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Abstract

We consider stochastic programming problems with probabilistic constraints in�
volving integer�valued random variables� The concept of a p�e�cient point of a
probability distribution is used to derive various equivalent problem formulations�
Next we introduce the concept of r�concave discrete probability distributions and
analyse its relevance for problems under consideration� These notions are used to
derive lower and upper bounds for the optimal value of probabilistically constrained
stochastic programming problems with discrete random variables� The results are
illustrated with numerical examples�

� Introduction

Probabilistic constraints are one of the main challenges of modern stochastic program�
ming� Their motivation is clear� if in the linear program

min cTx
subject to Tx � ��

Ax � b�
x � ��

the vector � is random� we require that Tx � � shall hold at least with some prescribed
probability p � ��� ��� rather than for all possible realizations of the right hand side� This
leads to the following problem formulation�

min cTx
subject to IPfTx � �g � p�

Ax � b�
x � ��

�����

where the symbol IP denotes probability�

�



Programming under probabilistic constraints was initiated by Charnes� Cooper and
Symonds in �	
� They formulated probabilistic constraints individually for each stochastic
constraint� Joint probabilistic constraints for independent random variables were used
�rst by Miller and Wagner in ���
� The general case was introduced and �rst studied by
the second author of the present paper in �
�� 
�
�

Much is known about problem ����� in the case where � has a continuous probability
distribution �see �
�
 and the references therein�� However� only a few papers handle the
case of a discrete distribution� In �
�
 a dual type algorithm for solving problem �����
has been proposed� Bounds for the optimal value of this problem� based on disjunctive
programming� were analyzed in ��

� The case when the matrix T is random� while � is
not� has been considered in ���
� Recently� in �
	
� a cutting plane method for solving
����� has been presented�

Even though the literature for handling probabilistic constraints with discrete ran�
dom variables is scarce� the number of potential applications is large� Singh at al�in ���

consider a microelectronic wafer design problem that arises in semiconductor manufactur�
ing� The problem was to maximize the probability rather than to optimize an objective
function subject to a probabilistic constraint� but other formulations are possible as well�
Another application area are communication and transportation network capacity ex�
pansion problems� where arc and node capacities are restricted to be integers �
�� 
�
�
Bond portfolio problems with random integer�valued liabilities can be formalized as �����
�see ��
 for �rst such attempts�� Many production planning problems involving random
indivisible demands �t to our general setting as well�

If the decision vector x in ����� is restricted to be integer and T is integer� then there
is no need to consider other right hand side vectors than integer� In fact� for any random
vector � we have then IPfTx � �g � IPfTx � �g� where � � d�e �the roundup of ��� This
transformation may additionally strengthen the description of the feasible set by deleting
some non�integer points�

In section 
 we introduce the key concept of a p�e�cient point of a discrete distribution
and we analyse properties of such points� In section � we de�ne the class of r�concave
distribution functions of discrete random variables and we show how r�concavity can be
used to derive various equivalent formulations of probabilistically constrained problems�
Section � discusses a Lagrangian relaxation of the problem� In section � we propose a new
method� called the cone generation method� for generating lower bounds of probabilisti�
cally constrained problems� Section � is devoted to upper bounds� Finally� in section 	
we present two illustrating examples�

Although we concentrate on integer random variables� all our results easily extend to
other discrete distributions with non�uniform grids� under the condition that a uniform
lower bound on the distance of grid points in each coordinate can be found�

To �x some notation we assume that in the problems above A is an m� n matrix� T
is an s � n matrix� c� x � IRn� b � IRm and � is a random vector with values in IRs� We
use ZZ and ZZ� to denote the set of integers and nonnegative integers� respectively� The
inequality ��� for vectors is always understood coordinate�wise�






� p�E�cient Points

Let us de�ne the sets�

D � fx � IRn � Ax � b� x � �g �
���

and

Zp � fy � IRs � IP �� � y� � pg� �
�
�

Clearly� problem ����� can be compactly rewritten as

min cTx
subject to Tx � Zp�

x � D�
�
���

While the set D is a convex polyhedron� the structure of Zp needs to be analysed in more
detail�

Let F denote the probability distribution function of �� and Fi the marginal probability
distribution function of the ith component �i� By assumption� the set Z of all possible
values of the random vector � is included in ZZs�

We shall use the concept of a p�e�cient point� introduced in �
�
�

De�nition ���� Let p � ��� �
� A point v � IRs is called a p�e�cient point of the prob�
ability distribution function F � if F �v� � p and there is no y � v� y �� v such that
F �y� � p�

Obviously� for a scalar random variable � and for every p � ��� �� there is exactly one
p�e�cient point� the smallest v such that F �v� � p� Since F �v� � Fi�vi� for every v � IRs

and i � �� � � � � s� we have the following result�

Lemma ���� Let p � ��� �� and let li be the p�e�cient point of the one�dimensional
marginal distribution Fi� i � �� � � � � s� Then every v � IRs such that F �v� � p must
satisfy the inequality v � l � �l�� � � � � ls��

Rounding down to the nearest integer does not change the value of the distribution func�
tion� so p�e�cient points of a random vector with all integer components �shortly� integer
random vector� must be integer� We can thus use Lemma 
�
 to get the following inter�
esting fact �noticed earlier in ���
 for non�negative integer random variables��

Theorem ���� For each p � ��� �� the set of p�e�cient points of an integer random vector
is nonempty and �nite�

Proof� The result follows from Dickson�s Lemma ��� Cor� ����
 and Lemma 
�
� For
convenience we provide a short proof here�

We shall at �rst show that at least one p�e�cient point exists� Since p � �� there must
exist y such that F �y� � p� By Lemma 
�
� all v such that F �v� � p are bounded below
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Figure 
��� Example of the set Zp with p�e�cient points v�� � � � � v��

by the vector l of p�e�cient points of one�dimensional marginals� Therefore� if y is not
p�e�cient� one of �nitely many integer points v such that l � v � y must be p�e�cient�

We shall now prove the �niteness of the set of p�e�cient points� Suppose that there
exisits an in�nite sequence of di�erent p�e�cient points vj� j � �� 
� � � � � Since they
are integer� and the �rst coordinate vj� is bounded from below by l�� with no loss of
generality we may select a subsequence which is non�decreasing in the �rst coordinate�
By a similar token� we can select further subsequences which are non�decreasing in the
�rst k coordinates �k � �� � � � � s�� Since the dimension s is �nite� we obtain a subsequence
of di�erent p�e�cient points which is non�decreasing in all coordinates� This contradicts
the de�nition of a p�e�cient point�

Our proof can be easily adapted to the case of non�uniform grids for which a uniform
lower bound on the distance of grid points in each coordinate exists�

Let p � ��� �� and let vj� j � J � be all p�e�cient points of �� By Theorem 
��� J is a
�nite set� Let us de�ne the cones

Kj � vj � IRs
�� j � J�

Remark ���� Zp �
S

j�J Kj�

Proof� If y � Zp then either y is p�e�cient or there exists an integer v � y� v �� y�
v � Zp� By Lemma 
�
� one must have l � v� Since there are only �nitely many integer
points l � v � y one of them� vj� must be p�e�cient� and so y � Kj�

Figure 
�� illustrates this formulation�
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Thus� we obtain �for � � p � �� the following disjunctive formulation of �
����

min cTx
subject to Tx �

S
j�J Kj�

x � D�
�
���

Its main advantage is an insight into the nature of the non�convexity of the feasible set�
In particular� we can formulate the following necessary and su�cient condition for the
existence of an optimal solution of �
����

Assumption ���� The set � �� f�u� w� � IRm�s
� j ATw � T Tu � cg is nonempty�

Theorem ��	� Assume that the feasible set of ����� is nonempty� Then ����� has an
optimal solution if and only if Assumption ��	 holds�

Proof� If �
��� has an optimal solution� then for some j � J the linear program

min cTx
subject to Tx � vj�

A � b�
x � ��

�
���

has an optimal solution� By duality in linear programming� its dual

max �vj�Tu� bTw
subject to T Tu� ATw � c�

u� w � ��
�
���

has an optimal solution and the optimal values of both programs are equal� Thus� As�
sumption 
�� must hold� On the other hand� if Assumption 
�� is satis�ed� all dual
programs �
��� for j � J have nonempty feasible sets� so the objective values of all primal
problems �
��� are bounded from below� Since one of them has a nonempty feasible set
by assumption� an optimal solution must exist�

A straightforward way to solve ����� is to �nd all p�e�cient points and to process
all corresponding problems �
��� �an example of such an approach is presented in ��	
��
Specialized bounding�pruning techniques can be used to avoid solving all of them� For
example� any feasible solution ��u� �w� of the dual �
��� can be used to generate a lower
bound for �
���� If it is worse than the best solution found so far� we can delete the
problem �
���� otherwise it has to be included into a list of problems to be solved exactly�

For multi�dimensional random vectors � the number of p�e�cient points can be very
large and their straightforward enumeration � very di�cult� It would be desirable� there�
fore� to avoid the complete enumeration and to search for promising p�e�cient points
only� We shall return to this issue in section ��

In the case of independent subvectors� p�e�cient points have a speci�c structure�
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Lemma ��
� Let � be an s�dimensional integer random vector and let p � ��� ��� As�
sume that � � ���� � � � � �L�� where the sl�dimensional subvectors �l� l � �� � � � � L� are
independent �

PL
l�� sl � s�� A vector v � �v�� � � � � vL�� where vl � ZZ

sl� l � �� � � � � L� is
a p�e�cient point of the distribution function F of � if and only if there exist pl � ��� �

with �L

l��pl � p such that each vl is pl�e�cient for the corresponding marginal distribution
function Fl�z

l� � IPf�l � zlg� l � �� � � � � L�

Proof� Let v be p�e�cient� De�ne pmax
l � IPf�l � vlg� By independence� IPf� � vg �

�L
l��p

max
l � p� Each vl is pmax

l �e�cient for Fl� since otherwise v would not be p�e�cient� If
�L
l��p

max
l � p� we are done� Otherwise� let pmin

l � maxfFl�z
l� � zl � ZZ

sl� zl � vl� zl �� vlg�
Since v is p�e�cient� �L

l��p
min
l � p� Consequently� we can choose pl � �pmin

l � pmax
l 
 such

that �L
l��pl � p and each vl is still pl�e�cient�

The opposite implication is obvious�

� r�Concave Discrete Distribution Functions

Since the set Zp need not be convex� it is essential to analyse its properties and to �nd
equivalent formulations with more convenient structures� To this end we shall recall and
adapt the notion of r�concavity of a distribution function� It uses the generalized mean
function mr � IR� � IR� � ��� �
� IR de�ned as follows�

mr�a� b� �� � � for ab � ��

and if a � �� b � �� � � � � �� then

mr�a� b� �� �

����
���

a�b��� if r � ��
maxfa� bg if r ���
minfa� bg if r � ���

��ar � ��� ��br���r otherwise�

De�nition ���� A distribution function F � IRs � ��� �
 is called r�concave� where r �
�����
� if

F ��x� ��� ��y� � mr�F �x�� F �y�� ��

for all x� y � IRs and all � � ��� �
�

If r � �� we call F quasi�concave� for r � � it is known as log�concave� and for r � �
the function F is concave in the usual sense�

The concept of a log�concave probability measure �the case r � �� was introduced and
studied in �

� 
�
� The notion of r�concavity and corresponding results were given in
��� �
� For detailed description and proofs� see �
�
�

By monotonicity� r�concavity of a distribution function is equivalent to the inequality

F �z� � mr�F �x�� F �y�� ��

for all z � �x � ��� ��y�

�



Clearly� distribution functions of integer random variables are not continuous� and
cannot be r�concave in the sense of the above de�nition� Therefore� we relax De�nition ���
in the following way�

De�nition ���� A distribution function F is called r�concave on the set A � IRs with
r � �����
� if

F �z� � mr�F �x�� F �y�� ��

for all z� x� y � A and � � ��� �� such that z � �x� ��� ��y�

To illustrate the relation between the two de�nitions let us consider the case of integer
random vectors which are roundups of continuously distributed random vectors�

Remark ���� If the distribution function of a random vector � is r�concave on IRs then
the distribution function of � � d�e is r�concave on ZZ

s�

The last property follows from the observation that at integer points both distribution
functions coincide� For the relations between the r�concavity of the distribution function
of � and the r�concavity of its density the Reader is referred to ��� �� 
�
�

The concept of r�concavity on a set can be used to �nd an equivalent representation
of the set Zp given by �
�
��

Theorem ���� Let Z be the set of all possible values of an integer random vector �� If
the distribution function F of � is r�concave on Z �ZZ

s
�� for some r � �����
� then for

every p � ��� �� one has

Zp � fy � IRs � y � z �
X
j�J

�jv
j�
X
j�J

�j � �� �j � �� z � ZZ
sg�

where vj� j � J� are the p�e�cient points of F �

Proof� By the monotonicity of F we have F �y� � F �z� if y � z� It is� therefore�
su�cient to show that IP �� � z� � p for all z � ZZ

s such that z �
P

j�J �jv
j with �j � ��P

j�J �j � �� We consider �ve cases with respect to r�

Case 
� r ��� It follows from the de�nition of r�concavity that F �z� � maxfF �vj�� j �
J � �j �� �g � p�

Case �� r � ��� Since F �vj� � p for each index j � J such that �j �� �� the assertion
follows as in Case ��

Case �� r � �� By the de�nition of r�concavity�

F �z� �
Y
j�J

�F �vj�
�j �
Y
j�J

p�j � p�

	



Case �� r � ���� ��� By the de�nition of r�concavity�

�F �z�
r �
X
j�J

�j�F �vj�
r �
X
j�J

�jp
r � pr�

Since r � �� we obtain F �z� � p�

Case 	� r � ������ By the de�nition of r�concavity�

�F �z�
r �
X
j�J

�j�F �vj�
r �
X
j�J

�jp
r � pr�

For example� the set Zp illustrated in Figure 
�� cannot correspond to any r�concave
distribution function� because its convex hull contains integer points which do not belong
to Zp� namely� the points ������ ����� and ���
��

Under the conditions of Theorem ���� problem �
��� can be formulated in the following
equivalent way�

min cTx �����

subject to x � D ���
�

Tx � z� �����

z � ZZ
s� �����

z �
X
j�J

�jv
j �����

X
j�J

�j � � �����

�j � �� j � J� ���	�

So� the probabilistic constraint has been replaced by linear equations and inequalites�
together with the integrality requirement ������ This condition cannot be dropped� in
general� However� if other conditions of the problem imply that Tx is integer �for example�
we have an additional constraint in the de�nition of D that x � ZZ

n� and T has integer
entries�� we may dispose of z totally� and replace constraints ����������� with

Tx �
X
j�J

�jv
j�

If � takes values on a non�uniform grid� condition ����� should be replaced by the require�
ment that z is a grid point�

The di�culty comes from the implicitly given p�e�cient points vj� j � J � Our objective
will be to avoid their enumeration and to develop an approach that generates them only
when needed�

An obvious question arises� which distributions are r�concave in our sense� We devote
the remaining part of this section to some useful observations on this topic�

Directly from the de�nition and H�older�s inequality we obtain the following property�

�



Remark ���� If a distribution function F is r�concave on the set A � IRs with some
r � �����
� then it is ��concave on A for all � � ���� r
�

For binary random vectors we have the strongest possible property�

Proposition ��	� Every distribution function of an s�dimensional binary random vector
is r�concave on ZZ

s
� for all r � �����
�

Proof� Let x� y � ZZ
s
�� � � ��� �� and let z � �x � �� � ��y� By projecting x and

y on f�� �gs we get some x� and y� such that F �x�� � F �x�� F �y�� � F �y� and z �
�x� � �� � ��y�� Since z is integer and x� and y� binary� then z � x� and z � y�� Thus
F �z� � max�F �x��� F �y��� � max�F �x�� F �y��� Consequently� F is ��concave and the
result follows from Remark ����

For scalar integer random variables our de�nition of r�concavity is related to log�concavity
of sequences� A sequence pk� k � � � � ���� �� �� � � � � is called log�concave� if p�k � pk��pk��
for all k� By ���
 �see also �
�� Thm� ��	�

� and Remark ���� we have the following
property�

Proposition ��
� Suppose that for a scalar integer random variable � the probabilities
pk � IPf� � kg� k � � � � ���� �� �� � � � � form a log�concave sequence� Then the distribution
function of � is r�concave on ZZ for every r � ���� �
�

Many well�known one�dimensional discrete distributions satisfy the conditions of Proposi�
tion ��	� the Poisson distribution� the geometrical distribution� the binomial distribution
�
�� p� ���
�

We end this section with su�cient conditions for the r�concavity of the joint dis�
tribution function in the case of integer�valued independent subvectors� Our assertion�
presented in the next proposition is the discrete version of an observation from ���
� The
same proof� using H�older�s inequality� works in our case as well�

Proposition ���� Assume that � � ���� � � � � �L�� where the sl�dimensional subvectors �l�
i � l� � � � � L� are independent �

PL
l�� sl � s�� Furthermore� let the marginal distribution

functions Fl � IR
sl � ��� �
 be rl�concave on sets Al � ZZ

sl�

�i� If rl � �� l � �� � � � � L� then F is r�concave on A � A� � 	 	 	 � AL with

r �
�PL

l�� r
��
l

���



�ii� If rl � �� l � �� � � � � L� then F is log�concave on A � A� � 	 	 	 � AL�

� Lagrangian Relaxation

Let us split variables in problem �
����

min cTx

Tx � z� �����

x � D�

z � Zp�

�



Associating Lagrange multipliers u � IRs with constraints ����� we obtain the Lagrangian
function�

L�x� z� u� � cTx� uT �z � Tx��

Owing to the structure of Zp �Lemma 
�
�� we could have replaced equality Tx � z in
����� by an inequality Tx � z� and use u � � in the Lagrangian� However� formal splitting
����� leads to the same conclusion� The dual functional has the form

��u� � inf
�x�z��D�Zp

L�x� z� u� � h�u� � d�u��

where

h�u� � inff�c� T Tu�Tx j x � Dg� ���
�

d�u� � inffuT z j z � Zpg� �����

Lemma ���� dom� � fu � IRs
� � there exists w � IRm

� such that ATw � T Tu � cg�

Proof� Clearly� dom� � domh 
 dom d� Let us calculate domh� The recession cone
of D�

C � fy � IRn � Ay � �� y � �g�

has the dual cone

C� � fv � IRm � vTy � � for all y � Cg � fv � IRm � v � ATw� w � �g�

as follows from Farkas� lemma� Thus

domh � fu � IRs � c� T Tu � C�g � fu � IRs � T Tu� ATw � c� w � �g�

On the other hand� by Remark 
��� dom d � IRs
�� and the result follows�

The lemma implies that Assumption 
��� which is necessary and su�cient for the existence
of solutions� is also necessary and su�cient for the nonemptiness of the domain of the
dual functional�

For any u � IRs
� the value of ��u� is a lower bound on the optimal value F � of the

original problem� This is true for all problems of form ������ irrespective whether the
distribution function of � is or is not r�concave�

The best Lagrangian lower bound will be given by

D� � sup��u�� �����

If an optimal solution of �
��� exists� then Assumption 
�� holds� so� by Lemma ����

�� � D� � F ��

��



We shall show that the supremum D� is attained� Indeed� h�u� � �	�D��c�T Tu�� where
	�D�	� is the support function of D� Thus h�	� is concave and polyhedral �see �
�
� Corollary
���
���� By Remark 
��� for u � � the minimization in ����� may be restricted to �nitely
many p�e�cient points vj� j � J � For u �� � one has d�u� � ��� Therefore� d�	� is
concave and polyhedral as well� Consequently� ��	� is concave and polyhedral� Since it is
bounded from above by F �� it must attain its maximum�

Another lower bound may be obtained from the convexi�cation of problem �
���

F �
co � minfcTx j Tx � z� x � D� z � coZpg� �����

It is known �see ���
� that

F �
co � D� � F ��

We now analyse in more detail the structure of the dual functional � � Let us start
from h�	�� If Assumption 
�� is satis�ed� then for each u � IRs

h�u� � supfbTw j T Tu� ATw � c� w � �g�

according to the duality theory in linear programming� This allows us to reformulate the
dual problem ����� in a more explicit way�

max d�u� � bTw �����

T Tu� ATw � c� ���	�

u � �� w � �� �����

Let us observe that we may write �max� instead of �sup� because we already know that the
supremum is attained� We may also add the constraint �u � �� explicitly� since it de�nes
the domain of d�

Properties of d�	� can also be analysed in a more explicit way�

Lemma ���� For every u � � the solution set of the subproblem

min
z�Zp

uTz �����

is nonempty and has the following form�

 Z�u� �
�

j� �J�u�

fvjg� C�u��

where  J�u� is the set of p�e�cient solutions of ������ and

C�u� � fd � IRs
� � di � � if ui � �� i � �� � � � � sg� ������

Proof� The result follows from Remark 
��� Let us at �rst consider the case u � ��
Suppose that a solution z to ����� is not a p�e�cient point� Then there is a p�e�cient
v � Zp such that v � z� so uTv � uT z� a contradiction� Thus� for all u � � all solutions
to ����� are p�e�cient� In the general case u � �� if a solution z is not p�e�cient� we must
have uTv � uTz for all p�e�cient v � z� This is equivalent to z � fvg�C�u�� as required�

��



The last result allows us to calculate the subdi�erential of d in a closed form�

Lemma ���� For every u � � one has 
d�u� � co fvj� j �  J�u�g� C�u��

Proof� From ����� it follows that

d�u� � �	�Zp
��u��

where 	�Zp
�	� is the support function of Zp and� consequently� of coZp� This fact follows

from the structure of Zp �Remark 
��� by virtue of Corolarry ������ in �
�
� By �
��
Thm 
���
� g � 
	�Zp

��u� if and only if 	�Zp
��u� � 	coZp

�g� � �gTu� where 	coZp
�	� is the

indicator function of coZp� It follows that g � coZp and 	�Zp
��u� � �gTu� Thus� g is a

convex combination of solutions to ����� and the result follows from Lemma ��
�

Therefore the following necessary and su�cient optimality conditions for problem
����������� can be formulated�

Theorem ���� A pair �u� w� � � is an optimal solution of ����������� if and only if there
exists a point x � IRn

� such that�

Ax � b� wT �Ax� b� � �� ������

and

Tx � co fvj � j �  J�u�g� C�u�� ����
�

where  J�u� is the set of p�e�cient solutions of ������ and C�u� is given by ���
���

Proof� The vector x plays the role of the Lagrange multiplier associated with the con�
straint ���	�� The necessary condition of optimality for ����������� �Kuhn�Tucker condi�
tion� has the form



�
bTw � d�u� � xT �c� T Tu� ATw�

�

K�u� w� �� ��

where K�u� w� is the normal cone to IRm�s
� at �u� w�� Using the closed�form expression

for the subdi�erential of d from Lemma ���� we obtain�



�
bTw � d�u� � xT �c� T Tu� ATw�

�
�

�
co fvj � j �  J�u�g� C�u�� Tx
b� Ax

�
�

On the other hand�

K�u� w� � f�u�� w�� � u� � �� w� � �� hu�� ui � �� hw�� wi � �g �

�
�C�u�
�C�w�

�
�

Consequently� the condition co fvj � j �  J�u�g � C�u� � Tx 
 �C�u� �� � implies the
existence of elements v � co fvj � j �  J�u�g and c�� c� � C�u� such that� v�c��Tx � �c��
which is equivalent to the condition ����
�� Furthermore� we obtain that b�Ax
�C�w� ��
�� The de�nition of C�w� implies condition �������

�




It follows that the optimal Lagrangian bound is associated with a certain primal
solution x which is feasible with respect to the deterministic constraints and such that
Tx � coZp� Moreover� since �u� w� � �� the point x is optimal for the convex hull
problem�

min cTx ������

Ax � b� ������

Tx �
X
j�J

�jv
j� ������

X
j�J

�j � �� ������

x � �� � � �� ����	�

Indeed� associating with ������ multipliers w� with ������ multipliers u� and with ������
a multiplier � � d�u�� we can show that �x� !�� is optimal for �����������	� provided that
!�j are the coe�cients at vj in the convex combination in ����
��

Since the set of p�e�cient points is not known� we need a numerical method for solving
����������� or its dual �����������	��

Let us stress that all considerations of this section apply to non�uniform grids Z� The
same is true for the method to be presented in the next section�

� The cone generation method

The idea of a numerical method for calculating Lagrangian bounds is embedded in the
convex hull formulation �����������	�� We shall develop for it a new specialized method�
which separates the generation of p�e�cient points and the solution of the approximation
of the original problem using these points� It is related to column generation methods�
which have been known since the classical work ���
 as extremely useful tools of large
scale linear and integer programming �
� �
�

The Method

Step �
 Select a p�e�cient point v	� Set J	 � f�g� k � ��

Step �
 Solve the master problem

min cTx �����

Ax � b� ���
�

Tx �
X
j�Jk

�jv
j� �����

X
j�Jk

�j � �� �����

x � �� � � �� �����

Let uk be the vector of simplex multipliers associated with the constraint ������

��



Step �
 Calculate an upper bound for the dual functional�

d�uk� � min
j�Jk

�uk�Tvj�

Step �
 Find a p�e�cient solution vk�� of the subproblem�

min
z�Zp

�uk�T z

and calculate

d�uk� � �vk���Tuk�

Step �
 If d�uk� � d�uk� then stop� otherwise set Jk�� � Jk � fk � �g� increase k by one
and go to Step ��

A few comments are in order� The �rst p�e�cient point v	 can be found by solving
����� for an arbitrary u � �� All master problems will be solvable� if the �rst one is
solvable� i�e�� if the set fx � IRn

� � Ax � b� Tx � v	g is nonempty� If not� adding a
penalty term M�lT t to the objective� and replacing ����� by

Tx � t �
X
j�Jk

�jv
j�

with t � � and a very large M � is the usual remedy ��lT � �� � � � � �
�� The calculation
of the upper bound at Step 
 is easy� because one can simply select jk � Jk with �jk � �
and set d�uk� � �uk�Tvjk� At Step � one may search for p�e�cient solutions only� due to
Lemma ��
�

The algorithm is �nite� Indeed� the set Jk cannot grow inde�nitely� because there are
�nitely many p�e�cient points �Theorem 
���� If the stopping test of Step � is satis�ed�
optimality conditions for �����������	� are satis�ed� Moreover  Jk � fj � Jk � hvj� uki �
d�uk�g 
  J�u��

When the dimension of x is large and the number of rows of T small� an attractive
alternative to the cone generation method is provided by bundle methods applied directly
to the dual problem

max
u�	

h
h�u� � d�u�

i
�

because at any u � � subgradients of h and d are readily available� For a comprehensive
description of bundle methods the reader is refereed to ���� ��
� It may be interesting to
note that in our case they correspond to a version of the augmented Lagrangian method
�see ���� ��
��

Let us now focus our attention on solving the auxiliary problem ������ which is explic�
itly written as�

minfuTz j F �z� � pg� �����

��



where F �	� denotes the distribution function of ��
Assume that the components �i� i � �� � � � � s� are independent� Then we can write the

probabilistic constraint in the following form�

ln�F �z�� �
sX

i��

ln�Fi�zi�� � ln p�

Since we know that at least one of the solutions is a p�e�cient point� with no loss of
generality we may restrict the search to grid vectors z� Furthermore� by Lemma 
�
� we
have zi � li� where li are p�e�cient points of �i� For integer grids we obtain a nonlinear
knapsack problem�

min
sX

i��

uizi

sX
i��

ln�Fi�zi�� � ln p�

zi � li� zi � ZZ� i � �� � � � � s�

If bi is a known upper bound on zi� i � �� � � � � s� we can transform the above problem to
a ��� linear programming problem�

min
sX

i��

biX
j�li

juiyij

sX
i��

biX
j�li

ln�Fi�j��yij � ln p�

biX
j�li

yij � �� i � �� � � � � s�

yij � f�� �g� i � �� � � � � s� j � li� � � � � ui�

���	�

In this formulation� zi �
Pbi

j�li
jyij�

For log�concave marginals Fi�	� the following compact formulation is possible� Setting
zi � li �

Pbi
j�li��

	ij with binary 	ij� we can reformulate the problem as a ��� knapsack
problem�

min
sX

i��

biX
j�li��

ui	ij

sX
i��

biX
j�li��

aij	ij � r�

	ij � f�� �g� i � �� � � � � s� � j � li � �� � � � bi�

�����

where aij � lnFi�j�� lnFi�j� �� and r � ln p� lnF �l�� Indeed� by the log�concavity� we
have ai�j�� � aij� so there is always a solution with nonincreasing 	ij� j � li � �� � � � � bi�
Very e�cient solution methods exist for such knapsack problems ���
�

��



If the grid Z is not integer we can map it to integers by numbering the posssible
realizations of each �i in an icreasing order�

If the components �i of � are dependent� new specialized algorithms are needed for
solving the subproblem ������ The advantage of the cone generation method is that we
can separate the search for new p�e�cient points �via ������ and the solution of the "easy#
part of the problem� the master problem ������������

	 Primal feasible solution and upper bounds

Let us consider the optimal solution xlow of the convex hull problem �����������	� and the
corresponding multipliers �j� De�ne J low � fj � J � �j � �g�

If J low contains only one element� the point xlow is feasible and therefore optimal for
the disjunctive formulation �
���� If� however� there are more positive ��s� we need to
generate a feasible point� A natural possibility is to consider the restricted disjunctive
formulation�

min cTx
subject to Tx �

S
j�J low Kj�

x � D�
�����

It can be solved by simple enumeration of all cases for j � J low�

min cTx
subject to Tx � vj�

x � D�
���
�

In general� it is not guaranteed that any of these problems has a nonempty feasible set�
as the following example shows� Let n � �� T � I� and let there be only three p�e�cient
points� v� � ��� �� ��� v� � ��� �� ��� v� � ��� �� ��� and two additional deterministic
constraints� x� � ��
� x� � ��
� and c � ��� �� ��� The convex hull problem has �� �
�� � ��
� �� � �� but both problems ���
� for j � �� 
 have empty feasible sets�

To ensure that problem ����� has a solution� it is su�cient that the following stronger
version of Assumption 
�� holds�

Assumption 	��� The set � �� f�u� w� � IRm�s
� j ATw � T Tu � cg is nonempty and

bounded�

Indeed� then each of the dual problems �
��� has an optimal solution� so by duality
in linear programming each of the subproblems ���
� has an optimal solution� We can�
therefore� solve all of them and choose the best solution�

An alternative strategy would be to solve the corresponding upper bounding problem
���
� every time a new p�e�cient point is generated� If Uj denotes the optimal value of
���
�� the upper bound at iteration k is

!Uk � min
	�j�k

Uj� �����

��



This may be computationally e�cient� especially if we solve the dual problem �
���� in
which only the objective function changes from iteration to iteration�

If the distribution function of � is r�concave on the set of possible values of �� Theorem
��� provides an alternative formulation of the upper bound problem ������

min cTx

subject to x � D

Tx � z�

z � ZZ
s� �����

z �
X
j�Jk

�jv
j�

X
j�Jk

�j � �

�j � �� j � Jk�

Problem ����� is more accurate than the bound ������ because the set of integer z domi�
nated by convex combinations of p�e�cient points in Jk is not smaller than Jk� In fact�
we need to solve this problem only at the end� with Jk replaced by J low�


 Numerical Illustration


�� Tra�c Assignment in Telecommunication

In Time�Division Multiple Access �TDMA� satellite communication systems the following
problem arises� given a nonnegative integer m�m tra�c matrix D �nd an integer n� non�
negative integers x�� � � � � xn �time slots� and m�m permutation matrices Q���� � � � � Q�n�

�switch modes� such that

nX
i��

Q�i�xi � D� �	���

and
Pn

i�� xi is minimized� Each element dkl of the matrix D represents the demand for
transmission from station k to station l� each permutation Q�i� describes an assignment
of senders to receivers for simultaneous transmission in a time slot xi�

For practical reasons from among n$ possible permutations some �xed subset is se�
lected� usually n � 
m and

Q�i� �

	
Ci��I i � �� � � � � n�
Ci�n��J i � n� �� � � � � 
n�

where Ci stands for the ith power of C and

I �



���

�
�

	�
�



��� � J �



���

�
�

	�

�



��� � C �



���

�
	�

�
�



��� �

�	



The Reader is referred to ��� �� ��
 for the background of the TDMA problem�
If the demand D is random� we obtain the probabilistically constrained problem

min
nX
i��

xi

subject to IP
n nX

i��

Q�i�xi � D
o
� p�

x � �� x � ZZ
n�

As an illustration consider the problem with m � � �which makes n � ��� p � ���� and
with independent Poisson demands having the expected values

IEfDg �



���


 � � �

 � 
 �
� 
 � 

� 
 � �



��� �

This example problem has been solved by the cone generation method� as described in
section �� The master problem ����������� �without the integrality restriction� was solved
by the simplex method� The subproblem of Step � was formulated as a ��� programming
problem ���	�� This formulation turned out to be easier to solve than ������ which could
have been used� too� due to the log�concavity of the multidimensional Poisson distribution
with idependent components� The upper bounding problem ����� contained an additional
integrality restriction on x�

The entire algorithm has been programmed in AMPL ��

� and CPLEX was the
LP%MIP solver used�

To generate the �rst p�e�cient point we solved the subproblem of Step � with u	 �
�� � � � � ��� This gave

v	 �



���

� � 	 �
� 	 � �
� � �� �
� � � 	



��� �

The values of the objective fuctions of the master problem� the subproblem and the upper
bounding problem ����� at successive iterations are illustrated in Figure 	���

Luckily� the algorithm terminated when the roundup of the optimal value of the sub�
problem� dd�uk�e� which is a lower bound on the optimal value of the whole problem�
became equal to the optimal value of the upper bounding problem ����� �with integrality
restrictions on x�� This� of course� is not guaranteed to happen� and we might as well end
at a solution with a duality gap�

By the log�concavity of the Poisson distribution �Proposition ��	� and by Proposition
���� the distribution function of � is log�concave in the area above the expected values�
Consequently� by virtue of Theorem ���� the optimal solution of the upper�bounding
problem ������

 x � �
 � � � 
 	 � ���

��
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Figure 	��� Objective values of the master problem� the subproblem and the upper bound�
ing problem in the communication tra�c assignment example�

is optimal for the original probabilistically constrained problem� The p�e�cient point  v
such that

Pn
i��Q

�i� xi �  v equals

 v �



���

� � 	 �
� � 	 �
	 	 � �
	 � � �



���

� It has been found on the �	th iteration�


�� Vehicle Routing

We have a directed graph with node set N and arc set E � A set of cyclic routes 
�
understood as sequences of nodes connected with arcs and such that the last node of the
sequence is the same as the �rst one� has been selected� For each arc e � E we denote by
R�e� the set of routes containing e� and by c��� the unit cost on the route�

A random integer demand ��e� is associated with each arc e � E � Our objective is to

��



��
��

��
��

��
��

��
��

��
��

A

B C

D

E

��
�
�
�
�
���

�
�

�
��

�
�
�
�
�R�

�
�

�
�I

�

�

��

�
�
�
�
�R�

�
�
�
�I

�
�
�
�
���

�
�
�
��

Figure 	�
� The graph of the vehicle routing problem�

�nd non�negative integers x���� � � 
� such that

IP
n X

��R�e�

x��� � ��e�� e � E
o
� p�

and the cost
X
pi��

c���x���

is minimized�
As an illustration� let us consider the graph shown in Figure 	�
� Each arc in this

�gure represents in fact two arcs in opposite directions�
We assume that demands ��e� associated with the arcs are independent Poisson ran�

dom variables with the expected values given in Table 	���


�



Arc Expected Demand
AB 

AC �
AD 

AE 

BA �
BC �
CA 

CB �
CD �
DA 

DC �
DE �
EA 

ED �

Table 	��� Expected demands

The set of routes 
 is given by the following route�arc incidence matrix T �

� 
 � � � � 	 � � �� �� �
 �� �� �� �� �	 �� ��
AB � � � � �
AC � � � � �
AD � � � �
AE � � � � �
BA � � � � �
BC � � � �
CA � � � � �
CB � � � �
CD � � � � � �
DA � � � �
DC � � � � � �
DE � � � �
EA � � � � �
ED � � � �

For example� route �� has the form ACDCBA�
The cost ce�cients associated with the routes are given by

c � ��� �� �� �� �
 �
 �	 �	 �� �� �� �� �� �� 	� 	� �
 �
 ����

Finally� the probability level is p � ����
Again� we used the cone generation method� implemented exactly as described in the

previous example� To generate the �rst p�e�cient point we solved the subproblem of


�



Step � with u	 � �� � � � � ��� This gave

v	 � �� 	 � � � � � � � � � 	 � 	��

The method terminated after 
� iterations satisfying the stopping criterion of Step �� with
the solution of the convexi�ed problem�

 x � �
 � � � � � � � � � � � � � � � � � 	��

that is 
 on route ABA� � on ACA� � on ADA� � on ABCDCA� � on ACDCBA and 	 on
AEDEA� The symmetry of the solution is purely accidental�
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Figure 	��� Objective values of the master problem� the subproblem and the upper bound�
ing problem in the vehicle routing example�

The values of the objective fuctions of the master problem� the subproblem� and the
upper bounding problem ����� in successive iterations are illustrated in Figure 	�
�

The optimal solution  x of the convexi�ed problem turned out to be integer� As in
the previous example� by the log�concavity of the Poisson distribution�  x� as an optimal
solution of the upper�bounding problem ������ is optimal for the original probabilistically
constrained problem� In fact� we have T  x �  v� where

 v � �� 	 � 	 � � 	 � � � � 	 	 	��







It has been found on the 

nd iteration�
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