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Abstract

In this article we consider iterative operator-splitting methods for non-

linear differential equations with respect to their eigenvalues. The main

feature of the proposed idea is the fixed-point iterative scheme that lin-

earizes our underlying equations. Based on the approximated eigenvalues

of such linearized systems we choose the order of the the operators for our

iterative splitting scheme. The convergence properties of such a mixed

method are studied and demonstrated. We confirm with numerical appli-

cations the effectiveness of the proposed scheme in comparison with the

standard operator-splitting methods by providing improved results and

convergence rates. We apply our results to deposition processes.
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1 Introduction

Our study is motivated by complex models with coupled processes, e.g. transport
and reaction equations with nonlinear parameters. These models arose from the
simulation of a heat transport in an engineering apparatus, e.g. crystal growth,
see [17], or the simulation of a chemical reaction and transport, e.g. in bio-
remediation or waste disposals, see [14].
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We contribute an efficient decomposition method for nonlinear differential equa-
tions by applying the decomposition idea based on the eigenvalue problem, see
[2], [8], and [15].

We propose an algorithm to compute such pre-eigenvalues for the scale sep-
arations. To apply the scale separations we have to discuss a Runge-Kutta
method as a higher-order time-discretization to approximate the coarser scales
and the finer scales. The efficiency of different scales due to each operator allows
to optimize the iterative operator-splitting method.

The paper is organized as follows. A mathematical model based on the
nonlinear convection-diffusion equation is introduced in Section 2. The iterative
splitting method for the nonlinear equation is given in Section 3. The eigenvalue
problem is discussed in Section 4. The error analysis is treated in Section 5.
We introduce the numerical results in Section 6. Finally we discuss our future
works in the area of splitting and decomposition methods.

2 Mathematical model

When gas or fluid transport is physically more complex because of combined
flows in three dimensions, the fundamental equations of fluid dynamics become
the starting points of the analysis.

Three basic equations describe the conservation of mass, momentum, and
energy, that are sufficient to describe the gas transport in the reactors, see [34].

1. Continuity: The conservation of mass requires the net rate of the mass
accumulation in a region to be equal to the difference between the inflow
and outflow rate.

2. Navier-Stokes: Momentum conservation requires the net rate of momen-
tum accumulation in a region to be equal to the difference between the in
and out rate of the momentum, plus the sum of the forces acting on the
system.

3. Energy: The rate of accumulation of internal and kinetic energy in a region
is equal to the net rate of internal and kinetic energy by convection, plus
the net rate of heat flow by conduction, minus the rate of work done by
the fluid.

We will concentrate on the momentum equation, see [19], which can be modelled
by a viscous Burgers equation:

∂tc + ∇F − Rg = 0, in Ω × [0, T ] (1)

F = 1

2
c2 − D∇c,

c(x, 0) = c0(x), on Ω, (2)

c(x, t) = c1(x, t), on ∂Ω × [0, T ], (3)

where c is the molar concentration and F the flux of the species. D is the
diffusivity matrix and Rg is the reaction term. The initial value is given as c0
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and we assume a Dirichlet boundary with the function c1(x, t) being sufficiently
smooth.

3 The iterative splitting method

The previously defined sequential operator-splitting methods have several draw-
backs besides their benefits. For instance, for non-commuting operators there
might be a very large constant in the splitting error which requires the use of
an unrealistically small time step. Also, splitting the original problem into the
different subproblems with one operator, i.e. neglecting the other components,
is physically questionable.

In order to avoid these problems, one can use the iterative operator-splitting
method on an interval [0, T ]. This algorithm is based on the iteration with fixed
splitting discretization step size τ . On every time interval [tn, tn+1] the method
solves the following subproblems consecutively for i = 1, 3, . . . 2m + 1.

∂tci(x, t) = Aci(x, t) + Bci−1(x, t), with ci(x, tn) = cn (4)

∂tci+1(x, t) = Aci(x, t) + Bci+1(x, t), with ci+1(x, tn) = cn, (5)

and ci+1(x, t) = ci(x, t) = c1 on ∂Ω × (0, T ),

where cn is the known split approximation at time level t = tn (see [12]). This
algorithm constitutes an iterative method which involves in each step both op-
erators A and B. Hence, there is no real separation of the different physical
processes in these equations.

3.1 Iterative operator-splitting method as fixed-point scheme

The iterative operator-splitting method is used as a fixed-point scheme to lin-
earize the nonlinear operators, see [16] and [25].

We concentrate again on nonlinear differential equations of the form

∂tc = A(c)c + B(c)c, (6)

where A(c), B(c) are matrices with nonlinear entries and densely defined, where
we assume that the entries involve the spatial derivatives of c, see [41]. In
the following we discuss the standard iterative operator-splitting method as a
fixed-point iteration method to linearize the operators.

We split our nonlinear differential equation (6) by applying

∂tci = A(ci−1)ci + B(ci−1)ci−1, with ci(x, tn) = cn, (7)

∂tci+1 = A(ci−1)ci + B(ci−1)ci+1, with ci+1(x, tn) = cn, (8)

where the time step is τ = tn+1 − tn. The iterations are i = 1, 3, . . . , 2m + 1.
c0(x, t) = cn is the initial solution, where we assume that the solution cn+1 is
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near cn, or c0(x, t) ≡ 0. Thus we have to solve the local fixed-point problem.
cn is the known split approximation at time level t = tn.
The split approximation at time level t = tn+1 is defined as cn+1 = c2m+2(x, tn+1).
We assume that the operators A(ci−1(x, tn+1)), B(ci−1(x, tn+1)) are constant for
i = 1, 3, . . . , 2m + 1. Here the linearization is done with respect to the itera-
tions, such that A(ci−1), B(ci−1) are at least non-dependent operators in the
iterative equations, and we can apply the linear theory. For the linearization
we assume at least in the first equation A(ci−1(x, t)) ≈ A(ci(x, t)), and in the
second equation B(ci−1(x, t)) ≈ B(ci+1(x, t)), for small t.
We have

||A(ci−1(x, tn+1))ci(x, tn+1) − A(c(x, tn+1))c(x, tn+1)|| ≤ ǫ,
for sufficient iterations i ∈ {1, 3, . . . , 2m + 1}.

Remark 3.1 The linearization with the fixed-point scheme can be used for
smooth or weak nonlinear operators, otherwise we loose the convergence behav-
ior, while we did not converge to the local fixed point, see [25].

4 Decoupling ideas based on eigenvalue prob-
lems

We apply the linearized system of differential equations for stiff or non-stiff
operators.

We deal with the approximated eigenvalues of the operators and use them
as reciprocal time scales.

We assume the following eigenvalue problem:

∂tci = A(ci−1)ci + B(ci−1)ci

≈ (λAi−1
+ λBi−1

)ci, (x, t) ∈ Ω × [tn, tn+1], (9)

ci(x, tn) = cn,

where the operators A(ci−1) and B(ci−1) result from the spatial discretization
and ci−1 is the solution of at the iteration step i − 1 and known.

We assume, that the fixed point ci → c for i → ∞.
The eigenvalues are detected in the decoupled equations:

∂tci = A(ci−1)ci = λAi−1
ci, (x, t) ∈ Ω × [tn, tn+1], ci(x, tn) = cn, (10)

∂tci = B(ci−1)ci = λBi−1
ci, (x, t) ∈ Ω × [tn, tn+1], ci(x, tn) = cn, (11)

where ci−1 is the known solution of the last iterative step.
Based on the eigenvalues λAi−1

and λBi−1
we can propose the time steps

∆tA ≈ 1/λA and ∆tAi−1
≈ 1/λBi−1

.
We propose the vector iteration based on the Rayleigh quotient for the com-

putation of the eigenvalues of the operators A and B:

Aci+1,k = ci+1,k+1, (12)

Bci+1,m = ci+1,m+1, (13)
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where k, m = 0, 1, 2, . . . and the eigenvalues are given as
ci+1,k+1

ci+1,k
= |λA,1| + O(pk), (14)

ci+1,m+1

ci+1,m
= |λB,1| + O(qm), (15)

where λA,1 and λB,1 are the maximal eigenvalues. The values are given as

p =
λA,2

λA,1
with λA,1 ≥ λA,2 . . . ≥ λA,n,

q =
λB,2

λB,1
with λB,1 ≥ λB,2 . . . ≥ λB,n.

The following algorithm is used for separating the different scales of the opera-
tors A and B.

Algorithm 4.1 We have the operators A, B.

1. We compute pre-eigenvalues with a given norm ‖ · ‖:

‖Au‖, ‖Bu‖,

where u is a possible solution vector of the equations (4)-(5).

2. We compare the pre-eigenvalues:

‖Au‖ ≤ ‖Bu‖ : A is stiff, or

‖Au‖ ≥ ‖Bu‖ : B is stiff.

3. We initialize our splitting method. In the first step the stiff operator is
treated implicitly using a higher-order method, the non-stiff method is
treated explicitly. In the second step, the operators are treated the other
way around.

Remark 4.2 The efficiency of the method is given with the correct decom-
position, which means the correct ordering of the underlying operators. With
respect to the local error, the starting operator B in the first iterative equa-
tion dominates the error. Therefore the pre-processing to obtain the underlying
eigenvalues is important and accelerates the solver process. Here we propose
the vector iterations to compute the eigenvalues as a method that is embedded
in our iterative splitting method. The declaration of the operators to be stiff or
non-stiff results in the use of the correct splitting operators.

5 Error analysis

Subsequently we demonstrate the error analysis for the linear and nonlinear
decomposition methods. We concentrate on the bounded operators and the
assumption to obtain maximal eigenvalues for the eigenvalue problems. For the
nonlinear problem, we assume a linearization of the nonlinear operator and a
formulation of a linearized eigenvalue problem.
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5.1 Error analysis for the linear method

In this section, we taken into account the A(0)-stability analysis, which can be
used to derive the stability of methods for ordinary differential equations, see
[20].

We only consider spatial discretized systems, where the boundary conditions
of the partial differential equations are embedded in the operators, see [4].

We consider the linear problem

∂tc(t) = Ac(t) + Bc(t), (16)

where the initial condition is cn = c(tn). The operators A and B are spatially
discretized operators, e.g. they correspond to the discretization in space of
convection and diffusion operators (matrices). We assume, that they can be
considered as bounded operators in moderate refined meshes, see [4].

In the following we discuss the improved and stable iterative method, given
in (4)-(5).

Theorem 5.1 Let us consider the iterative method with the starting solution
c1 = c1(t

n+1), which is of m-th order exact. We assume to estimate our op-
erators A and B with the maximum eigenvalues λ1 and λ2. Further we define
z1 = λ1τ , z2 = λ2τ , where τ is the local time step.

Then we can prove, that all successive iterative solutions are stable, see proof
idea [25]. It holds

ci+1(z1, z2) = ci+1(z,−∞) = 0 ≤ 1, i = 1, 2, . . . , (17)

where c1(t) ∈ U and U is the solution space for the iterative solutions, with
ci → c for i → ∞.

Proof . We can proof the stability of an analytical solution, that is exact or
has at least order m and get the solution

c1(t) = exp((λ1 + λ2)t) cn. (18)

Further we have the stability, and we denote z1 = λ1τ and z2 = λ2τ .

c1(z1, z2) = exp(z1 + z2) cn. (19)

For the stiff case, z2 → −∞, we have

lim
z2→−∞

c1(z1, z2) = 0 , (20)

and therefore we have the stability, since

||c1(z1,−∞)|| ≤ 1 (21)

is fulfilled.
The value c1 is a start-value of the iterative method.
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For the iterative method we have the following stability:

∂ci+1

∂t
= Aci+1 + Bci , ci+1(0) = cn, (22)

∂ci+2

∂t
= Aci+1 + Bci+2 , ci+2(0) = cn. (23)

We insert the operators A = λ1 and B = λ2. We can derive the analytical
solution for ci+1 and get the solution:

ci+1(t) = exp(λ1(t − tn)) (

∫ t

tn

exp(−λ1(s − tn))λ2ci ds + cn), (24)

ci+2(t) = exp(λ2(t − tn)) (

∫ t

tn

exp(−λ2(s − tn))λ1ci+1 ds + cn). (25)

We compute c2 by inserting c1 and get:

c2(t) = exp(λ1(t − tn)) (

∫ t

tn

exp(−λ1(s − tn))λ2 (26)

exp((λ1 + λ2)(s − tn))cn ds + cn). (27)

Now we compute the non-commutative case until order two and get

c2(t) =
(

1 + λ1τ + λ2
1τ

2/2! + O(τ3)
)

(28)
(

1 + λ2τ − λ1λ2τ
2/2! + λ2λ1τ

2/2! + λ2
2τ

2/2! + O(τ3)
)

=
(

1 + λ1τ + λ2τ + λ2
1τ

2/2! + λ1λ2τ
2/2! + λ2λ1τ

2/2!

+λ2
2τ

2/2! + O(τ3)
)

≈ exp ((λ1 + λ2)(t − tn)) (29)

with τ = t − tn.
The stability result for the c2 is given by

c2(z1, z2) = exp(z1 + z2) cn. (30)

For the stiff case, z2 → −∞, we have

lim
z2→−∞

c2(z1, z2) = 0, (31)

and therefore we have the stability.
The same proof can be done recursively for a starting solution c1(t) of order

m.

Remark 5.2 The iterative operator-splitting method is invariant to the analyt-
ical solution and therefore stable. So it is enough to guaranty that a prestepping
method exists, that could have at least order m.
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5.1.1 Stability analysis in the discretized formulation

The analysis for the noncommutative part is much more complicate and often
the help of full-discretized formulations are important.

Here, we consider the time-discretization with a θ-method, that is a Crank-
Nicolson method for θ = 0.5. Time- and space-discretizations help to balance
the errors.

To obtain an accurate starting solution for the iterative splitting method, we
can assume A-B splitting, Strang-splitting methods or IMEX methods (implicit-
explicit methods) of m-th order, see [1].

To model different methods for our equation (16), we may take different values
of the method parameter θ in the stage. So consider m = 1, and let θ1, θ2 ≥ 0.5.

Assume that the two stages for the iterative method in (16) are discretized
as

cn+1

i+1
= cn

i + τ(1 − θ1)(A(cn
i+1) + B(cn

i )) + τθ1(A(cn+1

i+1
) + B(cn+1

i )), (32)

cn+1

i+1 = cn
i+1 + τ(1 − θ2)(A(cn

i+1) + B(cn
i+1)) + τθ2(A(cn+1

i+1 ) + B(cn+1

i+1 )), (33)

where cn
i = cn

i+1 = cn with initialization cn+1
0 = cn.

For the linear system we denote Z1 = τA and Z2 = τB and set θ1 = θ2.
We get the following stability equation, cf. [24], for θ = 1/2. We compute

the first iteration with i = 1 and get the equation

cn+1
1 = (I + (I − 1/2Z2)

−1(I − 1/2Z1)
−1(Z1 + Z2)c

n, (34)

= (I − 1/2Z2)
−1((I − 1/2Z2) + (I − 1/2Z1)

−1(Z1 + Z2))c
n

= (I − 1/2Z2)
−1(I − 1/2Z1)

−1((I − 1/2Z1)(I − 1/2Z2) + Z1 + Z2)cn

= (I − 1/2Z2)
−1(I − 1/2Z1)

−1(I + 1/2Z1)(I + 1/2Z2)c
n

cn+1
1 = R1(Z1, Z2)c

n.

The problem is that the stability function R1(Z1, Z2) is not stable for Z2, hence
it is a combination of implicit Euler for Z2, CN for Z1, and explicit Euler for
Z2.

We can only have the stability for Z2 in the explicit case, i.e. we don’t have
an A-stable method.

To improve this method we suggest to do a prestepping for cn
0 , which means

that we define cn
0 from the known value cn with a suitably chosen stable method.

Namely, we suggest the following algorithm.

• We apply the sequential splitting for the problem (16) on interval [tn, tn+1],
two times on the half interval, consecutively.

• To both sub-problems in the first splitting we apply the implicit Euler
method.
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• In the second splitting for the first sub-problem (with operator Z1) we
apply the explicit Euler and to the second sub-problem (with operator
Z2) we apply the implicit Euler method.

We get

cn
0 = (I − 0.5Z2)

−1(I − 0.5Z1)
−1(I + 0.5Z1)(I − 0.5Z2)

−1cn, (35)

cn
0 = R2(Z1, Z2)c

n. (36)

Hence,

cn+1
1 = R1(Z1, Z2)R2(Z1, Z2)c

n (37)

= (I − 0.5Z2)
−1(I − 0.5Z1)

−1(I + 0.5Z1)(I + 0.5Z2) (38)

(I − 0.5Z2)
−1(I − 0.5Z1)

−1(I + 0.5Z1)(I − 0.5Z2)
−1cn

= RIE(0.5Z2)RCN (Z1)RCN (Z2)RCN (Z1)RIE(0.5Z2)c
n,

where RIE and RCN are the stability functions of implicit Euler and Crank-
Nicolson method.

To improve this method we can do a prestepping for cn with a stable method
and complete Z2 to a stable CN-method, we start with cn−1/2, with starting
point 1/2τ .

cn = (I − 1/2Z2)
−1(I − 1/2Z1)

−1cn−1/2, (39)

cn = R2(Z1, Z2)c0. (40)

Hence, we get:

cn+1
1 = R1(Z1, Z2)R2(Z2)c

n−1/2 (41)

= (I − 1/2Z2)
−1(I − 1/2Z1)

−1(I + 1/2Z1)(I + 1/2Z2) (42)

(I − 1/2Z2)
−1(I − 1/2Z1)

−1cn−1/2

= Rimpl.Euler(1/2Z2)RCN (Z1)RCN (Z2)Rimpl.Euler(1/2Z1)c
n−1/2,

where Rimpl.Euler and RCN are the stability functions of implicit Euler and
Crank-Nicolson method.

For these prestepping we therefore have a stable method with implicit Euler
and Crank-Nicolson methods.

5.2 Error analysis for the nonlinear method

Here we assume a linearization technique with iterative formulations. The trans-
formation to a linear problem helps to consider the eigenvalue formulation for
small time steps and weak nonlinear problems, see [25].
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5.2.1 Linearization by iterative splitting method

Let us consider the following problem

∂tc = A(c)c + B(c)c, for (x, t) ∈ Ω × [0, T ],

c(x, 0) = c0(x),

where A, B are nonlinear differentiable bounded operators A, B in a Banach
space X.
We assume a convergent fixed-point-iterative scheme, which is used to linearize
equation (43):

∂tci(x, t) = A(ci−1)ci(x, t) + B(ci−1)ci(x, t), 0 < t ≤ T, (43)

c0(x, t) = 0, c(x, 0) = c0(x), (44)

i = 1, 2, 3, . . . . , (45)

where we stop with ||ci − ci−1|| ≤ err, err ∈ IR+. We assume that Ã =
A(ci−1), B̃ = B(ci−1) : X → X are given, linear bounded operators for small
time steps τ = tn+1 − tn, such that ci−1(t) ≈ ci−1(t

n) for all t ∈ [tn, tn+1].
In the following we discuss the improved and stable iterative method, given

in (7)-(8).

Theorem 5.3 Let us consider the iterative method (43) with starting solution
c1 = c1(t

n+1), which is of m-th order exact. We assume to estimate or operators
Ã, B̃ with the maximum eigenvalues λ1 and λ2. Further we define z1 = λ1τ ,
z2 = λ2τ , where τ is the local time step.

Then we can prove, that all successive iterative solutions of the iterative
splitting method (7)-(8) are stable, see proof idea [25]. It holds

ci+1(z1, z2) = ci+1(z,−∞) = 0 ≤ 1, i = 1, 2, . . . , (46)

where c1(t) ∈ U and U is the solution space for the iterative solutions, with
ci → c for i → ∞.

Proof . We can prove the stability of the linearized scheme following proof
5.1.

Remark 5.4 Here we have assumed moderate nonlinear operators and have
taken into account the boundedness of the operators. For weaker assumptions,
e.g. unbounded operators, we can apply the exponential integrators, see [21].
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6 Numerical examples

6.1 Test example 1: Viscous Burgers equation

We deal with a 2D example where we can derive an analytical solution.

∂tc = −c∂xc − c∂yc + µ(∂xxc + ∂yyc) + f(x, y, t), (47)

(x, y, t) ∈ Ω × [0, T ]

c(x, y, 0) = cana(x, y, 0), (x, y) ∈ Ω (48)

with c(x, y, t) = cana(x, y, t) on ∂Ω × [0, T ], (49)

where Ω = [0, 1] × [0, 1], T = 1.25, and µ is the viscosity.
The analytical solution is given as

cana(x, y, t) = (1 + exp(
x + y − t

2µ
))−1, (50)

where f(x, y, t) = 0.

The operators are given as:

A(c)c = −c∂xc − c∂yc, hence A(c) = −c∂x − c∂y (the nonlinear operator),
Bc = µ(∂xxc + ∂yyc) + f(x, y, t) (the linear operator).

We apply the nonlinear Algorithm 7 to the first equation and obtain

A(ci−1)ci = −ci−1∂xci − ci−1∂yci and
Bci−1 = µ(∂xx + ∂yy)ci−1 + f ,

and we obtain linear operators, because ci−1 is known from the previous time
step.

In the second equation we obtain by using Algorithm 8:

A(ci−1)ci = −ci−1∂xci − ci−1∂yci and
Bci+1 = µ(∂xx + ∂yy)ci+1 + f ,

and we have also linear operators.

The maximal error at end time t = T is given as

errmax = |cnum − cana| =
p

max
i=1

|cnum(xi, yi, t) − cana(xi, yi, t)|,

the numerical convergence rate is given as

ρ = log(errh/2/errh)/ log(0.5).
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∆x = ∆y ∆t errL1
errmax ρL1

ρmax

0.125 0.125 0.13289 0.74383
0.0625 0.125 0.089855 0.71891 0.56453 0.049156
0.03125 0.125 0.067359 0.61805 0.41574 0.2181
0.125 0.0625 0.17624 0.95448
0.0625 0.0625 0.11871 0.95536 0.57009 -0.0013331
0.03125 0.0625 0.072207 0.85321 0.71724 0.16314
0.125 0.03125 0.2124 0.99166
0.0625 0.03125 0.15298 0.99531 0.47349 -0.005293
0.03125 0.03125 0.09503 0.96871 0.68686 0.039073

Table 1: Numerical results for the Burgers equation with viscosity µ = 0.005
using standard IOS method, initial condition c0(x, y, t) = cn, and four iterations
per time step.

∆x = ∆y ∆t errL1
errmax ρL1

ρmax

0.125 0.125 0.13261 0.7421
0.0625 0.125 0.089137 0.71146 0.57308 0.060833
0.03125 0.125 0.066726 0.60535 0.41779 0.23302
0.125 0.0625 0.1759 0.95384
0.0625 0.0625 0.11867 0.95522 0.56782 -0.0020951
0.03125 0.0625 0.072078 0.85195 0.71929 0.16506
0.125 0.03125 0.21236 0.99165
0.0625 0.03125 0.15293 0.9953 0.47367 -0.0052973
0.03125 0.03125 0.095025 0.96869 0.68647 0.039086

Table 2: Numerical results for the Burgers equation with viscosity µ = 0.005
using IOS method respecting eigenvalues, initial condition c0(x, y, t) = cn, and
four iterations per time step.

We have the following results, see Tables 1 to 6, for different steps in time
and space and different viscosities.

Figure 1 presents the profile of the 2D nonlinear Burgers equation.

Remark 6.1 In the examples, we have two different cases of µ, which smoothes
our equation. In the first test we use a very small µ = 0.005, such that we have a
dominant hyperbolic behavior, due to this we have a loose in the regularity and
sharp front. The iterative splitting method looses one order. In the second test,
we have increased the smoothness with setting µ = 5, we get a more parabolic
behavior. We have shown that the results are improved to higher accuracy.
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∆x = ∆y ∆t errL1
errmax ρL1

ρmax

0.125 0.125 0.10446 0.65352
0.0625 0.125 0.04442 0.46667 1.2336 0.48581
0.03125 0.125 0.032194 0.40191 0.46444 0.21553
0.125 0.0625 0.15974 0.94042
0.0625 0.0625 0.084812 0.87705 0.91341 0.10064
0.03125 0.0625 0.02712 0.45108 1.6449 0.95929
0.125 0.03125 0.20487 0.99067
0.0625 0.03125 0.13449 0.99256 0.60716 -0.0027481
0.03125 0.03125 0.061692 0.90457 1.1244 0.13393

Table 3: Numerical results for the Burgers equation with viscosity µ = 0.005
using IOS and η-method respecting eigenvalues for η = 0.25, initial condition
c0(x, y, t) = cn, and four iterations per time step.

∆x = ∆y ∆t errL1
errmax ρL1

ρmax

0.125 0.125 2.078·10−8 5.5031·10−8

0.0625 0.125 1.1059·10−8 3.0482·10−8 0.91001 0.85231
0.03125 0.125 6.7341·10−9 2.4778·10−8 0.71566 0.2989
0.125 0.0625 2.0937·10−8 5.8173·10−8

0.0625 0.0625 1.3356·10−8 3.7642·10−8 0.64855 0.62802
0.03125 0.0625 9.5076·10−9 2.8165·10−8 0.49039 0.41841
0.125 0.03125 1.8457·10−8 5.1464·10−8

0.0625 0.03125 1.082·10−8 3.0148·10−8 0.77038 0.77148
0.03125 0.03125 7.0185·10−9 1.9705·10−8 0.62452 0.61348

Table 4: Numerical results for the Burgers equation with viscosity µ = 5 using
standard IOS method, initial condition c0(x, y, t) = cn, and four iterations per
time step.

6.2 Test example 2: mixed convection-diffusion and Burg-
ers equation

We deal with a 2D example which is a mixture of a convection-diffusion and
Burgers equation. We can derive an analytical solution.

∂tc = −1/2c∂xc − 1/2c∂yc − 1/2∂xc − 1/2∂yc

+µ(∂xxc + ∂yyc) + f(x, y, t), (x, y, t) ∈ Ω × [0, T ] (51)

c(x, y, 0) = canal(x, y, 0), (x, y) ∈ Ω (52)

with c(x, y, t) = canal(x, y, t) on∂Ω × [0, T ], (53)

where Ω = [0, 1] × [0, 1], T = 1.25, and µ is the viscosity.
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∆x = ∆y ∆t errL1
errmax ρL1

ρmax

0.125 0.125 2.078·10−8 5.5031·10−8

0.0625 0.125 1.1059·10−8 3.0482·10−8 0.91001 0.85231
0.03125 0.125 6.7341·10−9 2.4778·10−8 0.71566 0.2989
0.125 0.0625 2.0937·10−8 5.8173·10−8

0.0625 0.0625 1.3356·10−8 3.7642·10−8 0.64855 0.62802
0.03125 0.0625 9.5076·10−9 2.8165·10−8 0.49039 0.41841
0.125 0.03125 1.8457·10−8 5.1464·10−8

0.0625 0.03125 1.082·10−8 3.0148·10−8 0.77038 0.77148
0.03125 0.03125 7.0185·10−9 1.9705·10−8 0.62452 0.61348

Table 5: Numerical results for the Burgers equation with viscosity µ = 5 using
IOS method respecting eigenvalues, initial condition c0(x, y, t) = cn, and four
iterations per time step.

∆x = ∆y ∆t errL1
errmax ρL1

ρmax

0.125 0.125 1.6861·10−8 4.3419·10−8

0.0625 0.125 9.0139·10−9 2.6411·10−8 0.90349 0.71716
0.03125 0.125 5.4384·10−9 2.0332·10−8 0.72896 0.37739
0.125 0.0625 1.7447·10−8 4.8947·10−8

0.0625 0.0625 1.0143·10−8 2.8656·10−8 0.78247 0.77236
0.03125 0.0625 6.4831·10−9 1.8994·10−8 0.64574 0.59333
0.125 0.03125 1.6513·10−8 4.6123·10−8

0.0625 0.03125 8.9812·10−9 2.5026·10−8 0.87863 0.88204
0.03125 0.03125 5.2507·10−9 1.4699·10−8 0.77441 0.76773

Table 6: Numerical results for the Burgers equation with viscosity µ = 5 us-
ing IOS and η-method respecting eigenvalues for η = 0.25, initial condition
c0(x, y, t) = cn, and four iterations per time step.

The analytical solution is given as

canal(x, y, t) = (1 + exp(
x + y − t

2µ
))−1 + exp(

x + y − t

2µ
), (54)

where we compute f(x, y, t) accordingly.
We split the convection-diffusion and the Burgers equation. The operators

are given as:

A(c)c = −1/2c∂xc − 1/2c∂yc + 1/2µ(∂xxc + ∂yyc), hence
A(c) = −1/2c∂x − 1/2c∂y + 1/2µ(∂xx + ∂yy)) (the Burgers term), and

Bc = −1/2∂xc − 1/2∂yc + 1/2µ(∂xxc + ∂yyc) + f(x, y, t) (the convection-
diffusion term).
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Figure 1: Burgers equation at initial time t = 0.0 (left figure) and end time
t = 1.25 (right figure) for viscosity µ = 0.005.
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Figure 2: Comparision of the solutions of three different methods to the exact
solution for viscious Burgers equation using viscosity µ = 0.005. The three
compared methods are the standard iterative operator-splitting (IOS), the IOS
method respecting the stiffness (eigenvalues) of the operators A and B, as well
as the modified last method using the η-method with η = 0.5.
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Figure 3: Errors of the solutions of the three different methods for viscious
Burgers equation using viscosity µ = 0.005. The third method, the IOS-method
respecting eigenvalues using the η-method with η = 0.5, depends on the CFL-
condition. The left figure shows a case, where the CFL-condition is satisfied, in
the right figure the two other methods show much better results.

η = 0.05 ∆x = ∆x = ∆x = η = 0.25 ∆x = ∆x = ∆x =
1/4 1/8 1/16 1/4 1/8 1/16

∆t =1/4 2 1 1 ∆t =1/4 2 1 1
∆t =1/8 2 1 1 ∆t =1/8 2 1 1
∆t =1/16 2 2 1 ∆t =1/16 2 1 1
∆t =1/32 2 2 1 ∆t =1/32 2 1 1

η = 0.5 ∆x = ∆x = ∆x = η = 0.75 ∆x = ∆x = ∆x =
1/4 1/8 1/16 1/4 1/8 1/16

∆t =1/4 1 3 3 ∆t =1/4 3 4 4
∆t =1/8 2 1 3 ∆t =1/8 1 4 4
∆t =1/16 2 1 1 ∆t =1/16 2 1 4
∆t =1/32 2 1 1 ∆t =1/32 2 1 1

Table 7: Numerical results for the Burgers equation with viscosity µ = 0.005.
The third method using IOS method respecting eigenvalues coupled with the
η-method is compared to the two other methods. The numbering is declared as
following.
1: η-method yields much better results
2: η-method yields sligthly better or the same results
3: η-method yields wrong results
4: η-method is instable

For the first equation we apply the nonlinear Algorithm 7 and obtain
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A(ci−1)ci = −1/2ci−1∂xci − 1/2ci−1∂yci + 1/2µ(∂xxci + ∂yyci) and
Bci−1 = 1/2(−∂x − ∂y + µ(∂xx + ∂yy))ci−1,

and we obtain linear operators, because ci−1 is known from the previous time
step.

In the second equation we obtain by using Algorithm 8:

A(ci−1)ci = −1/2ci−1∂xci − 1/2ci−1∂yci + 1/2µ(∂xxci + ∂yyci) and
Bci+1 = 1/2(−∂x − ∂y + µ(∂xx + ∂yy))ci+1,

and we have linear operators.

We deal with different viscosities µ as well as different step sizes in time and
space. We have the following results, see Tables 8 to 13.

∆x = ∆y ∆t errL1
errmax ρL1

ρmax

0.125 0.0625 0.0074702 0.018725
0.0625 0.0625 0.0026137 0.0065412 1.5151 1.5173
0.03125 0.0625 0.00038015 0.00113 2.7814 2.5332
0.125 0.03125 0.0083789 0.020832
0.0625 0.03125 0.0035067 0.008635 1.2567 1.2705
0.03125 0.03125 0.0012581 0.0031015 1.4788 1.4772

Table 8: Numerical results for the mixed convection-diffusion and Burgers
equation with viscosity µ = 0.5 using standard IOS method, initial condition
c0(x, y, t) = cn, and four iterations per time step.

∆x = ∆y ∆t errL1
errmax ρL1

ρmax

0.125 0.0625 0.0074702 0.018725
0.0625 0.0625 0.0026137 0.0065412 1.5151 1.5173
0.03125 0.0625 0.00038015 0.00113 2.7814 2.5332
0.125 0.03125 0.0083789 0.020832
0.0625 0.03125 0.0035067 0.008635 1.2567 1.2705
0.03125 0.03125 0.0012581 0.0031015 1.4788 1.4772

Table 9: Numerical results for the mixed convection-diffusion and Burgers equa-
tion with viscosity µ = 0.5 using IOS method respecting eigenvalues, initial
condition c0(x, y, t) = cn, and four iterations per time step.

Figure 4 presents the profile of the 2D mixed convection-diffusion and Burg-
ers equation.
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∆x = ∆y ∆t errL1
errmax ρL1

ρmax

0.125 0.0625 0.0083005 0.021016
0.0625 0.0625 0.0034255 0.0086649 1.2769 1.2783
0.03125 0.0625 0.0011728 0.0031685 1.5464 1.4514
0.125 0.03125 0.0087833 0.021955
0.0625 0.03125 0.003901 0.0096743 1.1709 1.1823
0.03125 0.03125 0.0016446 0.0041048 1.2461 1.2369

Table 10: Numerical results for the mixed convection-diffusion and Burgers
equation with viscosity µ = 0.5 using IOS and η-method respecting eigenvalues
for η = 0.25, initial condition c0(x, y, t) = cn, and four iterations per time step.

∆x = ∆y ∆t errL1
errmax ρL1

ρmax

0.125 0.0625 7.7362·10−6 1.8004·10−5

0.0625 0.0625 2.5848·10−6 6.8215·10−6 1.5816 1.4002
0.03125 0.0625 7.341·10−7 1.8387·10−6 1.816 1.8914
0.125 0.03125 9.2036·10−6 2.0227·10−5

0.0625 0.03125 4.1362·10−6 9.0405·10−6 1.1539 1.1618
0.03125 0.03125 1.4913·10−6 3.4521·10−6 1.4717 1.3889

Table 11: Numerical results for the mixed convection-diffusion and Burgers
equation with viscosity µ = 5 using standard IOS method, initial condition
c0(x, y, t) = cn, and four iterations per time step.

∆x = ∆y ∆t errL1
errmax ρL1

ρmax

0.125 0.0625 7.7362·10−6 1.8004·10−5

0.0625 0.0625 2.5848·10−6 6.8215·10−6 1.5816 1.4002
0.03125 0.0625 7.341·10−7 1.8387·10−6 1.816 1.8914
0.125 0.03125 9.2036·10−6 2.0227·10−5

0.0625 0.03125 4.1362·10−6 9.0405·10−6 1.1539 1.1618
0.03125 0.03125 1.4913·10−6 3.4521·10−6 1.4717 1.3889

Table 12: Numerical results for the mixed convection-diffusion and Burgers
equation with viscosity µ = 5 using IOS method respecting eigenvalues, initial
condition c0(x, y, t) = cn, and four iterations per time step.

Remark 6.2 In the examples, we deal with more iteration steps to obtain
higher-order convergence results. In the first test we have four iterative steps
but a smaller viscosity (µ = 0.5), such that we can reach at least a second-
order method. In the second test we use a high viscosity about µ = 5 and
get the second-order result with two iteration steps. Here we see the loose of
differentiability.To obtain the same results, we have to increase the number of
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∆x = ∆y ∆t errL1
errmax ρL1

ρmax

0.125 0.0625 8.8891·10−6 2.0159·10−5

0.0625 0.0625 3.7397·10−6 8.9814·10−6 1.2491 1.1664
0.03125 0.0625 1.3079·10−6 3.3957·10−6 1.5156 1.4032
0.125 0.03125 9.7002·10−6 2.123·10−5

0.0625 0.03125 4.6593·10−6 1.0043·10−5 1.0579 1.08
0.03125 0.03125 2.0105·10−6 4.4566·10−6 1.2126 1.1721

Table 13: Numerical results for the mixed convection-diffusion and Burgers
equation with viscosity µ = 5 using IOS and η-method respecting eigenvalues
for η = 0.25, initial condition c0(x, y, t) = cn, and four iterations per time step.
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Figure 4: Mixed convection-diffusion and Burgers equation at initial time t = 0.0
(left figure) and end time t = 1.25 (right figure) for viscosity µ = 0.5.

iteration steps. So we could show an improvement of the convergence order with
respect to the iteration steps.

6.3 Test example 3: momentum equation (molecular flow)

We deal with an example of a momentum equation, that is used to model the
viscous flow of a fluid.

∂tc = −c · ∇c + 2µ∇(D(c) + 1/3∇c) + f(x, y, t), (x, y, t) ∈ Ω × [0, T ](55)

c(x, y, 0) = c0(x, y), (x, y) ∈ Ω (56)

with c(x, y, t) = cana(x, y, t) on ∂Ω × [0, T ] (enclosed flow), (57)

where c = (c1, c2)
t is the solution and Ω = [0, 1] × [0, 1], T = 1.25, µ = 5, and

v = (0.001, 0.001)t are the parameters and I is the unit matrix.
The nonlinear function D(c) = c · c + v · c is the viscosity flow, and v is a

constant velocity.
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Figure 5: Comparision of the solutions of three different methods to the exact
solution for mixed convection-diffusion and Burgers equation using viscosity
µ = 0.5. The three compared methods are the standard iterative operator-
splitting (IOS), the IOS method respecting the stiffness (eigenvalues) of the
operators A and B, as well as the modified last method using the η-method.

We can derive the analytical solution with respect to the first two test ex-
amples with the functions:

c1,ana(x, y, t) = (1 + exp(
x + y − t

2µ
))−1 + exp(

x + y − t

2µ
), (58)

c2,ana(x, y, t) = (1 + exp(
x + y − t

2µ
))−1 + exp(

x + y − t

2µ
). (59)

For the splitting method our operators are given as:

A(c)c = −c∇c + 2µ∇D(c) (the nonlinear operator), and
Bc = 2/3µ∆c (the linear operator).
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Figure 6: Errors of the solutions of the three different methods for mixed
convection-diffusion and Burgers equation using viscosity µ = 0.5. The third
method, the IOS-method repecting eigenvalues using the η-method, depends on
the CFL-condition. The left figure shows a case, where the CFL-condition is
satisfied, in the right figure the two other methods show much better results.

We first deal with the one-dimensional case,

∂tc = −c · ∂xc + 2µ∂x(D(c) + 1/3∂xc) + f(x, t), (x, t) ∈ Ω × [0, T ] (60)

c(x, 0) = c0(x), (x) ∈ Ω (61)

with c(x, t) = cana(x, t) on ∂Ω × [0, T ] (enclosed flow), (62)

where c is the solution and Ω = [0, 1], T = 1.25, µ = 5, and v = 0.001 are the
parameters.

Then the operators are given as:

A(c)c = −c∂xc + 2µ∂xD(c) (the nonlinear operator), and
Bc = 2/3µ∂xxc (the linear operator).

We have the following results for our three different methods, see Tables 14 to 16.

Figure 7 presents the profile of the 1D momentum equation.
We have the following results for the 2D case, see Tables 17 to 20. The
η−method showed best results for η = 0. Since this yields the iterative operator-
splitting method respecting eigenvalues, only the first and second method are
compared.

Figure 10 presents the profile of the 2D momentum equation.

Remark 6.3 In the more realistic examples of a 1D and 2D momentum equa-
tions, we can also observe the stiffness problem, which we obtain with a more
hyperbolic behavior. In the 1D experiments we deal with a more hyperbolic
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∆x ∆t errL1
errmax ρL1

ρmax

0.125 0.0625 3.1411·10−6 7.5033·10−6

0.0625 0.0625 2.6405·10−6 6.2463·10−6 0.25046 0.26452
0.03125 0.0625 2.3534·10−6 5.5714·10−6 0.1661 0.16497
0.125 0.03125 2.3422·10−6 5.6556·10−6

0.0625 0.03125 1.8041·10−6 4.3984·10−6 0.37662 0.36268
0.03125 0.03125 1.4887·10−6 3.6586·10−6 0.27721 0.26572

Table 14: Numerical results for the one-dimensional momentum equation with
viscosity µ = 50 and v = 0.001 using standard IOS method, initial condition
c0(x, t) = cn, and four iterations per time step.

∆x ∆t errL1
errmax ρL1

ρmax

0.125 0.0625 1.8713·10−6 5.0315·10−6

0.0625 0.0625 8.1354·10−7 2.1334·10−6 1.2017 1.2379
0.03125 0.0625 2.9252·10−7 7.6796·10−7 1.4757 1.474
0.125 0.03125 2.0472·10−6 8.8496·10−6

0.0625 0.03125 9.5555·10−7 3.3847·10−6 1.0992 1.3866
0.03125 0.03125 4.1632·10−7 1.3826·10−6 1.1986 1.2917

Table 15: Numerical results for the one-dimensional momentum equation with
viscosity µ = 50 and v = 0.001 using IOS method respecting eigenvalues, initial
condition c0(x, t) = cn, and four iterations per time step.

∆x ∆t errL1
errmax ρL1

ρmax

0.125 0.0625 1.3151·10−6 3.8348·10−6

0.0625 0.0625 2.9348·10−7 8.295·10−7 2.1639 2.2088
0.03125 0.0625 2.0942·10−7 5.7202·10−7 0.48687 0.53618
0.125 0.03125 1.8517·10−6 8.9997·10−6

0.0625 0.03125 7.0537·10−7 2.641·10−6 1.3924 1.7688
0.03125 0.03125 1.5864·10−7 5.5162·10−7 2.1526 2.2593

Table 16: Numerical results for the one-dimensional momentum equation with
viscosity µ = 50 and v = 0.001 using IOS and η-method respecting eigenvalues
for η = 0.25, initial condition c0(x, t) = cn, and four iterations per time step.

behavior and obtain at least first-order convergence with 2 iteration steps. In
the 2D experiments we obtain nearly second-order convergence results with 2
iteration steps, if we increase the parabolic behavior, e.g. use larger µ and v

values. For such methods, we have to balance the usage of the iteration steps,
refinement in time and space with respect to the hyperbolicity of the equations.
At least we can obtain a second-order method with more than 2 iteration steps.
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Figure 7: One-dimensional momentum equation at initial time t = 0.0 (left
figure) and end time t = 1.25 (right figure) for viscosity µ = 50 and v = 0.001.

∆x = ∆y ∆t errL1
errmax ρL1

ρmax

0.2 0.0625 2.0878·10−5 4.4078·10−5

0.1 0.0625 6.4556·10−6 1.3052·10−5 1.6934 1.7558
0.05 0.0625 2.4956·10−6 4.4442·10−6 1.3712 1.5542
0.2 0.03125 2.9816·10−5 5.2392·10−5

0.1 0.03125 1.4577·10−5 2.283·10−5 1.0324 1.1984
0.05 0.03125 4.0646·10−6 6.6101·10−6 1.8425 1.7882
0.2 0.015625 3.1298·10−5 5.4969·10−5

0.1 0.015625 1.7869·10−5 2.6208·10−5 0.80858 1.0686
0.05 0.015625 7.7609·10−6 1.1286·10−5 1.2032 1.2154

Table 17: Numerical results for the two-dimensional momentum equation for the
first component with µ = 50 and v = (100, 0.01)T using standard IOS method,
initial condition c0(x, y, t) = cn, and four iterations per time step.

The stiffness influence the number of iterative steps.

7 Conclusions and Discussions

We present a new method to solve complicated mixed coupled partial differen-
tial equations. Based on a standard method we derive different new methods
and reorder the operators for different scales. Such a reordering reduces the de-
composition error. The more hyperbolic behavior of the equations leads to an
increasement of the iteration steps of our method. At least we obtain a second-
order method. Such iterative splitting method can balance the different behavior
of the underlying operators. So the one operator smoothes the solution process,
while the other operator decreases the smoothness. Further a balance between
the implicit and explicit discretization with the iterative splitting method is a
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Figure 8: Comparision of the solutions of three different methods to the exact
solution for one-dimensional momentum equation using viscosity µ = 50 and
v = 0.001. The three compared methods are the standard iterative operator-
splitting (IOS), the IOS method respecting the stiffness (eigenvalues) of the
operators A and B, as well as the modified last method using the η-method.

new method that overcomes to the mixed behavior in an unsplitted method.
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