruits are apple, pear, cherry and 

plum. Germany is a producer as well as an importer of plums and ranks 28th 

worldwide in plum production (0.036 Mt; Tab. 1; FAOSTAT, 2014). ˈHankaˈ, 

ˈPresentaˈ, ˈJojoˈ and ˈHagantaˈ are some of common cultivars cultivated in 

Germany. 
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Tab. 1. (A) World plum production and orchard area during 2002 to 2012; (B) list of plum production 

in top countries around the world in 2012 (FAOSTAT 2014). 

 

World production and the production area of plums have increased by 17 to 30% 

over the last 11 years (during 2002 to 2012; Fig. 1). In recent years, the benefits of 

plums for human health, due to their abundance of compounds such as anthocyanins, 

pectins and carotenoids, have also been reported (Ionica et al., 2012; Ionica et al., 

2013). Despite this, plum consumption has not increased in USA and some European 

countries, which can be attributed to a lack of fruit ripening before consumption 

(Crisosto et al., 2004; Crisosto et al., 2007). 

 

 Plum quality 1.2.

Postharvest quality is ultimately defined in terms of consumer satisfaction. 

Production of a uniform high quality plum can provide consumer satisfaction, while 

non-uniform fruit quality is detrimental to effective marketing and export (Crisosto et 

al., 2004). Many decisions will profoundly influence the post-storage quality of 

plums. Nowadays, researchers have established that the maximum postharvest 

quality can be reached by understanding the role of preharvest factors such as 

climate, water availability, soil properties, mineral nutrition, thinning (crop load), 

fruit canopy position and cultivar selection (Crisosto et al., 1995; Crisosto et al., 

1997). 

Soil properties should be considered to be some of the main preharvest factors that 

strongly affect fruit quality (Rato et al., 2008). Apparent electrical conductivity 

(ECa) is influenced by soil chemical and physical properties (Corwin and Lesch, 
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2005), especially by soil texture and moisture in non-saline soils (Lund et al., 2000). 

Therefore, ECa can be used to map the spatial variation in soils in order to apply 

different management strategies (Terron et al., 2011). This also means that each ECa 

zone may have a specific influence on tree and fruit quality. The effect of soil ECa, 

which may also indicate soil water availability (Schumann and Zaman, 2003), on 

fruit quality may be influenced and modified by crop load. Crop load as a preharvest 

factor has been shown to strongly affect postharvest quality and performance 

(Wünsche et al., 2005). 

 

 Consumer expectations  1.3.

Demand for and consumption of plums will certainly increase if consumers are 

satisfied. In general, consumers prefer fully-ripe, tasty, fruit with a rich flavour, and 

free of any internal defects, i.e. chilling injury (Crisosto et al., 2004). Attributes such 

as fruit size, skin colour, soluble solids content (SSC) and titratable acidity (TA) 

determine fruit maturity and, therefore, consumer acceptance (Crisosto and Crisosto, 

2005; Usenik et al., 2008). Fruit flesh firmness is an important factor when 

considering an optimum harvest date, as well as prolonged shelf life (Dodd, 1984; 

Taylor et al., 1993a; Abdi et al., 1997). Hence, harvest maturity strongly affects fruit 

quality. Late-harvested fruit can achieve customer satisfaction but cannot be stored 

for a long time. On the other hand, early harvest as a method to extend storage life 

can result in low-quality fruit (Crisosto et al., 1995). Scientists have conducted many 

experiments to find the optimum harvest date for plums; however, it is not easy to 

determine the optimal picking time for plums due to a lack of obvious maturity 

indices (Usenik et al., 2008). To properly meet consumers’ expectations, it is 

urgently necessary to define specific maturity parameters for each cultivar (Casquero 

and Guerra, 2009). 

 

 Postharvest quality and storability of plums 1.4.

Stone fruits such as plums have a relatively short shelf life (Crisosto et al., 1995). 

They can quickly pass from ideal ripeness to overmaturity and will readily lose water 

and shrivel (Kader and Mitchell, 1989). Therefore, optimum storage conditions 
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should effectively delay ripening and maintain plum quality. Low temperature (0°C) 

is recommended to conserve fruit quality. However, even at low temperatures, plums 

are only stored for 2-5 weeks (Crisosto et al., 1999). Moreover, postharvest 

treatments such as heat treatment and application of 1-MCP have recently been 

studied to improve fruit quality maintenance (Serrano et al., 2004; Candan et al., 

2008). In addition, the application of edible coatings has been suggested to enhance 

the shelf life of plums. Eum et al. (2009) reported a positive effect of carbohydrate-

based edible coatings (Versasheen) with sorbitol as a plasticizer to control plum 

quality during short-term storage at room temperature.  
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 State of the art 2.

Many factors can affect the quality of fruit, both at harvest and during the post-

harvest period. During the last decade, several authors have published results on the 

effects of various preharvest factors on fruit quality parameters. Among others, these 

factors include soil properties and climate during cultivation (Crisosto et al., 1995). 

Moreover, a number of production practices and other preharvest parameters, such as 

mineral nutrition, canopy position, pruning, irrigation and crop load, also influence 

postharvest quality and the shelf life of plums (Crisosto et al., 1995; Kader, 2002). 

 

 Preharvest factors 2.1.

 Genotypic variation 2.1.1.

Tree genotype (cultivar and/or rootstock) plays an important role in determining fruit 

quality and postharvest storage potential (Crisosto and Costa, 2008). The cultivar of 

the fruit species is one of the most important factors in determining the variation in, 

e.g., the fruit's soluble solids content and acidity (Crisosto et al., 1995; Crisosto et al., 

1997). Nowadays, horticultural breeding and biotechnology could play a significant 

role in improving and maintaining postharvest quality and the safety of fresh 

produce. Moreover, the growers have the choice of selecting preferred cultivars prior 

to planting crops (Kader, 2002). 

ˈJojoˈ is a hybrid of ˈOrtenauerˈ x ˈStanleyˈ (Fig. 1. A). It is self-fertile and one of 

the few truly Sharka (plum pox virus) resistant plums. The fruit is oval-shaped and 

medium to large sized with dark blue skin. The optimum harvest date is in August 

and September, within a long harvesting period. Ripe fruit are firm and juicy with a 

mixed, sweet and sour taste. 

ˈTophit plusˈ is a hybrid of ˈCacanska Najboljaˈ x ˈPresidentˈ. It is sharka (plum pox 

virus) tolerant (Fig. 1. B). It has very large, egg-shaped fruit with dark blue skin. It is 

late ripening and self-fertile to a limited extent (additional pollinators are 

recommended). The optimum harvest date is in September. Ripe fruit are firm and 

juicy with a mixed taste of sweet and sour. They have a good culinary quality and 

storability. 
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Fig. 1.  (A) ˈJojoˈ and (B) ˈTophit plusˈ fruit just before harvest 

 

 Climate and canopy position 2.1.2.

Climate factors, especially adequate light intensities and air temperatures are 

important for both optimal plant growth and yield (Kays, 1999). Temperature 

increases can have both positive and negative effects on crop yields. High air 

temperatures enhance transpiration, which, in turn, indirectly affects the uptake and 

metabolism of nutrients by plants (Kader, 2002). The effects of air temperature and 

light intensity as climatic factors on the nutritional quality of fruit have been 

reviewed in previous years (Kader, 2002). Precipitation is the major source for water 

availability to the tree. However, most orchards supplement their water supply 

through drip irrigation. 

The canopy light is an important orchard factor that influences plant vegetation, fruit 

productivity and fruit quality (Taylor et al., 1993b; Crisosto et al., 1997). Increased 

exposure to light improves both fruit size and soluble solids content (SSC) in stone 

fruit such as peach and nectarine fruit (Marini et al., 1991; Muleo et al., 1994). 

Murray et al. (2005) reported that shaded ˈLaetitiaˈ and ˈSongoldˈ plums showed 

smaller size and delayed maturation with lower SSC and poor skin colour compared 

to those exposed to full light. 

 

 Mineral nutrition 2.1.3.

Plant nutrition is an important factor that potentially affects both the quality and 

postharvest life of fruit. Optimum plant performance depends on a balanced 
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availability of mineral nutrients that can be limited in many soils around the world 

(Hewett, 2006). 

Nitrogen (N) and potassium (K) are the principal nutrients needed by plants (Cuquel 

et al., 2011). Excessive N nutrition increases vegetative growth and delays fruit 

maturation in stone fruit (Daane et al., 1995; Crisosto et al., 1997). In contrast, 

nitrogen deficiency leads to small-sized fruit, low yield and poor flavour (Daane et 

al., 1995). Optimal potassium (K) nutrition improves fruit quality by enhancing leaf 

photosynthesis and the reallocation of sugars and organic acids to fruit (Crisosto and 

Costa, 2008). Calcium (Ca) is also an essential component for fruit trees, as it is 

involved in numerous biochemical and morphological processes (Crisosto and Costa, 

2008). It plays an important role in delaying fruit senescence (Serrano et al., 2004). 

Moreover, Ca has a critical role to play in fruit growth and development, positively 

affecting cell wall structure (Kadir, 2004). Additional, Ca could be applied to fruit 

through either preharvest foliar sprays or postharvest dips. 

 

 Irrigation 2.1.4.

Water is retained in the soil and can be extracted by the plant. Sufficient water 

supply is one of the major factors affecting optimal plant growth (Fereres and 

Soriano, 2007), successful crop production and fruit composition at harvest and in 

the postharvest period (Kader, 2002). The total amount of water stored in the soil at a 

pF- value between 1.8 (field capacity) and 4.2 (permanent wilting point, PWP) is the 

water available for plants (Ehlers and Goss, 2003). The availability of soil water for 

plants depends on soil texture and soil structure. In general, a higher percentage of 

clay leads to a higher water-holding capacity than sand does, due to a much larger 

surface area of clay particles. The volumetric soil water content at the wilting point is 

around 5 to 10% for sandy soils, 10 to 15% for loam soils, and 15 to 25% for clay 

soils (Ratliff et al., 1983). The PWP is defined as the level of soil water content 

below which plant roots can no longer extract water from the soil matrix (Ehlers and 

Goss, 2003). 

For instance, in Brandenburg almost 62% of the state’s territory, mainly consisting of 

sand and loamy sand, has a water holding capacity lower than 140 mm (Gutzler et 
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al., 2015). In addition, Brandenburg is one of the driest federal states in Germany 

with an annual average of 554 mm rainfall; this may significantly limit plant yield 

(Gutzler et al., 2015). For these reasons, irrigation is essential to stabilize and 

increase yield in Brandenburg.  

Irrigation improves soil water availability and, consequently, plant water status, 

stomatal conductance and fruit quality (Li et al., 1989b; Berman and DeJong, 1996; 

Naor et al., 1999; Naor et al., 2001). Irrigation requirements are high, especially in 

the summer season due to the high evaporative demand. Accurate irrigation 

strategies are needed to conserve water and minimize water wastage. Regarding 

irrigation, the following three questions must be answered by those who irrigate: 1) 

how much water should be applied, 2) when should it be applied, and 3) how should 

it be applied (Fereres et al., 2003b). 

Irrigation strategy: Irrigation scheduling is classified into two main strategies, i.e.  

soil-based (conventional) and plant-based methods (Steppe et al., 2008). The two 

conventional irrigation strategies are commonly used: 1) direct measurement of ‘soil 

water status’, and 2) determination of ‘soil water balance’ by calculating the water 

income and water losses during a given period of time (Jones, 2004). The positive 

and negative points of these methods have been discussed in detail by Jones (2004). 

To increase irrigation efficiency today, soil water-based techniques will be 

progressively replaced with plant-based methods. Relative water content (RWC) and 

leaf water potential have been widely used to quantify plant water deficits. Although 

RWC can easily be used because it does not require any complex equipment, leaf 

water potential measurement is generally more applicable to plant water status 

(Jones, 1990, 2004). However, leaf water potential measurements are destructive, 

and time and labour consuming (Fernandez, 2014). Thus, in the past couple of 

decades, new methods such as sap flow (Intrigliolo and Castel, 2006a; Conejero et 

al., 2007) and stem diameter measurements (Ortuno et al., 2010) have been 

developed for the non-destructive and automatic monitoring of plant water status, as 

alternatives to direct measurement.  

Deficit irrigation as water saving: Trees supplied with optimum amounts of water 

during the season will produce fruit of marketable size and good quality. In contrast, 
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excessive watering of trees may have the opposite influence on fruit quality because 

it increases vegetative growth and decreases fruit productivity (Pérez-Pastor et al., 

2007). In an excess water condition, delayed maturity, decreased fruit firmness and 

reduced soluble solids content have been reported (Crisosto et al., 1994b; Pérez-

Pastor et al., 2007). 

It is very important to use a water-saving method with a minimum effect on fruit 

yield and quality when water resources are limited. One of these methods is 

regulated deficit irrigation (RDI). In RDI, amounts of applied water are reduced 

when fruit growth is minimal and, therefore, it is generally not affected by water 

deficits (Intrigliolo and Castel, 2010). RDI can reduce fruit size and vegetative 

growth especially in high density plantings, while the content of soluble solids, 

acidity and ascorbic acid during fruit growth prior to harvest increases (Crisosto et 

al., 1995; Pérez-Pastor et al., 2007). RDI has been applied successfully to some stone 

fruits such as plum and apricot (Pérez-Pastor et al., 2007; Intrigliolo and Castel, 

2010). However, tree responses to RDI strongly depend on the fruit growth stage 

(Naor et al., 2001). For instance, stage III is more sensitive than stages I and II of 

fruit growth because the maximum water consumption occurs in stage III (Boland et 

al., 1993).  

Crisosto et al. (1994b) evaluated the influence of deficit irrigation (starting 4 weeks 

before harvest) on peach quality at harvest and on postharvest performance. They 

reported that fruit from deficit irrigation treatments had a higher SSC and lower mass 

than those in normal and over-irrigation regimes; however, there was no considerable 

difference in other quality parameters such as flesh firmness, acidity and pH between 

the irrigation regimes.  

The response of fruit trees to water deficit stress probably depends on the interaction 

between water availability and other factors such as climate, soil, tree nutritional 

status and crop load (Naor, 2006). 
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  Soil apparent electrical conductivity 2.1.5.

 Soil mapping  2.1.5.1.

Currently, conventional farming involves a uniform treatment of the entire field, with 

no consideration of spatial variation of various factors (i.e. soil, climate, 

management, pests, etc.) (Corwin and Lesch, 2005). Precision agriculture methods 

can help to manage spatial and temporal variability within fields in order to optimize 

crop productivity and the use of limited natural resources, while minimizing 

detrimental environmental impacts (Corwin and Lesch, 2005). Precision horticulture 

studies have yet to be performed on crops such as citrus (Zaman and Schumann, 

2006), grapefruit (Nadler, 2004) and wine grape (Bramley and Hamilton, 2004). 

In particular, soil mapping has become widely accepted in precision farming because 

soil plays a critical role in field management. Variations in the physical, chemical 

and biological properties of soil are the most important factors that affect yield 

variability (Ping et al., 2005). Although soil-sampling is one of the most precise 

means of assessing spatial variability of field soil, it is costly, time consuming and 

labour intensive and does not provide enough information for mapping field 

differences (Terron et al., 2011). Thus, it is necessary to find a more rapid and 

cheaper method to collect data for detailed soil mapping (King et al., 2005).  

An alternative to sampling on a grid is to use other soil property determination 

methods such as apparent electrical conductivity (ECa). ECa is one of the simplest, 

least expensive soil measurement available to precision farmers today and may help 

to interpret yield variation (Doerge, 2001). 

At present, the geospatial measurement of soil electrical conductivity is known as 

one of most reliable techniques to create zones in order to introduce different 

management strategies. In this method, areas are grouped by similar electrical 

conductivity and may respond similarly to different management systems (Barbosa 

and Overstreet, 2012).  
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 Factors affecting soil ECa 2.1.5.2.

Soil apparent electrical conductivity (ECa) is the ability of soil particles to transmit 

an electrical current (McNeill, 1992). The determination of the ECa of soils gives 

information about their quality. The ECa itself may be influenced by a combination 

of soil chemical and physical properties such as water content, soil organic matter, 

depth of claypans, soil temperature, cation-exchange capacity and salinity (Corwin et 

al., 2003; Corwin and Lesch, 2005; Terron et al., 2011). Up to now, soil ECa 

information has been widely used in agriculture to measure various soil 

physicochemical properties.  

Increasing the concentration of salts in soil water will radically increase soil ECa, 

thus soil ECa is the most extensively-used technique for predicting soil salinity (De 

Clercq and Van Meirvenne, 2005). However, ECa measurements in non-saline soils 

are driven primarily by soil texture and soil moisture (Lund et al., 2000). The ECa is 

usually mostly determined by soil texture because other soil properties, such as water 

content, are directly affected by soil texture as well (Domsch and Giebel, 2004; Lück 

et al., 2009). In general, ECa in range of 0 to 30, 5 to 80, 30 to 500 and 100 to 900 

mS/m indicate sand, silt, clay and salinity soil, respectively (Barbosa and Overstreet, 

2012). 

 

 Relationship between soil ECa and soil water content 2.1.5.3.

Consequently, soil ECa strongly depends on soil moisture contents, as indicated in 

many studies. Schumann and Zaman (2003) showed that 81% of the variation in the 

water table depth in a citrus orchard in Florida could be explained through vertical-

dipole electrical conductivity. Moreover, Reedy and Scanlon (2003) confirmed these 

results and showed that the ECa measurement could explain 70% - 80 % of the water 

content of the soil. Later, Nagy et al. (2013) found high correlations (r2 = 0.87) 

between volumetric moisture content data and measured ECa. However, other 

authors (Sudduth et al., 2003) reported no significant correlation between ECa and 

soil moisture. 

Accepting that ECa is indeed closely related to soil water content, the former 

parameter should also be strongly linked to crop properties. Therefore it is not 
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surprising that soil ECa maps often visually correspond to patterns on yield maps. 

Hence, ECa maps can help interpret variations in vegetative growth, yield and fruit 

properties (Doerge, 2001; Mann et al., 2011). In this regard, Mann et al. (2011) 

hypothesized that the productivity of citrus groves can be mapped using attributes 

such as fruit yield, tree canopy volume, NDVI, elevation and soil ECa. They showed 

a positive correlation between yield and canopy volume, as well as NDVI and ECa. 

Gebbers and Zude (2008) found a spatial clustering of the soil and delineated the 

apple orchard into two soil zones, namely, a dry zone (ECa < 5) and moist zone (ECa 

> 5), and evaluated the quality of fruit from trees grown within each of these zones 

using non-destructive and destructive methods during fruit development. They 

showed that perimeter and osmotic potential were higher in fruit from the moist 

zone, while SSC and the minimum NAI (Normalized Anthocyanin Index) were 

higher in those from the dry zone. 

 

 Crop load 2.1.6.

Tree crop load is usually expressed as the number of fruit per unit branch length, or 

number per trunk cross sectional area (Webster and Spencer, 2000). Fruit growth is 

regulated by the relationship between the number of fruit and leaves on a tree 

competing for available assimilates (Seehuber et al., 2011). 

It is necessary to study the source-sink relationships for an understanding of crop 

physiology and the effect of yield-limiting factors on crop production (Pavel and 

Dejong, 1993). In plants, the organs of assimilate production (the leaves) and 

assimilate consumption (roots, construction, generative organs) are referred to as 

‘source’ and ‘sink’, respectively. Sinks are indicated by the import and use of 

assimilates for respiration, growth and storage (Wareing and Patrick, 1975). The fruit 

act as carbohydrate sinks, and strongly compete with both each other and other 

vegetative sinks in the tree such as shoots and roots (Webster and Spencer, 2000). 

High crop loads lead to an imbalance between fruit and leaf area (Intrigliolo and 

Castel, 2010) caused by an increase in carbohydrate partitioning to the fruit (Palmer, 

1992). 
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In general, high crop loads per tree result in smaller fruit, alternate bearing, pre-

mature fruit drop, delayed fruit maturation, poor fruit quality and higher 

susceptibility to pests (Wünsche et al., 2005). Plum trees are particularly affected by 

excessive crop load. In these trees, high crop loads are associated with poor fruit 

quality attributes, e.g. small size and low sugar contents of fruit in the same season 

(Seehuber et al., 2011) or even a reduced number and quality of flowers in the 

subsequent season (Webster and Spencer, 2000). 

For the reasons mentioned, fruit thinning is a widely-used practice in many fruit 

crops (e.g. apples, peaches or apricots) and aims to change the sink/source 

relationship in order to achieve constant yields of high-quality fruit (Rettke and 

Dahlenburg, 1999; Costa and Vizzotto, 2000; Wünsche et al., 2005). For instance, 

apples from light-cropping trees (100 fruit per tree) had significantly more advanced 

maturity indices such as skin colour and soluble solids content than those from high-

cropping trees (400 fruit per tree). In addition, flesh firmness and dry matter content 

of fruit increased with a decreasing crop load (Wünsche et al., 2005). 

The effect of thinning on the yield and fruit quality of ˈTrevettˈ apricots was 

investigated by Rab et al. (2012). They reported that a 40 % thinning increased fruit 

SSC, ascorbic acid content, sugar and sugar/acid ratio, while the acidity of fruit pulp 

decreased in comparison to control treatment. Similarly, Roussos et al. (2011)  

reported that thinning in stage II (pit hardening) improved fruit mass (in ˈNafsikaˈ 

and ˈNioveˈ apricots) and increased the total phenolic concentration, but decreased 

fruit firmness at harvest. However, the response of stone fruit trees to thinning 

depends on the cultivar, as early-maturing cultivars are more sensitive to excessive 

crop load than late-maturing ones and require more intense thinning (Pavel and 

Dejong, 1993). 

Interactive effects of irrigation deficit and crop load: The variation in the 

responses of fruit trees to water deficiency might be particularly caused by 

interactions between water deficit and crop load. It was hypothesized that high crop 

loads may enhance the sensitivity of fruit growth to water deficit stress (Berman and 

DeJong, 1996; Girona et al., 2004). Lowering tree crop load, in contrast, might be a 

helpful method to compensate for the negative effects of severe drought stress on 

fruit growth (Lopez et al., 2006). This is simply because the lowered plant source 
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capacity due to limited water availability is less detrimental when the crop demand is 

reduced (Intrigliolo and Castel, 2010). 

The effects of drought stress (in stage III) and different crop loads (light, moderate 

and heavy) on the fresh and dry mass of peaches were investigated by Berman and 

DeJong (1996). Their results showed that the assimilation rates and midday stem 

water potential of stressed peach trees decreased with increasing crop level. Water 

deficit stress reduced fruit fresh mass in all of the crop loads tested. Moreover, the 

dry mass of fruit grown on trees with light and moderate crop loads was not affected 

by drought. On the other hand, fruit harvested from trees with a heavy crop load had 

a significantly reduced dry mass when grown under drought stress. 

Lopez et al. (2010) reported that the size of peaches was reduced and skin 

colouration was lower when grown without irrigation (Stage III) in comparison to 

cultivation with full irrigation. Fruit produced without irrigation, however, had 

higher dry matter concentration, fruit firmness, juice acidity and electrical 

conductivity than that grown with full irrigation. Lopez et al. (2010) concluded that 

choosing a light crop load was effective at improving fruit size in water-limited trees, 

but not at improving other fruit quality parameters. 

Intrigliolo and Castel (2010) evaluated the effect of regulated deficit irrigation of 

trees during stage II of fruit development and after harvest, as well as the effect of 

crop load (medium and low), on tree growth, next season’s fruit yield and the quality 

of Japanese plums. In this study, RDI increased the water-use efficiency of trees by 

30 %. Fruit grown on medium crop load trees under deficit irrigation had a low fresh 

mass. In contrast, medium crop load trees under full irrigation provided the highest 

fruit yield. Moreover, fruit grown under low crop load and deficit irrigation had the 

highest SSC. 

To the best of our knowledge, there is still a lack of information about the effects of 

crop load and water deficit on European plum quality at harvest and during storage. 
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 Maximum daily shrinkage  2.1.7.

 Soil and plant water status indicators 2.1.7.1.

Soil water measurements have been used to schedule irrigation mainly because these 

measurements are not affected by environmental conditions and thus, the information 

may be used easily (Intrigliolo and Castel, 2006a). However, these methods require 

adequate knowledge of plant root properties, with the limitation that uncertainties 

increase because wetted soil volume varies three-dimensionally, as it does under 

trickle irrigation (Ortuno et al., 2010). 

In this respect, the use of plant-based indicators that are directly linked to climatic 

and soil conditions, and provide more reliable information than abiotic indicators, 

might be the ideal method for irrigation scheduling (Conejero et al., 2007). For these 

reasons, the use of plant water status indicators for irrigation management has 

become very popular during recent years (Goldhamer et al., 2003; Remorini and 

Massai, 2003). 

Plant physiological features such as sap flow, leaf and stem water potential, 

photosynthesis and/or trunk diameter variations (TDV) might be analysed to indicate 

plant water status responses to variations in environmental conditions (Huguet et al., 

1992; Smith and Allen, 1996; Cohen et al., 2001). The feasibility of each of these 

water status indicators needs to be characterized specifically during phenological 

stages particularly sensitive to water shortage (Intrigliolo and Castel, 2006a). 

Measurements of water potential taken with a pressure chamber (Scholander et al. 

1965) on exposed or on bag-covered leaves (often oversimplified and referred to as 

‘stem water potential’) are the most widely used measurements for evaluating tree 

water status (Shackel, 1997; Naor, 2000). However, a disadvantage of such water 

potential measurements is the relatively cumbersome measurement procedure, its 

labour intensity and the need for frequent field trips (Ortuno et al., 2006).  

In recent years, the measurement of trunk diameter variations (TDV) has widely been 

used to estimate changes in the plant water status of trees (Cohen et al., 2001; 

Intrigliolo and Castel, 2007; De Swaef et al., 2014). Compared to other plant water 

status indicators, the main advantages of TDV measurement are the low amount of 

work required and the reliable response to variations in soil water availability 
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(Goldhamer et al., 1999; Ortuno et al., 2004). TDV are highly sensitive to variations 

in trunk water content in response to changes in climatic conditions (Cohen et al., 

2001). Several studies reported a close correlation between TDV and other water 

status indicators such as stem water potential (Cohen et al., 2001; Goldhamer and 

Fereres, 2001). More recently, interest has focused on TDV particularly as a water 

shortage indicator that is easy to measure with simple linear variable displacement 

transducer sensors (LVDT; Li et al., 1989b; Huguet et al., 1992; Cohen et al., 1997). 

 

 Maximum daily shrinkage (MDS) as tree water indicator 2.1.7.2.

Daily trunk diameter variations mainly depend on the hydration of phloem and 

cambium (Irvine and Grace, 1997). During the day, there is a radial flow of water 

from the bark into the xylem driven by the more negative water potential in leaves 

(Parlange et al., 1975) and hence, the trunk diameter decreases. In contrast, when the 

plant water uptake starts to exceed the transpirational water losses during the late 

afternoon, this water flow is gradually reversed back to the phloem (Intrigliolo and 

Castel, 2006a). This leads to an increase in trunk diameter again. The maximum 

daily trunk diameter (MXTD) and the minimum daily trunk diameter (MNTD) can 

be determined from trunk diameter measurements taken over a 24-h cycle. Daily 

MXTD and MNTD are reached just before sunrise and during the afternoon, 

respectively (Ortuno et al., 2010). The difference between MXTD and MNTD is 

termed maximum daily shrinkage (MDS; Ortuno et al., 2010). Several studies have 

shown that MDS is closely linked to those environmental factors that affect 

evaporative demand (Goldhamer and Fereres, 2001; Ortuno et al., 2004). 

In recent years, MDS has been suggested as an appropriate plant water status 

indicator because it is closely related to stem water potential (Intrigliolo and Castel, 

2007; Ortuno et al., 2010). Intrigliolo and Castel (2006b) evaluated different water 

deficit indicators under various levels of deficit irrigation in a plum orchard. The 

authors found that midday stem water potential, predawn leaf water potential, 

stomatal conductance and MDS corresponded to both the timing and the severity of 

water deficit applied. Cohen et al. (2001) reported a strong relationship between 

MDS and sap flow, indicating that both parameters were sensitive and reliable 

indicators of changes in plant water status in peach trees. 
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 Relationship between MDS and crop load 2.1.7.3.

The use of MDS as major water status input variable in plant-based irrigation 

systems may, nevertheless, be somewhat limited. TDV changes are additionally 

influenced by factors such as tree crop load and the phenological stage of the tree 

(Conejero et al., 2007; Intrigliolo and Castel, 2007). Furthermore, the finding that the 

relationship between the MDS of trees and their stem water potential could be 

affected by tree crop load was reported in several studies (Intrigliolo and Castel, 

2007; De Swaef et al., 2014). For instance, crop load effects on MDS were evaluated 

both under full and deficit irrigation conditions on Japanese plum trees (Intrigliolo 

and Castel, 2007). In this study, tree MDS was positively correlated with crop load: 

the MDS was 34% higher in high-cropping than low-cropping trees. This finding 

implies that crop load must be considered when using MDS to evaluate tree water 

status.  

Crop load can affect tree water relations in different ways. It may either restrict root 

growth thus reducing water uptake (Williamson and Coston, 1989) or increase 

transpiration rates due to the need for higher amounts of water that are transported 

towards the fruit (Blanco et al., 1995; Marsal et al., 2003). Moreover, crop load is 

assumed to influence the amount of sugars stored in woody tissues (Buwalda and 

Lenz, 1992) and the tissue elasticity by altering bark turgor pressure (Intrigliolo and 

Castel, 2004). 

To the best of our knowledge, there are no studies available on the relationship 

between MDS and fruit quality. Therefore, the objectives of this chapter were 1) to 

analyse how soil ECa (as indicator of soil water availability) and crop load affect 

MDS in ˈJojoˈ and ˈTophit plusˈ plum trees and 2) to assess the usefulness of MDS 

as a tree water deficit indicator to predict changes in fruit quality before harvest, at 

harvest and during storage. 
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 Harvest maturity  2.2.

The maturity at harvest plays an important role in determining the eating quality and 

potential postharvest life of stone fruit (Taylor et al., 1993b). Both premature and late 

harvesting are known to reduce fruit quality (Taylor et al., 1993b; Crisosto et al., 

1995). Harvesting plums at an early maturity stage may extend their storability and 

shelf life by preventing excessive losses in firmness; it will, however, also decrease 

consumption of early-harvested fruit due to their poorer quality in comparison to 

more mature fruit (Abdi et al., 1997; Guerra and Casquero, 2008). Un ripe fruit will 

also lose water more rapidly, and may be prone to physiological deterioration, 

especially if susceptible to internal breakdown (Crisosto et al., 1995). 

On the other hand, there is a large acceptance of late-harvested fruit, being, in 

particular, rich in taste and flavour; although the postharvest life of these fruit is short 

and they cannot be stored for a long period (Crisosto et al., 1995). Therefore, it is 

very important for the grower to be able to precisely determine the harvest date. For 

this it is indispensable to comprehensively understand which maturity indices 

consistently reflect the quality of the harvested product (Abdi et al., 1997). In this 

context, a number of parameters have been used to evaluate the harvest maturity of 

plums. 

 

 Maturity index parameters  2.2.1.

Parameters such as fruit size, skin colour, fruit firmness, soluble solids concentration 

and titratable acidity are used to determine the maturity of fruit at harvest (Robertson 

et al., 1991; Crisosto, 1994a). 

Fruit size may indeed be one index to indicate the state of maturity of fruit. However, 

it cannot be used alone because fruit size is also strongly affected not only by the 

type of cultivar investigated, but also by crop load, climatic conditions, and cultural 

practices (Guerra and Casquero, 2009 ). 

In stone fruits, skin colour is one of the most important criteria for ripeness (Usenik 

et al., 2008), and an important parameter for consumer acceptance (Daza et al., 

2008). However, in some plum cultivars, skin colour develops very early, when fruit 
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are still immature, have inadequate size and taste, and are poor in flavour. Hence in 

this case, skin colour may only be of limited value for the determination of harvest 

time (Usenik et al., 2008).  

Since the skin colour in most plum cultivars changes to full red or dark violet well 

before the fruit reaches true maturation, fruit firmness measurement is suggested as 

an appropriate index for maturity (Crisosto and Kader, 2000). Fruit softening is one 

of the most important factors for estimating market life potential (Usenik et al., 

2008), when considering the latest point that fruit can be harvested and still ensure 

good quality during postharvest life (Crisosto et al., 2004). However, there is still a 

lack of references for the usage of fruit firmness as a means to controlling the 

ripening, particularly for European plums (Usenik et al., 2008). 

The soluble solids content (SSC) and amount of titratable acidity (TA) have been 

suggested as the most reliable maturation indices for the evaluation of consumer 

acceptance (Crisosto and Crisosto, 2005). In plums, SSC has been correlated with the 

perception of sweetness, flavour and aroma (Crisosto et al., 2007; Diaz-Mula et al., 

2008). Generally, plums with high SSC (>12%) had a high level of consumer 

acceptance regardless of their level of titratable acidity. It has been claimed, 

however, that the use of either SSC or TA alone as a maturity index is limited by a 

pronounced variation among cultivars, production area and season. In contrast, the 

sugar-to-acid ratio (SSC:TA) has been shown to be more closely related to fruit 

quality than TA or SSC alone (Casquero and Guerra, 2009). In general, there is still a 

lack of well-defined maturity indices based on these parameters. It remains therefore, 

difficult to determine the optimal time for picking. 

 

 Physiological and chemical changes during fruit ripening 2.2.2.

Based on their fruit ripening characteristics, most plum cultivars have been 

categorized as climacteric fruit. This, however, is not a uniform behaviour across 

cultivars. Among the various cultivars, plums may show a great variability in the 

changes in respiration and ethylene production rates during fruit ripening (Abdi et 

al., 1997). Consequently, plums can be classified into climacteric cultivars, such as 

ˈBlackamberˈ, ˈAmber Jewelˈ, ˈGulfrubyˈ, ˈBeautyˈ, ˈTeganˈ, ˈSanta Rosaˈ and 
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ˈBlackStarˈ, and suppressed climacteric types, such as ˈAngelenoˈ, ˈShiroˈ, 

ˈSongoldˈ, ˈGolden Japanˈ and ˈRubyredˈ (Guerra and Casquero, 2008). In 

climacteric plums, ripening is characterized by a pronounced increase in both 

ethylene production and respiration rate. In contrast, the production of ethylene in 

suppressed climacteric plums is not enough to induce a climacteric rise in respiration 

and ethylene production (Abdi et al., 1997). Plums are generally highly perishable 

and need special care during the postharvest period. Nevertheless, suppressed 

climacteric cultivars have longer shelf lives than climacteric ones because the 

potential postharvest life of fresh fruit is strongly dependent on respiration and 

ethylene production (Abdi et al., 1998; Khan and Singh, 2007; Diaz-Mula et al., 

2009). 

Not only during fruit ripening but also after harvest, the respiration and ethylene 

production of plums increase. Furthermore, the most evident changes, after the 

appearance of fruit colour, include the enhancement of fruit mass, the increase in 

soluble solids and anthocyanin content, and the decrease in concentration of total 

acids and fruit firmness due to cell wall degradation (Guerra and Casquero, 2008; 

Usenik et al., 2008). 

 

 Postharvest factors affecting fruit quality 2.3.

 Postharvest treatments  2.3.1.

Plums are highly perishable and have a relatively short postharvest life. This is 

mostly because of an accelerated postharvest quality loss as indicated by changes in 

colour, texture, total soluble solids and total acidity (Crisosto et al., 2007). Plums can 

quickly pass from ideal ripeness to overmaturity, depending in part on postharvest 

condition (Kader and Mitchell, 1989). For this reason, several treatments that may 

maintain fruit quality such as cold storage (Robertson et al., 1991; Larrigaudiere et 

al., 2009), heat treatment (Serrano et al., 2004), pre- or postharvest application of 1-

methylcyclopropene (Khan and Singh, 2007; Lee et al., 2011), or edible coatings 

(Eum et al., 2009; Valero et al., 2013) were studied.  



     INTRODUCTION 

21 

 

High temperatures during the postharvest period lead to overripe and/or shrivelled 

fruit, while storage at low temperatures effectively delayed fruit ripening and 

extended shelf life by reducing ethylene production, respiration, colour changes, 

softening, SSC increase and the decrease in TA (Crisosto et al., 2007; Guerra and 

Casquero, 2008; Diaz-Mula et al., 2009). An acceptable quality of plums can be 

maintained from 1 to 6 weeks in cold storage, depending on the cultivar (Crisosto et 

al., 1999). Maximum market life is obtained when fruit are stored at temperatures of 

-1.1 to 1°C, and high relative air humidity (90–95%; Crisosto and Kader, 2000).  

However, as mentioned previously, plums of many cultivars are very susceptible to 

low temperatures and may display physiological disorders such as internal 

breakdown and gel breakdown. This is attributed to chilling injury, which is 

particularly pronounced if fruit are held at low temperatures for long time (Taylor et 

al., 1993b; Abdi et al., 1997; Crisosto et al., 1999; Menniti et al., 2006). 

1-Methylcyclopropene (1-MCP) application is one of the most important treatments 

for decreasing ethylene production in climacteric fruit during storage. 1-MCP 

inhibits ethylene action by effectively blocking ethylene receptor sites (Blankenship 

and Dole, 2003). Most 1-MCP applications include mixing the product with water or 

a buffer solution in order to release 1-MCP gas in enclosed volume (Manganaris et 

al., 2008). In recent years, extensive research has been conducted to describe the 

effects of 1-MCP on the ripening of plums of different cultivars. Compared to 

control fruit, 1-MCP treatment significantly reduced ethylene and CO2 production, 

and delayed ripening (Abdi et al., 1998; Dong et al., 2001; Martinez-Romero et al., 

2003; Menniti et al., 2004). Moreover, 1-MCP reduced the incidence of chilling 

injury in climacteric plums (Candan et al., 2008). In recent years, heat treatment 

application also has been shown to be useful for extending storage life. In this 

context, heat treatment reduced the physiological changes such as increases in 

ethylene production and in respiration rate that had been caused by mechanical 

damage in ˈBlackstarˈ plums (Serrano et al., 2004).  

Other postharvest treatments to maintain quality, such as calcium treatments and 

ozone, have been applied with relatively good results. Hence, these techniques can be 

helpful under particular circumstances to complement other treatments to conserve 

postharvest quality (Manganaris et al., 2008). 
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 Edible coatings 2.3.2.

Much attention has been paid to the use of edible coatings for the extension of shelf 

life and food quality retention of whole and fresh-cut fruit (Campos et al., 2011). The 

application costs of coatings are lower than other postharvest technologies 

(DiazSobac et al., 1996). 

The coatings act as barriers against the migration of water vapour, O2 and CO2. Thus, 

coatings may maintain the appearance and texture of fruit through the modification 

and control of the internal atmosphere of individual fruit in a fashion similar to 

controlled or modified atmosphere storage (Vargas et al., 2008; Turhan, 2009). In 

addition, insect infestation and micro-organism growth can be restricted by the 

addition of active agents, such as antioxidants, fungicidal or antimicrobial 

substances, to the coatings (Krochta and DeMulderJohnston, 1997).  

Edible coatings can be defined as a layer of edible material formed around the skin of 

fruit, which can then be eaten together with the fruit (Bal, 2013). The skin 

morphology and physiology of the fruit commodity are also important to control 

mass transfer in coated fruit (Navarro-Tarazaga et al., 2011). In general, edible 

coatings are composed of hydrocolloids, such as proteins, polysaccharides and 

alginate, or hydrophobic compounds, such as fatty acids, acylglycerol or waxes, 

while composite coatings contain a blend of these compounds (Donhowe and 

Fennema, 1993). In a protein coating, the possible main ingredients include gelatin, 

casein, whey protein, corn zein, wheat gluten, soy protein, mung bean protein and 

peanut protein (Bourtoom, 2008). These coatings can be placed on fruit surfaces by 

either dipping or spraying (Bal, 2013). Suitable substances for polysaccharide 

coatings include cellulose, starch derivatives, pectin derivatives, chitosan and others 

(Krochta and DeMulderJohnston, 1997). Effective lipid coatings are acetylated 

monoglycerides and natural waxes. In this context, the most effective lipid 

substances are paraffin wax and beeswax (Bourtoom, 2008). 

Several studies have reported the use of edible coatings for maintenance of fruit 

quality, e.g. Chitosan used in peaches (Li and Yu, 2001), strawberries (Vu et al., 

2011) and plums (Bal, 2013). In other investigations, whey protein was used as a 

coating for plums (Reinoso et al., 2008), while alginate was applied for sweet 

cherries (Diaz-Mula et al., 2012), plums (Valero et al., 2013) and peaches 
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(Maftoonazad et al., 2008). In some cases, however, the edible coating did not 

produce meaningful results or even resulted in a lower fruit quality. In these cases, 

the coatings induced fruit disorders by inhibiting O2 and CO2 exchange, thus 

resulting in anaerobic respiration (Yehoshua, 1969).  

The use of additives such as anti-browning agents, preservatives, firming agents and 

plasticizers may improve the properties of coatings (Perez-Gago et al., 2003). The 

addition of plasticizer modifies the mechanical properties of the coatings, which may 

improve their application properties, and change their barrier properties as well 

(Olivas and Barbosa-Canovas, 2005). Sorbitol and glycerol were frequently 

investigated as plasticizers, because of their stability and edibility (Rindlav-Westling 

et al., 1998). 

Versasheen (National Starch & Chemical Ltd, Hamburg, Germany) is a 

carbohydrate-based product that adds a high-gloss sheen on food surfaces obtained 

from waxy maize starch consisting of high amylopectin (99 %; Eum et al., 2009). 

Versasheen dissolves easily in water, has low viscosity at high solids concentrations 

and is very simple to use because it requires very little drying time (Sablani et al., 

2007; Larrigaudiere et al., 2009). It is suitable for industrial application to enhance 

the appearance of dry products such as baked products, bread and pastries. Only a 

few papers, however, have reported on the application of Versasheen coatings to 

fresh produce. According to Eum et al. (2009), coating ˈSapphireˈ plums (Prunus 

salicina Lindl.) with Versasheen and sorbitol as plasticizer extended their shelf life 

by delaying losses of fresh mass, titratable acidity and firmness, as well as changes in 

the colour parameter L* and hue angle during storage at 20°C for 8 days. However, 

no information is available about the use of Versasheen on European plums (Prunus 

domestica L.). Hence, the comprehensive evaluation of the application of this edible 

coating for the maintenance of quality in two cultivars of European plums during 

cold storage is the main objective of the following chapters. 
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 Optical properties of fruits 2.4.

In recent years, the application of non-destructive optical methods has increased in 

order to evaluate the properties and quality of horticultural products. One of the main 

benefits of non-destructive methods is that the measurements can be recorded for a 

certain time interval in an inexpensive and relatively easy way (Zude et al., 2002). 

These methods are excellent alternatives to destructive techniques. In this regard, 

near-infrared reflectance spectroscopy (NIRS) and laser light backscattering imaging 

(LLBI) are two novel techniques that have been developed. NIRS is a commercial 

technique that has been used for the detection of fruit quality parameters such as 

soluble solids content (SSC; Lu, 2001; Zude, 2003) or dry matter content (McGlone 

and Kawano, 1998). However, this technique is expensive and does not provide 

quantitative information regarding light scattering within the sample (Lu, 2004). On 

the other hand, LLBI is an inexpensive technique that uses principles of light 

absorption, scattering and image processing in the visible and near infrared range of 

the electromagnetic spectrum and provides useful information on light scattering 

within the sample (Qing et al., 2007a, 2008).  

In general, when a light beam hits the fruit, the large part of the light penetrates into 

the fruit tissue and a small fraction, about 4-5%, is reflected off the surface as 

external diffuse reflectance (Birth, 1976). One part of the penetrated light is absorbed 

by the tissue components and the remaining light is scattered toward the exterior 

tissue (Mollazade et al., 2013). The absorbed light is mostly determined by chemical 

constituents, e.g. sugar, pigments, water etc. (Udomkun et al., 2014), while scattering 

is mainly influenced by cell size and the properties of tissue matrices (Lu, 2004). 

Therefore, the degree of scatter detected by an imaging system can provide useful 

information for predicting the mechanical and textural properties of fruit such as 

flesh firmness (Lu, 2004; Qin and Lu, 2009).  

Recently, in various studies, lasers have been used as the light source to generate 

scattering images for the prediction of fruit quality in several types of fresh produce, 

such as the skin colour of apples (De Belie et al., 1999), moisture content of banana 

slices during drying (Romano et al., 2008; Romano et al., 2010), SSC in apples (Qing 

et al., 2007a), as well as the firmness or elasticity in apples (Qing et al., 2007a; Qin 
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and Lu, 2009; Mollazade et al., 2013), kiwifruit (Baranyai and Zude, 2009) and plum 

and tomato (Mollazade et al., 2013; Mollazade et al., 2015). 

In general, LLBI is a promising technique for the replacement of conventional 

destructive methods; however, further research to assess its suitability for the 

detection of internal quality properties of fruit needs to be conducted. 
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 Research objectives 2.5.

Plums are, in general, valuable for human nutrition. High levels of consumer 

acceptance could certainly be achieved worldwide if fruit quality and fruit shelf-life 

can be improved. Fruit quality is produced in the orchard and can then only be 

maintained during the postharvest period. Consequently, it is necessary to observe 

preharvest conditions such as soil, cultivar and crop load in order to reach a high 

quality of plums for optimal consumer satisfaction. Moreover, it has been shown that 

tree water status is highly correlated with the maximum daily shrinkage of fruit tree 

trunks (Cohen et al., 2001).Thus, this study evaluates the possible influence of 

variations in tree water status, as indicated by changes in maximum daily shrinkage, 

on fruit quality. 

Harvest maturity is also important for a plum's acceptance, but it is not as simple as 

determining the optimal harvest date for plums due to a lack of a meaningful 

maturity index (Usenik et al., 2008). Furthermore, plums are perishable products and 

have a short postharvest life. To address this issue, the effects of an edible coating 

(Versasheen) on the preservation of plum quality were investigated during cold 

storage and room temperature storage on the shelf. 

The specific objectives of the present work are: 

1. To investigate the effects of soil ECa (as a soil water availability indicator) and 

fruit crop load on the quality of ˈJojoˈ and ˈTophit plusˈ plums during a) fruit 

development on the tree and b) during storage, over three growing seasons. 

2. To analyse the interaction of changes in MDS in tree groups growing in two 

soil ECa zones and with two different crop loads, considering in particular the fruit 

quality of both cultivars a) during fruit development on the tree and b) during 

storage. 

3. To determine the influence of harvest date on the quality of ˈJojoˈ plums, at 

harvest, during cold storage and during shelf-life. 

4. To comprehensively evaluate the potential of the application of ‘Versasheen’ 

with sorbitol-based coating for the quality maintenance of ˈJojoˈ and ˈTophit plusˈ 

plums during cold storage and shelf-life period. 
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5. To use laser light backscattering imaging (LLBI) for testing the potential of 

additional non-destructive methods to analyse variations in the optical properties of 

plum tissues during fruit development on the tree and in storage. 
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 Material and Methods 3.

 Experimental plot 3.1.

The experiments were performed on two commercial cultivars of plums, ˈJojoˈ and 

ˈTophit plusˈ (Prunus domestica L.), grafted on the rootstock ˈWavitˈ (Prunus 

domestica L.) in an experimental orchard (4000 m2area) in Marquardt close to 

Potsdam (52° 28' 0.48"N, 12° 57' 29.12"E; Fig. 2, 3) over three consecutive years 

(2011 – 2013). The growing area covers 25 m x 120 m and is located on a hill slope. 

In 2009, 180 trees were planted in 6 rows at a spacing of 5 m × 4 m. This included 

156 trees of the cultivar ˈTophit plusˈ and 24 trees of ˈJojoˈ.  

Orchard soil texture was predominantly sandy to loamy sand with considerable 

small-scale variation due to the glacial and post-glacial origin of the parent material. 

Trees were trickle irrigated (pipe 50 cm above the ground, dipper distance 50 cm, 

flow rate 1.6 ± 0.1 l/h, 4 drippers for each tree) during the irrigation season (April to 

October). The trees were watered 3 times per week (0.8 mm/m² for each time), 

taking the weather conditions into consideration. Climatic data (air temperature and 

humidity, air pressure and precipitation) were recorded at an automated weather 

station near the orchard. The annual levels of precipitation in 2011, 2012 and 2013 

were 458, 431 and 465 mm, respectively. Moreover, the daily air vapor pressure 

deficit (the difference between the amount of moisture in the air and how much 

moisture the air can hold when it is saturated) was calculated. 
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Fig. 2. Location of the experimental orchard in Marquardt, a top view of the Marquardt orchard 

including the plum growing area obtained from google map.  

https://www.google.de/maps/place/Marquardt,+Potsdam/@52.4677757,12.9579235,522m/data=!3m1!

1e3!4m2!3m1!1s0x47a8f0e2f8852413:0xebe8805afc614c7f. 

 

 

 

 
Fig. 3. Topographic map of plum growing area.in Marquardt orchard (52° 28' 0.48"N, 12° 57' 

29.12"E) (Jana Käthner, 2011). 

 

https://www.google.de/maps/place/Marquardt,+Potsdam/@52.4677757,12.9579235,522m/data=!3m1!1e3!4m2!3m1!1s0x47a8f0e2f8852413:0xebe8805afc614c7f
https://www.google.de/maps/place/Marquardt,+Potsdam/@52.4677757,12.9579235,522m/data=!3m1!1e3!4m2!3m1!1s0x47a8f0e2f8852413:0xebe8805afc614c7f
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 Experimental design 3.2.

 Soil ECa 3.2.1.

There are two types of sensors commercially available for the measurement of soil 

ECa in the field. These include non-contact sensors based on electromagnetic 

induction and direct contact sensors (Sudduth et al., 2001). ECa is generally given in 

units of millisiemens per meter (mS/m). For this study, the variability of the soil ECa 

(0 - 0.25 m depth) adjacent to each tree was characterized by means of geoelectrical 

readings with four electrodes (4-point light, LGM, Schaufling, Germany). Soil ECa 

was calculated according to Telford et al. (1990), applying Ohm’s law to data from 

the equidistant electrodes, with an (equal) electrode, spacing of 0.5 m (Mancuso, 

2012). The electrodes were placed east-west of the tree with the tree stem in the 

centre of this Wenner array (Käthner et al., 2014). The soil ECa measurements were 

performed in 2011 (9th June), 2012 (16th August) and 2013 (2nd August) by Kathner 

and Zude-Sasse (2015). 

In 2011 and 2012, soil electrical conductivity varied between 2 to 12 mS/m as sandy 

to loamy sandy, respectively. However, the data in 2013 varied between 1 to 6 mS/m 

and were lower than those in 2011 and 2012. This may be due to higher precipitation 

during measuring time in 2011 and 2012 (Tab. A. 5), resulting in higher soil water 

content in these years than in 2013. According to ECa, all 180 orchard trees were 

divided into two soil quality zones. The first area with low soil ECa (Tab. 2), was 

covered with 86 trees (marked as blue in Fig. 4). The second area with high ECa 

(Tab. 2), was covered with 94 trees (marked as green in Fig. 4). As can be seen in the 

topographic map of the orchard (Fig. 3), these two zones are distributed along the 

slope of the growing area.  

6 and 8 trees from ˈJojoˈ and ˈTophit plusˈ, respectively, from the low ECa (LECa) 

zone and 6 and 7 trees from the high ECa (HECa) zone were selected for 

investigation in 2011 (Fig. 4). In 2012, 6 trees from eachzone were chosen (Fig. 4). 

Finally, in the third year (2013), 3 ˈJojoˈ and 4 ˈTophit plusˈ trees from the low ECa 

(LECa) zone and 3 trees of each cultivar from the high ECa (HECa) zone were 

selected (Fig. 4).  
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For the fruit of each group, various quality parameters were determined to evaluate 

the effect of soil ECa on fruit quality during the preharvest period, at harvest and 

during the postharvest period in all three years. 

  
Fig. 4. Classification of plum trees according to relative apparent soil electrical conductivity (ECa) 

over three years (2011 to 2013). Rectangle boxes around the tree number indicate the years of 

measurement. 
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 Crop load 3.2.2.

Tree crop load was expressed as number of fruit per cm2 of trunk cross-sectional area 

(TCSA; Intrigliolo and Castel, 2006b). To determine the TCSA of all trees of each 

cultivar, their trunk circumference was determined in spring of each year. Similarly, 

the number of all fruit, i.e. total crop load per tree was recorded at final harvest. 

Finally, the selected trees were classified according to their crop load into low crop 

load (LCL) and high crop load (HCL) trees independently for each year (Tab. 2). 

Then, fruit quality parameters of all samples of each group were analysed to evaluate 

the effect of crop load on fruit quality during the preharvest period, at harvest and 

during the postharvest period in all three years. 

For the evaluation of both soil ECa and crop load effects, the same trees as in 3.2.1 

were used.  

 
Tab. 2. Classification of plum orchard trees according to their soil ECa (mS/m) crop load (fruit per 

cm2 of TCSA) in 2011, 2012 and 2013.  

 Soil ECa (mS/m)  Crop load (fruit per cm2 of TCSA) 

Year 
Low         High              Low                           High 

Jojo Tophit 
plus Jojo Tophit 

plus 
 

Jojo Tophit 
plus Jojo Tophit plus 

2011 1.0 to 6.0 1.0 to 6.0 6.1 to 12.0 6.1 to 12.0  1.0 to 4.0 0.5 to 1.7 4.1 to 12.0 1.8 to 3.0 

2012 1.0 to 6.0 - 6.1 to 12.0 -  5.0 to 10.0 - 10.1 to 15.0 - 

2013 1.0 to 3.4 1.0 to 3.4 3.5 to 6.0 3.5 to 6.0  15.0 to 20 1.5 to 3.5 25.0 to 30.0 3.06 to 5.0 

 

 Maximum daily shrinkage  3.2.3.

In 2013, on the same trees used for the evaluation of soil ECa and crop load effects, 

the micrometric trunk diameter variation (TDV) was measured continuously using a 

dendrometer with a set of linear variable displacement transducers (LVDT) of 

Ecomatic type DD-L (UP GmbH, Ibbenbüren, Germany; accuracy ± 10 µm) (Fig.5). 

Trunk diameter was measured in all the trees assessed for fruit quality from the end 

of May to end of harvest.  
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Fig. 5. Installation of dendrometer sensor to measure maximum daily shrinkage (MDS) together with 

dynagage sensor for sap flow measurement (covered by aluminum foil; left figure). 

 

The calibrated sensors were attached to the trunk by an Invar (metal alloy with a 

minimal thermal expansion) frame, located approx. 70 cm above ground (Fig. 5). 

Measurements were taken every minute with a data logger (CR10X with AM416 

multiplexer, Campbell Scientific, Logan, USA), which automatically recorded the 

mean every 15 min. 

From the TDV readings, three different indices were deduced (Goldhamer and 

Fereres, 2001): 

1. Maximum daily trunk diameter (MXTD) was reached between midnight and early 

morning when tree transpiration was close to zero (Fig. 6). 

2. Minimum daily trunk diameter (MNTD) was obtained when transpiration was at 

its maximum at about 2 o’clock in the afternoon (Fig. 6). 

3. Maximum daily trunk shrinkage (MDS = MXTD – MNTD) was calculated from 

the difference between MXTD and MNTD (Fig. 6). 
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Fig. 6. Trunk diameters during three days. Shown are also parameters extracted, such as maximum 

daily shrinkage (MDS) expressed as daily differences in maximum daily trunk diameter (MXTD) and 

minimum daily trunk diameter (MNTD). 

 

Finally, according to their MDS, the selected trees of each cultivar were classified as 

low MDS (LMDS; below 170 µm on average) and high MDS (HMDS; above 170 

µm on average), as shown in Fig. 7. Then, the effects of MDS on various fruit quality 

parameters of samples of each group were evaluated during the preharvest period, at 

harvest and during the postharvest period. 

.  
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Fig. 7. Seasonal variations of maximum daily shrinkage (MDS) in low (LMDS) and high (HMDS) of 

ˈJojoˈ (A) and ˈTophit plusˈ (B) fruit. Each value is the mean of three and four measurements in ˈJojoˈ 

and ˈTophit plusˈ fruit, respectively. 

 

 Fruit samples and storage condition 3.2.4.

During preharvest: For the evaluation of the effects of preharvest factors on ˈJojoˈ 

and ˈTophit plusˈ plums' quality, the fruit of the selected trees were sampled 

randomly (manually picked) at three dates before commercial harvest (Tab. 3). After 

sampling, fruit were immediately transferred to the laboratory and subjected to 

various investigations (see below). 
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At harvest and storage time: Fruit free of visual defects were harvested manually, 

selected, and subjected to initial analyses of various physicochemical properties and 

then stored in plastic boxes (3-5 kg) at 2 ± 0.5 °C and 90 ± 2% RH for up to 28 d 

plus 2 d at 20 °C. During storage, fruit in each treatment group were removed after 7, 

14, 21, 28 and 30 days of storage and analysed. 

- The number of selected trees, fruit samples and sampling dates, during the 

preharvest period and at harvest, are shown in Tab. 3. 

 
Tab. 3. The number of selected trees, fruit samples and sampling dates (DAFB = days after full 

bloom) of ˈJojoˈ and ˈTophit plusˈ plums, during preharvest and at harvest in 2011, 2012 and 2013. 

Year Cultivar 
No. of 

selected 
trees 

During preharvest 
(fruit development on the tree)  

At harvest 

Sampling date 
(DAFB) 

Total 
No. of  
fruit  

Harvest 
date 

(DAFB) 
Total No. 
of  fruit 

2011 
Jojo n = 12 116, 124,131 and 137 n = 88   137 n = 250 

Tophit plus n = 15 110, 125,132 and 139 n = 120   139 n = 260 

2012 Jojo n = 12 105, 112,127 and 140 n = 150   140 n = 350 

2013 
Jojo n = 6 93, 105,117 and 137 n = 225   137 n = 252 

Tophit plus n = 7 99, 112,121 and 140 n = 189   140 n = 252 
- The measurements were performed in triplicates. 

 

 Different harvest dates 3.2.5.

To analyse the effects of harvest date on fruit quality at harvest and during storage, 

ˈJojoˈ plums were harvested at three different days after full bloom (DAFB) in 2013. 

Samples were treated further as stated above. Number of fruit and dates of harvest 

are shown in Tab. 4. 
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Tab. 4. Number of harvested fruit and date of harvests (days after full bloom = DAFB) for ˈJojoˈ 

plums in 2013. 

Year 

 
1st harvest date  2nd harvest date  

3rd harvest date 

(as commercial harvest) 

 Date 
(DAFB) 

No. of  

 fruit 

 Date 
(DAFB) 

No. of  
fruit 

 Date 
(DAFB) 

No. of   

fruit 

2013  127 n = 252  130 n = 252  137 n = 252 

- The measurements were performed in triplicates and for each harvest date and each 

sampling time during storage, 42 fruit were used. 

 

 Edible coating treatment  3.2.6.

In 2013, the effects of edible coatings (Versasheen plus sorbitol as plasticizer) on 

changes in fruit quality during storage (conditions as stated above) were analysed on 

ˈJojoˈ and ˈTophit plusˈ plums from all treatment groups. Fruit free of visual defects 

were selected and half of the batches of plums (n = 252 for each cultivar) were 

dipped in a solution of 5% Versasheen plus 0.2% sorbitol as a plasticizer for 60 s. 

Afterwards, treated fruit were laid separately on metal nets to dry at 20 °C for 3 h. 

The other half of the batch was dipped in distilled water as a control. 

- The measurements were performed in triplicate and 42 fruit were used for each 

treatment and each sampling time during storage. 

 

 Fruit quality analysis 3.2.7.

Fresh mass and fruit yield 

To analyse the effects of preharvest factors on fresh mass during the preharvest 

period (3 times) and at harvest, fruit was individually weighed and results averaged 

for each tree (CPA2202S-OCE, Sartorius AG, Göttingen, Germany). 
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Fruit ˈJojoˈ and ˈTophit plusˈ were harvested between mid-August and the beginning 

of September. Total yield (expressed as kg/tree) at harvest was obtained by adding 

together the masses of all fruit of each tree.  

Moreover, the average fresh mass and yield per tree for all trees in each group of 

main factors (soil ECa, Crop load, MDS and harvest date) were calculated. 

 

Dry matter content 

To determine the dry matter content (DMC, %), samples were weighed (FM, given 

in g) and then dried in an oven at 105°C for 24 h. The dry mass (DM, given in g) was 

recorded after cooling to room temperature. Dry matter content was determined as: 

 

 

 

 

Fruit flesh firmness  

Flesh firmness was determined by a standard destructive Magness Taylor test with a 

TA.XTplus Texture Analyser (Stable Micro Systems Ltd., Godalming, U.K.). For 

measurements, approx. 1 cm2 of the fruit skin of samples was removed and a 

cylindrical probe (diameter: 6 mm) was inserted into the fruit tissue. The penetration 

rate was 200 mm/min after the point of contact with the flesh. The maximum force 

was recorded as a measure of fruit firmness, which was expressed as the deformation 

force (N). 

 

Soluble solids content and titratable acidity  

For the analysis of both the soluble solids content (SSC) and titratable acidity (TA) 

of each fruit sample (during the preharvest period, at harvest and during storage 

time) tissue sap was squeezed out from fresh fruit materials with a garlic press. In the 

resulting juice, SSC was determined with a calibrated digital refractometer (PR-1, 

Atago Co., LTD, Tokyo, Japan) at room temperature (20 ◦C). SSC values were 

expressed as °Brix. The titratable acidity was measured by diluting 1 mL of fresh 

juice with 25 mL distilled water and titrating with a standard solution of 0.1 M 

NaOH to a pH of 8.2 using a T50M Titrator with Rondo 20 sample changer (Mettler-

Equation 1 
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Toledo GmbH, Gießen, Germany). The NaOH solution was normalized before 

titration measurements every week. Titratable acidity is always given in grams of 

malic acid (acid factor = 0.67) per 100 ml of tissue sap using the following formula. 

 

 

 

 

Fruit transpiration 

In horticultural science, the transpiration rate usually denotes the amount of water 

(e.g. g) per time unit (e.g. s) that is lost from horticultural produce into the 

atmosphere. The transpiration rates (E) of produce directly depend on the difference 

between the water potential of the air in their intercellular space and that of the 

atmosphere (Von Willert et al., 1995; Yehoshua and Rodov, 2003). In a good 

approximation, E is inversely related to the resistance for water vapour transfer 

(referred to as “total resistance”) of the produce’s outer tissue (Von Willert et al., 

1995). 

During storage, the fruit of both ˈJojoˈ and ˈTophit plusˈ were withdrawn from 

storage 2 h before the transpiration measurement at regular intervals of 7 days. All 

samples were laid separately on metal nets for up to 1 h (Δt) to allow water vapour 

losses in a condition of unrestricted free convection. The climate conditions during 

the transpiration measurements are shown in Tab. A.6. 

At the beginning (FM1) and the end of the measurement (FM2), fruit fresh mass was 

recorded with an analytical balance (WPS 2100/C/2, Radwag, Radom, Poland). With 

relation to the fruit surface area* (cm²), the rates of transpiration (E, mg/cm²h) were 

calculated according to Linke (1997) as  

 

 

* The surface of the fruit sample was obtained with an automatic 3D-scanner (3D 

Scanbook, Scanbull GmbH, Hameln, Germany). 

 

Equation 2  

Equation 3 
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Skin colour 

The changes in fruit skin colour of each plum were determined using a portable 

colourimeter (CM-2600d, Konica Minolta, Inc., Tokyo, Japan). Assessments of fruit 

colour as well as their changes during the preharvest and storage periods were based 

on the parameters of the CIE (International Commission on Illumination) colour 

space, L* (lightness coordinate), a* (green to red) and b* (blue to yellow) as 

indicated by (HunterLab., 1996). The colourimeter was calibrated with white and 

black tiles before a measurement series. Measurements were performed on opposite 

sides of each fruit and their means were used for the analysis.  

 

Evaluation of normalized anthocyanin index (NAI) 

During the preharvest and postharvest periods, the normalized anthocyanin index 

(NAI) was estimated from non-destructive spectral remission measurements taken 

with a portable spectrometer (Fig. 8; Pigment analyser PA1101, Control in applied 

Physiology (CP) GbR, Falkensee, Germany). The measuring head of the instrument 

contains seven LEDs (4 white LEDs, 2 red LEDs, 1 reference LED) arranged 

circularly around the receiving fibre. The pigment analyser measures remission 

spectra in the wavelength range of 450 nm to 1100 nm. During measurements, the 

radiation from the LED light sources enters the fruit matter and interacts with the 

tissue. Some photons are diffusely scattered from the fruit and then reach the 

receiving fibre placed in the centre of the measuring cup (Solornakhin and Blanke, 

2007; Rutkowski et al., 2008). Finally, the remittances at the respective wavelengths 

of 570 nm (I570 = maximum of anthocyanin absorption) and 780 nm (I780 = no 

anthocyanin absorption) were obtained from the raw spectral data and used to 

calculate the NAI according to Solornakhin and Blanke (2007) and Rutkowski et al. 

(2008). In this study, spectral data were recorded on opposite sides of each fruit and 

their mean was used for the analysis. 

 

  

 

Equation 4 
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Fig. 8. Measurement of remission spectra of fruit samples (A) on tree and (B) during postharvest in 

the lab. 

 

 Laser light backscattering imaging 3.2.8.

Laser light backscattering imaging (LLBI) is a non-destructive optical method that 

can be used to predict fruit quality. In generally, the LLBI system used (Fig. 9), 

consists of a monochrome charge-coupled device (CCD) camera (Model CV-A50IR, 

JAI A/S, Glostrup, Danmark) with a 1/2" TAMRON zoom lens (Varioobjektiv 10-40 

mm, TAMRON Europe GmbH, Köln, Germany) and three lasers of 532 nm, 660 nm 

and 785 nm wavelengths as excitation light sources. The light scattering in fruit 

tissue for wavelengths of 532 and 660 nm is mainly related to the absorption of light 

by the anthocyanin and chlorophyll respectively. However, scattering for 785 nm is 

related to the textural properties of the fruit. 

The Backscattering Analyser software (v.1.3) was used (Fig. 9) for the operation of 

the system and the evaluation of the obtained images (Baranyai and Zude, 2009; 

Hashim et al., 2014). 
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Fig. 9. (A) The LLBI system measuring unripe plums, (1) CCD camera with lens; (2) laser sources; 

and on the other side of the security wall (3) Backscattering Analyser software.  

The CCD camera was placed above and perpendicular to the samples (approx. 30 

cm). The lasers were fixed in such a position that the incident angle of the laser beam 

could be adjusted between 5 to 15° as shown in Fig. 9. The light beam hits the fruit 

and illuminates a part of the fruit as a result of photon migration within the tissues. 

Then the backscattering image generated at the surface of the fruit is recorded by 

CCD camera (Fig. 9). The obtained images were saved in the computer for further 

analysis in BMP format (720 × 576 pixel at 8 bit colour depth per pixel). 

The experiments were conducted in a dark room to remove the effect of noise in the 

backscattering images. Two images from two opposite sides of each fruit were taken 

and the results were averaged. Three replications were performed for each treatment 

during the preharvest period (in 3 times), at harvest and during storage time (every 7 

days). 
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Fig. 10. Laser induced backscattering images of a plum sample at (A) 785 nm, (B) 660 nm and (C) 

532 nm wavelength. 

 

The backscattering images obtained are characterized by a pronounced variation in 

brightness in the backscattered light, with maximum light intensity in the centre (Fig. 

2). The Gaussian–Lorentzian cross product (GL) function was used to fit the changes 

in intensity. GL is often used in spectroscopy; as well as in the description of laser 

profiles (Limandri et al., 2008). The GL function used here is explained in detail by 

Lorente et al. (2015). Average values of intensity were calculated in radial averaging 

relative to the incident point. The highest intensity of light scattering appears at the 

centre of the image and the intensity of photons decreases radially outwards with the 

increase in distance from the image centre, thus providing a backscattering profile 

(Fig. 11. B). In the backscattering profiles, full width at half maximum (FWHM) is 

an interesting landmark. The FWHM was computed based on radial average relative 

to the incident point (Fig. 11. B). The FWHM was obtained in pixels and the value 

was converted to relative value (%), which at the 1st measurement time was equal to 

0 %. The changes in FWHM during measuring times in each year were compared in 

relative values (%). 
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Fig. 11. Image analysis by Backscattering Analyser software, and (B) a backscattering profile fitted 

by Gaussian–Lorentzian cross product distribution. 

 

All analyses of fruit samples in this study were performed at the Leibniz Institute for 
Agricultural Engineering (ATB). 
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 Statistical analysis 3.3.

Analyses of variances (ANOVA) were performed using SAS software (SAS Institute 

Inc. Version 9.3., Cary, USA). The main effects of preharvest factors (Crop load, 

Soil ECa and MDS) on the quality of ˈJojoˈ and ˈTophit plusˈ plums for each year 

and different measurement periods (i.e. before harvest, at harvest and during storage) 

were individually analysed as a factorial ANOVA, using the ‘GLIMMIX’ procedure 

(PROC GLIMMIXED). A linear model was developed and tested to find the 

significance of the different preharvest factors' influence on fruit quality 

(significance level of α = 0.05).  

The main effects of harvest time and duration of storage on fruit quality were 

analysed individually for 2013 as a factorial ANOVA. In addition, the main effects 

of cultivars, edible coating and storage time on changes in fruit quality during 

storage in 2013 were analysed as a factorial ANOVA. 

Differences between mean values were tested by least significant difference (LSD) 

for all significant factors with the SIMULATE option in the LSMEANS statement in 

SAS procedure GLIMMIX (permutation test) for means at a global α = 0.05 (after 

adjustment for multiple testing). Means with different letters show significance 

through the LSD test. *, ** and ns indicate significance at p < 0.05, 0.01 or not 

significant, respectively. Bars represent the 95% confidence interval of the means. 

Pearsonˈs correlation (r) and coefficient of determination (r2) analyses were 

performed with SPSS (Version 16.0., Release 2007, SPSS Inc., Chicago, USA). 
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 Results 4.

 Effects of soil ECa and crop load on fruit quality of plums 4.1.

Fruit fresh mass and yield 

During the preharvest period, fresh mass increased notably in plums of both cultivars 

in all years (data not shown). Soil ECa only affected fresh mass in ˈJojoˈ plums 

(2013) (Tab. 5). Here, the fresh mass of the fruit from high soil ECa (HECa) grown 

trees was larger than in those from low soil ECa (LECa). Crop load significantly 

affected fresh mass in both ˈJojoˈ and ˈTophit plusˈ fruit. Here, the fresh mass was 

6% (ˈJojoˈ 2011), 6% (2012), 12% (2013), and 8% (ˈTophit plusˈ 2013) higher in 

fruit from low crop load (LCL) trees than in those from high crop load (HCL) trees. 

At harvest, the fresh mass of ˈTophit plusˈ plums was 46% and 41% higher than that 

of ˈJojoˈ fruit in 2011 and 2013 (Tab. 5). Soil ECa only affected the fresh mass of 

ˈJojoˈ and ˈTophit plusˈ fruit in 2013, as the fresh mass in fruit of LECa was 5% and 

6% lower than in HECa plums (Tab. 5). The effect of crop load on the fresh mass in 

ˈJojoˈ (2011, 2012 and 2013) and ˈTophit plusˈ (2013) plums was consistent (Tab. 5). 

Here, the fresh mass of fruit grown on LCL trees was 7%, 11%, 11% and 7% higher 

than the mass of those harvested from HCL trees. At this time, the interaction 

between soil ECa and crop load only had a significant effect on fresh mass in ˈJojoˈ 

plums (2012; Tab. 5). 

Tree yield increased remarkably from the first (2011) to the last year of experiments 

(2013) in both cultivars, due to an increasing crop load over the years (Tab. 5). Crop 

load affected tree yield, as LCL trees had a lower yield than HCL ones over all three 

years (Tab. 5). In contrast, soil ECa did not have any effect on tree yield. Tree yield 

in response to crop load was similar in the two different soil ECas (Tab. 5). 

 

 

 

 



RESULTS 

47 

 

Tab. 5. Statistical analysis of the effects of soil ECa and crop load on fresh mass and yield of ˈJojoˈ 

and ˈTophit plusˈ plums during preharvest and at harvest in 2011, 2012 and 2013. 

Quality 

parameters 
Cultivar Year 

Treatment 
 

Factor 

LECa HECa 
 ECa CL T ECa × CL 

CL × 

T 
ECa × T 

LCL HCL LCL HCL 
 

During preharvest 

Fresh mass 

(g) 

Jojo 

2011 51.7 50.2 51.2 48.9 
 

NS * ** NS NS NS 

2012 44.2 41.8 44.7 41.9 
 

NS * ** NS NS NS 

2013 30.0 26.2 33.1 28.3 
 

** ** ** NS NS ** 

Tophit 

plus 

2011 73.8 72.5 76.4 74.6 
 

NS NS ** NS NS NS 

2013 45.1 42.7 45.9 43.6 
 

NS * ** NS NS NS 

At harvest 

Fresh mass 

(g) 

Jojo 

2011 56.2 53.6 56.6 54.7 
 

NS * - NS - - 

2012 52.1 b 48.6 c 56.7 a 48.3 c 
 

NS ** - ** - - 

2013 39.2 35.9 41.1 37.0 
 

* ** - NS - - 

Tophit 

plus 

2011 80.5 79.1 80.7 77.3 
 

NS NS - NS - - 

2013 56.2 54.5 61.0 55.2 
 

* ** - NS - - 

Yield 

(kg/tree) 

Jojo 

2011 2.7 4.9 1.4 5.4 
 

NS ** - NS - - 

2012 11.4 11.9 9.7 12.0 
 

NS ** - NS - - 

2013 18.1 33.1 20.5 30.5 
 

NS ** - NS - - 

Tophit 

plus 

2011 0.9 1.7 1.2 2.1 
 

NS ** - NS - - 

2013 3.5 6.6 4.3 4.9 
 

NS * - NS - - 

Values are means of each treatment. Statistical significant (LSD test, p<0.05) differences between 

means are indicated by different letter. Significance of effects of treatments (ECa, soil ECa; LECa, 

low soil ECa; HECa, high soil ECa; CL, crop load; LCL, low crop load; HCL, high crop load; T, time 

of measurements) and their interactions on the various parameter are also indicated (*: p<0.05; **: p< 

0.01; ns: not significant).  

 

Soluble solids content 

Over the preharvest period, the soluble solids content (SSC) of plums increased 

remarkably, irrespective of cultivar and year of investigation (Fig. 12; Tab. 6). With 

the exception of ˈTophit plusˈ fruit in 2011, SSC did not significantly increase during 

cold storage and shelf life, again irrespective of cultivar and year of investigation 

(Fig. 12; Tab. 6). In total, SSC was higher in ˈTophit plusˈ than in ˈJojoˈ plums, in 

2011 (7%) and 2013 (10%; Tab. 6).  
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Soil ECa only significantly affected SSC in ˈJojoˈ plums during the preharvest period 

in 2012 and over the entire experimental period in 2013 (Tab. 6). In ˈJojoˈ plums 

(2013), SSC in LECa fruit was approx. 6% higher than in HECa plums before, at and 

after harvest (Tab. 6). Crop load also significantly affected SSC in both ˈJojoˈ and 

ˈTophit plusˈ plums before, at and after harvest in 2012 and 2013 (Tab. 6). Fruit 

grown on LCL trees had a higher SSC than those from HCL trees. The interactive 

effect between soil ECa and crop load on SSC was significant for ˈTophit plusˈ over 

the entire experimental period of 2013 and for ˈJojoˈ before harvest in 2012 (Tab. 6).  
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Tab. 6. Statistical analysis of the effects of soil ECa and crop load on SSC of ˈJojoˈ and ˈTophit plusˈ 

plums during preharvest, at harvest and during 28 days at 2°C plus 2 days at 20°C in 2011, 2012 and 

2013. 

Cultivar Year 
Treatment  Factor 

LECa HECa  ECa CL T ECa × 
CL 

CL × 
T 

ECa × 
T LCL HCL LCL HCL  

During preharvest 

Jojo 
2011 16.6 16.0 16.3 15.2 

 
NS NS ** NS NS NS 

2012 15.1 a 12.1 b 13 b 12.6 b 
 

* ** ** ** * NS 
2013 14.1 12.7 13.4 12.1 

 
** ** ** NS NS NS 

Tophit 

plus 
2011 16.0 16.3 16.7 15.2 

 
NS NS ** NS NS NS 

2013 15.6 a 12.7 c 14.8 b 14.3  b 
 

NS ** ** ** NS NS 
At harvest 

Jojo 
2011 19.4 18.1 18.2 17.7 

 
NS NS - NS - - 

2012 18.5 15.9 17.6 16.0 
 

NS ** - NS - - 
2013 18.1 17.4 18.0 15.7 

 
* * - NS - - 

Tophit 

plus 
2011 19.5 18.9 20.3 19.2 

 
NS NS - NS - - 

2013 20.5 a 18.0 b 18.8 b 19.0 ab 
 

NS * - ** - - 
During storage 

Jojo 
2011 19.2 18.2 18.5 18.2 

 
NS NS NS NS NS NS 

2012 18.8 16.5 18.0 16.8 
 

NS ** NS NS NS NS 
2013 18.5 17.6 17.8 16.6 

 
** ** NS NS NS NS 

Tophit 

plus 
2011 19.9 19.8 20.5 19.3 

 
NS NS * NS NS NS 

2013 20.3 a 17.2 c 19.0  b 18.6 b 
 

NS ** NS ** NS NS 
Values are means of each treatment. Statistical significant (LSD test, p<0.05) differences between 

means are indicated by different letter. Significance of effects of treatments (ECa, soil ECa; LECa, 

low soil ECa; HECa, high soil ECa; CL, crop load; LCL, low crop load; HCL, high crop load; T, time 

of measurements) and their interactions on the various parameter are also indicated (*: p<0.05; **: p< 

0.01; ns: not significant).  

In 2013, SSC continuously increased during the preharvest period in the fruit of both 

cultivars (Fig. 12). During the entire experiment, the SSC of ˈJojoˈ plums was higher 

in fruit from low crop load trees than in those grown with a high crop load, 

independent of soil ECa (Fig. 12. A). However, the effect of crop load on SSC did 

depend on soil ECa in ˈTophit plusˈ plums (Fig. 12. B). Under LECa conditions, the 

SSC of fruit from LCL trees was significantly higher than that grown under HCL 
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conditions; whereas under HECa, LCL fruit contained a similar SSC to HCL fruit 

(Fig. 12. B). Overall, fruit obtained from low crop load trees under LECa had the 

highest SSC during the preharvest period, at harvest and during most of the 

postharvest period in both cultivars (Fig. 12. A, B).  

 

 

Fig. 12. Effects of soil ECa and crop load on SSC of (A) Jojo and (B) Tophit plus plums during 

preharvest, at harvest and during 28 days at 2°C plus 2 days at 20°C in 2013. Vertical bars represent 

95% confidence interval of the means. LCL, low crop load; HCL, high crop load; LECa, low soil 

ECa; HECa, high soil ECa. 

 

Dry matter content  

During preharvest, the dry matter content (DMC) of all plums increased remarkably 

irrespective of cultivar and year of investigation (Fig. 13; Tab. 6). Soil ECa 

significantly affected DMC only in ˈJojoˈ (2013) plums (Tab. 6). Here, DMC was 

9% higher in plums from LECa soil than in those from HECa. Crop load 

significantly affected DMC in both ˈJojoˈ and ˈTophit plusˈ plums (2013; Tab. 6). In 

these cultivars, DMC was 10% and 6% higher in fruit from LCL trees than in those 

from HCL trees. During the preharvest period, interactive effects of soil ECa and tree 

crop load on DMC were significant in both ˈJojoˈ (2012) and ˈTophit plusˈ (2013) 

fruit (Tab. 6). 

In 2011 and 2013, DMC at harvest was higher in ˈTophit plusˈ than in ˈJojoˈ fruit 

with 20% and 16%, respectively (Tab. 6). At harvest, soil ECa only affected DMC in 
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ˈJojoˈ plums (2013; Tab. 6), where the DMC in fruit grown on HECa soil (16.7%) 

was lower than that in plums grown on LECa soil (17.5%). Moreover, fruit from 

LCL trees of both ˈJojoˈ (2012 and 2013) and ˈTophit plusˈ (2013) had a higher 

DMC than those from HCL trees (Tab. 6). 

During cold storage and shelf life, DMC in the fruit of both cultivars did not increase 

significantly (Tab. 6). In ˈJojoˈ (2013), DMC in fruit grown on LECa soils was 

significantly higher than in those grown on HECa soils (Tab. 6). Moreover, fruit 

grown on LCL trees had a higher DMC than those grown under HCL conditions in 

both ˈJojoˈ (2012 and 2013) and ˈTophit plusˈ (2011 and 2013) plums (Tab. 6). The 

effect of the interaction between soil ECa and crop load on DMC was only 

significant in ˈJojoˈ plums in 2011 and in ˈTophit plusˈ in 2013 (Tab. 6). 
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Tab. 7. Statistical analysis of the effects of soil ECa and crop load on dry matter content of ˈJojoˈ and 

ˈTophit plusˈ plums during preharvest, at harvest and  during 28 days at 2°C plus 2 days at 20°C in 

2011, 2012 and 2013. 

Cultivar Year 
Treatment  Factor 

LECa HECa  ECa CL T ECa × 

CL 
CL × 

T 
ECa × 

T LCL HCL LCL HCL  During preharvest 

Jojo 
2011 20.8 20.6 20.0 19.3  NS NS ** NS NS NS 
2012 16.1 a 14.6 b 14.1 b 15.1 ab  NS NS ** ** NS NS 
2013 15.5 13.8 14.1 12.9  ** ** ** NS ** NS 

Tophit 

plus 
2011 20.0 19.9 19.7 18.2  NS NS ** NS NS NS 
2013 17.7 a 15.8 b 17.2 a 17.1 a  NS ** ** ** NS NS 

At harvest 

Jojo 
2011 22.0 21.5 21.3 21.1  NS NS - NS - - 
2012 19.3 17.5 18.7 17.6  NS * - NS - - 
2013 18.4 16.6 17.6 15.9  * ** - NS - - 

Tophit 

plus 
2011 27.3 25.8 27.1 25.2  NS NS - NS - - 
2013 21.5 a 19 b 20.4 a 20.4 a  NS ** - ** - - 

During storage 

Jojo 
2011 22.3 a 20.8 b 20.9 b 21.8 ab  NS NS NS ** NS NS 
2012 19.5 18.2 18.8 18.0  NS ** NS NS NS NS 
2013 19.0 17.3 18.1 16.5  ** ** NS NS NS NS 

Tophit 

plus 
2011 26.6 25.6 26.4 24.7  NS * NS NS NS NS 
2013 21.7 a 19.8 c 20.7 b 20.6 b 

 
NS ** NS * NS NS 

Values are means of each treatment. Statistical significant (LSD test, p<0.05) differences between 

means are indicated by different letter. Significance of effects of treatments (ECa, soil ECa; LECa, 

low soil ECa; HECa, high soil ECa; CL, crop load; LCL, low crop load; HCL, high crop load; T, time 

of measurements) and their interactions on the various parameter are also indicated (*: p<0.05; **: p< 

0.01; ns: not significant).  

During the entire experiment, ˈJojoˈ plums grown on LCL trees had higher DMC 

than HCL-grown ones, independent of soil ECa (Fig. 13 A). In ˈTophit plusˈ plums, 

however, the effect of crop load on DMC depended on soil ECa (Fig. 12. B). Under 

LECa conditions, DMC was significantly higher in fruit from LCL trees than in those 

from HCL trees; whereas under HECa conditions, fruit from LCL trees showed a 

similar DMC to fruit from HCL trees (Fig. 13. B). In both cultivars, fruit obtained 
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from low crop load trees grown on LECa soils had the highest DMC in nearly all 

cases (Fig. 13. A,B).  

 
Fig. 13. Effects of soil ECa and crop load on DMC of (A) Jojo and (B) Tophit plus plums during 

preharvest, at harvest and during 28 days at 2°C plus 2 days at 20°C in 2013. Vertical bars represent 

95% confidence interval of the means. LCL, low crop load; HCL, high crop load; LECa, low soil 

ECa; HECa, high soil ECa. 

 

Titratable acidity 

TA declined in plums of both cultivars during the preharvest period, irrespective of 

the year of investigation (Fig. 14). However, the decline of TA in ˈJojoˈ plums in 

2012 (from 3.5 to 1 g/100ml) was sharper than that in 2011 and 2013 (Fig. 14). 

During the preharvest period in all years, no significant effect of soil ECa and crop 

load was found in plums of both cultivars in all years (Tab. A. 1). 

At harvest, the average TA in 2011 and 2013 was substantially higher in plums of 

ˈJojoˈ than in those of ˈTophit plusˈ by 36% and 23%, respectively (Fig. 14). At this 

time, soil ECa affected TA only in ˈJojoˈ plums (2012; Tab. A. 1). Here, the TA in 

fruit of LECa was higher than those of HECa. Crop load significantly affected TA in 

both ˈJojoˈ and ˈTophit plusˈ plums only in 2011 (Tab. A. 1). In this year, TA was 

higher in fruit of LCL than those of HCL at percentages of 17% and 19% for ˈJojoˈ 

and ˈTophit plusˈ, respectively.  

During cold storage and shelf life, TA declined in plums of both cultivars, 

irrespective of treatment and year of investigation (Fig. 14). TA value varied 
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between the years in the ˈJojoˈ cultivar: for instance, the average TA in the fruit from 

2012 was 30% lower than those from 2013 (Fig. 14. A). However, in ˈTophit plusˈ 

plums, TA was not significantly affected by year (Fig. 14. B). In this case, crop load 

only significantly affected TA in the fruit of ˈTophit plusˈ trees in 2011 (Tab. A. 1). 

Here, TA was higher in LCL than in HCL fruit. 

Except in ˈTophit plusˈ plums in 2011, no significant effect of the interaction 

between crop load and soil ECa on TA was found over the entire experimental period 

in fruit of both cultivars (Tab. A. 1). 

 

 

Fig. 14. Changes in titratable acidity (TA) of (A) ˈJojoˈ and (B) ˈTophit plusˈ plums during 

preharvest, at harvest and during 28 days at 2°C plus 2 days at 20°C in 2011, 2012 and 2013. Vertical 

bars represent 95% confidence interval of the means. 

 

Fruit flesh firmness 

During the preharvest period, fruit firmness of both cultivars declined in all years 

(Fig. 15). However, flesh firmness was slightly affected by year in ˈJojoˈ plums, 

because the reduction of firmness in fruit grown in 2012 was sharper than those 

grown in 2011 and 2013 (Fig. 15. A). During this period, no significant effect of soil 

ECa on flesh firmness was found in fruit of both cultivars in all years (Tab. A. 1). 

Crop load, however, significantly affected the flesh firmness in ˈJojoˈ plums in 2012 

(Tab. A. 1). In this year, LCL fruit were less firm than HCL fruit. In general, the 

average flesh firmness at harvest was substantially less in ˈJojoˈ (4.5 N) than in 

ˈTophit plusˈ plums (7.1 N) in 2013 (Fig. 15; Tab. A. 1). 
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During storage, the fruit firmness considerably declined in fruit of both cultivars 

(Fig. 15). At harvest and during storage, soil ECa affected flesh firmness only in 

ˈTophit plusˈ plums (2013; Tab. A. 1). In this case, flesh firmness in HECa fruit was 

higher than that in LECa fruit. Additionally, crop load only significantly affected the 

flesh firmness of ˈJojoˈ plums in 2012 (Tab. A. 1). Here, LCL plums were less firm 

than HCL plums. In these times, interactions between soil ECa and crop load were 

only significant in the two groups of ˈJojoˈ (2011) and ˈTophit plusˈ (2013) plums. 

ˈJojoˈ plums were almost completely soft (< 2 N) after 14 (154 DAFB), 21 (161 

DAFB), and 28 days of storage (165 DAFB) in 2012, 2011 and 2013, respectively 

(Fig. 15. A).  

 

Fig. 15. Changes in flesh firmness of (A) ˈJojoˈ and (B) ˈTophit plusˈ plums during preharvest, at 

harvest and during 28 days at 2°C plus 2 days at 20°C in 2011, 2012 and 2013. Vertical bars represent 

95% confidence interval of the means. 

 

Skin colour 

Beginning with a negative value, the CIE a* of plums of both cultivars rapidly 

increased to positive a* during the early phase of the experiment. They then slightly 

decreased again towards the end of the preharvest period and during the postharvest 

period (Fig. 16). In 2011, however, the 1st sampling was at a late date when fruit had 

already lost their green colour and appeared violet. Hence, no increase in a* was 

found in the fruit of both cultivars. Maximum of a* (i.e. maximum de-greening) was 

reached with 6.8 (116 DAFB), 7.6 (112 DAFB) and 8.2 (117 DAFB) in 2011, 2012 
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and 2013 in ˈJojoˈ plums (Fig. 16. A) and 4.0 (110 DAFB) and 5.2 (125 DAFB) in 

ˈTophit plusˈ plums in 2011 and 2013, respectively (Fig. 16. B).  

During the preharvest period, soil ECa did not considerably influence a*. The crop 

load of trees, in contrast, significantly affected a*, but only in ˈJojoˈ plums in 2011 

(Tab. A. 2). Here, the a* of fruit grown on LCL trees was lower than of those grown 

on HCL trees. 

At harvest, a* in ˈJojoˈ plums in 2011, 2012 and 2013 was 2.7, 3.9 and 2.5, 

respectively (Fig. 16. A). In contrast, in ˈTophit plusˈ plums, a* was generally lower 

than in ˈJojoˈ fruit in 2011 (0.2) and 2013 (0.3) (Fig. 16. B). At harvest, tree crop 

load and soil ECa did not have any considerable effect on a* in the fruit of both 

cultivars in all years (Tab. A. 2). 

During cold storage and shelf life, the a* of fruit of both cultivars did not 

significantly change (Fig. 16; Tab. A. 2). In ˈJojoˈ plums (2012), however, a* tended 

to be lower at the end of shelf life (Fig. 16. A). Only in 2012 soil ECa and tree crop 

load did affect a* in stored ˈJojoˈ fruit (Tab. A. 2). Here, a* of fruit from LCL trees 

grown on LECa soils was lower than those from HCL trees grown on HECa soils. 

No significant interactive effect of crop load and soil ECa on a* was found before 

harvest, at harvest and during the postharvest period (Tab. A. 2). 

During the preharvest period in all years, b* of both ˈJojoˈ and ˈTophit plusˈ plums 

initially decreased notably (from positive to negative value) and then remained 

constant (Fig. 16). The minimum values of b* in all years were reached some days 

before harvest, irrespective of cultivar or year of investigation (Fig. 16). However, 

the b* values were more negative in the fruit of ˈTophit plusˈ than in ˈJojoˈ plums 

both at harvest and during storage. The b* value measured on the 1st sampling date of 

2011 was lower than that obtained in 2012 and 2013 because the 1st picking was 

carried out later in 2011 than in 2012 and 2013 (Fig. 16). 

During the preharvest period, soil ECa significantly affected b* only in ˈJojoˈ plums 

(2012) (Tab. A. 2). Here, b* was lower in fruit grown under LECa conditions than in 

those under HECa conditions. In all years, the crop load of trees significantly 

affected b* in plums of both cultivars, except in ˈTophit plusˈ fruit in 2011 (Tab. A. 
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2). Here, the b* of fruit grown on LCL trees was lower than that of HCL-grown 

plums. 

At harvest, ˈJojoˈ plums showed the same value of b* in all years (Fig. 16). In 

contrast, ˈTophit plusˈ plums had higher value of b* in 2011 than in 2013 (Fig. 16). 

There was no effect of soil ECa on the b* value of freshly-harvested fruit (Tab. A. 2). 

Moreover, the effects of the crop load of trees on b* value was only significant in 

ˈJojoˈ plums (2011). Here, the b* value of fruit from LCL trees was lower (-2.5) than 

that of HCL-grown plums (-0.8). 

Throughout cold storage and shelf life, b* value did not change significantly. In 

addition, soil ECa and crop load did not have any considerable effect on b* value in 

fruit of both cultivars (Tab. A. 2). In general, b* was more negative in ˈTophit plusˈ 

plums than in ˈJojoˈ fruit at harvest and during storage (Fig. 16). 
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Fig. 16. Changes in a* value of fruit skin in (A) ˈJojoˈ and (B) ˈTophit plusˈ cultivars, and b* value in (C) ˈJojoˈ and (D) ˈTophit plusˈ plums during preharvest, at harvest and 

during 28 days at 2°C plus 2 days at 20°C in 2011,2012 and 2013. Vertical bars represent 95% confidence interval of the means. 
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Normalized anthocyanin index 

During the preharvest period, NAI increased remarkably in fruit of both cultivars. On 

the 1st sampling date of 2011, NAI was higher than that measured in 2012 and 2013 

(data not shown). This was, again, due to the fact that, in 2012 and 2013, the 1st 

picking was performed earlier than in 2011. During fruit development, soil ECa 

affected the NAI of ˈJojoˈ plums in 2012 and 2013. In fruit grown on LECa soils, 

NAI was higher than in those grown on HECa (Tab. 8). Crop load also significantly 

affected NAI in ˈJojoˈ fruit in 2012 and 2013 and in ˈTophit plusˈ plums in 2013 

(Tab. 8). Here, the NAI in fruit from LCL trees was higher than that in fruit from 

HCL trees. An interactive effect of crop load and soil ECa on NAI was only found in 

ˈJojoˈ plums in 2013 (Tab.8). The maximum NAI (88 to 90) was reached before 

harvest, and remained almost constant during cold storage and simulated shelf life in 

the fruit of both cultivars (Fig. 17). 

 
Tab. 8. Statistical analysis of the effects of soil ECa and crop load on NAI of ˈJojoˈ and ˈTophit plusˈ 

plums during preharvest in 2011, 2012 and 2013. 

Cultivar Year 

Treatment 
 

Factor 

LECa HECa 
 ECa CL T 

ECa × 

CL 

CL × 

 T 

ECa ×  

T LCL HCL LCL HCL 
 

Jojo 

2011 0.89 0.86 0.87 0.86 
 

NS NS ** NS NS NS 

2012 0.82 0.77 0.76 0.73 
 

** * ** NS NS NS 

2013 0.77 a 0.67 b 0.66 b 0.68 b 
 

** * ** * NS ** 

Tophit 
2011 0.72 0.66 0.76 0.70 

 
NS NS ** NS NS NS 

2013 0.58 0.44 0.56 0.44 
 

NS ** ** NS NS NS 

Values are means of each treatment. Statistical significant (LSD test, p<0.05) differences between 

means are indicated by different letter. Significance of effects of treatments (ECa, soil ECa; LECa, 

low soil ECa; HECa, high soil ECa; CL, crop load; LCL, low crop load; HCL, high crop load; T, time 

of measurements) and their interactions on the various parameter are also indicated (*: p<0.05; **: p< 

0.01; ns: not significant).  

 

In all treatments, the NAI of fruit increased during development (Fig. 17). It 

remained constant in ˈJojoˈ plums after 117 DAFB, except in fruit grown on HCL 

trees in HECa soils (Fig. 17. A). Moreover, NAI did not change in LCL-grown 
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ˈTophit plusˈ fruit after 121 DAFB (Fig. 17. B). In ˈJojoˈ plums, effect of crop load 

on NAI depended on soil ECa (Fig. 17. A). NAI was higher in fruit from LCL trees 

than those from HCL when these grew on LECa soils. Whereas, fruit in LCL 

presented a similar NAI to that in HCL plums under HECa during the preharvest 

period. In ˈTophit plusˈ, NAI was higher in fruit grown with low crop load than those 

grown with high crop load, independent of soil ECa (Fig. 17. B).  

 

 

Fig. 17. Effects of soil ECa and crop load on normalized anthocyanin index (NAI) of (A) ˈJojoˈ and 

(B) ˈTophit plusˈ plums during preharvest and at harvest in 2013. Vertical bars represent 95% 

confidence interval of the means. LCL, low crop load; HCL, high crop load; LECa, low soil ECa; 

HECa, high soil ECa. 

 

Transpiration rate 

In fruit of both cultivars, transpiration continued to decline slightly during storage 

(Fig. 18). Stored ˈTophit plusˈ fruit had substantially higher transpiration than ˈJojoˈ 

plums in both 2011 and 2013 (Fig. 18). The transpiration of ˈJojoˈ plums was not 

largely affected by year during the entire storage duration (Fig. 18. A), while ˈTophit 

plusˈ plums grown in 2011 had a lower range of transpiration than those grown in 

2013 (Fig.18. B). With the exception of ˈJojoˈ plums (2012), the lowest transpiration 

was found at the end of shelf life (Fig. 18). Soil ECa only affected transpiration in 

ˈJojoˈ plums in 2013 (Tab. A. 1). Here, the transpiration in fruit grown under HECa 

conditions was 8% higher than in those from trees planted on LECa soils. Crop load 

affected transpiration only in ˈTophit plusˈ plums in 2013 (Tab. A. 1). Here, plums 

from LCL trees had a higher transpiration rate (6%) than those from HCL trees. No 
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significant interactive effect of crop load and soil ECa on transpiration was found 

(Tab A. 1). 

 

 

Fig. 18. Fruit transpiration of (A) ˈJojoˈ and (B) ˈTophit plusˈ plums during 28 days at 2°C plus 2 

days at 20°C in 2011, 2012 and 2013. Vertical bars represent 95% confidence interval of the means. 

The climate condition during transpiration measurements are shown in Tab. A.6. 

  



RESULTS 

62 

 

 Effect of maximum daily trunk shrinkage on plum tree and 4.2.

fruit quality 

  Climate condition, tree crop load and soil ECa on MDS of plum 4.2.1.

trees 

During the experiments in 2013, the total amount of precipitation was 465 mm. 

Rainfall mainly occurred in late May (40 - 48 DAFB of ˈJojo) and early August (110 

- 118 DAFB; Fig. 19). Mean daily air temperature increased from the beginning of 

the experiment in mid-May, and reached its maximum in mid-June (65 DAFB of 

Jojo; 28°C) and late July (104 DAFB of ˈJojo; 28°C). Mean daily vapour pressure 

deficit (VPD) followed the seasonal variation in air temperatures, ranging between 

0.5 and 16 kPa/MPa, with maximum values occurring between early June and late 

August (50 - 135 DAFB of ˈJojo; Fig. 19). In addition, solar radiation presented a 

similar seasonal trend showing maximum values in June and July and minimum 

values in November and December (data not shown). 

 

Fig. 19. Seasonal variations of water vapour partial pressure deficit (VPD) and daily precipitation at 

the orchard area during 35 days after full bloom to harvest time in 2013.  

 

In the present study, the MDS of ˈJojoˈ trees ranged between 20 and 700 µm and that 

of ˈTophit plusˈ trees between 15 and 600 µm (Fig. 20). MDS increased from the 

beginning of the experiment (35 and 30 DAFB for ˈJojoˈ and ˈTophit plusˈ, 
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respectively) to early-August. In trees of both cultivars, MDS dropped after harvest, 

especially in ˈTophit plusˈ (Fig. 20). 

During the experiment, the MDS differed in trees with different crop loads (Fig. 20. 

A, C). This, again, was valid for both cultivars. Before July, the MDS of ˈTophit 

plusˈ trees was almost similar and very low in trees of both crop load treatment (Fig. 

20. C). Both in ˈJojoˈ and ˈTophit plusˈ, the MDS, averaged over the entire 

experimental period, was 27% and 30% higher in high crop load-treatment trees 

(HCL) than in low crop load-treatment (LCL) trees (Fig. 20 A, C). After final 

harvest, similar MDS values were observed in both LCL and HCL trees. The highest 

MDS values were found in HCL trees of ˈJojoˈ and ˈTophit plusˈ with 780 µm (109 

DAFB) and 758 µm (103 DAFB), respectively (Fig. 20. A, C). 

Only on a few days of the experiment in ˈJojoˈ, the effects of soil ECa on MDS 

variation were significant (Fig. 20. B). Here, the MDS was slightly higher in low soil 

ECa (LECa) trees than in LECa trees. MDS values of ˈTophit plusˈ trees were similar 

in both soil ECa groups during almost the entire experiment (Fig. 20. D). However, 

between 58 and 60 DAFB, MDS was higher in LECa than in HECa trees. 
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Fig. 20. Comparison of maximum daily shrinkage (MDS) of plum trees (A, B; LCL, low crop load; HCL, high crop load) of different crop load groups, (C, D; LECa, low soil 

ECa; HECa, high soil ECa) of different soil ECa and of different cultivars, ˈJojoˈ (A, C) and ˈTophit plusˈ (B, D). Values are means of 3 to 4 trees in 2013. 
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During the experiment period (2013), day-to-day variations of MDS in trees of both 

cultivars were closely and positively correlated with both VPD and tree crop load 

(Fig. 21). During experiment time, correlations of MDS with VPD (r2 = 0.59) and 

crop load (r2 = 0.49) were higher in ˈJojoˈ trees than in ˈTophit plusˈ trees (Fig. 21; 

VPD: r2 = 0.53 and crop load: r2 = 0.37). In ˈTophit plusˈ trees, however, the 

correlation between MDS and VPD at the beginning of the experiment was weak and 

only became strong after 60 DAFB (data not shown). 

 

 

Fig. 21. Relationship between maximum daily shrinkage (MDS) of ˈJojoˈ (squares) and ˈTophit plusˈ 

(triangles) trees and (A) air vapour pressure deficit (VPD), and (B) tree crop load.  

 

 Relation between MDS and physicochemical properties of plums 4.2.2.

Fruit fresh mass and yield 

Despite the fact that fruit grown on trees with low MDS (LMDS) had slightly higher 

fresh mass than those grown on those showing high MDS (HMDS) during the 

preharvest period and at harvest, there was no statistically significant difference 

between these groups (Tab. 9). This response was irrespective of the plum cultivar. 

Furthermore, the respective tree MDS affected fruit yields in both cultivars. Here, 

fruit yields of HMDS were 19% and 12% higher than that of LMDS (Tab. A.1). 
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Tab. 9. Statistical analysis of effects of maximum daily shrinkage (MDS on fruit fresh mass of ˈJojoˈ 

and ˈTophit plusˈ plums during fruit development and at harvest in 2013. 

Period 
measurement 

Treatment  Factor 

Jojo  Tophit plus  Jojo  Tophit plus 

LMDS HMDS  LMDS HMDS  MDS MDS 
 × T  MDS MDS 

 × T 

During preharvest 30.1 28.7  44.2 43.3  NS NS  NS NS 

At harvest 40.3 38.2  57.8 55.8  NS -  NS - 

Values are means of each treatment. Significance of effects of treatments (MDS, maximum daily 

shrinkage; LM, low maximum daily shrinkage; HM, high maximum daily shrinkage; T, time of 

measurement) and their interactions on the fruit fresh mas and yield are also indicated (*: p < 0.05; **: 

p < 0.01; ns: not significant).  

 

Skin colour and normalized anthocyanin index 

MDS significantly affected colour development (indicated by CIE b* value) in ˈJojoˈ 

fruit during the preharvest period (Tab. 3. A; Fig. 22. A). In that period, the b* value 

in LMDS plums was higher than in fruit grown on HMDS. In contrast, the effects of 

MDS on a* value were insignificant during the entire experiment in the fruit of both 

cultivars (Tab. 3. A).  

Normalized anthocyanin index (NAI) increased remarkably during the development 

of ˈJojoˈ and ˈTophit plusˈ fruit. During this time, MDS only affected NAI in ˈJojoˈ 

plums (Fig. 22. B). Here, the NAI of fruit grown on HMDS was higher than that of 

those grown on LMDS. However, there were no treatment effects on NAI at harvest 

(Fig. 22. B).  

At harvest and during storage, fruit of both LMDS and HMDS had almost the same 

skin colour and hence, NAI values, with the maximum NAI (88 to 90) and the final 

dark blue colour reached well before harvest (Fig. 22). 
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Fig. 22. Effect of maximum daily shrinkage (MDS) on (A) b* value and (B) NAI of ˈJojoˈ plums 

during preharvest, at harvest and during 28 days at 2°C plus 2 days at 20°C (2013). Vertical bars 

represent 95% confidence interval of the means. LMDS, trees showing low MDS; HMDS, trees 

showing high MDS. 

 

Soluble solids content and dry matter content 

During the preharvest period, soluble solids content (SSC) and dry matter content 

(DMC) increased remarkably in fruit of both LMDS and HMDS, except at the 2nd 

measurement for ˈTophit plusˈ plums (113 DAFB; Fig. 23. A). Nevertheless, the 

most pronounced increase occurred during the last 3 weeks of the preharvest period, 

i.e. during the final phase of fruit development (Fig. 23. A). In contrast, during cold 

storage and shelf life, SSC and DMC did not change significantly (Tab. 9; Fig. 23. 

A). However, at the end of shelf life, DMC was slightly higher than at harvest in 

ˈTophit plusˈ plums (Fig. 23. A). 

MDS affected SSC in fruit of both cultivars over the entire experimental period (Fig. 

23. A). Here, SSC in HMDS fruit was 10% and 8% higher than LMDS plums at 

harvest for ˈJojoˈ and ˈTophit plusˈ plums, respectively. In general, the effect of 

MDS on SSC in ‘Jojo’ plums was more pronounced than in ˈTophit plusˈ fruit (Fig. 

23. A). 

Dry matter content was affected by MDS in ˈJojoˈ plums (Tab. 9; Fig. 23. B). In this 

case, DMC in LMDS fruit was higher than in HMDS plums over the entire 

experimental period. In ˈTophit plusˈ plums, however, DMC tended to be higher in 

fruit grown in HMDS than in LMDS plums, especially during the preharvest period, 

although the differences were not statistically significant (Fig. 23. B). In general, the 
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DMC was substantially higher in ˈTophit plusˈ plums than in ˈJojoˈ fruit during the 

preharvest period, at harvest and during storage (cold storage and shelf life), at levels 

of 19, 15 and 18%, respectively (Fig. 23. B). 

 

 

Fig. 23. Effect of maximum daily shrinkage (MDS) on (A) SSC and (B) dry matter content  of ˈJojoˈ 

and ˈTophit plusˈ plums during preharvest, at harvest and during 28 days at 2°C plus 2 days at 20°C 

(2013). Vertical bars represent 95% confidence interval of the means. LMDS, trees showing low 

MDS; HMDS, trees showing high MDS. 
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Fruit flesh firmness and titratable acidity 

Firmness and titratable acidity (TA) decreased markedly in fruit of both cultivars 

during the preharvest period and storage (data not shown). The effect of MDS on 

flesh firmness was only significant in ˈTophit plusˈ plums (Tab. A. 3). Here, LMDS 

fruit were less firm than HMDS fruit only during the preharvest period. However, 

MDS did not significantly affect flesh firmness at harvest and during storage (Tab. 

A. 3).  

Despite the fact that TA was slightly higher in HMDS plums than in LMDS fruit for 

ˈJojoˈ over the entire experimental period; there was no statistically significant 

difference between these groups (Tab. A. 3). 

 

Fruit transpiration rate 

In plums of both cultivars, transpiration rates slightly decreased during cold storage 

and shelf life (Fig. 24). However, this decline occurred mostly during the initial 2 

weeks of storage. During storage time, the transpiration of ˈTophit plusˈ plums was 

21% higher than that of ˈJojoˈ fruit (Fig. 24). Moreover, the transpiration of fruit was 

affected by MDS irrespective of the cultivar (Tab. 25). In this set, the transpiration 

rates of LMDS plums were 17 and 19% higher than that of HMDS in ˈJojoˈ and 

ˈTophit plusˈ, respectively. At the end of cold storage and the following simulated 

shelf life of ˈJojoˈ plums, however, there was no difference in transpiration rate 

between fruit grown on LMDS and HMDS (161 and 163 DAFB; Fig. 24). 
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Fig. 24. Effect of maximum daily shrinkage (MDS) on transpiration rates of ˈJojoˈ and ˈTophit plusˈ 

plums at harvest and during 28 days at 2°C plus 2 days at 20°C (2013). Vertical bars represent 95% 

confidence interval of the means. LMDS, trees showing low MDS; HMDS, trees showing high MDS. 

The climate condition during transpiration measurements are shown in Tab. A.6. 
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 Interaction of harvest dates and fruit quality of ˈJojoˈ plum 4.3.

Fruit mass and dry matter content 

In 2013, fruit fresh mass increased during the harvesting period (Tab. A.4). Here, 

fruit fresh mass continuously increased by 11% in the time between the 1st and 3rd 

harvest, finally obtaining a mean maximum fresh mass of 39 g. 

Delaying harvest also resulted in significantly higher dry matter content (DMC) of 

fruit (Tab. A.4). Here, the DMC of harvested plums from the 3rd harvest was 24% 

higher than that from the 1st harvest date. 

These differences in DMC between fruit harvested at the three different dates were 

maintained until the end of both cold and room temperature storage (data not shown). 

DMC of fruit did not significantly change during 28 days of storage at 2 ºC and 2 

days of simulated shelf life at 20 ºC (Tab. A.4). However, the DMC of plums from 

the 2nd harvest at the end of shelf life was slightly higher (7%) than that DMC at 

harvest (data not shown). 

 

Skin colour 

Fruit harvested at the last date had significantly lower a* and b* values than those 

obtained at 1st and 2nd harvest dates (Fig. 25. A, B). During cold storage and shelf 

life, a* and b* values did not significantly change further in fruit from the 2nd and the 

3rd harvest date (Fig. 25. A, B). In contrast, in early-harvested fruit, the a* and b* 

considerably declined during cold and simulated shelf life (Fig. 25. A, B). Fruit 

harvested at the 1st and the 2nd date had similar a* and b* values after 21 and 14 days 

of storage (Fig. 25. A, B). 

 

Fruit flesh firmness 

Mean flesh firmness of the freshly-harvested plums significantly declined by 48% 

from the 1st to the 3rd harvest date (Fig. 25. C). Irrespective of the date of harvest, 

flesh firmness further decreased during cold storage and shelf life (Fig. 25. C). The 

rate of reduction, however, was not independent of harvest date. During cold storage 

and shelf life, flesh firmness in plums from the 3rd was 61% lower than that from the 
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1st harvest date (Tab. A.4). At the end of storage (cold storage and shelf-life), the 

reduction of flesh firmness was higher in the fruit that was harvested late (43%, 53% 

and 60% in fruit from 1st, 2nd and 3rd harvest dates, respectively) (Fig. 25. C). 

However, during simulated shelf life, firmness reduction was higher in fruit from the 

1st than in those from the 2nd and the 3rd harvest dates (Fig. 25. C).  

 

Soluble solids content and titratable acidity 

The soluble solids content (SSC) of fresh fruit increased remarkably from the 1st 

(13.2 °Brix) to the 3rd harvest date (17.0 °Brix) (Fig. 25. D). These harvest date-

related differences in the SSC of plums remained during cold storage and shelf life. 

(Fig. 25. D). During cold storage and shelf life, the SSC in fruit from the 3rd (17.4 

°Brix) was significantly higher than that from the 2nd (15.3 °Brix) and the 1st (13.7 

°Brix) harvest dates (Tab. A.4). SSC did not change during cold storage and shelf 

life in fruit from all harvest dates (Fig. 25. D), however, SSC slightly increased 

during the initial 14 days of storage and remained constant thereafter (Fig. 25. D). 

Titratable acidity (TA) in fruit harvested on the 3rd date was significantly lower, at 

levels of 16 and 28%, respectively, than in plums harvested earlier (Fig. 25. E). 

Irrespective of the harvest date, TA declined notably during cold storage and shelf 

life (Fig. 25. E). In very early harvested fruit (1st harvest date), the reduction in TA 

started only after 14 days of storage (Fig. 25. E). In comparison to cold storage and 

shelf life, the highest TA levels were measured at the 1st, 2nd and 3rd harvest dates, 

respectively (Fig. 25. E). At the end of cold storage and subsequent simulated shelf 

life, the reduction of TA was measured at levels of 20%, 23% and 22% for fruit from 

the 1st, 2nd and 3rd harvest dates, respectively (Fig. 25. E). 

The pattern of changes in the SSC:TA ratio was based on the changes in SSC and TA 

(Fig. 25. F). Because late harvesting resulted in significantly higher SSC and a lower 

TA of fruit, it increased the SSC:TA ratio (Fig. 25. F). The SSC:TA ratio further 

increased during cold storage and shelf life irrespective of the harvest date (Fig. 25. 

F). Hence, at the end of cold storage and after shelf life period, the lowest SSC:TA 

ratios were found in plums harvested on the 1st date  (Fig. 25. F). 
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Transpiration rate 

There were significant differences in transpiration rate between harvest dates at the 

time of harvest (Fig. 25. G). Transpiration rates of very early harvested fruit was 

significantly higher than those found in plums harvested at a later date (Fig. 25. G). 

Although fruit transpiration generally slightly decreased during cold storage and 

shelf life, these harvest dates related differences remained constant during storage 

and shelf life (Fig. 25. G).  
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Fig. 25. Effect of different harvest dates on (A) a* and (B) b* values, (C) flesh firmness, (D) SSC, (E) 

TA, (F) SSC/TA ratio and (G) transpiration rate of ˈJojoˈ plums during 28 days at 2°C plus 2 days at 

20°C. Vertical bars represent 95% confidence interval of the means (n=42).  1st harvest date = 123 

DAFB, 2nd harvest date = 130 DAFB and 3rd harvest date = 137 DAFB in 2013. 
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 Effect of edible coating on the preservation of fruit quality 4.4.

during storage 

Transpiration rate 

In fruit of both cultivars, transpiration decreased during storage in 2°C and in 

simulated shelf life (Fig. 26). However, the transpiration of ˈTophit plusˈ fruit was 

always higher than that of ˈJojoˈ plums (Fig. 26). During these times, the 

transpiration of coated plums was significantly lower than that of control fruit in both 

ˈJojoˈ and ˈTophit plusˈ plums (Tab. 10; Fig. 26), except on day 7 in ˈTophit plusˈ 

(Fig. 26). At the end of shelf life, the lowest value was observed in coated plums 

with Versasheen and sorbitol treatment (0.46 mg/cm2h and 0.77 mg/cm2h), whereas 

the highest transpiration rate was measured in control fruit (0.77 mg/cm2h and 1.01 

mg/cm2h) for ˈJojoˈ and ˈTophit plusˈ plums, respectively (Fig. 26). 

 

 

Fig. 26. Effects of edible coating and storage time on transpiration rate of ˈJojoˈ and ˈTophit plusˈ 

plums during 28 days at 2°C plus 2 days at 20°C. Vertical bars represent 95% confidence interval of 

the means (n=42). S, sorbitol. The climate condition during transpiration measurements are shown in 

Tab. A.6. 
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Fruit flesh firmness 

At harvest, the flesh firmness of ˈJojoˈ and ˈTophit plusˈ plums was 4.1 N and 7.4 N 

(Fig. 27). It continuously decreased during cold storage and shelf life, and reached 

final values of 1.7 N and 3.8 N at the end of shelf life (Fig. 27). The coating reduced 

softening in both ˈJojoˈ and ˈTophit plusˈ plums (Fig. 27). However, the effects of 

coating were no longer significant on storage day 21 for ˈTophit plusˈ and after this 

21st day for ˈJojoˈ plums (Fig. 27). 

 

 

Fig. 27. Effects of edible coating and storage time on flesh firmness of ˈJojoˈ and ˈTophit plusˈ plums 

during 28 days at 2°C plus 2 days at 20°C. Vertical bars represent 95% confidence interval of the 

means (n=42). S, sorbitol. 

 

Soluble solid content and titratable acidity 

During storage in 2°C and in simulated shelf life, the soluble solid content in fruit of 

ˈTophit plusˈ was generally 8% higher than that in ˈJojoˈ plums (Tab. 10). In plums 

of both cultivars, SSC did not change significantly during these times (Tab. 10). In 

addition, SSC was not affected by the coating.  

During cold storage and shelf life, TA was always higher in ˈJojoˈ plums than in 

those of ˈTophit plusˈ (Fig. 28). During these times, TA gradually decreased in fruit 

of both cultivars (Fig. 28). Despite the fact that coated ˈJojoˈ plums had slightly 
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higher titratable acidity than control fruit after 21 days of storage, there was no 

statistically significant difference between coated and control plums (Fig. 28). 

 

 

Fig. 28. Effects of edible coating and storage time on TA of ˈJojoˈ and ˈTophit plusˈ plums during 28 
days at 2°C plus 2 days at 20°C. Vertical bars represent 95% confidence interval of the means (n=42). 
S, sorbitol. 

 

Skin colour 

Changes in a* and b* values were minimal during cold storage and shelf life (data 

not shown). In general, values of a* and b* were lower in ˈTophit plusˈ than ˈJojoˈ 

plums (Tab. 10). Moreover, no significant differences between coated fruit and 

controls were found, irrespective of the cultivar (Tab. 10). 
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Tab. 10. Statistical analysis of the effects of edible coating and storage time on postharvest quality 

parameters and LLBI properties of ˈJojoˈ and ˈTophit plusˈ plums during 28 days at 2°C plus 2 days at 

20°C (2013). 

Parameters 
Treatment 

 
Factor 

Jojo Tophit plus  VS CV T VS × 
CV 

VS × 
T Control VS Control VS  

Fr
ui

t q
ua

lit
y 

pa
ra

m
et

er
s 

Transpiration rate 
(mg/cm

2
h) 

0.76 c 0.63 d 1.05 a 0.95 b  ** ** ** NS ** 

Flesh firmness (N) 2.8 d 3.2 c 5.7 b 6.3 a  ** ** ** NS * 

SSC (°Brix) 17.4 17.1 18.6 18.7  NS ** NS NS NS 

TA (g/100ml) 1.06 1.13 0.78 0.80  NS ** ** * * 

a* value 2.3 2.6 0.4 0.5 

 

NS ** NS NS NS 

b*value -1.8 -1.5 -5.4 -5.7 

 

NS ** NS ** NS 

O
pt

ic
al

 
pr

op
er

tie
s FWHM

660
 (%) 2.2 3.2 -25.3 -24.2  NS ** ** NS NS 

FWHM
785

 (%) 54.2 a 50.9 b 37.2 c 35.3 c  * ** ** * NS 

Values are means of each treatment. Statistical significant (LSD test, p<0.0.5) differences between 

means are indicated by different letter. Significance of effects of treatments (VS, Versasheen plus 

sorbitol; CV, cultivar: T, storage time) and their interactions on the various parameter are also 

indicated (*: p<0.05; **: p< 0.01; ns: not significant). 

 

Interactive effect of preharvest factors and edible coating on fruit quality  

According to an analysis of data, there was no significant interactive effect between 

preharvest factors (ECa, crop load and MDS) and edible coating on all quality 

parameters of both ˈJojoˈ and ˈTophit plusˈ cultivars during cold storage and shelf 

life in 2013 (data not shown). 
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  Optical properties of ˈJojoˈ and ˈTophit plusˈ plums 4.5.

  Optical properties of plum during development on the trees and 4.5.1.

storage 

LLBI reading in the green wavelength range 

Variations in the value of full width half maximum obtained with a laser emitting at 

532 nm (FWHM532) during the preharvest and storage periods in 2013 of ˈJojoˈ and 

ˈTophit plusˈ plums are shown in Fig. 29. The value of FWHM532 markedly 

decreased from the 2nd measurement during fruit development in fruits of both 

cultivars (relative FWHM at 1st measurement = 0). However, in ˈJojoˈ and ˈTophit 

plusˈ fruit, the reduction of FWHM532 stopped at the 3rd (117 DAFB) and 4th 

measurements (140 DAFB), respectively, and then the value of this parameter 

remained constant at harvest and during storage for both cultivars.  The total 

reduction of FWHM532 was greater in ˈTophit plusˈ (46%) than ˈJojoˈ plums (33%) 

by the time of harvest. There were no significant changes in FWHM532 in fruits of 

both cultivars during storage. 

 

 
Fig. 29. Changes of relative full width at half maximum (FWHM) obtained from 532 nm laser in 

ˈJojoˈ and ˈTophit plusˈ plums during preharvest, at harvest and storage time of 2013. The relative 

FWHM at start of measurement was considered as 0%.Vertical bars represent 95% confidence interval 

of the means. 
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LLBI readings in the red wavelength range 

Variations in the value of full width half maximum obtained with a laser emitting at 

660 nm (FWHM660) during the preharvest and storage periods in 2013 of ˈJojoˈ and 

ˈTophit plus’ plums are shown in Fig. 30. A, B. Unlike the FWHM532 behaviour, the 

value of full FWHM660 in both cultivars significantly decreased from the 2nd 

measurement to the end of experiment period of 2011 (relative FWHM at start of 

measurement = 0) (Fig. 30. A, B). However, this value slightly increased at the 

beginning of the measurement period, and then decreased to the end of storage in 

plums in 2013. As a consequence, the value of FWHM660 in ˈJojoˈ plums was 

reduced between 0% and 21% by the harvests of 2011 and 2013, respectively (Fig. 

30. A). Whereas, these reductions in ˈTophit plusˈ plums were between 21% and 

63% in 2011 and 2013, respectively (Fig. 30. B).  

During storage, the FWHM660 decreased slightly in both plum cultivars, however this 

reduction varied between the different years in ˈJojoˈ plums (Fig. 30. A, B). During 

storage of ˈJojoˈ fruit, the reduction of FWHM660 was 13 and 5% in 2011 and 2013, 

respectively (Fig. 30. A). Whereas, the trend of reduction for FWHM660 in ˈTophit 

plusˈ plums was very low (approx. 5%) in both years (Fig. 30. B). 

LLBI readings in the near infrared wavelength range 

Variations in the value of full width half maximum obtained with a laser emitting at 

785 nm (FWHM785) during the preharvest and storage periods of both cultivars in 

2011 and 2013 are shown in Fig. 30. C, D. During the preharvest period, the changes 

in FWHM785 varied between years and cultivars. The FWHM785 had significantly 

increased by 49, 32 and 12% by the time of harvest in plums of ˈJojoˈ (2013), 

ˈTophit plusˈ (2013) and ˈJojoˈ (2011), respectively. However, no difference was 

observed in the FWHM785 of ˈTophit plusˈ plums during the preharvest period in 

2011.  

During storage, the FWHM785 increased in both cultivarsˈ plums; however, this 

increase varied between years for both cultivars (Fig. 30. C, D). By the end of the 

storage period of 2011 and 2013, the FWHM785 of ˈJojoˈ plums had increased by 20 

and 15%, respectively (Fig. 30. C). These increases in ˈTophit plusˈ plums were 12 

and 7%, respectively (Fig. 30. C, D).  
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Fig. 30. Changes in relative full width at half maximum (FWHM) obtained from 660nm laser in (A) ˈJojoˈ and (B) ˈTophit plusˈ plums, and 785 nm lasers in (C) ˈJojoˈ and (D) 

ˈTophit plusˈ plums during preharvest (fruit development), at harvest and storage time of 2011 and 2013. The relative FWHM at start of measurement was considered as 0%. 

Vertical bars represent 95% confidence interval of the mean. 
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 Effects of pre- and postharvest factors on the optical properties of 4.5.2.

plum fruit  

 Crop load, soil ECa and MDS effects 4.5.2.1.

LLBI readings in the green wavelength range 

Among the effects of preharvest factors, crop load significantly affected the 

FWHM532 in both cultivars during the preharvest period of 2013 (Tab. 11). Here, the 

average reduction of FWHM532 in fruit from LCL (18.6 and 23%) was higher than 

that from HCL trees (both 16%) in ˈJojoˈ and ˈTophit plusˈ respectively (data not 

shown). Moreover, MDS significantly affected the FWHM532 in both cultivars during 

the preharvest period in 2013 ((Tab. 11). Here, the average reduction of FWHM532 in 

fruit from LMDS (18 and 24%) was higher than that from HMDS (15 and 16%) in 

ˈJojoˈ and ˈTophit plusˈ respectively (data not shown). Soil ECa and interaction 

between preharvest factors did not affect the FWHM532 in plums of both cultivars 

during the preharvest period in 2013 (Tab. 11). 

 

LLBI readings in the red and near infrared wavelength range 

Preharvest factors did not have any considerable interactive effect on FWHM660 and 

FWHM785 (Tab. 11). However, the interaction between time of sampling and crop 

load had a statistically significant effect on FWHM660 (in ˈJojoˈ and ˈTophit plusˈ 

plumsˈ in 2011) and FWHM785 (in ˈJojoˈ plums’ of 2013) (Tab. 11). Moreover, an 

interactive effect between time of sampling and MDS on FWHM660 (in ˈJojoˈ plumsˈ 

of 2013) was also observed (Tab. 11).  
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Tab. 11. The effects of preharvest factors (soil ECa, crop load and MDS) on relative full width at half 

maximum (FWHM) obtained from 532, 660 and 785 nm lasers in ˈJojoˈ and ˈTophit plusˈ plums 

during preharvest and storage of 2013. 

LLBI 

Parameters 
Cultivar Year 

Factor 

T ECa CL MDS 
 T × 

ECa 
T × 

CL 
T × 

MDS 
ECa × 

MDS 
ECa × 

CL  

FWHM
532 

(%) Jojo 2013 ** NS * **  NS NS NS NS NS 

Tophit plus 2013 ** NS * **  NS NS NS NS NS 

FWHM
660

 (%) 
Jojo 

2011 ** NS NS -  NS * - - NS 

2013 ** NS NS NS  NS NS ** NS NS 

Tophit plus 
2011 ** NS NS -  NS * - - NS 

2013 ** NS NS NS  NS NS NS NS NS 

FWHM
785

 (%) 
Jojo 

2011 ** NS NS -  NS NS - - NS 

2013 ** NS NS NS  NS ** NS NS NS 

Tophit plus 
2011 ** NS NS -  NS NS - - NS 

2013 ** NS NS NS 
 

NS NS NS NS NS 

Values are mean of each treatment in different cultivar and year Means with different letter shows 

significantly by LSD test. *, ** and ns indicate significance at p<0.05, 0.01 or not significant 

respectively. LECa, soil ECa; LECa, low soil ECa; HECa, high soil ECa; CL, crop load; LC, low crop 

load; HC, high crop load; MDS, maximum daily shrinkage; LM, low maximum daily shrinkage; HM, 

high maximum daily shrinkage; T, time of measurements; FWHM, full width at half maximum. 

 

 Harvest date and edible coating effects 4.5.2.2.

The FWHM obtained from both lasers of 660 nm and 785 nm were affected by 

harvest maturity. Here, these values were higher (660 nm) and lower (785 nm) in 

fruit of the 1st than in those from the 3rd harvest date (Tab. A.4). These harvest date-

related differences in the FWHM of plums remained constant during cold storage 

and shelf life (Tab. A.4). Late-harvested fruit have the lowest FWHM660 and the 

highest FWHM785 measurements (Tab. A.4).  

Moreover, the FWHM785 in fruit of ˈJojoˈ was affected by coating, but the 

measurement at 660 nm during cold storage and shelf life was not (Tab. 10). The 

FWHM785 in coated plums of both cultivars was lower than that in the control (Tab. 

10), which means that the increase of FWHM785 in control fruit was faster than in 

coated fruit during storage. 
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 Correlation between fruit quality and optical properties 4.5.3.

A correlation analysis between the FWHM53 and quality parameters of ˈJojoˈ and 

ˈTophit plusˈ plums during the preharvest period in 2013 was conducted and the 

results are presented in Tab. 12. These relationships showed that there was a positive 

correlation between FWHM532 and fruit firmness, TA and b* and a negative 

correlation between FWHM532 and fruit SSC, DMC and NAI in both cultivars. 

However, the highest correlation coefficients were found for NAI at r = 0.76 and r = 

0.85 (Tab. 12 and Fig. 31. A), followed by those found for b* value at r = 0.73 and r 

= 0.68 for ˈJojoˈ and ˈTophit plusˈ, respectively.  

The relationship between FWHM660 and quality parameters of both cultivars during 

the preharvest and storage time in 2011 and 2013 showed that the FWHM660 was 

correlated (r > 0.58) with almost all quality parameters of ˈTophit plusˈ plums in 

both years (except a* and b* value in 2013) (Tab. 12). However, in this cultivar, the 

highest correlation was found for flesh firmness (r = 0.84) and SSC (r = 0.74) for 

2011 and 2013, respectively (Tab. 12). There was no significant relationship between 

FWHM660 and the quality parameters of ˈJojoˈ plums, except for a* value in 2011 (r 

= 0.72) (Tab. 12).  

Moreover, the relationship between FWHM785 and the quality parameters of ˈJojoˈ 

and ˈTophit plusˈ plums showed (Tab. 12) that the fruit firmness had the highest 

value of correlation to FWHM785 with r = 0.73 (2011) and r = 0.72 for ˈJojoˈ and r = 

0.50 (2011) and r = 0.79 (2013; Tab. 12 and Fig. 31. B) for ˈTophit plusˈ plums. 
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Tab. 12. Pearson correlations coefficient matrix between full width at half maximum (FWHM) 

obtained from 532 nm, 660 nm, and 785 nm lasers and quality parameters of ˈJojoˈ and ˈTophit plusˈ 

plums in 2011 and 2013. 

LLBI 
parameters Year Cultivar Flesh 

firmness SSC TA DMC a* 
value 

b* 
value NAI 

FWHM
532 

(%) 
2013 

Jojo .72** -.61** .72** -.62** -.55** .73** -.76** 

Tophit plus .60** -.68** .67** -.66** -.34** .68** -.85** 

FWHM
660

 

(%) 

2011 
Jojo .49** -.42** .40** -.33** .72** 0.2 -.43* 

Tophit plus .84** -.82** .83** -.73** .72** .74** -.76** 

2013 
Jojo 0.1 -0.11 0.15 -.18* .19* 0.1 -0.01 

Tophit plus .58** -.74** .71** -.72** .15* .41** -.62** 

FWHM
785

 

(%) 

2011 
Jojo -.73** .40** -.67** .17** -.42** 0.1 .32** 

Tophit plus -.50** .40** -.43** .31** -.31** -0.22 .26** 

2013 
Jojo -.72** .63** -.71** .54** .35** -.64** .58** 

Tophit plus -.79** .65** -.75** .61** .22** -.67** .72** 
** and * indicates correlation is significant at the 0.01 and 0.05 level respectively (2-tailed). 

 

 

 

Fig. 31. Relationship between (A) full width at half maximum (FWHM) obtained from 532 nm laser 

and  normalized anthocyanin index (NAI) during preharvest, and (B) FWHM obtained from 785 nm 

laser and of flesh firmness during preharvest and storage in ˈJojoˈ and ˈTophit plusˈ plums in 2013. 
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 Discussion 5.

 Quality changes of ˈJojoˈ and ˈTophit plusˈ during pre- and 5.1.

postharvest periods 
During the development of ˈJojoˈ and ˈTophit plusˈ plums, fruit fresh mass, SSC and 

dry matter content experienced a pronounced increase, as also reported for plums of 

other cultivars (Zuzunaga et al., 2001; Daza et al., 2008; Usenik et al., 2008). In 

contrast, SSC and dry matter content did not markedly change during storage. In this 

context, the concentrating effects of fruit water loss can be assumed to seemingly 

compensate for sugar losses due to respiration (Kluge et al., 1996). Similarly in 

ˈGreen Gageˈ plums, SSC did not change during cold storage (Guerra and Casquero, 

2008). 

During pre- and postharvest periods, flesh firmness and titratable acidity decreased in 

fruit of both cultivars in all years. During the postharvest period, however, the 

decline in both firmness and acidity seems to be slightly smaller in the ˈTophit plusˈ 

than the ˈJojoˈ fruit (Fig. 15; Fig. 16). Fruit softening is mainly caused by the 

conversion of insoluble proto-pectins into water-soluble pectins (Krishna and Rao, 

2014). The reduction of TA may be explained by the preferred consumption of 

organic acids as substrates for respiration in detached fruit (Diaz-Mula et al., 2009). 

Several studies have reported a reduction in firmness and acidity during the cold 

storage and shelf life of plums (Guerra and Casquero, 2008, 2010; Valero et al., 

2013). The variations in a* values at the beginning of the experiment in fruit of both 

cultivars (2013; Fig. 16. A, B) were related to the change in the skin colour from 

green to violet. Afterwards, however, the reduction of a* value with progressing fruit 

ripeness can be caused by the development of the blue colour in the fruit skin in 

plums of both cultivars (Sekse et al., 2013). This is similar to results reported for 

other blue-coloured plums (Valero et al., 2003; Usenik et al., 2008). During fruit 

development, b* value decreased from the beginning of the experiment (positive 

value) until harvest (negative value) resulting in the development of the blue/yellow 

colour in fruit of both cultivars, as previously reported in other plum cultivars 

(Valero et al., 2003; Usenik et al., 2008). 
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With the exception of 2011, the normalised anthocyanin index (NAI) increased (Fig. 

17) with maturity indicating that anthocyanins constantly accumulated during 

development in fruit of both cultivars. Usenik et al. (2008) evaluated fruit quality 

changes during fruit development for four plum cultivars (ˈJojoˈ, ˈValorˈ, 

ˈCˇacˇanska rodnaˈ and ˈCˇacˇanska najboljaˈ). These authors showed that 

anthocyanin concentration increased during fruit development from the first pick 

(17th of August) to fifth pick (11th of September) in all cultivars. Moreover, similar 

findings have also been reported for plums of other cultivars (Diaz-Mula et al., 2008; 

Miletic´ et al., 2012).  

 

 Effects of preharvest factors on quality changes of ˈJojoˈand 5.2.

ˈTophit plusˈ 
 

  Crop load  5.2.1.

Fruit fresh mass and tree yield 

Except in ˈTophit plusˈ (2011), a high crop load of trees was accompanied by a low 

fresh mass of individual plums during both fruit development and at harvest. This 

may be a consequence of the increased demand of all fruit per tree for assimilates. 

Similar findings were previously reported for plums of other cultivars (Berman and 

DeJong, 1996; Intrigliolo and Castel, 2010) and for other stone fruit such as apricot 

(Roussos et al., 2011), peach (Alcobendas et al., 2012) and nectarine (Naor et al., 

1999). In this study, there was an inverse relationship between crop load and tree 

yield in both cultivars. HCL trees always had higher yields than LCL trees; thus, the 

balance between yield and fruit size must be maintained Crisosto and Costa (2008), 

Intrigliolo and Castel (2010) and Rab et al. (2012) reported that the tree yield 

decreased with fruit crop load in peach, plum and apricot fruit, respectively. 

 

Soluble solids content and titratable acidity  

At a high crop load, the SSCs of plums of both ˈTophit plusˈ and ˈJojoˈ were lower 

than in fruit from LCL trees (2012 and 2013; Tab. 6). Similar findings were also 

reported for plums of other cultivars (Intrigliolo and Castel, 2010; Intrigliolo et al., 
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2014). This may be due to delayed fruit maturation as a consequence of the increased 

fruit demand for assimilates (Chapman et al., 1991). 

As with altering the leaf to fruit ratio in light-cropping trees, more assimilates are 

available for fruit growth and, hence, quality development in LCL trees. Thus, fruit 

of LCL trees show higher individual fresh mass and SSC (Lakso et al., 1995; Klages 

et al., 2001; Stopar et al., 2002). They may also show improved taste and appearance, 

and better marketing quality.  

Moreover, the titratable acidity of fruit was not related to crop load during pre- and 

postharvest periods, except in 2011. This is in accordance with findings of 

(Intrigliolo and Castel, 2010), who reported a non-significant effect of crop load on 

the acidity of plums at harvest and during the postharvest period. Furthermore, 

similar to the results presented for 2011, fruit thinning enhanced the malic acid 

content of ˈPrianaˈ and ˈBelianaˈ apricots at harvest (Son, 2004). 

 

Dry matter content 

Fruit dry matter content was significantly higher in plums from low crop load trees 

(2012 and 2013; Tab.7). These results were consistent with other studies, which 

reported increased fruit dry matter content following thinning, e.g. in apple 

(Wünsche et al., 2005). However, Lopez et al. (2010) showed that the DMC of 

peaches was not affected by crop load under full irrigation; but it was affected under 

drought stress. Under such conditions, fruit DMC increased with the reduction of 

crop load. 

 

Transpiration rate and fruit firmness 

In this study, with the exception of ˈTophit plusˈ in 2013, crop load did not have 

notable effects on fruit transpiration.  

Moreover, firmness in fruit of both cultivars was not related to crop load in 2011 and 

2013. Nevertheless, ˈJojoˈ plums from low crop load trees were softer than those 

from HCL trees during both pre- and postharvest periods in 2012 (Tab. A.1). Roussos 

et al. (2011) also reported a significant decrease of firmness in apricots harvested 

from thinned ˈNafsikaˈ and ˈNioveˈ trees. However, similar to the results presented 
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for 2011 and 2013, Lopez et al. (2010) did not find any difference in fruit firmness 

between peaches obtained from heavily, commercially and non-thinned full irrigated 

trees.   

 

Fruit skin colour and anthocyanin 

During the preharvest period, there was a clear crop load effect on skin colour (b* 

value), showing that a light crop load leads to advanced maturity (Tab. A.2). These 

findings are in agreement with those from Usenik et al. (2010). These authors 

reported a better colouration of sweet cherry fruit from thinned trees, probably as a 

result of better carbohydrate partitioning. Moreover, compared to light crop load 

(thinned trees), heavy crop load delayed fruit maturation in ˈO’Henryˈ peaches 

(Johnson and Handley, 1989). 

At harvest, fruit colour was not significantly affected by crop load in fruit of the 

cultivars assessed in this study. Similar responses were observed in peaches (Lopez 

et al., 2010) and apricots (Roussos et al., 2011). 

Colour parameters determined preharvest showed that fruit from low cropping trees 

had a higher proportion of blue colour in skin (i.e. lower b* value). This is probably 

confirmed by the fact that the NAI and, hence, the anthocyanin content was higher in 

fruit from low crop load trees than in those from high crop load trees. Similarly, in 

ˈRoyal Galaˈ apples, anthocyanin concentration was higher in fruit from low crop 

load trees (Mata et al., 2006).  

 

  Soil ECa  5.2.2.
The apparent electrical conductivity (ECa) of soils is positively correlated to their 

moisture content (Telford et al., 1990; Nagy et al., 2013). Thus, the effects of soil 

ECa can be considered as soil water effects, i.e. low soil ECa (LECa) and high soil 

ECa (HECa) can be related to low and high soil water availability, respectively.  

In this study, soil ECa only affected SSC, dry matter and NAI in ˈJojoˈ plums in 

2013. However, the effect of soil ECa on fresh mass was found in fruit of both 

cultivars in 2013. 
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Fruit fresh mass and yield 

In 2013, low ECa caused a significant decrease in fruit fresh mass at harvest in both 

cultivars (Tab. 5). These results are in agreement with previous reports for peach 

cultivars (i.e. Crisosto et al., 1994b; Berman and DeJong, 1996; Lopez et al., 2010; 

Alcobendas et al., 2012), where fruit size and fruit mass were reduced by drought 

stress. This confirms that water inflow into the fruit under drought conditions is 

greatly reduced. Reduced fruit fresh mass as a result of water shortage was explained 

by the lower water potentials of stressed trees in comparison to the controls, as well 

as lower whole-plant relative water content (Berman and DeJong, 1996). Overall, in 

2013, variations in fruit fresh mass in response to soil ECa were similar under the 

two crop load, which means that the effect of the soil ECa and crop level interaction 

was not statistically significant. Moreover, although fruit fresh mass in LECa was 

lower than in HECa, the total treeˈs yield was not significantly affected by soil ECa. 

 

Soluble solids content and titratable acidity  

SSC was only significantly higher in fruit of LECa than in that of HECa for ˈJojoˈ in 

2013 (Tab. 6). This is probably due to either an active accumulation of solutes or to 

fruit dehydration (Intrigliolo and Castel, 2010). Similarly, Gebbers and Zude (2008) 

reported that fruit SSC was higher in the low ECa zone than in the high ECa zone for 

apples. These results are also in accordance with several field studies that reported an 

enhancement of SSC under low soil water availability. For instance, Li et al. (1989a)  

and Perez-Sarmiento et al. (2010) both reported that water shortage during fruit 

maturation led to an increased SSC in peaches and apricots. With the exception of 

ˈJojoˈ plums in 2012 (at harvest), the level of TA was equal in fruit from both soil 

ECa zones, during both the pre- and postharvest periods, and in all years. Similarly, 

Intrigliolo and Castel (2010) observed that deficit irrigation increased the total 

soluble solids content of plums without any effect on TA at harvest and after 14 days 

of cold storage.  

In fact, both low crop level and low soil ECa increased the SSC of ˈJojoˈ plums at 

harvest (2013). Further, the effect of soil ECa on fruit SSC was similar under the two 

crop levels investigated for ˈJojoˈ plums (2013). The observed differences were also 

maintained during storage in the presented study. Similar effects of soil water deficits 
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and high crop loads on the SSC of plums at harvest and after 14 days of storage were 

reported by Intrigliolo and Castel (2010). 

 

Dry matter content 

DMC in fruit under LECa conditions in ˈJojoˈ (2013) was higher than those under 

HECa conditions over the entire experimental period (Tab.7). This might be explained 

by a similar effect of drought stress as that reported Marsal et al. (2006) and Lopez et 

al. (2010) for peaches. DMC of fruit grown on drought-stressed trees was higher than 

that of controls. DMC of fruit from non-irrigated trees may indicate partial 

dehydration of fruit under water shortage. In peaches, an increase in fruit DMC could 

produce a lack of fruit juiciness, which may impair the quality of the fruit in the end 

(Lopez et al., 2010). Fruit fresh mass was more affected by soil ECa than dry mass. 

Thus, fruit dry matter content increased in LECa, which indicates that water inflow 

in fruit was more restricted than carbohydrate import for trees under drought 

conditions (Rahmati et al., 2015). The differences in DMC between fruit from 

different soil ECa and crop load levels observed at harvest were maintained during 

the storage. Overall, variation in fruit DMC in response to soil ECa was similar 

under both crop levels for ˈJojoˈ plums (2013). 

 

Transpiration rate and fruit firmness 

During storage of ˈJojoˈ plums in 2013, transpiration in fruit from LECa was lower 

than from HECa for both trees with low and high crop loads (Tab. A.1). The lower 

transpiration of plums grown under LECa conditions could probably be explained by 

the presence of a thicker fruit cuticle formed in response to water shortage. Thicker 

cuticles can significantly reduce the amount of water loss in fruit (Crisosto et al., 

1994b). In a previous study, Pérez-Pastor et al. (2007) found that mass loss was 

significantly lower in deficit irrigated apricots than in controlled irrigated fruit during 

cold storage. Similarly, Crisosto et al. (1994b) reported that peaches under excess 

irrigation showed higher water losses than fruit grown under deficit and optimum 

irrigation during 4 days of storage. These authors assumed that fruit from excess 

irrigation with thinner cuticles had a lower resistance to water vapour transfer than 

those from deficit and optimum irrigation. 
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Except in ˈTophit plusˈ plums in 2013, fruit firmness was equal in fruit from both 

soil ECa zones. However, in previous studies, Pérez-Pastor et al. (2007) and 

Alcobendas et al. (2012) observed that deficit irrigation increased fruit firmness at 

harvest in peach and apricot fruits. 

 

NAI and skin colour 

The NAI of fruit was only affected by soil ECa (Tab. 8) in ˈJojoˈ plums (2012 and 

2013). It seems that the development of anthocyanins in the skin of LECa grown fruit 

was faster than that grown under HECa conditions. A similar effect was reported by  

Gebbers and Zude (2008) for apples. This might be due to higher light penetration 

into the tree canopy due to reduced vegetative growth in water limited trees (Thakur 

and Singh, 2013). This agrees with the findings of Buendia et al. (2008) and Thakur 

and Singh (2013). These authors found a high accumulation of anthocyanins and 

improved colour in peaches and nectarines that were subjected to deficit irrigation. 

In the present study, the development of blue colour in fruit under LECa conditions 

only tended to be slightly faster than in those under HECa in ˈJojoˈ (2012), although 

fruit colour was not significantly affected by soil ECa in other years.  

In general, in contrast to 2013, soil ECa did not have considerable effects on fruit 

quality in 2012 and 2011. This is probably  due to either the fact that, in 2011 and 

2012, younger trees with less root growth in deeper soil layers were studied, or it 

may also be due to the higher amount of precipitation during final fruit development 

(July and August) in 2011 and 2012 (Tab. A. 5), or a combination of both. 

 

 

  Maximum daily trunk shrinkage  5.2.3.

 Relation between MDS and climatic conditions, tree crop load and soil 5.2.3.1.

ECa  

In the present study, MDS was highly correlated with VPD in both ˈJojoˈ and ˈTophit 

plusˈ trees. This confirms earlier reports that MDS not only reflects plant water status 
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but could also be influenced by weather conditions (Fereres and Goldhamer, 2003a; 

Ortuno et al., 2006; Conejero et al., 2007). The increase of VPD by 1 kPa/MPa 

enhanced MDS by 20 and 35 µm in ˈJojoˈ and ˈTophit plusˈ trees, respectively (Fig. 

21. A). Based on the evaluation of the relationship between MDS and VPD, it can be 

concluded that MDS was more closely associated with the changes in VPD in ˈJojoˈ 

than in ˈTophit plusˈ trees. This is probably due to the general differences in 

vegetative biomass and crop load between ˈJojoˈ and ˈTophit plusˈ trees. In the 

present experiment, the higher MDS in July and August compared to that in May and 

June can be attributed to an increase in leaf transpiration as a result of higher VPD. 

MDS values were higher for high crop load trees when compared to trees with low 

crop load (Fig. 20. A,C). This finding is in close agreement with previous reports 

(Intrigliolo and Castel, 2007; De Swaef et al., 2014). The effect of crop load on MDS 

may result from transpiration-induced changes in water uptake, which, in turn, may 

directly affect stem water status (Intrigliolo and Castel, 2007; De Swaef et al., 2014). 

Besides this, any reduction in the phloem tissue’s sugar content in response to a high 

carbohydrate sink strength of fruit (high crop load) led to an increase in the osmotic 

potential and, consequently, in the water potential. This, in turn, decreases the water 

potential gradient between phloem and xylem, which was caused by the lower trunk 

water content in high crop load trees compared to low crop load trees (Intrigliolo and 

Castel, 2007). In contrast, the osmotic potential in phloem tissues decreased with 

increasing solute contents in low crop load trees, as a consequence of their lower 

canopy sink strength for sugars (Flore and Layne, 1997). This should increase the 

water potential gradient between phloem and xylem. This may explain why the MDS 

of plum trees reached its lowest value after fruit harvest in early September.  

In the present study, soil ECa did not clearly affect MDS for ˈTophit plusˈ plum 

trees.  However, in some periods of experiments for ˈJojoˈ, the MDS in LECa trees 

was higher than in HECa trees (Fig. 20. B, D). This could be explained by a higher 

soil water deficit in LECa trees. Soil ECa in non-saline soils is strongly dependent on 

the soil moisture content (Telford et al., 1990). According to previous studies by 

Huguet et al. (1992) and Intrigliolo and Castel (2006a). MDS notably changed with 

the variation of water availability in the soil. The MDS in deficit irrigated trees was 

consistently higher than that in well-irrigated ones.  
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 Effect of MDS on physicochemical properties of fruit  5.2.3.2.

Compared to several other plant and soil water status indicators, MDS has been 

shown to respond earlier to soil water shortage (Goldhamer et al., 1999). Previous 

studies report a negative linear relationship between MDS and stem water potential 

as a tree water status indicator in almonds (Fereres and Goldhamer, 2003a), lemons 

(Ortuno et al., 2006), and plums (Intrigliolo and Castel, 2004, 2006a, 2007). MDS 

increases with tree water deficits, in particular during fruit growth and can, hence, be 

considered a reliable drought stress indicator for trees (Intrigliolo and Castel, 2004, 

2006a). Stage III of fruit growth is more sensitive than stages I and II, because the 

maximum level of water consumption occurs in stage III (Boland et al., 1993). 

Therefore, trees classified as low maximum daily shrinkage (LMDS) and high 

maximum daily shrinkage (HMDS) in the present study (Fig. 7) might also be 

indicative of low and high water deficits, respectively. 

In this study, Colour parameters measured preharvest showed that ˈJojoˈ plums of 

HMDS trees had a deeper blue skin colour (i.e. lower b* value) and a higher NAI 

than those of LMDS trees. This may show that high MDS potentially indicates 

advanced maturity. In this context, effects of drought stress on fruit quality have also 

been reported for peaches (Buendia et al., 2008) and nectarines (Thakur and Singh, 

2013). These authors reported a higher accumulation of anthocyanins and improved 

colour in fruit grown under deficit irrigation compared to those grown under full 

irrigation. 

Moreover, transpiration rate in LMDS fruit was higher than in HMDS plums during 

cold storage and simulated shelf life. Crisosto et al. (1994b) assumed that fruit 

developed under a water deficit had lower water losses than controls due to a thicker 

cuticle with higher resistance to water losses.  

HMDS fruit also had higher SSC and higher dry matter content than those grown in 

LMDS over the entire experimental period. This can be associated with a decrease in 

fruit water content under a water deficit. There are several field studies that reported 

an enhancement of SSC under low soil water availability. Deficit irrigation increased 

fruit SSC at harvest and after the 14-day cold storage period in plums (Intrigliolo and 
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Castel, 2010). This is probably due to either an active accumulation of solutes or to 

fruit dehydration (Intrigliolo and Castel, 2010). 

 

 Interactions of postharvest factors with regard to quality 5.3.

changes in plums 

  Harvest maturity 5.3.1.

Fresh mass and dry matter content 

The increase in fresh mass and DMC observed in plums of both cultivars during the 

harvesting period could indicate that fruit harvested early are still in an initial phase 

of fruit ripening. Thus, the fruit had not reached their final size (Zuzunaga et al., 

2001). In European plums it has been established that fruit mass is affected 

significantly by harvest date (Valero et al., 2003; Guerra and Casquero, 2008; Usenik 

et al., 2008; Casquero and Guerra, 2009). 
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Fruit flesh firmness 

As expected, flesh firmness declined significantly during the final phase of fruit 

development. Hence, the level of flesh firmness was much lower in late harvested 

fruit when compared with the early harvested ones (Fig. 25. C). Crisosto et al. (2004) 

previously reported that flesh firmness decreased during the 18 days of the harvest 

period between the 1st harvest date (31.6 N) and the 4th harvest date (12.9 N) for 

ˈBlackamberˈ plums, and during the 12 days from the 1st harvest date (69.2 N) to the 

5th harvest date (31.5 N) for ˈGreen Gageˈ plums (Guerra and Casquero, 2008).  

The harvest date-related differences in fruit flesh firmness were also maintained 

during cold storage and shelf life. Thus, our results confirm those reported by Guerra 

and Casquero (2010). However, in another study (Guerra and Casquero, 2008), fruit 

harvested too early (1st harvest) stayed firm during the 40 days of storage. This 

indicates, in the present investigation, that fruit from all harvest dates were 

sufficiently mature at harvest to ripen further off the tree in cold storage (Guerra and 

Casquero, 2010). The increased activity of hydrolytic enzymes such as 

polygalacturonase, pectin methylesterase and endo–1,4–β–D–glucanase  is reportedly 

responsible for cell–wall modifications, leading to decrease fruit firmness during 

cold storage in ˈTegan Blueˈ plums (Khan et al., 2008).  

 

Skin colour 

Changes in skin colour during the harvesting period have been reported for many 

cultivars of Japanese and European plums (Taylor et al., 1993a; Taylor et al., 1995; 

Abdi et al., 1997; Crisosto et al., 2004; Casquero and Guerra, 2009). In the present 

study, the surface colour of ˈJojoˈ plums changed initially from green to violet to 

dark blue during ripening. In this cultivar, the skin becomes blue relatively early 

during fruit development, well before the optimal harvesting maturity has been 

reached. However, the changes of a* and b* indicated that plum colour was slightly 

improved and reached a complete blue through further maturation from the 1st to the 

3rd harvest date (Fig. 25. A, B).The fact that colour only changed further during 

storage in early-harvested fruit but not in mid-late or late-picked plums may indicate 

that the latter had already reached the final stage of maturation at harvest and, hence, 

an 'optimal' dark blue skin colour.  
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Soluble solids content and titratable acidity 

Soluble solids content and titratable acidity are assumed to be good indicators for 

acceptance of plums by consumers (Crisosto et al., 2004; Manganaris et al., 2008). 

For most consumers, plums with a SSC below 12.5 °Brix were not acceptable 

(Vangdal, 1980). In the present investigation, SSC significantly increased with later 

harvesting, as also previously reported for fruit of other European plum cultivars 

(Taylor et al., 1995; Guerra and Casquero, 2008; Usenik et al., 2008). In the present 

study, SSC of fruit was always higher than 12.5 °Brix, irrespective of date of harvest. 

Nevertheless, titratable acidity was also high in early-harvested plums; consequently, 

these fruit did not seem ready for consumption. 

Titratable acidity of plums decreased with fruit maturation; hence, acidity strongly 

depended on harvesting date and, thus, the ripening stage of plums (Crisosto et al., 

2004; Crisosto and Crisosto, 2005). This decrease in titratable acidity during the 

harvesting period was also reported for plums of several other cultivars 

(Westercamp, 1996; Crisosto et al., 2004; Guerra and Casquero, 2008; Usenik et al., 

2008).  

In this study, the lack of change in SSC during cold storage and shelf life (Fig. 25. D) 

can mainly be explained by a low production of CO2 after the harvest of ˈJojoˈ plums 

(Kožiškova and Goliaš, 2012). In addition, according to Kluge et al. (1996), sugar 

losses due to respiration could compensate the increases in sugar content due to the 

concentrating effects of water losses in plum fruit. In studies reported by Casquero 

and Guerra (2009) and Guerra and Casquero (2008), the SSC in ‘Green Gage’ plums 

was not changed during cold storage. In contrast,  Vangdal (1981) and Westercamp 

(1996) observed that SSC increased in both ‘Mallard’ and ‘Green Gage’ plums 

during cold storage.   

In the present study, the titratable acidity of plums decreased during cold storage. 

Although, this was statistically irrespective of harvest date, a decline in acidity 

seemed to be slightly smaller in fruit harvested early. In ˈOullins Gageˈ plums TA 

reportedly (Casquero and Guerra, 2009) decreased during storage in fruit of all 

harvest dates as well, except in those of the earliest maturity. Moreover, Santos and 
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Ribeiro (1998) found that TA decreased after three weeks of storage in unripe and 

almost ripe ˈRainha claudiaˈ plums.  

The sugar to acidity ratio (SSC:TA) increased during cold storage in fruit of all 

cultivars (Kluge et al., 1996). Crisosto (1994a) indicated that the SSC:TA ratio might 

be better suited to differentiate between harvest date-related quality differences of 

plums than TA or SSC alone. Therefore, the increase in the SSC:TA ratio with fruit 

maturation, as observed in the present study, may be generally favourable, as it 

improves both fruit flavour and consumer acceptability. However,  Crisosto et al. 

(2004) reported that consumer acceptance only depended on SSC:TA when SSC was 

≤ 12.0% in ˈBlackamberˈ plums; on the contrary, when SSC was ≥ 12.0%, SSC had 

the greater influence on consumer responses.   

 

Transpiration rate 

After harvest, during cold storage and shelf life, fresh fruits and vegetables continue 

to transpire. As a diffusion process, transpiration is directly related to the driving 

force, i.e. the water vapour partial pressure gradient between produce skins and the 

surrounding air (Von Willert et al., 1995; Yehoshua and Rodov, 2003). In the present 

investigation, early-harvested and thus, less-mature, fruit had higher transpiration 

rates than those harvested at later dates; both at harvest, and during cold storage and 

shelf life (Fig. 25. G; Tab. A.3). Hence, these findings confirm the results of Kluge et 

al. (1996) showing that mass losses were lower in ripe ˈGreen Gageˈ plums than in 

unripe fruit. In contrast, in ripe ˈGreen Gageˈ plums, mass losses during storage (40 

days) were greater than in unripe fruit (Guerra and Casquero, 2008). In the present 

study, transpiration rates of ˈJojoˈ plums decreased during cold storage and shelf life, 

irrespective of harvest date. Variations in rates of mass loss during storage have also 

been previously reported (Guerra and Casquero, 2008; Eum et al., 2009; Bal, 2013; 

Valero et al., 2013). In general, harvesting plums at an optimum stage of maturity 

could minimize water losses during cold storage.  
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  Edible coating  5.3.2.

Fruit transpiration rate and flesh firmness 

Fresh fruits and vegetables continue transpiration after harvest and during storage 

(Yehoshua and Rodov, 2003). Edible coatings act as an extra layer, which reduces 

transpiration and, consequently mass losses (Valero et al., 2013). The positive effect 

of various edible coatings on the reduction of mass losses has been demonstrated in 

plums of various cultivars (Reinoso et al., 2008; Eum et al., 2009; Navarro-Tarazaga 

et al., 2011; Sohail et al., 2014). As shown in the present study, coating fruit with 

Versasheen and sorbitol successfully reduced the transpiration of ˈJojoˈ and ˈTophit 

plusˈ plums, during both cold storage and simulated shelf life (Fig. 26).  

Similarly, in a previous study by Eum et al. (2009), treatment with Versasheen (5%) 

and sorbitol (0.2%), as well as Versasheen alone, reduced mass losses in coated 

Sapphire plums when compared to untreated controls. In this investigation, the 

authors found that the mass loss in uncoated plums during storage was caused by 

higher respirational CO2 losses. 

Plasticizers such as sorbitol are generally small molecules that intersperse and 

intercalate among and between polymer chains, disrupting hydrogen bonding and 

spreading the chains apart, which not only increases the flexibility of the coating, but 

also water vapour and gas permeability (Gontard et al., 1993; Sobral et al., 2001). 

The differences between the transpiration rates of ˈJojoˈ and ˈTophit plusˈ plums 

during storage may indicate different fruit epidermal and cuticle structures in the fruit 

of these cultivars (Valero et al., 2013). 

Among other factors, fruit softening is caused by a conversion of insoluble proto-

pectins into soluble pectin (Krishna and Rao, 2014). The application of coating 

materials may reduce or delay texture changes during storage not only by decreasing 

water losses but also by inhibiting pectin solubilisation. This was reported in peaches 

and plums treated with methyl cellulose or alginate (Maftoonazad et al., 2008; Valero 

et al., 2013). In the present investigation, Versasheen coatings with sorbitol 

significantly slowed softening over 21 days of cold storage for ˈJojoˈ plums and over 

the whole period of cold storage and simulated shelf life for ˈTophit plusˈ fruit (Fig. 

27). The coating is assumed to reduce cell wall degradation which in turn protects 
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cell wall structure (Bal, 2013). In ˈSapphireˈ plums, the retardation of fruit softening 

through the application of a Versasheen (5%) and sorbitol (0.2%) coating during 4 

days of room temperature storage has been shown by Eum et al. (2009). 

 

Soluble solids content and titratable acidity 

In the present study, SSC did not significantly change during cold storage and 

simulated shelf life, and was also not affected by the Versasheen coating of plums of 

both cultivars. This also reflects the data obtained for ˈSapphireˈ plums (Eum et al., 

2009); in that study, SSC remained unaffected by Versasheen coating both with and 

without sorbitol. The lack of any effects of coatings on the SSC of stored plums may 

be due to the low CO2 and ethylene production in these suppressed climacteric fruit 

(Kožiškova and Goliaš, 2012). In these plums, ethylene production increases only 

during the later stage of ripening and at low rates, in comparison to fruit of truly 

climacteric cultivars (Abdi et al., 1997). 

Coating with Versasheen did not reduce the decline of TA in ˈJojoˈ and ˈTophit plusˈ 

plums during cold storage. In contrast to this finding, coating ˈSapphireˈ plums with 

Versasheen plus sorbitol effectively delayed the reduction of TA during room 

temperature storage (Eum et al., 2009). 

 

Skin colour 

The absence of any significant differences between coated and control fruit during 

cold storage and shelf life may result from the fact that the blue dark colour had been 

reached well before harvest. The minor colour changes during storage might be due 

to the beginning of fruit senescence that leads to a darker colour. The a* and b* 

values indicated that the blue skin colour of ˈTophit plusˈ plums was deeper than that 

of ˈJojoˈ fruit. Hence, colour is a cultivar-specific property and does not necessarily 

reflect the stage of maturation. 
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 Changes in optical fruit properties  5.4.

  Optical properties of plums during fruit development on the tree 5.4.1.

and during storage 

LLBI readings in the green wavelength range 

In this study, FWHM532 value had noticeably decreased by 33% and 46% by the time 

of harvest for both ˈJojoˈ and ˈTophit plusˈ plums (Fig. 29), and moved closer to the 

light incident point with increasing levels of ripeness. As the fruit ripened and 

maturity level increased, anthocyanin and carotenoid pigments appeared. The 

reduction of FWHM532 was related to an increase of anthocyanin (as indicated by 

NAI) during fruit development. According to the literature, differences at lower 

wavelengths in the range of 475-560 nm can be the result of typical absorption in 

anthocyanin (Hopkins, 1995). The highest correlation coefficient has been found for 

NAI with r = 0.76 and r = 0.85 in ˈJojoˈ and ˈTophit plusˈ plums, respectively. 

Therefore, reduction of FWHM at 532 nm during fruit development could be 

explained by increases in the content of anthocyanin as indicated by NAI in both 

cultivars.  

Moreover, the more pronounced reduction of FWHM532 in ˈTophit plusˈ plums than 

in ˈJojoˈ fruit could be explained by higher changes of NAI value in ˈTophit plusˈ 

than ˈJojoˈ plums. This occurred because the 1st sampling was performed at different 

physiological stages for the ˈJojoˈ and ˈTophit plusˈ plums. At the 1st sampling, the 

NAI of ˈJojoˈ fruit was approx. four times larger than that of ˈTophit plusˈ plums in 

2013 (Fig. 17). 

The constant FWHM532 during storage is in agreement with colour (Fig. 16) and NAI 

changes (Fig. 17), since the full colour which corresponded to the highest NAI was 

attained at some approximate point before harvest and was not changed during 

storage in both cultivars. 

 

 LLBI readings in the red and near infrared wavelength range 

The results of the backscattering in this study showed that the FWHM660 increased in 

the beginning of the experiment (only in 2013) and then decreased in both cultivars 
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(Fig. 30). As 660 nm is sensitive to chlorophyll content (Abbott, 1999), the increase 

of FWHM at 660 nm could be related to fruit chlorophyll content. When the fruit 

ripened and the chlorophyll pigment disappeared, the light absorption decreased and 

more photons were backscattered (Romano et al., 2012).  

In 2011, there was no increase in FWHM660, because the chlorophyll was already 

decreased and the skin colour had already become almost dark blue before the 

sampling period. Hashim et al. (2014) showed that the values of the backscattering 

parameters at 660 nm, such as inflection point (IP) and FWHM, increased with 

decreasing chlorophyll content during the fruit ripening of bananas. 

It is not easy to interpret the reduction of FWHM660 during experimental time. But it 

can be explained by interaction changes between molecules and the light caused by 

change in fruit components, as we found a correlation between some fruit 

components and FWHM660, especially in ˈTophit plusˈ plums (Tab. 11). Therefore, 

reduction of FWHM660 as a scatter profile might be explained by increases in SSC 

and dry matter content during the preharvest period. Romano et al. (2011) reported 

that the backscattering area at 635 nm decreased with a reduction in moisture content 

while increasing SSC and hardness in fruit tissue during fruit drying. They explained 

that this can happen due to an increase in light absorption by the fruit solid material 

including saccharides, resulting in less scattered light by the end of fruit drying. The 

different behaviour of FWHM660 between years and cultivars can also be explained 

with their component values. 

In this study, contrary to 660 nm, it was observed that the FWHM785 values increased 

during the pre- and postharvest periods in both ˈJojoˈ and ˈTophit plusˈ plums. This 

phenomenon might be related to the changes in the textural properties of the plums 

during storage. As a result, wavelengths around 770 and 2500 nm are sensitive to 

textural properties and the laser light around 780 and 880 nm provides information 

mainly on the light scattering in the fruit tissue (Qing et al., 2007b). 

On one hand, the increase in FWHM785 during the preharvest period could be due to 

a slight reduction in the water content of the fruit (Fig.13). With the reduction of 

moisture, air can replace water in some inter-cellular spaces, causing an increase in 

near-infrared light refraction (785 nm) and thus a higher scattering coefficient can be 

measured (Romano et al., 2010).  
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On the other hand, the increase of FWHM calculated at 785 nm during the duration 

of the experiment was parallel with the softening of the plum (Fig. 15). This suggests 

that fruit flesh firmness is related to fruit texture properties, thus, influencing the 

light scattering in the fruit tissue. The difference in the behaviour of FWHM785 

between years and cultivars can be explained with the different values of their fruit 

firmness (Fig. 15).  

Basically, soft fruits have more intercellular spaces compared to firmer ones (Harker 

et al., 1997) and as a consequence, differences in reflectance from the tissue can be 

expected (Peng and Lu, 2007). As reported by Hashim et al. (2014), the 

backscattering parameters of bananas obtained at 785 nm (e.g. FWHM and inflection 

point) decreased with increasing fruit hardness during storage at chilling 

temperatures. Moreover, they explained that light penetration into the tissues of firm 

fruit is more difficult, and hence the photons took a straight trajectory and a more 

direct reflection occurred, instead of backscattering.  

The relationship between FWHM785 and quality parameters of both cultivars during 

the experiments of 2011 and 2013 showed that the FWHM785 was positively 

correlated with fruit firmness (r > 0.50; Tab. 12).  The highest correlation was 

reached in plums of ˈTophit plusˈ in 2013 (r = 0.79). Although, the relationship 

between FWHM785 and flesh firmness in ˈTophit plusˈ plums (r = 0.60) was lower 

than that in ˈJojoˈ (r = 0.72), considering the total duration of the experiment in 2011 

(Tab. 12), when the regressions were broken down into two time periods - preharvest 

and postharvest - the correlations obtained from ˈTophit plusˈ plums were higher 

than those from ˈJojoˈ plums during the postharvest period (data not shown).  

Previous studies (Lu, 2004; Qing et al., 2007a) have shown that light backscattering 

profiles from apple fruit can be used to predict fruit firmness with r = 0.87 and r = 

0.90, respectively. Additionally, Mollazade et al. (2013) have studied the potential of 

texture-based image analysis features for laser light backscattering to predict the 

mechanical properties of mushrooms, tomatos, apples, and plums. They found the 

highest correlation coefficient for prediction in tomato (r = 0.92) followed by 

mushroom (r = 0.90), apple (r = 0.89), and plum (r = 0.79). 
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 Effects of pre- and postharvest factors on change in optical 5.4.2.

properties of plums 

Both crop load and MDS affected FWHM532 during fruit development on the tree. 
The reduction of FWHM532 in plums of low crop load (LCL) and high maximum 

daily shrinkage (HMDS) was higher than in those obtained from high crop load 

(HCL) and low maximum daily shrinkage (LMDS). Such a finding can be interpreted 

with NAI changes during fruit development since there was a high correlation 

between NAI and FWHM532 (Fig. 31). Therefore, the higher value of NAI in fruits of 

LCL and HMDS caused a higher light absorption at 532 nm through the level of 

anthocyanin pigments in this fruit, resulting in a lower scatter profile of FWHM532. 

In this study, contrary to the light at 532 nm, the optical values of FWHM660 and 

FWHM785 were not affected by preharvest (Soil ECa, Crop load and MDS) factors. 

This may have occurred because the FWHM785 is related to fruit texture, while 

preharvest factors mostly affected fruit chemical properties such as SSC and dry 

matter in both plum fruit. 

Regarding the optical profile of FWHM during harvest period, FWHM660 and 

FWHM785 declined from the 1st to the 3rd harvest date (Tab. A. 4). Irrespective of the 

date of harvest, these profiles further decreased and increased, respectively, during 

cold storage and shelf life. These changes may have occurred due to changes in the 

physicochemical properties of the fruit, as explained in detail in 5.4.1.  

The edible coating affected the FWHM785 during storage (Tab. 10). In ˈJojoˈ plums, 

the increase of FWHM785 in coated fruit was significantly lower than in the controls. 

These findings can be explained by the changes in fruit texture during fruit 

development, since there was a high negative correlation between flesh firmness and 

FWHM785. Therefore, the coated fruit with a high firmness caused a lower scatter 

profile of FWHM785. Further details are explained in 5.4.1. (LLBI readings in the red 

and near infrared wavelength range).  
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Conclusion 

Crop load had a strong effect on the physicochemical properties of fruit of both 

cultivars in 2012 and 2013 but not in 2011. Plums grown on low crop load trees had 

generally higher fresh mass, dry matter content, SSC, NAI and advanced colour (CIE 

b* values) than those grown on high crop load trees. In contrast, the effect of soil 

ECa was significant only in 2013. Here, the low soil ECa caused lower fresh mass in 

fruit of both cultivars and higher SSC, dry matter content and NAI (during 

preharvest) in ˈJojoˈ fruit. These differences between effects of LECa and HECa 

zones suggest the need for specific management strategies for each zone in order to 

reach optimum fruit yield and quality. Crop load and soil ECa did not have any 

considerable interactive effect on fruit quality, except in ˈTophit plusˈ in 2013. Here, 

the effects of crop load on SSC and dry matter content were statistically significant, 

however only under a LECa. In general, fruit from low crop load trees grown under a 

low ECa had the highest SSC and dry matter content, while those from low crop load 

trees under a high ECa showed the highest level of fresh mass in 2013.  

A clear relationship between MDS as a water deficit indicator and fruit quality could 

be obtained in both cultivars. Trees characterised by a low MDS had a lower fruit 

yield. In addition, their fruit showed higher rates of transpiration than those grown on 

trees with high MDS in both cultivars. In contrast, preharvest colour development 

and accumulation of anthocyanins in ˈJojoˈ was advanced in fruit grown on trees 

with high MDS. The HMDS plums also developed a higher SSC and dry matter 

content than those grown on trees with low MDS. This effect, however, was most 

prominent in ˈJojo  ̍plums. This was probably because of the water deficit in high MDS 

trees. Nevertheless, it was not shown that high MDS trees suffered from a soil water 

deficit. In this context, a clear correlation between soil ECa and variations in MDS 

could not be found. Moreover, several other factors such as the growth stage and 

crop load of trees may also cause variations in MDS. It is especially important to 

note that MDS and crop load were correlated in both cultivars in this study.  

To summarize, tree crop load, MDS of tree trunks and soil ECa had, respectively, the 

most significant effects on the physical and chemical properties of developing plums 

that determine fruit quality. 
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In ˈJojoˈ, the evaluation of the quality of fruit harvested at different dates clearly 

indicated that a late harvest of fully ripe plums yielded the best quality by far. These 

fruit showed the highest fresh mass, lowest transpiration and a fully developed 

colour. Even though early harvesting has been proposed as a solution to allow for a 

longer storage period and extended marketability regarding fruit firmness, in this 

experiment no quality advantage was noted. Cold storage (2°C) of ˈJojoˈ plums 

slowed down ripening, thus resulting in a poor taste due to low SSC and SSC:TA, 

particularly in early harvested fruit. In the present study, flesh firmness and SSC or 

SSC:TA could be used to distinguish the true stages of maturity at harvest. The 

results suggested that the best post-storage quality of ˈJojoˈ plums could be obtained 

when fruit were harvested with a SSC higher than 15.5, SSC:TA higher than 10.5, 

and flesh firmness higher than 4.3 N in order to ensure a long storage as well as shelf 

life. The determination of fruit maturity on the basis of fruit colour is not suitable for 

plums of this cultivar and needs to involve some other additional parameters to 

precisely determine fruit maturity.  

Additionally, using Versasheen plus sorbitol effectively reduced fruit transpiration 

and, thus, delayed changes in firmness, especially for ˈTophit plusˈ plums, during 

cold storage and shelf life. The application of this edible coating did not show any 

effect on fruit SSC and skin colour in plums of both cultivars. According to these 

results, Versasheen-based edible coatings could be used as postharvest treatments to 

extend both the storage quality and shelf life of ˈJojoˈ and ˈTophit plusˈ plums. 

Moreover, the results obtained by laser light backscattering imaging profiles 

indicated that the reduction in full width half maximum measured at 532 nm was 

always strongly correlated with an increase in anthocyanin content as indicated by 

NAI during fruit maturation. In contrast, the variation of FWHM660 during fruit 

development may be related to the combined effects of the degradation of fruit 

chlorophyll content and changes in other fruit properties. Furthermore, the increase 

in FWHM785 was strongly correlated with a decrease in fruit firmness during pre- and 

postharvest periods. Except for a minor effect of MDS on FWHM532, the profiles 

were not influenced by preharvest factors. In general, the laser-induced 

backscattering technique using 532 nm and 785 nm lasers could be feasible for non-

destructive prediction of NAI and firmness in plum fruit. However a replacement of 
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conventional methods with non-destructive optical methods for the prediction of fruit 

quality such as firmness in plums needs further research. 
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Summary 

In Europe, plum is an economically important fruit with high consumer acceptance. 

Despite this, plum consumption has not increased in most European countries, most 

probably because of a non-uniform fruit quality and a lack of fully-mature fruit. 

Thus, it is necessary to manage preharvest conditions such as crop load and soil 

properties optimally in order to obtain high quality plums and to harvest the fruit ripe 

state. In this study, the effects of (i) soil properties as indicated by the apparent 

electrical conductivity (ECa), (ii) crop load, and (iii) tree water status as indicated by 

the maximum daily trunk shrinkage (MDS) on various fruit quality parameters of 

two European plum cultivars ˈJojoˈ and ˈTophit plusˈ) were evaluated. Harvest 

maturity is also important for plums' consumer acceptance due to the detrimental 

effects that both too early and too late harvests may have on fruit quality. 

Furthermore, plums are perishable and cannot be stored for long period. Thus, the 

application of postharvest treatments such as edible coatings can be an effective 

method for the preservation of plum quality. Hence, additionally to the effects of (1)  

ECa, crop load and MDS (2)  the internal and external fruit quality as it relates to 

different picking times throughout the harvest period in ˈJojoˈ plums (2013);  (3) the 

application of a Versasheen and sorbitol-based edible coating on various fruit 

parameters and, finally, (4) the potential of  laser backscattering imaging as an 

additional optical technique to non-destructively evaluate variations in the quality 

properties of plum tissues were investigated. 

The investigation of plums was carried out in an experimental orchard in 2011, 2012 

and 2013. For evaluation of the effects of the preharvest factors, fruit of selected 

trees were sampled and subjected to laboratory measurements three times before and 

at the commercial harvest. At the commercial harvest, plums were stored at 2 °C and 

90% RH for up to 28 days plus 2 days at 20 °C, after initial analyses. During storage, 

fruit of each treatment group were removed after 7, 14, 21, 28 and 30 days and 

analysed. Furthermore, the effects of edible coatings (Versasheen plus sorbitol) on 

changes in fruit quality during storage were analysed. Various physicochemical 

quality parameters were recorded using destructive methods. In addition, the optical 

properties of samples were non-destructively evaluated through laser light 

backscattering imaging (LLBI). 
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The results showed that the plums grown on low crop load trees had generally higher 

fresh mass, dry matter content, total soluble solids content, normalised anthocyanin 

index (NAI) and advanced colour (CIE b*) than those from high crop load trees in 

2012 and 2013. In contrast, soil ECa did not affect fruit quality, except in 2013. Here, 

the low soil ECa only caused higher total soluble solids content (SSC), dry matter 

content and anthocyanin content, in ˈJojoˈ plums while it caused a lower fresh mass 

in the fruit of both cultivars. In general, fruit from low crop load trees grown under 

low ECa had the highest SSC and dry matter content, while those from low crop load 

trees under high ECa showed the highest fresh mass in 2013. Moreover, low MDS 

trees had lower total fruit yield and their fruit showed higher transpiration than those 

grown on trees with high MDS. Furthermore, in ˈJojoˈ, fruit grown on high MDS 

trees had advanced colour and NAI during fruit development on the tree. 

Additionally, they had a higher fruit SSC and dry matter content when compared to 

those grown on low MDS trees. This effect, however, was most prominent in ˈJojoˈ 

plums. 

The evaluation of different harvest maturities for determining the optimal harvest 

time of ˈJojoˈ plums indicated that fruit quality was best when plums had been 

harvested late, preferably at the 3rd harvest date (137 DAFB) in this study. These fruit 

had the highest fresh mass and lowest transpiration. In contrast, early-harvested fruit 

were still immature and had low quality; i.e. the SSC was less than 14 °Brix and 

titratable acidity was higher than 1.7 g per 100 ml juice.  

The results of the third part indicated that the coating the plums by Versasheen plus 

sorbitol reduced their transpiration rate, and thus resulted in lower mass losses when 

compared to uncoated controls during storage. Moreover, the coating considerably 

delayed the decrease in flesh firmness by about 7 days in comparison to controls.  

Finally, the results of laser light backscattering imaging profiles showed that the 

decrease and increase of full width half maximum (FWHM) measured at 532 nm and 

785 nm, respectively, were correlated with an increase in anthocyanin content and 

reduction of fruit firmness. However, the variation of FWHM obtained at 660 nm 

was not easy to interpret.  

In conclusion, this study demonstrates that the preharvest factors with high effect on 

fruit quality considering physicochemical properties of developing plums were 
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exerted by tree crop load, MDS of tree trunks, and soil ECa, respectively. ˈJojoˈ 

plums should be harvested when SSC is higher than 15.5, the SSC:TA ratio is higher 

than 10.5, and flesh firmness is higher than 4.3 N in order to ensure both a long 

storage and shelf life. Moreover, Versasheen and sorbitol -based coatings could be 

effective tools to improve the storability and shelf life of ˈJojoˈ and ˈTophit plusˈ 

plums with regard to losses of fruit mass and firmness. Finally, the LLBI measured at 

532 nm and 785 nm has a great potential either to predict some quality parameters of 

plums such as anthocyanin content and fruit firmness or as a new method for 

measuring the optical fruit properties itself. 
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Zusammenfassung 

Pflaumen sind eine in Europa wirtschaftlich wichtig Frucht. Das drückt sich in einer 

hohen Verbraucherakzeptanz aus. Wegen der häufig unbefriedigenden 

Fruchtqualität, nicht zuletzt aufgrund von oft unreif geernteter Früchte, hat der 

Verbrauch in den letzten Jahren jedoch nicht weiter zugenommen. Aus diesem 

Grund ist es notwendig, sowohl die Vorerntebedingungen wie Fruchtbehang und 

Bodeneigenschaften optimal zu gestalten, um Pflaumen in hoher Qualität zu 

erzeugen als auch die Früchte im richtigen Reifestadium zu ernten.  

Im Rahmen der vorliegenden Untersuchung wurde der Einfluss verschiedener 

Vorerntefaktoren auf unterschiedliche Fruchtqualitätseigenschaften bei zwei 

Europäischen Pflaumenarten, ˈJojoˈ und ˈTophit plusˈ, analysiert. Diese Faktoren 

waren (i) die Bodeneigenschaften, gemessen über die elektrische Leitfähigkeit des 

Bodens, (ii) der Fruchtbehang, und (iii) der Baumwasserzustand, erfasst über die 

maximale tägliche Schrumpfung des Stammes. 

Die optimale Reife zur Ernte ist ebenso wichtig für die Akzeptanz der Pflaumen. 

Sowohl unreife als auch überreife Früchte sind beim Konsumenten unerwünscht. 

Desweitern sind Pflaumen leicht verderblich und können nicht für lange Zeit gelagert 

werden. Aus diesem Grund kann eine Nacherntebehandlung mit essbaren Überzügen, 

sogenannte coatings, eine effektive Methode sein, um die Pflaumenqualität länger zu 

erhalten.  

Die Forschungsziele dieses Projektes waren daher  

- 1. den Einfluss und die interaktiven Effekte der Bodeneigenschaften (ECa), des 

Fruchtbehangs (crop load) und des Baumwasserzustand (MDS) auf die Änderungen 

der Fruchtqualität während der Vor- und Nachernteperiode von Pflaumen zu 

untersuchen,  

- 2. den Effekt von unterschiedlichen Pflückterminen während der gesamten 

Ernteperiode auf die innere und äußere Fruchtqualität von ˈJojoˈ-Pflaumen zu 

bewerten,  

- 3. die Wirksamkeit von Versasheen und Sorbitol-basierten essbaren Überzügen 

(coating) auf verschiedene Fruchtparameter zu bewerten und abschließend,  
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- 4. das Potenzial von Laserlichtrückstreubildanalyse (laser backscattering imaging, 

LLBI) als ein neuartiges optisches Verfahren zur zerstörungsfreien Bewertung von 

Qualitätseigenschaften des Pflaumengewebes abzuschätzen.  

Die Untersuchungen wurden in einem Forschungsobstgarten nahe Potsdam, 

Deutschland, in den Jahren 2011 bis 2013 durchgeführt. Um die Einflüsse der 

Vorerntefaktoren zu bewerten, wurden Früchte dreimal vor und einmal zum 

kommerziellen Erntetermin geerntet und im Labor untersucht. Anschließend wurden 

die Pflaumen bei 2°C und 90% relativer Luftfeuchte für bis zu 28 Tage plus 2 Tage 

bei 20°C gelagert. Während der Lagerzeit wurden Früchte von jeder 

Behandlungsgruppe nach 7, 14, 21, 28 und 30 Tagen entnommen und analysiert. 

Weiterhin wurden die Effekte der essbaren Überzüge auf Veränderungen in der 

Fruchtqualität während der Lagerung analysiert. Verschiedene physikalisch-

chemische Qualitätsparameter wurden mit destruktiven Untersuchungsmethoden 

erfasst. Zusätzlich wurden die optischen Eigenschaften von Proben zerstörungsfrei 

mit Hilfe von Laserlichtrückstreubildverarbeitung bestimmt. 

In den Jahren 2012 und 2013 hatten Pflaumen von Bäumen mit geringem 

Fruchtbehang grundsätzlich höhere Frisch- und Trockenmasse, höhere 

Gesamtgehalte an löslichen Feststoffen (SSC), einen höheren normalisierten 

Anthocyanindex (NAI) und eine bessere Entwicklung der Farbe (CIE b*) als Früchte 

von Bäumen mit hohem Fruchtbehang. Außer im Jahr 2013 beeinflusste die 

Bodenqualität (ECa) im Gegensatz dazu die Fruchtqualität nicht. In diesem Jahr 

führte eine geringere Bodenqualität zu höheren SSC, Trockenmassegehalt und 

Anthocyangehalt in den ˈJojoˈ Pflaumen während die Fruchtfrischmasse bei beiden 

Pflaumensorten geringer ausfiel. Grundsätzlich hatten Früchte von Bäumen mit 

geringerem Fruchtbehang von Böden mit geringen ECa Werten die höchsten SSC 

und Trockenmassegehalte während solche von Bäumen mit geringem Fruchtbehang 

aber hohem ECA 2013 die höchste Frischmasse aufwiesen. Zusätzlich zeigten 

Bäume ohne Wassermangel also mit geringer maximaler täglicher Schrumpfung 

niedriger Fruchterträge und ihre Früchte zeigten höhere Transpiration als jene von 

Bäumen mit starker täglicher Schrumpfung. Weiterhin zeigten ˈJojoˈ Früchte, die an 

Bäumen mit ungenügender Wasserversorgung (MDS) gewachsen waren, während 

des Fruchtwachstums eine beschleunigte Farb- und NAI-Entwicklung. Zusätzlich 
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hatten diese Früchte höhere Zucker- und Trockenmassegehalte im Vergleich mit den 

Pflaumen von Bäumen mit guter Wasserversorgung (geringes tägliches maximales 

Schrumpfen). Dieser Effekt war bei der Sorte ˈJojoˈ stärker ausgeprägt als bei 

‘Tophit plus’. Die Bewertung verschiedener Erntetermine für ˈJojoˈ Pflaumen ergab, 

dass die beste Fruchtqualität bei den späten Ernteterminen, vorzugsweise beim 

dritten (ca. 137 Tage nach der Vollblüte), zu erzielen war. Diese Früchte hatten die 

höchste Frischmasse und zeigten die geringste Transpiration. Im Gegensatz dazu 

waren früh geerntete Früchte noch zu unreif. Beispielsweise lag der Zuckergehalt 

unter 14 °Brix und die titrierbare Säure lag über 1,7 g je 100 ml Saft. 

Die Versuche im dritten Teil der Arbeit zeigten, dass mit Versasheen und Sorbitol 

überzogene Früchte deutlich weniger transpirierten, was zu geringerem 

Frischmasseverlust im Vergleich zu den unbehandelten Früchten während der 

Lagerung führte. Zusätzlich verzögerte das Coating die Abnahme der 

Fruchtfleischfestigkeit um etwa 7 Tage im Vergleich zu den Kontrollen.  

Abschließend zeigten die Ergebnisse der Untersuchungen mit der 

Laserlichtrückstreuungsbildanalyse, dass die Ab- und Zunahme des „full width half 

maximum“ – Verlaufs (FWHM), gemessen bei 532 nm bzw. 785 nm, eng mit der 

Zunahme der Anthocyankonzentration bzw. der Abnahme der Fruchtfleischfestigkeit 

korrelierten. Jedoch war die Veränderung des bei 660 nm gemessenen FWHM–

Verlaufs kaum zu interpretieren. 

Zusammenfassend zeigt diese Studie, dass die Vorerntefaktoren einen hohen Einfluss 

auf die Fruchtqualität bezüglich physikalischer und chemischer Eigenschaften der 

sich entwickelten Pflaumen haben und diese besonders vom Ertrag, vom 

Baumwasserzustand und von der Bodenleitfähigkeit beeinflusst werden. ˈJojoˈ 

Pflaumen sollten geerntet werden, wenn der Zuckergehalt höher als 15,5°Brix, das 

Zucker / Säureverhältnis höher als 10,5 liegt und die Fruchtfleischfestigkeit mehr als 

4,3 Newton beträgt, um eine lange Lagerfähigkeit und Haltbarkeit zu gewährleisten. 

Versasheen und Sorbitol-basierte Überzüge können wirkungsvoll die Lagerfähigkeit 

und Haltbarkeit von ˈJojoˈ und ˈTophit plusˈ Pflaumen bezüglich Fruchtmasse und 

Fruchtfleischfestigkeitsabnahme beeinflussen. Abschließend zeigten die 

Rückstreumessungen bei 532 und 785 nm, dass dieses zerstörungsfreie optische 
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Verfahren großes Potenzial für die Analyse verschiedener Qualitätsparameter (z.B. 

von Anthocyangehalt und Fruchtfleischfestigkeit) von Pflaumen besitzt. 
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Appendices 
Tab. A.2. Statistical analysis of the effects of soil ECa and crop load on flesh firmness, TA and 
transpiration rate of ˈJojoˈ and ˈTophit plusˈ plums during preharvest, at harvest and during 28 days at 
2°C plus 2 days at 20°C in 2011, 2012 and 2013. 

Quality 
parameters Cultivar Year 

Treatment  Factor 
LECa HECa  ECa CL T ECa × 

CL 
CL × 

T 
ECa × 

T LCL HCL LCL HCL  
During preharvest 

Flesh firmness 
(N) 

Jojo 
2011 8.2 9.5 9.3 8.2  NS NS ** NS NS * 
2012 16.0 16.4 16.3 18.0  NS * ** NS ** NS 
2013 17,2 18,8 17.0 17.8  NS NS ** NS NS NS 

Tophit plus 2011 13.7 13.1 14.2 15.3  NS NS ** NS NS NS 
2013 17.0 18.4 18.0 17.5  NS NS ** NS NS ** 

TA 
(g/100ml) 

Jojo 
2011 1.35 1.31 1.37 1.31  NS NS ** NS NS NS 
2012 1.86 1.96 1.89 1.84  NS NS ** NS ** NS 
2013 2.30 2.24 2.36 2.21  NS NS ** NS ** ** 

Tophit plus 2011 1.21 1.13 1.20 1.26  NS NS ** NS ** NS 
2013 1.87 1.73 1.73 1.70  NS NS ** NS NS NS 

At harvest 

Flesh firmness 
(N) 

Jojo 
2011 5.4 b 6.8 ab 7.5 a 5.6 ab  NS NS - ** - - 
2012 4.1 5.4 4.3 4.9  NS * - NS - - 
2013 4.9 5.2 4.0 4.2  NS NS - NS - - 

Tophit plus 2011 5.2 6.8 6.1 5.8  NS NS - NS - - 
2013 5.5 b 7.5 ab 8.4 a 7.0 ab  * NS - ** - - 

TA 
(g/100ml) 

Jojo 
2011 1.38 1.15 1.38 1.17  NS ** - NS - - 
2012 1.11 1.09 0.99 0.92  * NS - NS - - 
2013 1.31 1.29 1.25 1.20  NS NS - NS - - 

Tophit plus 2011 0.81 0.75 0.93 0.65  NS ** - NS - - 
2013 0.95 0.93 0.99 0.92  NS NS - NS - - 

During storage 

Flesh  firmness 
(N) 

Jojo 
2011 2.6 b 3,0 ab 3.6 a 2.9ab  NS NS ** * NS NS 
2012 1.3 2.2 1.8 2.3  NS ** ** NS ** * 
2013 3.0 3.5 2.8 2.7  NS NS ** NS NS NS 

Tophit plus 2011 4.3 4.8 5.0 4.6  NS NS ** NS NS NS 
2013 4.5 c 5.5 b 6.5 a 5.5 b  * NS ** ** NS NS 

TA 
(g/100ml) 

Jojo 
2011 1.00 0.98 1.03 0.99  NS NS ** NS NS NS 
2012 0.76 0.72 0.68 0.74  NS NS ** NS NS NS 
2013 1.11 1.06 1.07 1.01  NS NS ** NS NS NS 

Tophit plus 2011 0.75 a 0.72 ab 0.75 a 0.68 b  NS ** ** * NS NS 
2013 0.81 0.80 0.79 0.75  NS NS ** NS NS NS 

Transpiration 
rate (g/cm

2
h) 

Jojo 
2011 0.84 0.76 0.87 0.88  NS NS ** NS NS NS 
2012 0.78 0.75 0.84 0.73  NS NS ** NS NS NS 
2013 0.71 0.72 0.76 0.77  * NS ** NS NS * 

Tophit plus 2011 0.96 0.98 0.95 1.15  NS NS ** NS NS NS 
2013 1.11 1.07 1.17 1.08  NS * ** NS NS NS 

Values are means of each treatment. Statistical significant (LSD test, p<0.05) differences between 

means are indicated by different letter. Significance of effects of treatments (ECa, soil ECa; LECa, 

low soil ECa; HECa, high soil ECa; CL, crop load; LC, low crop load; HC, high crop load; T, time of 

measurements) and their interactions on the various parameter are also indicated (*: p<0.05; **: p< 

0.01; ns: not significant). 



APPENDICES 

128 

 

Tab. A.3. Statistical analysis of the effects of soil ECa and crop load on skin colour (a* and b*) of 

ˈJojoˈ and ˈTophit plusˈ plums during fruit development and at harvest and during 28 days at 2°C plus 

2 days at 20°C in 2011, 2012 and 2013. 

Quality 
parameters 

Cultivar Year 
Treatment 

 
Factor 

LECa HECa  ECa CL T ECa × 
CL 

CL × 
T 

ECa × 
T LCL HCL LCL HCL  

During preharvest 

a* value 
Jojo 

2011 4.7 5.0 4.6 6.3  NS * ** NS NS NS 
2012 3.6 3.1 3.8 3.8  NS NS ** NS NS NS 
2013 0.6 -0.3 0.2 0.9  NS NS ** NS ** NS 

Tophit plus 
2011 2.2 4.2 2.8 1.9  NS NS ** NS NS NS 
2013 -0.7 -0.4 -0.4 1.0  NS NS ** NS NS NS 

b* value 
Jojo 

2011 -1.4 -0.7 -1.4 0.0  NS * ** NS NS NS 
2012 6.1 7.4 7.9 8.9  ** * ** NS NS NS 
2013 8.2 11.9 9.2 12.0  NS ** ** NS * NS 

Tophit plus 
2011 2.3 0.6 0.1 3.0  NS NS ** NS NS NS 
2013 3.0 5.9 5.3 6.2  NS * ** NS NS NS 

At harvest 

a* value 
Jojo 

2011 2.8 3.3 2.6 2.3  NS NS - NS - - 
2012 3.5 4.3 4.0 4.2  NS NS - NS - - 
2013 2.5 2.3 1.9 3.1  NS NS - NS - - 

Tophit plus 
2011 0.0 0.4 0.4 0.3  NS NS - NS - - 
2013 -0.3 0.8 0.5 0.4  NS NS - NS - - 

b* value 
Jojo 

2011 -2.9 -1.2 -2.1 -0.4  NS * - NS - - 
2012 -0.6 -0.5 -0.6 -0.5  NS NS - NS - - 
2013 -2.4 -1.9 -2.2 -1.8  NS NS - NS - - 

Tophit plus 
2011 -4.2 -2.1 -3.1 -2.9  NS NS - NS - - 
2013 -6.0 -5.6 -5.6 -5.2  NS NS - NS - - 

During storage 

a* value 
Jojo 

2011 2.5 2.3 2.4 2.5  NS NS NS NS NS ** 
2012 2.5 3.1 2.1 3.9  ** ** * NS NS NS 
2013 1.9 2.2 2.3 2.4  NS NS NS NS NS NS 

Tophit plus 
2011 -0.1 0.1 -0.1 0.2  NS NS NS NS NS NS 
2013 0.0 0.1 0.2 0.1  NS NS NS NS NS ** 

b* value 
Jojo 

2011 -1.4 -1.2 -1.4 -0.9  NS NS NS NS NS NS 
2012 -1.8 -0.9 -0.8 -0.6  NS NS NS NS NS ** 
2013 -1.9 -1.7 -1.8 -1.7  NS NS NS NS NS NS 

Tophit plus 
2011 -3.8 -3.8 -3.3 -3.8  NS NS NS NS ** NS 
2013 -5.5 -5.6 -5.9 -5.5  NS NS NS NS NS NS 

Values are means of each treatment. Significance of effects of treatments (ECa, soil ECa; LECa, low 

soil ECa; HECa, high soil ECa; CL, crop load; LC, low crop load; HC, high crop load; T, time of 

measurements) and their interactions on the various parameter are also indicated (*: p<0.05; **: p< 

0.01; ns: not significant). 
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Tab. A.4. Statistical analysis of effects of maximum daily shrinkage (MDS), as well as the 

interactions between MDS and soil ECa, crop load and time of measurement on fruit quality 

parameters of ˈJojoˈ and ˈTophit plusˈ plums during fruit development, at harvest and during 28 days 

at 2°C plus 2 days at 20°C) in 2013. 

Quality parameters 

Treatment 
 

Factor 

Jojo  Tophit plus  Jojo  Tophit plus 

LMDS HMDS  LMDS HMDS  MDS MDS 
× ECa 

MDS 
× T 

MDS × 
CL  MDS MDS × 

ECa 
MDS × 

T 
MDS × 

CL 

During preharvest 
Fresh mass (g) 30.1 28.7  44.2 43.3  NS ** NS NS  NS NS NS NS 

NAI (0;1) 0.63 0.72  0.49 0.53  ** * ** **  NS ** * ** 

DMC (%) 13.4 14.8  16.3 17.3  ** NS NS NS  * ** NS NS 

SSC (°Brix) 12.8 14.1  13.6 14.3  ** NS NS **  ** ** NS NS 

a* value -0.3 1.1  -0.6 1.8  NS NS ** NS  NS NS ** ** 

b* value 11.6 9  5.5 5.6  ** NS ** NS  NS NS ** NS 

Flesh firmness (N) 17.3 18.0  18.5 20  NS NS NS NS  ** ** NS NS 

TA (g/100ml) 2.27 2.25  1.74 1.65  NS NS * NS  NS NS NS ** 
At harvest 

Yield (kg/tree) 23 28.1  4.9 5.6  ** NS - *  * * - NS 

Fresh mass (g) 40.3 38.2  57.8 55.8  NS * - NS  NS NS - NS 

DMC (%) 16.7 17.9  19.6 20.3  * NS - NS  NS NS - NS 

SSC (°Brix) 16.3 18.2  18.1 19.3  ** NS - NS  * NS - NS 

a* value 3.2 2.1  0.0 0.8  NS NS - NS  NS NS - * 

b* value -1.5 -2.5  -6.1 -5.2  NS NS - NS  NS NS - NS 

Flesh firmness (N) 3.9 4.9  7.8 7.0  NS NS - NS  NS NS - ** 
TA (g/100ml) 1.22 1.30  0.97 0.92  NS NS - NS  NS NS - NS 

During storage 
Transpiration rate 

(mg/cm
2
h) 

0.83 0.71  1.11 0.93  ** NS * NS  ** ** NS NS 

DMC (%) 17.0 18.2  20.1 21.2  ** NS NS *  NS ** NS NS 

SSC (°Brix) 16.8 18.0  18.0 19.4  ** NS NS *  * ** NS NS 
a* value 2.6 2.0  0.0 0.0  NS NS NS NS  NS NS NS NS 

b* value -1.7 -2.2  -5.9 -4.5  NS NS NS NS  NS NS NS NS 

Flesh firmness (N) 2.8 2.9  5.8 5  NS NS NS **  NS NS NS ** 

TA (g/100ml) 1.02 1.09 
 

0.80 0.75 
 

NS NS NS NS 
 

NS NS NS NS 

Values are means of each treatment. Significance of effects of treatments (MDS, maximum daily 

shrinkage; LMDS, low maximum daily shrinkage; HMDS, high maximum daily shrinkage; ECa, soil 

ECa; CL, crop load; T, time of measurement) and their interactions on the various parameters are also 

indicated (*: p < 0.05; **: p < 0.01; ns: not significant).  
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Tab. A.5. The effects of harvest dates and storage time on fruit physical and chemical quality 

parameters and LLBI-derived optical properties of ˈJojoˈ plum at harvest and during 28 days at 2°C 

plus 2 days at 20°C in 2013. 

Parameters 
Treatment 

(Harvest date)  Factor 

1
st
 2

nd
 3

rd
  HD T HD × T 

At harvest 

ph
ys

ic
oc

he
m

ic
al

  
pa

ra
m

et
er

s 

Fresh mass (g) 34.9 b 37.9 a 39.0 a  ** - - 

a* value 7.9 a 4.2 b 2.6 c  ** - - 

b* value 1.9 a -1.4 b -2.0 c  ** - - 

Flesh firmness (N) 9.0 a 7.0 b 4.3 c  ** - - 

SSC (°Brix) 13.2 c 15,5 b 17.0 a  ** - - 

TA (g/100ml) 1.76 a 1.51 b 1.26 c  ** - - 

SSC:TA ratio 7.5 c 9.7 b 14.0 a  ** - - 

DMC (%) 13.8 c 14.8 b 17.1 a  ** - - 

Transpiration rate (mg/cm
2
h) 0.99 a 0.89 b 0.91 b  * - - 

O
pt

ic
al

 
pr

op
er

tie
s FWHM

660 
(%) 16.6 a 10.7 b 4.7 c  ** - - 

FWHM
785 

(%) 38.7 c 43.7 b 50.8 a  ** - - 

During storage 

ph
ys

ic
oc

he
m

ic
al

  
pa

ra
m

et
er

s 

a* value 5.8 a 3.9 b 2.4 c 
 

* NS * 

b* value 0.1 a -0.9 b -1.9 c  * NS * 

Flesh firmness (N) 7.2 a 5.0 b 2.8 c  ** ** ** 

SSC (°Brix) 13.7 c 15.4 b 17.4 a  ** NS NS 

TA (g/100ml) 1.61 a 1.31 b 1.05 c  ** ** ** 

SSC:TA ratio 8.8 c 12.1 b 17.5 a  ** ** ** 

DMC (%) 14.0 c 15.5 b 17.4 a  ** * NS 

Transpiration rate (mg/cm
2
h) 0.86 a 0.75 b 0.76 b  ** ** ** 

O
pt

ic
al

 

pr
op

er
tie

s FWHM
660 

(%) 13.4 a 5.8 b 2.1 c  ** ** NS 

FWHM
785 

(%) 40.5 c 47.4 b 54.2 a  ** ** NS 

Values are means of each harvest date. Statistical significant (LSD test, p<0.05) differences between 

means are indicated by different letter. Significance of effects of treatments (HD, harvest date; T, 

storage time) and their interactions on the various parameter are also indicated (*: p<0.05; **: p< 

0.01; ns: not significant). 



APPENDICES 

131 

 

Tab. A.6. Monthly mean of daily temperature, relative humidity and total precipitation in 2011, 2012 
and 2013 (weather station near the orchard). 

Month 
 Relative humidity (%)  Temperature (°C)  Total precipitation 

(mm) 
 2011 2012 2013  2011 2012 2013  2011 2012 2013 

J  93.9 88.1 91.5  2.2 2.7 1.1  18 29 42 
F  77.3 85.1 91.6  0.9 -1.0 0.9  10 13 16 
M  74.2 75.5 78.5  5.8 8.4 0.3  13 3 14 
A  66.3 69.3 70.6  13.7 10.3 10.0  19 17 15 
M  62.1 64.3 76.1  16.2 16.6 14.9  22 30 95 
J  68.6 74.1 71.1  18.9 17.0 18.6  52 55 72 
J  77.2 76.4 67.9  18.6 19.5 21.7  168 121 28 
A  76.8 75.0 70.8  19.6 19.8 20.1  58 72 36 
S  79.1 76.2 83.5  17.0 15.7 14.3  41 26 35 
O  85.5 84.8 84.2  11.1 10.3 12.1  25 22 54 
N  91.7 92.4 91.7  5.5 6.3 6.2  0 25 33 
D  88.2 92.6 89.8  5.4 1.7 5.0  33 18 26 

 

 

 

Tab. A.7. Climatic conditions during transpiration measurements 

 

  

Year Air temperature (°C)  Relative humidity (%) 
Jojo Tophit plus  Jojo Tophit plus 

2011 21.7 ± 0.5 20.5 ± 0.7  63 ± 3 62 ± 2 
2012 21.0 ± 0.5 -  61 ± 3 -  
2013 21.0 ± 0.5 21.0 ± 0.5  57 ± 3 56 ± 3 
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Fig. A.1. Some pictures from experimental orchard and storage room 
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