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1. Introduction
Quantum Chromodynamics (QCD) is the theory of strong interaction. Its building
blocks, the fermion fields representing quarks, and the gauge bosons referred to as
gluons, are the appropriate degrees of freedom at high energy scales. This property
is called asymptotic freedom. At low energies, on the other hand, quarks exclusively
appear in bound states, so called hadrons. This is referred to as confinement. Asymp-
totic freedom in QCD was proven analytically, whereas the respective proof is lacking
for confinement. However, non-perturbative studies strongly suggest confinement to
be a feature of the theory. As both phenomena are observed in experiments, QCD is
believed to be the appropriate theory of strong interaction and hence included in the
Standard Model of particle physics.
Due to the running of the coupling in QCD, applicability of perturbative methods to
obtain predictions from the theory is limited to high energy scales. At low energies,
different strategies to explore the dynamics must be employed. Lattice QCD is, to date,
the only known non-perturbative definition of QCD. Replacing the continuous space-
time by a discrete Euclidean grid and restraining computations to finite volumes renders
the theory finite and hence non-perturbatively well defined. The lattice formulation of
QCD is particularly well suited for a treatment via Monte Carlo methods, allowing for
computation of observables from first principles.
However, computational cost increases with decreasing lattice spacing and increasing
volumes. Additionally, it is not yet possible to conduct calculations using the physical
quark masses, as decreasing quark masses again drastically raise demands regarding
the required computational effort. Therefore, extrapolations to the physical limit must
be performed. An effective field theory provides a description of the way the continuum
limit is approached.
The appropriate low energy effective field theory for QCD is Chiral Perturbation the-
ory. The observed light hadrons such as pions and kaons are considered as adequate
degrees of freedom at low energies. They are reinterpreted as Goldstone bosons of
spontaneously broken symmetry chiral of massless QCD, allowing for a systematic ex-
pansion in their small momenta. That way, an effective field theory allowing for a
meaningful perturbative treatment at low energies is constructed from QCD. Besides,
the underlying spontaneously broken symmetry is explicitly broken by nonvanishing
quark masses. However, as long as the respective masses are small compared to the
energy scale of QCD, the explicit symmetry breaking can be treated as a perturbation.
The pseudo Goldstone bosons then acquire a nonzero though still small mass. The low
energy behavior is deduced from a simultaneous expansion in small boson momenta
and quark masses, whereby an adequate power counting scheme has to be imposed.
The associated Lagrangian can be constructed using symmetry arguments only, en-
suring that the symmetry be explicitly broken in the same way in both the effective
theory and the underlying physical theory it describes. Unknown constants referred to
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1. Introduction

as Low Energy Constants are introduced, that parametrize the effects of the dynamics
of QCD involving higher energy degrees of freedom.
Chiral Perturbation Theory up to that point is the effective theory of continuum QCD.
In order to incorporate lattice effects for Wilson fermions, its Symanzik effective theory
is constructed, making all cutoff effects near the continuum limit explicit by means of
an effective continuum theory. One thus obtains an expansion in powers of the lattice
spacing, whose leading order action is just the QCD action. As the lattice constitutes
another source of explicit breaking of the spontaneously broken chiral symmetry that
was used to construct the continuum effective theory, terms occurring at higher orders
in the Symanzik effective theory can be translated to their Chiral Perturbation Theory
counterparts based again on their symmetry breaking pattern. The effective theory
then incorporates all sources of explicit symmetry breaking and involves an expansion
in small momenta of the hadrons, that are the dynamical degrees of freedom of the
theory, the quark masses and the lattice spacing. An appropriate power counting is
to be imposed in order to organize the expansion consistently. With some additional
effort, the analysis can be extended to Lattice QCD with twisted mass Wilson fermions
which is subject to current numerical studies.
As is evident from its construction principles the effective theory can not be employed
to model the hadronic spectrum inferred from including arbitrarily heavy quarks. For
the desired perturbative expansion to be meaningful, masses of the flavors included in
the theory have to be well below the energy scale of QCD. This restricts computations
in the framework of Chiral Perturbation Theory to hadrons built from up, down and
strange quarks, hence pions, kaons and the η meson. All higher-energy hadronic degrees
of freedom can be thought of as having been integrated out explicitly, thus contributing
to the Low Energy Constants.
For the effective theory to be descriptive of numerical simulations as they are currently
carried out, we start from the theory including mass degenerate up and down quarks,
and non-degenerate strange and charm quarks, referred to as 2+1+1 flavor theory.
Twisted masses are implemented in the light and the heavy sector separately in accor-
dance with the setup of numerical studies. We subsequently remove the charm degrees
of freedom at Lagrangian level, leading to a charmless effective theory. Without using
any information from the full four flavor theory, we demonstrate this reduction to yield
consistent results when compared to published results in the GSM regime. We then
proceed to calculating pseudoscalar meson masses in the LCE regime, which is likely to
be the appropriate power counting scheme to describe current numerical simulations.
The masses we calculate obtain corrections connected to lattice effects that have not
been recognized before. Particularly, we predict a different finite volume dependence
of the meson masses due to the presence of neutral pion chiral logarithms. Expressions
for decay constants also differ from continuum Chiral Perturbation Theory. Our find-
ings presumably impact the analysis of current twisted mass simulations at an order
of magnitude comparable to statistical and systematic uncertainties claimed in recent
publications.
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2. Continuum Chiral Perturbation
Theory

A number of introductory works on Chiral Perturbation theory can be found in the
literature [1, 2, 3]. In the following two chapters, the foundations of Chiral Perturbation
Theory and its extension to describe lattice QCD with Wilson fermions are reviewed,
guided by [4].

2.1. Spontaneously Broken Chiral Symmetry in
Quantum Chromodynamics

The starting point for the development of Continuum Chiral Perturbation Theory is
the fermionic part of the Lagrangian of Quantum Chromodynamics with Nf flavors,

LQCD =
Nf∑
f=1

q̄f /Dqf + Lmassive, (2.1)

where the covariant derivative is defined as

/D = γµDµ, Dµ = ∂µ + igAaµT a

to enforce invariance under local SU(3)c transformations generated by the T a acting in
color space, and Aaµ are the gauge fields of QCD. Introducing

PL,R = 1
2 (1± γ5) ,

with Dirac matrices acting in spinor space and γ5 defined as usual, one readily checks
the projector properties

PL + PR = 1, PLPR = 0 = PRPL, P 2
L,R = PL,R,

using the first of the following identities,

γ2
5 = 1, {γ5, γµ} = 0,

that can be straightforwardly derived from the Clifford algebra. The left- and right-
handed components of the quark fields are then obtained by action of the respective
projectors,

qL,R = PL,Rq, q̄L,R = q̄PR,L.
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2. Continuum Chiral Perturbation Theory

The massless part of the Lagrangian given in eq. (2.1) can be rewritten as

L 0
QCD = q̄L /DqL + q̄R /DqR,

where additionally the flavor indices are implicit, collecting the flavors in a vector

qL,R =


(q1)L,R
(q2)L,R

...(
qNf

)
L,R

 .

The Dirac operator of course acts as the identity in flavor space. It is then apparent that
the left-handed and right-handed components decouple in the massless limit, therefore
often referred to as chiral limit, and L 0

QCD exhibits a global symmetry

SU(Nf )L × SU(Nf )R︸ ︷︷ ︸
G

×U(1)V × U(1)A

with the so called chiral group G.1 This symmetry corresponds to invariance of the
massless part of the Lagrangian in (2.1) under the transformations

qL
G−→ LqL, q̄L

G−→ q̄LL
†

qR
G−→ RqR, q̄R

G−→ q̄RR
†.

Additional symmetries include invariance under parity and charge conjugation.
The symmetry under the chiral group G is widely believed to be spontaneously broken
down to the diagonal or vector subgroup

H = SU(Nf )V = G|L=R .

This notion is supported by hadron phenomenology. The Goldstone theorem predicts
the existence of a massless boson for any spontaneously broken symmetry. For the
symmetry breaking pattern G → H, this corresponds to N2

f − 1 massless Goldstone
bosons, as the spontaneously broken axial subgroup of G / H is itself isomorphic to
SU(Nf ). Hence, for any of the N2

f − 1 spontaneously broken generators of SU(Nf ),
there should be a massless Goldstone boson. As long as the explicit symmetry breaking
by nonvanishing quark masses, that will be discussed later on, can be treated as a small
perturbation, the Goldstone bosons should at most acquire a small mass compared to
the rest of the hadronic spectrum. This mass difference is in fact observed for pions
and kaons, that are thus taken to be the (pseudo) Goldstone bosons of a spontaneously
broken SU(3)L× SU(3)R symmetry, whose moderately small masses reflect the explicit
symmetry breaking by nonzero quark masses.
Additional evidence comes from lattice computations. Though not directly accessible
experimentally, the so-called quark condensate

〈0|q̄q|0〉
1 The additional U(1)V symmetry leads to baryon number conservation, U(1)A is an anomalous
symmetry, that does not hold on the quantum level for the number of colors Nc = 3 realized in
nature. Both symmetries will not be discussed any further.
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2. Continuum Chiral Perturbation Theory

can be measured in lattice computations. Realizing that left-handed and right-handed
components couple in the quark condensate,

〈0|q̄LqR + q̄RqL|0〉 G−→ 〈0|q̄LL†RqR + q̄RR
†LqL|0〉 ,

a nonvanishing quark condensate is a sufficient, though not necessary, condition for
spontaneous breaking of the axial subgroup of G, while the vector subgroup H remains
unbroken. Both, lattice computations of the quark condensate (see e.g. [5, 6] and
references therein) and its extraction from QCD sum rules [7] strongly suggest a non-
vanishing quark condensate, hence supporting the notion of spontaneous symmetry
breaking.

2.2. Chiral Perturbation Theory as an Effective Theory
The observation that the coupling of Goldstone bosons is proportional to their mo-
menta allows for a perturbative expansion of the low-energy behavior of observables.
Results for soft-pion processes such as pion scattering in the framework of current-
algebra were found to be equivalent to leading order results from what was called the
dynamical framework, starting from a particular Lagrangian density [8, 9]. In modern
language, current-algebra results correspond to the tree-level predictions of an effective
field theory [10]. In this framework it is clear how higher order corrections can be
studied systematically. The appropriate Lagrangian can be constructed from symme-
try arguments alone, such that the resulting scattering matrix elements are just the
most general expressions compatible with all the underlying symmetries. In combina-
tion with the requirement, that the resulting effective theory be an expansion in pion
momenta, possible terms that can occur in the Lagrangian are limited to a manageable
number. The according effective low-energy field theory is called Chiral Perturbation
Theory (ChPT) [11], and was then extended to include the strange flavor [12].
We want to write down the most general Lagrangian respecting the desired underlying
symmetries in a compact way. Therefore, the meson fields as relevant degrees of free-
dom are used to parametrize a matrix-valued field, that transforms linearly under G.
The matrix-valued field is an element of the spontaneously broken part of the full chiral
group, the coset G/H, which is in turn isomorphic to SU(Nf ). A possible parametriza-
tion of the group elements Σ(x) describing the fluctuations around the ground state of
the theory is hence given by

Σ(x) = exp
(

2i
f
π(x)

)
, (2.2)

where the physical meson fields enter as combinations of πa(x),

π(x) =
N2
f−1∑
a=1

πa(x)T a, (2.3)

with T a denoting the generators of SU(Nf ) for a ∈ 1, 2, . . . , N2
f − 1. We use the

normalization 〈
T aT b

〉
= 1

2δab, (2.4)
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2. Continuum Chiral Perturbation Theory

where 〈 · 〉 denotes the trace over the respective Nf × Nf -matrices in flavor space. In
order to satisfy the normalization condition, we have

T a =


1
2σ

a for SU(2)
1
2λ

a for SU(3)
(2.5)

with Pauli and Gell-Mann matrices σa and λa, respectively. Generalized Gell-Mann
matrices to generate SU(N) can readily be constructed [13]. The physical fields of three
flavor ChPT are incorporated in

π =


1√
2π

0 + 1√
6η8 π+ K+

π− − 1√
2π

0 + 1√
6η8 K0

K− K̄0 − 2√
6η8

 .
In two flavor ChPT, π reduces to the upper left 2×2 matrix with η8 omitted. The
charged pions are thus linear combinations of π1 and π2, whereas the neutral pion is
just π3. η8 is related to π8, and the kaons are given by linear combinations of π4, π5, π6

and π7.
The inverse power of f in the exponential in eq. (2.2) is included for dimensional
reasons. The benefit of working in the exponential parametrization is the particularly
simple transformation behavior of Σ under action of the chiral group G,

Σ G−→ LΣR†. (2.6)

Other symmetries are the discrete symmetries parity (P) and charge conjugation (C),
that act on Σ as

Σ P−→ Σ†, Σ C−→ ΣT. (2.7)

The chiral Lagrangian is now constructed from the field Σ and its partial derivatives,
amounting to the anticipated expansion in pion momenta. It must be an O(4) scalar2,
which restricts the number of derivatives to even integers, and a singlet under G, P
and C. The term 〈

ΣΣ†
〉

has the desired transformation property. But since Σ ∈ SU(Nf ), it contributes only
via a constant that is irrelevant for the equations of motion. The first nontrivial and
in fact unique term involving two derivatives is given by

Lp2 = f 2

4
〈
∂µΣ∂µΣ†

〉
. (2.8)

The coefficient f of the term is one of the aforementioned Low Energy Constants
(LECs). Although it is in principle determined by the parameters of Quantum Chro-
modynamics through the requirement that the effective theory has to reproduce the
low-energy physics of the underlying theory, spelling out the explicit connection re-
quires solving QCD exactly. In practice, the parameters of an effective theory can be

2 Or SO(1,3), which corresponds to Lorentz invariance, in Minkowski space.
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2. Continuum Chiral Perturbation Theory

determined by matching appropriate correlation functions in both, the effective theory
and the underlying theory. In the case of Chiral Perturbation Theory, the Low En-
ergy Constants are obtained by comparison with non-perturbative results from lattice
QCD. The particular parameter f is the pion decay constant in the chiral limit, as can
be seen from evaluation of the pion-to-vacuum matrix element mediated by the axial
vector of chiral symmetry3.
Expanding the Lagrangian given in eq. (2.8) only up to two meson fields, one recovers
the standard kinetic term of a scalar field theory,

Lp2 = 1
2∂µπ

a(x)∂µπa(x),

where the sum over a is implied. The correct normalization explains the seemingly
somewhat arbitrary coefficient in the Lagrangian. At order O(p4), there are two pos-
sible contributions. On the one hand, contributions come from a loop diagram built
from interaction vertices of Lp2 , once expanded to fourth order in the meson fields.
On the other hand, two-pion vertices from the Lagrangian Lp4 have to be taken into
account. The respective Lagrangian containing all terms that are compatible with the
aforementioned symmetries and involve four derivatives is given by [12]

Lp4 = −L1
〈
∂µΣ∂µΣ†

〉2
− L2

〈
∂µΣ∂νΣ†

〉 〈
∂µΣ∂νΣ†

〉
− L3

〈(
∂µΣ∂µΣ†

)2
〉
. (2.9)

The new Low Energy Constants Lk are called Gasser-Leutwyler coefficients. As, how-
ever, the expansion of the Lagrangian in eq. (2.9) in terms of meson fields starts only
at four fields, these terms will not contribute to masses and decay constants up to order
O(p4).
This language alludes to the organizing principle involved in the construction of the
effective theory. Since it is supposed to describe the low-energy physics of QCD with
vanishing coupling of mesons as their momenta tend to zero, the field theory is or-
ganized as a perturbative expansion in the external meson momenta. In the effective
theory this is equivalent to an expansion in the number of derivatives. The dimension-
less expansion parameter is the ratio

r = p2

Λ2 .

When working out calculations to a fixed order rn ∼ p2n in the derivative expansion one
thus has to take into account a finite number of terms involving at most 2n derivatives,
rendering the nonrenormalizable effective theory predictive once the LECs are known.

2.3. Explicit Symmetry Breaking and Spurion Analysis
The spontaneously broken chiral symmetry of massless QCD is additionally broken
explicitly by nonzero quark massses. The mass term in the QCD Lagrangian,

Lmassive = q̄Mq,

3 In the convention used throughout this work, f ≈ 93 MeV.
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2. Continuum Chiral Perturbation Theory

with diagonal quark mass matrix

M = diag(mu,md, . . . ), (2.10)

shares the transformation behavior of the quark condensate under action of the chiral
group G in the mass-degenerate case, in that it couples left- and right-handed compo-
nents of the fermion fields, and thus explicitly breaks chiral symmetry. For sufficiently
small quark masses compared to the energy scale Λ, the explicit symmetry breaking
may be treated as a perturbation to the approximate chiral symmetry. The pseudo
Goldstone bosons then acquire a nonzero, though small mass. In order to reproduce the
explicit symmetry breaking in the effective theory, it has to be incorporated properly.
The starting point for the so-called spurion analysis is the observation, that the massive
QCD Lagrangian can be made invariant under action of the chiral group G, C and P,
once a nontrivial transformation behavior of M is imposed,

M
G−→ LMR†, M

C−→MT, M
P−→M †.

This unphysical, hence spurious, intermediate transformation behavior serves as a
mnemonic in order to carry over the explicit symmetry breaking pattern to the ef-
fective theory correctly. After, again, all terms consistent with the desired symmetries
built from Σ, ∂µΣ, M and their Hermitian conjugates have been written down, the
spurion M is reset to its physical value given in eq. (2.10). The sole term with one
mass insertion is

Lm = f 2

4
〈
χ†Σ + Σ†χ

〉
, (2.11)

where χ encompasses the new Low Energy Constant B,

χ = 2BM,

that is connected to the quark condensate.
The effective theory then becomes a joint expansion in mass spurion insertions and
small pion momenta, hence derivatives in the effective Lagrangian. Expanding eq.
(2.11) in meson fields, the first nontrivial terms occur at quadratic order in meson
fields and reproduce the mass term of a scalar field theory. This induces the standard
power counting scheme of ChPT,

p2 ∼ m, (2.12)

where the single m refers to the number of (quark) mass, thus mass spurion, insertions.
Once this power counting scheme is adopted, the consistent (Euclidean) leading order
continuum ChPT Lagrangian is given by

L2 = Lp2 + Lm

= f 2

4
〈
∂µΣ∂µΣ†

〉
− f 2

4
〈
χ†Σ + Σ†χ

〉
.

(2.13)

Other power counting schemes can appear to be reasonable based on what one assumes
to be the predominant trigger of spontaneous symmetry breaking [14], referred to as
generalized ChPT. However, throughout this work the standard power counting scheme
(2.12) is assumed. The orders of the expansion are then organized as follows:
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2. Continuum Chiral Perturbation Theory

LO : p2, m
NLO : p4, p2m, m2.

The Lagrangian involving four derivatives has already been given in eq. (2.9). Adding
all other invariants contributing at next to leading order, one ends up with the contin-
uum ChPT Lagrangian [12]

L4 =− L1
〈
∂µΣ∂µΣ†

〉2
− L2

〈
∂µΣ∂νΣ†

〉 〈
∂µΣ∂νΣ†

〉
− L3

〈
∂µΣ∂µΣ†∂νΣ∂νΣ†

〉
+ L4

〈
∂µΣ∂µΣ†

〉 〈
χ†Σ + Σ†χ

〉
+ L5

〈
∂µΣ∂µΣ†

(
χ†Σ + Σ†χ

)〉
− L6

〈
χ†Σ + Σ†χ

〉2
− L7

〈
χ†Σ− Σ†χ

〉2
− L8

〈
χ†Σχ†Σ + Σ†χΣ†χ

〉
.

(2.14)

Eq. (2.14) now incorporates all Gasser-Leutwyler coefficients encoding the lack of
complete knowledge about QCD. They are determined as a byproduct when using
formulae calculated from ChPT as fit functions for results obtained in lattice QCD.
The number of Low Energy Constants increases rapidly with the considered order in the
joint expansion, and amounts to over 100 constants already at NNLO in the prescribed
power counting scheme [15]. However, when computing physical observables in SU(2)
ChPT, characteristic combinations of Low Energy Constants occur. The respective
terms in the Lagrangian are hence not linearly independent. Redundant terms can
be identified on Lagrangian level already, employing Cayley-Hamilton relations [16].
These very relations can not be exploited to simplify the Lagrangian given so far for
Nf = 4, which is the case of primary interest throughout this work. The Lagrangian
is therefore kept in its most general form given in eq. (2.14).
With the Lagrangian of ChPT up to NLO at hand, meson masses can readily be
computed to that order. The respective results for Nf = 2 and Nf = 3 were worked
out in the pioneering publications [11, 12].
In order to compute other quantities of interest, such as decay constants, the (vector
and axial) currents and (scalar and pseudoscalar) densities have to be constructed as
the most general expressions transforming accordingly under the various symmetries
considered before. They can either be obtained by introducing external sources in
the Lagrangian and taking sensible functional derivatives [11, 12], or by following the
prescription of writing down the most general expression in terms of the building blocks
given before [17].
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3. Chiral Perturbation Theory for
Lattice QCD

3.1. Symanzik Effective Theory
So far, the effective theory for QCD has been established. Once the LECs are known,
ChPT predicts observables accessible in experiments. On the other hand, ChPT can
be extended to describe cutoff effects encountered in lattice QCD. Lattice QCD is the
formulation of QCD on a discrete Euclidean space-time grid, that naturally provides an
ultraviolet-regulator through its momentum cutoff ΛUV inversely proportional to the
lattice spacing a. Present day simulations are performed at lattice spacings of about
a = 0.05 . . . 0.1 fm (see e.g. [18]), implying a momentum cutoff at ΛUV = 2 . . . 4 GeV.
This cutoff is not too large compared to the QCD scale Λ = 1 GeV and will thus impact
the results from continuum ChPT. The resulting effective theory then describes lattice
QCD including cutoff effects, and particularly guides the extrapolation to the point of
physical (light) pion masses not yet accessible in simulations.
Studying cutoff effects in lattice QCD via an expansion in

ra = Λ
ΛUV

∼ aΛ

yields another effective field theory. The idea to make the lattice spacing dependence
of lattice QCD explicit near the continuum culminates in Symanzik’s effective theory
[19].
Starting from a properly normalized formulation of lattice QCD, which means it has
to reproduce QCD in the continuum limit, the effective action near the continuum is
expressed as expansion in the lattice spacing a,

SSym = S0 + aS1 + a2S2 + . . . . (3.1)

According to the assumption, that the effective theory reduces to QCD in the contin-
uum limit, S0 is the usual QCD action. The other Sk are built of all local operators
O

(k+4)
i of the respective mass dimension k comprising the fermion and gauge fields and

their derivatives, such that the product akSk has the desired dimension of an action,

Sk =
∫

d4x
∑
i

c̄
(k+4)
i O

(k+4)
i ,

and the operators Oi obey all the symmetries of the respective formulation of lattice
QCD. The c̄(k+4)

i are, again, unknown constants of the effective theory. Therefore, the
form of the Symanzik effective action depends on the details of how the fermions are
implemented, as different available discretizations compromise different symmetries
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3. Chiral Perturbation Theory for Lattice QCD

of continuum QCD. Apart from the apparent breaking of O(4) invariance, Wilson
fermions as the sole formulation of lattice QCD covered in this work explicitly break
chiral symmetry at O(a). The respective term thus appears in S1 of the Symanzik
effective action in eq. (3.1). Terms entering the Symanzik effective action were worked
out and are thus available [20]. Their number can be reduced realizing that terms
related by partial integration are redundant, since the action is defined only up to
a constant anyway. Additionally, different expressions compatible with the preserved
symmetries can be discarded if they are related by the equations of motion, as long as
only on-shell quantities, such as masses, are considered.
At O(a), only the Pauli term remains [20],

S1 =
∫

d4x c̄swq̄(x)iσµνGµν(x)q(x),

where Gµν(x) is the gauge field strength tensor and

σµν = i
2 [γµ, γν ]

leads to the aforementioned explicit chiral symmetry breaking. Decomposing the Pauli
term into its chiral components,

S1 =
∫

d4x c̄sw {q̄L(x)iσµνGµν(x)qR(x) + q̄R(x)iσµνGµν(x)qL(x)} , (3.2)

the explicit breaking of chiral symmetry becomes apparent.

3.2. Chiral Perturbation Theory for Wilson Fermions
Starting from the Symanzik effective theory, which is the effective continuum theory
for lattice QCD, the corresponding ChPT can readily be constructed. Only the be-
havior of terms in the Symanzik effective action under chiral transformation enters its
construction. The Pauli term in eq. (3.2) breaks chiral symmetry in a mass term-like
fashion. In order to carry over the symmetry breaking pattern to ChPT correctly, the
spurion analysis introduced before is employed. Assigning a nontrivial transformation
behavior to the overall coefficient of the Pauli term via a spurion field A = ac̄sw,

A
G−→ LAR†, A

C−→ AT, A
P−→ A†, (3.3)

invariance of the Pauli term under G, P and C is enforced. The effective action is then
constructed in analogy to the treatment of explicit chiral symmetry breaking by the
masses and encompasses all terms built from the building blocks Σ, its derivatives, M
and A. Subsequently, the spurion field A is reset to its physical value,

A→ ac̄sw,

that acts as identity in flavor space, in contrast to the mass spurion at its physical
value if quark masses are not degenerate. Considering only terms without derivatives,
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3. Chiral Perturbation Theory for Lattice QCD

and limiting the number of A spurion field insertions to one, there is essentially one
invariant [21],

La = −f
2W0

2
〈
A†Σ + Σ†A

〉
→ −f

2

4 ρ
〈
Σ + Σ†

〉
, (3.4)

where

ρ = 2W0a

incorporates the new LEC W0, which in a sense constitutes the counterpart of B
encountered in the mass term. There are different conventions on whether or not
to keep the coefficient c̄sw explicit, although it is always accompanied by unknown
constants. Keeping c̄sw explicit is of no particular interest for the present work.
The only other possible term

〈
A†M +M †A

〉
amounts to a constant in the effective

action and is thus discarded. Including terms with two derivatives or, according to the
standard power counting scheme of continuum ChPT, equivalently one mass insertion,
one finds [21]

Lp2a = ρW4
〈
∂µΣ∂µΣ†

〉 〈
Σ + Σ†

〉
+W5ρ

〈
∂µΣ∂µΣ†

(
Σ + Σ†

)〉
,

Lma =−W6ρ
〈
χ†Σ + Σ†χ

〉 〈
Σ + Σ†

〉
−W7ρ

〈
χ†Σ− Σ†χ

〉 〈
Σ− Σ†

〉
−W8ρ

〈
χ†ΣΣ + Σ†Σ†χ

〉
.

(3.5)

At order O(a2), there are in principle two distinct sources of additional terms. First,
terms involving two A spurion field insertions contribute. Additionally, new spurion
fields are spawned to make terms occurring in S2 invariant under the chiral group G,
parity and charge conjugation. However, careful analysis of all bilinears and four-quark
operators appearing in S2 shows, that the total number of terms remains manageable
and no spurion fields other than A and powers of it are needed [22]. The resulting
Lagrangian reads

La2 =−W ′
6ρ

2
〈
Σ + Σ†

〉2
−W ′

7ρ
2
〈
Σ− Σ†

〉2
− ρ2W ′

8

〈
ΣΣ + Σ†Σ†

〉
. (3.6)

3.3. Power Counting Schemes for the Systematic
Expansion

Chiral Perturbation Theory for Wilson fermions (WChPT) is hence a joint expansion in
momenta, quark masses and the lattice spacing. For the expansion to be consistent to
a given order, one has to impose an appropriate power counting scheme describing the
relative impact of the three expansion parameters. The relative size dictates, which
terms involving mass and lattice spurion insertions need be included in calculations
accurate to a prescribed order. It has to be guided by the actual sizes of quark masses
and the lattice spacing used in simulations. There are two relevant scenarios for present
day simulations.
In the Generically Small Masses (GSM) regime [23], the explicit chiral symmetry
breaking due to masses and the lattice are of comparable size. Symbolically, this

13
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statement is expressed as1

p2 ∼ m ∼ a.

In this power counting scheme, the expansion is organized as follows:
LO : p2, m, a
NLO : p4, p2m, p2a, m2, ma, a2.

In this regime, all parts of the Lagrangian up to NLO have already been specified. In
the leading order Lagrangian,

LLO = f 2

4
〈
∂µΣ∂µΣ†

〉
− f 2

4
〈
χ†Σ + Σ†χ

〉
− f 2

4 ρ
〈
Σ + Σ†

〉
,

the O(a) term can be absorbed by redefinition of χ [24],

χ→ χ′ = χ+ ρ 1Nf , (3.7)

which amounts to an O(a) shift in the quark masses. Working out the redefinition
(3.7), the LECs at order O(ma) and O(a2) are altered. The Lagrangian up to NLO in
the GSM regime in terms of χ′, whereby the prime is dropped again right away, reads

L2 = f 2

4
〈
∂µΣ∂µΣ†

〉
− f 2

4
〈
χ†Σ + Σ†χ

〉
L4 =− L1

〈
∂µΣ∂µΣ†

〉2
− L2

〈
∂µΣ∂νΣ†

〉 〈
∂µΣ∂νΣ†

〉
− L3

〈
∂µΣ∂µΣ†∂νΣ∂νΣ†

〉
+ L4

〈
∂µΣ∂µΣ†

〉 〈
χ†Σ + Σ†χ

〉
+ L5

〈
∂µΣ∂µΣ†

(
χ†Σ + Σ†χ

)〉
− L6

〈
χ†Σ + Σ†χ

〉2
− L7

〈
χ†Σ− Σ†χ

〉2
− L8

〈
χ†Σχ†Σ + Σ†χΣ†χ

〉
Lp2a =W4ρ

〈
∂µΣ∂µΣ†

〉 〈
Σ + Σ†

〉
+ W5ρ

〈
∂µΣ∂µΣ†

(
Σ + Σ†

)〉
Lma =−W6ρ

〈
χ†Σ + Σ†χ

〉 〈
Σ + Σ†

〉
−W7ρ

〈
χ†Σ− Σ†χ

〉 〈
Σ− Σ†

〉
−W8ρ

〈
χ†ΣΣ + Σ†Σ†χ

〉
La2 =−W′6ρ2

〈
Σ + Σ†

〉2
−W′7ρ2

〈
Σ− Σ†

〉2
−W′8ρ2

〈
ΣΣ + Σ†Σ†

〉
(3.8)

with the respective redefined LECs

Wi =

Wi − Li i = 4, 5
Wi − 2Li i = 6, 7, 8

W
′
i = W ′

i −Wi + Li i = 6, 7, 8.

Decreasing the quark mass with the lattice spacing held fixed, eventuallym will become
comparable to a2, which is the defining property of the Large Cutoff Effects (LCE)
regime, also referred to as Aoki regime in the literature [23],

p2 ∼ m ∼ a2.

In this power counting scheme, one has
1 In all the expansion ratios encountered before, appropriate powers of the QCD scale Λ have to be
multiplied in order to make the expansion parameter dimensionless. The precise power can readily
be inferred from the mass dimension and is thus not stated explicitly any more.
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LO : p2, m, a2

NLO : p2a, ma, a3

NNLO : p4, p2m, p2a2, m2, ma2, a4.

Recall that the leading order m already refers to O(a) shifted masses. All terms up
to NNLO enter the calculation of pseudo Goldstone boson masses to one loop. The
corresponding results in the GSM regime can be obtained from the result in the LCE
regime, once appropriate terms are discarded. One can readily think of various other
power counting schemes. However, the GSM regime and the LCE regime appear to be
the relevant scenarios in practice. Having the respective WChPT Lagrangian at hand,
meson masses to one-loop can now be computed. They are determined as the pole of
the two-point correlation function. Correlation functions, in turn, are computed by
saddle point expansion, such that the matrix-valued field Σp parametrizes fluctuations
around the vacuum state or ground state Σ0 of the theory,

Σ(x) = Σ
1
2
0 Σp(x) Σ

1
2
0 . (3.9)

Put differently, the expansion around the ground state of the theory implies there are
no terms linear in the fields πa(x) when inserting the parametrization of the physical
fields

Σp(x) = exp
(

2i
f
πa(x)T a

)
,

and subsequently expanding in meson fields. The ground state is obtained from mini-
mizing the potential energy. Since

L = T − U,

the potential energy is given by all terms in the Lagrangian not containing derivatives,
if the ground state is taken to be constant over spatial directions.
In continuum ChPT, the ground state is just the SU(Nf ) identity to all orders of
contributions to the potential energy [12]. In the LCE regime of WChPT with O(a2)
contributing at leading order, the ground state of the theory is a nontrivial element
of SU(Nf ), depending on the relative sizes of m and a and the signs of the LECs Wi.
The connection to the nontrivial phase structure of the theory was examined in the
two flavor theory. The existence of the Aoki phase [25] is predicted by WChPT [26].

3.4. Twisted Mass Wilson Fermions
QCD with twisted masses differs from standard QCD by its mass term. Starting
from the generalized expression for a mass matrix in two flavor QCD with degenerate
masses2,

M = m(q) + iµ(q)γ5σ3, (3.10)
2 We use the additional index to distinguish the bare parameters entering the QCD Lagrangian at
quark level from their renormalized ChPT counterparts.
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with the third Pauli matrix σ3 acting in flavor space, it is not immediately clear that
this is in fact a mass term. But it can be shown that, in the continuum, QCD with
twisted masses is related to QCD with a standard mass term with mass

√
m2

(q) + µ2
(q)

by a field redefinition

Ψ→ Ψ′ = exp (iαγ5σ3/2) Ψ, Ψ̄→ Ψ̄′ = Ψ̄exp (iαγ5σ3/2) ,

and hence merely by a change of variables [27]. This statement does however not hold
for lattice QCD with Wilson fermions, where only either the mass term or the Wilson
term can be untwisted. It was then proposed to regard the twisted mass formulation
as an alternative regularization of QCD, instead of thinking of a nonvanishing µ(q) as
unphysical [27]. This proves useful since twisted mass terms with µ(q) 6= 0 impose
a lower limit on the spectrum of the Dirac operator and thereby prevent exceptional
configurations that otherwise pose a problem for numerical simulations. Additionally,
tuning the twist angle α to a specific value referred to as maximal twist, one can achieve
automatic O(a) improvement [28].

3.4.1. ChPT for 2 Wilson Quarks with Twisted Masses
Chiral Perturbation Theory for twisted mass lattice QCD with two mass-degenerate
flavors of Wilson fermions (Nf = 2 tmWChPT) was studied to one loop in both, the
GSM regime [29], and the LCE regime [30]. In the following, we briefly recall prominent
features of the respective studies.
Since, in the massless case, all symmetry considerations so far remain valid, the incor-
poration of twisted masses in SU(2) ChPT with degenerate up and down quark masses
solely alters the ChPT mass term, which then reads

χ = 2BMl = 2B (m+ iµσ3) . (3.11)

The mass matrix can be re-expressed as

Ml = m′ (cosφ 12 + i sinφσ3) = m′eiφσ3 ,

in terms of the twist angle φ and radial mass m′,

cotφ = m

µ
,

m′ =
√
m2 + µ2.

(3.12)

This reparametrization simply corresponds to using polar coordinates instead of Carte-
sian coordinates in the complex mass plane,(

m
µ

)
←→

(
m′

φ

)
.

In this language, a twist is simply a rotation in the complex mass plane. This mass
term singles out the σ3 direction and leads to a so-called vacuum alignment to this very
direction, as can be seen from expanding the ChPT mass term in meson fields, whereby
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a term linear in π3 is spawned. The hence nontrivial ground state is now determined
by minimizing the potential energy (density) for a homogeneous ground state,

V = −Lm −Lma −La2 . (3.13)

The particular choice for the mass matrix suggests for the ground state to be of the
form [24]

Σ0 = eiωσ3 , (3.14)

where ω is referred to as vacuum angle, and minimizing the potential energy amounts
to plugging the ansatz (3.14) into eq. (3.13) and minimizing with respect to ω. The
condition

∂V

∂ω
!= 0

is called gap equation and determines the vacuum angle by means of an implicit equa-
tion,

ω = ω(m,µ, a) = ω(m′, φ, a).

One finds

2Bµ cosω = sinω
(

2Bm+ 16ρ
2

f 2W
′
68 cosω

)
+ 8 ρ

f 2W68 (2Bm sin 2ω + 2Bµ cos 2ω) ,

(3.15)

where we have introduced the shorthand notations3

W68 = 2W6 + W8,

W
′
68 = 2W′6 + W

′
8.

(3.16)

Eq. (3.15) matches the findings of [30], when W68 is set to zero, which amounts to
minimizing the leading order potential in the LCE regime. The gap equation was
studied extensively in the literature [31, 32]. On the other hand, working in the GSM
regime the gap equation can be expressed in terms of the radial mass and the twist
angle and subsequently be solved iteratively order by order to yield [29]

ω = φ− 8
f 2ρ sinφ

(
W68 + 2W′68

ρ

m′
cosφ

)
.

One has to keep in mind that not all of the variables m,µ, a, φ and ω are independent,
whenever encountering mixed expressions.
Once the ground state has been determined, the Lagrangian can be expanded in terms
of meson fields around this vacuum state according to eq. (3.9). In kinetic terms, the
vacuum does not enter explicitly,

〈
∂µΣ∂µΣ†

〉
=
〈

Σ
1
2
0 ∂µΣp Σ

1
2
0

(
Σ

1
2
0

)†
︸ ︷︷ ︸

=1

∂µΣ†p
(

Σ
1
2
0

)†〉
=
〈
∂µΣp∂µΣ†p

〉
, (3.17)

3 Note that this definition differs from the respective definition in [29] by a factor of 2.
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where cyclicity of the trace has been used. The ground state can be reshuffled to the
mass matrix in mass terms,

〈
χ†Σ + Σ†χ

〉
=
〈
χ†Σ

1
2
0 ΣpΣ

1
2
0 +

(
Σ

1
2
0

)†
Σ†p
(

Σ
1
2
0

)†
χ

〉

=
〈

Σ
1
2
0 χ
†Σ

1
2
0︸ ︷︷ ︸

χ†p

Σp + Σ†p
(

Σ
1
2
0

)†
χ
(

Σ
1
2
0

)†〉

=
〈
χ†pΣp + Σ†pχp

〉
,

(3.18)

but enters explicitly in lattice terms4

〈
Σ + Σ†

〉
=
〈
Σ0Σp + Σ†pΣ

†
0

〉
,〈

ΣΣ + Σ†Σ†
〉

=
〈
Σ0ΣpΣ0Σp + Σ†pΣ

†
0Σ†pΣ

†
0

〉
.

(3.19)

The apparent flavor symmetry breaking by the twisted mass term manifests itself
through the so-called pion mass splitting entering at O(a2). The mass splitting can be
understood, if for instance the expansion of the W′6 up to the leading terms in mesons
fields is worked out,

−W′6ρ2
〈
ΣpΣ0 + Σ†0Σ†p

〉2

∼ −W′6ρ2
〈(

1 + 2i
f
πaT a + . . .

)(
cosω + 2i sinωT 3

)
+ h.c.

〉2

∼ −W′6ρ2 sinωπ2
3.

(3.20)

The pion mass splitting appears as a direct consequence of twisted masses implemented
along a determinate direction, leading to a nontrivial ground state parametrized by
ω, and subsequently to a differing mass of the meson field associated with this very
direction. In the untwisted case µ → 0, the vacuum angle tends to zero and flavor
symmetry is restored. In practical applications, so-called maximal twist cosω = 0 is
of interest, since then automatic O(a) improvement is achieved [28, 31]. The splitting
becomes maximal in this setup. The order, at which the splitting contributes, is defined
by the adopted power counting scheme.
In the GSM regime, the pion mass splitting enters at NLO. The hence degenerate tree
level masses are given by

m2
π± = m2

π0 = 2B (m cosω + µ sinω) .

By comparison with continuum ChPT results indicating that the leading order mass is
determined by the quark content of the respective meson, µ is essentially the degenerate
up and down quark mass at maximal twist.

4 In this loose vocabulary, lattice terms and mass terms refer to contributions to the Lagrangian
stemming from A and M spurion field insertions respectively, hence terms describing effects related
to explicit symmetry breaking by the lattice and nonzero masses.
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The pion masses to one loop - denoted by capital letters - are given by [29]

M2
π± = m2

π±

[
1 + 1

32π2f 2m
2
π± log m

2
π±

µ2 −
8
f 2m

2
π± (2L4 + L5 − 4L6 − 2L8)

]
, (3.21)

M2
π0 = M2

π± −
16ρ2

f 2 W
′
68, (3.22)

at maximal twist. If instead the pion mass splitting is taken to be of the same order as
the pion masses and hence as leading order effect, this amounts to adopting the LCE
power counting. Eq. (3.22) then holds for the tree level masses at maximal twist,

m2
π± = 2Bµ,

m2
π0 = m2

π± −
16ρ2

f 2 W
′
68.

(3.23)

Technically, in one-loop computations this means one has to distinguish looping charged
pions from neutral pions. Consequently, one naively expects both types of chiral log-
arithms to occur. Obviously, with µ and a2 both contributing at leading order, hence
spawning interaction vertices, one can expand Lm and La2 to four pion fields. The
sum of both can then be rewritten as the sum of the usual continuum interaction vertex
only with tree level masses given in eq. (3.23), and additional O(a2) vertices [30],

Lm,4π + La2,4π = − 1
24f 2m

2
π±π

4 − 2ρ2

f 4 W
′
68 cos2 ωπ4 + 8

3
ρ2

f 4W
′
68 sin2 ωπ2π2

3, (3.24)

with π2 = ∑
a π

aπa and π4 = (π2)2. The non-analytic part of the one-loop calculation is
then obtained by reiterating the continuum results with O(a2)-shifted tree level masses
replacing the continuum tree level masses, plus working out the contributions from the
additional vertices given in eq. (3.24). This result is supplemented by the analytic
contributions that provide the counterterms to cancel divergences accompanying the
chiral logarithms.
The charged pion mass to one loop in two flavor tmWChPT at maximal twist reads
[30]

M2
π± = m2

π±

[
1 + 1

32π2f 2m
2
π0 log m

2
π0

µ2 −
8
f 2m

2
π± (2L4 + L5 − 4L6 − 2L8) + C1ρ

2
]
.

(3.25)

The correct continuum result [11] is obtained in the limit ρ→ 0, implying a vanishing
pion mass splitting m2

π0 → m2
π± . Somewhat surprisingly, only the neutral pion log is

present in the result. The remainder of this work is devoted to performing a similar
analysis in the case of 2+1+1 dynamical flavors.

3.4.2. Inclusion of a Dynamical Strange Quark
Three scenarios to include the strange quark as dynamical flavor with twisted masses in
the light (u, d)-sector were explored [33], that are briefly recapitulated in the following.

19



3. Chiral Perturbation Theory for Lattice QCD

The simplest way to include a dynamical strange quark is to leave the strange quark
untwisted. The respective O(a) terms could be removed through addition of a Sheikho-
leslami-Wohlert term. However, kaon operators composed of a twisted and an un-
twisted fermion would require extra effort to extract continuum physics.
If the strange quark is to be twisted, an accompanying twist partner is required. The
natural choice is to take the next heavier quark, the charm quark, to serve as twist
partner. In order to parametrize non-degenerate strange and charm quark masses, the
quark mass term of the heavy (s, c)-doublet in the twisted basis is given by5

Ψh
(
m

(q)
h + iγ5µ

(q)
h σa + δ(q)σ3

)
Ψh, (3.26)

whereby the direction along which the twist is implemented remains to be discussed.
Again, in the continuum the mass term could be untwisted to yield a standard QCD
mass term. By comparison with the ordinary diagonal quark mass matrix, one thus
identifies the respective quark masses

m(q)
s,c =

√(
m

(q)
h

)2
+
(
µ

(q)
h

)2
± δ(q), (3.27)

such that m(q)
s < m(q)

c implies δ(q) < 0.
One choice for the direction σa in eq. (3.26) is the parallel choice σa = σ3 implementing
the twist in the same direction as the quark mass splitting. This approach was pursued
in [34] and leads to a non-real fermion determinant, preventing unquenched simulations
with four dynamical flavors as long as currently known algorithms are employed.
In contrast the perpendicular choice σa 6= σ3 leads to a real fermion determinant, but
mixes flavors. Still, choosing σa = σ1 amounts to the setup now commonly used (see
e.g. [35, 18]). In addition to enabling unquenched simulations with dynamical strange
and charm quarks, implementing the twist orthogonally implies an exact symmetry of
the action under an appropriately chosen parity transformation, that in turn implies
kaon mass degeneracy [36].
In a first attempt to construct the ChPT to describe the setup employed in current
simulations, we hence start from lattice QCD with four Wilson quarks and mass matrix

M̃ =
(
M̃l ⊕ M̃h

)
=
(
M̃l 0
0 M̃h

)
,

with 2 × 2 light and heavy sector mass matrices M̃l,h given by

M̃l = m(q) + iµ(q)
l γ5σ3

M̃h = m(q) + iµ(q)
h γ5σ1 + δ(q)σ3,

respectively. Note that the same untwisted mass m(q) is used in both the light and the
heavy sector in current simulations. Following the standard procedure of transferring
the explicit chiral symmetry breaking pattern to the effective theory through spurion

5 Note, that we prefer to implement the quark mass splitting diagonally in contrast to [33], since
this amounts to the common setup in recent simulations. For the following argument, this does
not play a role.
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analysis in principle yields the desired ChPT. However, setting up the theory this
way treats D mesons as pseudo Goldstone bosons. The thereby implicit perturbative
expansion in the masses is not sensible at the physical masses of the D mesons. Still,
let us briefly recall some of the features of the naive ChPT for 2+1+1 flavors that were
worked out in the literature [13]. The name alludes to the setup of two degenerate
light quarks and two non-degenerate heavier quarks.
In analogy to the construction of two flavor tmWChPT the theory is set up using the
ChPT mass matrix

χ = 2B(Ml ⊕Mh), (3.28)

where the 2 × 2 light and heavy sector submatrices read

Ml = m+ iµlσ3 = m′leiφlσ3 ,

Mh = m+ iµhσ1 + δσ3 = m′heiφhσ1 + δσ3.

There is now one twisted mass µl,h for each sector, and equivalently two radial masses
and twist angles defined as a straightforward generalization from their definition in the
case of two flavors with twisted masses, particularly

m′l,h =
√
m2 + µ2

l,h. (3.29)

We will use both parametrizations of the mass matrix in terms of Cartesian and polar
coordinates.
The physical fields are linear combinations of the fields πa [13],

Σp =


1√
2π

0 + 1√
6η8 + 1√

12η15 π+ K+ D̄0

π− − 1√
2π

0 + 1√
6η8 + 1√

12η15 K0 D−

K− K̄0 − 2√
6η8 + 1

12η15 D−s
D0 D+ D+

s − 3√
12η15


and are as usual incorporated by expanding around the ground state Σ0 of the theory
as in eq. (3.9). The respective Lagrangian is just the one constructed before.
The particular choice for the mass matrix suggests for the ground state to be of the
form

Σ0 = Σl ⊕ Σh, (3.30)

with the ansatz

Σl = eiωlσ3 , Σh = eiωhσ1 .

Although the ground state itself is a direct sum of a light and heavy part, terms from
Lm2 , Lma and La2 induce a coupling between both sectors in the potential energy,
since there are contributions composed of a product of two traces.
In the GSM regime, which implies only Lm contributing to the leading order potential
energy, and the other terms amounting to higher order corrections, the respective
vacuum angles are given by [13]

ωl = φl −
8
f 2
ρ sinφl
2Bm′l

[
2Bm′lW68 + 2Bm′h2W6 + ρ cosφl2W

′
68 + ρ cosφh4W

′
6

]
,

ωh = φh −
8
f 2
ρ sinφh
2Bm′h

[
2Bm′hW68 + 2Bm′l2W6 + ρ cosφh2W

′
68 + ρ cosφl4W

′
6

]
.

(3.31)
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The meson tree level masses in this theory read [13]

m2
π± = m2

π0 = 2Bm′l ≡ m2
π,

m2
K,D = B (m′l +ms,c) ,
m2
Ds = 2Bm′h.

Consistent with eq. (3.27), the tree level meson masses in the respective ChPT are
determined by their quark content after identifying

ms,c = m′h ± δ.

The heavy sector radial mass m′h is hence the average of the strange and charm quark
mass, and δ is half their mass splitting.
The η8 and η15 states are not the mass eigenstates of the theory and subject to so-
called mixing of flavor neutral mesons [13]. η8, η15 and the SU(4) singlet referred to
as η1 are linear combinations of the respective mass eigenstates η, ηc and η′. The
flavor-neutral π0 does not mix due to degenerate up and down quark masses and hence
isopin symmetry. However, η′ is too heavy to appear as dynamical degree of freedom
in ordinary ChPT and can be thought of as having been integrated out. η-η′ mixing is
discussed in [12].
In this naively set up ChPT, the meson masses to one loop read [13]

M2
π± = m2

π + 8
f 2

(
m4
π[4L6 + 2L8 − 2L4 − L5] + 2m2

πm
2
Ds [2L6 − L4]

+ρm2
π cosφl[4W6 + 2W8 − 2W4 −W5]

+ρm2
π cosφh[2W6 − 2W4]

+ρm2
Ds cosφlW6

+ρ2 cos2 φl[4W
′
6 + 2W′8]

+ρ2 cosφl cosφh4W
′
6

)
+loopπ. (3.32)

M2
K = m2

K + 4
f 2

(
m4
K [−8L4 − 2L5 + 16L6 + 4L8] + 4m2

K(m2
D −m2

K)[2L6 − L4]

+ρm2
K(cosφl + cosφh)[−4W4 −W5 + 8W6 + 2W8]

+ρ(m2
D −m2

K)(cosφl + cosφh)2W6

+ρ2 (cosφl + cosφh)2 [4W′6 + W
′
8]

−ρ2
(
sin2 φl + sin2 φh

)
W
′
8

)
+loopK .

The respective loop contributions are given in [13] and include both η and ηc chiral
logs, alluding to the problems in constructing ChPT the way outlined above. ηc is
way too heavy to appear as degree of freedom in a sensible ChPT, as are all the D
mesons. The important thing to note here is that the above loop contributions reduce
to their well-known continuum form [12], when the ηc is thought of as being too heavy
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to appear as dynamical degree of freedom similarly to the η′. Making ηc heavy implies
η8 and η15 decoupling in the theory in the sense of a vanishing mixing, and we are left
solely with a dynamical η8.
To conclude this section, we stress that the naive ChPT for Nf = 2+1+1 flavor with
twisted masses outlined above is not applicable for the phenomenologically relevant
case with MD �MK , since it treats heavy D mesons as pseudo Goldstone bosons.
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4. Chiral Perturbation Theory for
2+1+1 Wilson Quarks with
Twisted Masses

4.1. Construction of a Charmless Chiral Perturbation
Theory

In this section we construct the ChPT to describe twisted mass lattice QCD simulations
with four dynamical flavors as performed by the European Twisted Mass Collaboration
(ETMC). The respective theory that we will call charmless ChPT in the following has
to be constructed such that it does not treat the D mesons as pseudo Goldstone bosons.

4.1.1. Matching Theories at Lagrangian Level
In order to illustrate how we proceed in its construction, consider standard SU(3)
continuum ChPT [12] and suppose we are only interested in energies and momenta
well below the kaon mass. The kaons and η meson degrees of freedom then decouple
from the theory. In the spirit of an effective theory, they can be integrated out and
contribute to the LECs of SU(2) ChPT, whose results have to be reproduced.
The actual matching is performed by setting the respective mesonic degrees of freedom
to zero,

Σ(3)
p = exp

(
2i
f(3)

π

)
, π =


1√
2π

0 π+ 0
π− − 1√

2π
0 0

0 0 0

 , (4.1)

where the additional superscript1 is introduced to denote quantities in the respective
theories. Since the ground state in continuum ChPT is just the SU(Nf ) identity, we
insert

Σ(3) = Σ(3)
p =

(
Σ(2)

1

)
, (4.2)

where Σ(2) is the standard meson field matrix of SU(2) ChPT, into the Lagrangian
of SU(3) ChPT in order to perform the matching. For notational convenience, we
re-express the SU(3) mass matrix as

M(3) =
(
M(2)

ms

)
, (4.3)

1 We use superscripts and subscripts equivalently for typographic convenience.
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where M2 denotes the 2×2 mass matrix in the (u, d)-sector. From

∂µΣ(3) =
(
∂µΣ(2)

0

)
, (4.4)

we conclude that the kinetic part in the leading order Lagrangian and the NLO terms
proportional to L1, L2 and L3 indeed reduce to their SU(2) counterparts. In contrast,
terms without derivatives produce extra terms when calculating the traces, due to the
extra 1 in the lower right hand corner of Σ(3) in eq. (4.2). This can be seen for instance
in the mass term with χ = 2BM as usual, that can be written as2

〈
χ†(3)Σ(3) + Σ†(3)χ(3)

〉
3

=
〈
χ†(2)Σ(2) + Σ†(2)χ(2)

〉
2

+ 4B(3)ms. (4.5)

The LO mass term hence reduces to the SU(2) mass term plus a constant, which is
irrelevant and can be dropped. NLO terms are more interesting, though. Consider the
L4 term that can be rewritten using eq. (4.5),

L4
〈
∂µΣ(3)∂µΣ†(3)

〉 〈
χ†(3)Σ(3) + Σ†(3)χ(3)

〉
=

L4
〈
∂µΣ(2)∂µΣ†(2)

〉 〈
χ†(2)Σ(2) + Σ†(2)χ(2)

〉
+ 4B(3)msL4

〈
∂µΣ(2)∂µΣ†(2)

〉
.

The additional term has the form of the SU(2) kinetic term. One thus ends up with
an effective kinetic term,

Lp2 =
f 2

(3)

4

1 + 16L4
B(3)ms

f 2
(3)

〈∂µΣ(2)∂µΣ†(2)

〉
.

Demanding that this kinetic term be equivalent to its SU(2) ChPT counterpart, one
reads off the LEC f(2) of SU(2) ChPT, whereby the analytic part of its leading order
functional dependence on the strange quark mass is made explicit,

f(2) = f(3)

1 + 8L4
B(3)ms

f 2
(3)

 . (4.6)

This is exactly the analytic part of the matching of the LO parameter f(2) found from
equating results for the pion decay constant calculated in SU(2) and SU(3) ChPT [12].
Similarly, using the building block eq. (4.5) to rewrite the L6 term, we find, apart from
an overall constant that is dropped,

−L6
〈
χ†(3)Σ(3) + Σ†(3)χ(3)

〉2
=

− L6
〈
χ†(2)Σ(2) + Σ†(2)χ(2)

〉2
− 8B(3)msL6

〈
χ†(2)Σ(2) + Σ†(2)χ(2)

〉
.

2 The trace subscripts indicate traces over SU(3) and SU(2) matrices respectively acting in flavor
space. In the following the flavor trace subscript will be dropped, as the names of the involved
fields clarify, which trace is meant.
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Again, requiring the SU(2) mass term to match the effective mass term from SU(3)
ChPT, we read off

B(2) = B(3)

(
f(3)

f(2)

)2
1 + 32B(3)ms

f 2
(3)

L6


= B(3)

1 + 16B(3)ms

f 2
(3)

(2L6 − L4)
 ,

where the latter equality holds up to the order considered. We again reproduce the an-
alytic part of the matching found from equating pion masses in SU(2) and SU(3) ChPT
[12]. Finally, all other NLO terms are found to reduce to their SU(2) counterparts plus
irrelevant constants. We thus conclude that for continuum ChPT

L SU(3)
cont (f(3), B(3))→ L SU(2)

cont (f(2), B(2)) + constants,

where the arrow indicates the substitution given in eq. (4.2).
In the upshot, the reduction from higher Nf ChPT to lower Nf ChPT can be performed
already at Lagrangian level. After appropriate absorption of the heavy flavor mass
dependence in the LECs of lower Nf ChPT, we have completely undone the expansion
in the heavy quark mass and end up with the light flavor ChPT. The fact that the heavy
quark mass dependence can always be absorbed by appropriate redefinition of LECs
merely reflects the fact that at any order all terms compatible with the underlying
symmetries are present.

4.1.2. Building Blocks for the Construction of Charmless
tmWChPT

The approach to reverting the expansion in a heavy quark flavor will now be employed
to construct charmless ChPT, nevertheless initially incorporating a strange quark and
its twist partner, the charm quark, in order to correctly capture the effects of chirally
rotated masses. The rationale is as follows: We start from 2+1+1 flavors that are
sufficiently light such that ChPT holds. We then reduce the theory by absorbing the
charm quark dependence in LO LECs in analogy to what we have done in the last
section regarding the strange quark. Thereafter we can have a heavy charm quark
without conflicting with the premises of a sensible ChPT.
Since the reduction to charmless ChPT is to be performed in the physical basis, we
first rewrite the four flavor Lagrangian in terms of the physical fields. As outlined
in section 3.4, a nontrivial ground state can be reshuffled to the mass matrix in the
respective terms, whereas it enters explicitly in lattice terms, c.f. eqs. (3.17) - (3.19).
Starting from the Nf = 2+1+1 mass matrix with twisted masses given by eq. (3.28)
and the respective ansatz for the ground state in terms of the vacuum angles ωl,h, we
find that the physical mass matrix χp = χ̃l ⊕ χ̃h remains a direct sum of

χ̃l = 2B
(

(m+ iµl)(cosωl − i sinωl) 0
0 (m− iµl)(cosωl + i sinωl)

)
,

χ̃h = 2B
(
m cosωh + µh sinωh + δ i(−m sinωh + µh cosωh)
i(−m sinωh + µh cosωh) m cosωh + µh sinωh − δ

)
.

(4.7)
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Note that the off-diagonal element

2Bm sinωh − 2Bµh cosωh

in the heavy sector M can be rewritten as an O(a2) term using the (heavy sector)
gap equation of the four flavor theory. In the W8 term, the off-diagonal element
is redistributed to the diagonal when computing the product with ground state and
physical field matrix insertions. The W8 term is an O(a) term originally, and hence if
at all additionally contributes at O(a3). In the GSM regime, this is a correction beyond
the order considered. In the LCE regime, the coefficient of the respective term in La3 ,
that is not known anyway, is only modified. The off-diagonal entry in the heavy sector
of the four flavor mass matrix can thus be neglected in the course of constructing the
charmless theory.
In order to reduce the four flavor theory to its charmless counterpart, we now drop the
heavy D, Ds and η15 meson fields. We hence insert

Σp =
(

Σ(3)
1

)
(4.8)

into the Lagrangian of WChPT with twisted masses. The rather nontrivial matching
behavior compared to matching the continuum ChPT as sketched before arises from
the fact, that the block structure of the ground state in eq. (3.30) differs from the
matching block structure in eq. (4.8). In other words, the ground state mixes strange
and charm quark contributions, that have to be disentangled in order to be able to
identify the physically heavy D meson fields that are to be dropped.
In the course of reducing the theory, one is thus confronted with working out the matrix
products encountered in the tmWChPT Lagrangian. To this end, note that the ground
state (eq. (3.30)) can be rewritten to mimic the block structure of eq. (4.8),

Σ0 =


0

Σ̃l 0
i sinωh

0 0 i sinωh cosωh

 ,

where we introduced

Σ̃l =

cosωl + i sinωl 0 0
0 cosωl − i sinωl 0
0 0 cosωh

 . (4.9)

Two prominent matrix products comprised of the matrix-valued ground state and the
reduced matrix incorporating the dynamical physical fields are then found to be

ΣpΣ0 =


i sinωh

(
Σ(3)

)
1,3

Σ(3)Σ̃l i sinωh
(
Σ(3)

)
2,3

i sinωh
(
Σ(3)

)
3,3

0 0 i sinωh cosωh

 (4.10)
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and

ΣpΣ0Σp =

 Σ(3)Σ̃lΣ(3) i sinωh
(
Σ(3)

)
k,3

i sinωh
(
Σ(3)

)
3,k

cosωh

 , (4.11)

where
(
Σ(3)

)
k,3

and
(
Σ(3)

)
3,k

denote the third column and row of Σ(3).
With these identities at hand, the essential building block for the reduction of lattice
terms can readily be worked out. Again, let the reduction by the replacement according
to eq. (4.8) in the Lagrangian be indicated by an arrow. We then find3,〈

Σ + Σ†
〉

2+1+1
=
〈
ΣpΣ0 + Σ†0Σ†p

〉
2+1+1

→
〈
Σ(3)Σ̃l + Σ̃†lΣ

†
(3)

〉
2+1

+ 2 cosωh.
(4.12)

The other building block is the mass term. It can be reduced according to the pre-
scription 〈

χ†Σ + Σ†χ
〉

=
〈
χ†pΣp + Σ†pχp

〉
→
〈
χ†3Σ(3) + Σ†(3)χ3

〉
,

(4.13)

where
χ3 = 2B diag

[
(m+ iµl)(cosωl − i sinωl),

(m− iµl)(cosωl + i sinωl),

m cosωh + µh sinωh + δ
]

= 2B diag
[
m′l (cos (φl − ωl) + i sin (φl − ωl)) ,

m′l (cos (φl − ωl)− i sin (φl − ωl)) ,

m′h cos (φh − ωh) + δ
]

(4.14)

is obtained from truncation of the mass matrix in the physical basis χp. In eq. (4.13),
we have not given the constant term related to the charm quark mass. The charm
quark dependence is thought of as having been absorbed by redefinition of LO LECs,
as has been shown to work in the section on reducing ChPT at Lagrangian level.
Quite trivially, one additionally checks, that〈

Σ− Σ†
〉

=
〈
ΣpΣ0 − Σ†0Σ†p

〉
→
〈
Σ(3)Σ̃l − Σ̃†lΣ

†
(3)

〉
,

(4.15)

since the additional cosine on the diagonal of eq. (4.10) cancels after subtraction of
the Hermitian conjugate, and〈

χ†Σ− Σ†χ
〉
→
〈
χ†3Σ(3) − Σ†(3)χ3

〉
by analogy with eq. (4.13).

3 Again, in the following the flavor trace subscript will be dropped. Field names unambiguously
identify the dimension of matrices in the flavor traces.
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4.1.3. Lattice Effects in Charmless ChPT

Now, the matching behavior of terms in Lp2a, Lma can readily be worked out:

W4ρ
〈
∂µΣ∂µΣ†

〉 〈
Σ + Σ†

〉
→ W4ρ

〈
∂µΣ(3)∂µΣ†(3)

〉 〈
Σ(3)Σ̃l + Σ̃†lΣ

†
(3)

〉
+ 2W4ρ cosωh

〈
∂µΣ(3)∂µΣ†(3)

〉
,

W5ρ
〈
∂µΣ∂µΣ†

(
Σ + Σ†

)〉
→ W5ρ

〈
∂µΣ(3)∂µΣ†(3)

(
Σ(3)Σ̃l + Σ̃†lΣ

†
(3)

)〉
,

W6ρ
〈
χ†Σ + Σ†χ

〉 〈
Σ + Σ†

〉
→ W6ρ

〈
χ†3Σ(3) + Σ†(3)χ3

〉 〈
Σ(3)Σ̃l + Σ̃†lΣ

†
(3)

〉
+ 2W6ρ cosωh

〈
χ†3Σ(3) + Σ†(3)χ3

〉
,

W7ρ
〈
χ†Σ− Σ†χ

〉 〈
Σ− Σ†

〉
→ W7ρ

〈
χ†3Σ(3) − Σ†(3)χ3

〉 〈
Σ(3)Σ̃l − Σ̃†lΣ

†
(3)

〉
,

W8ρ
〈
χ†ΣΣ + Σ†Σ†χ

〉
→ W8ρ

〈
χ†3Σ(3)Σ̃lΣ(3) + Σ†(3)Σ̃

†
lΣ
†
(3)χ3

〉
.

Terms in the La2 Lagrangian are found to reduce as follows,

W
′
6ρ

2
〈
Σ + Σ†

〉2

→ W
′
6ρ

2
〈
Σ(3)Σ̃l + Σ̃†lΣ

†
(3)

〉2
+ 4W′6ρ2 cosωh

〈
Σ(3)Σ̃l + Σ̃†lΣ

†
(3)

〉
,

W
′
7ρ

2
〈
Σ− Σ†

〉2

→ W
′
7ρ

2
〈
Σ(3)Σ̃l − Σ̃†lΣ

†
(3)

〉2
,

W
′
8ρ

2
〈
ΣΣ + Σ†Σ†

〉
= W

′
8ρ

2
〈
Σ0ΣpΣ0Σp + Σ†pΣ

†
0Σ†pΣ

†
0

〉
→ W

′
8ρ

2
〈
Σ̃lΣ(3)Σ̃lΣ(3) + Σ†(3)Σ̃

†
lΣ
†
(3)Σ̃

†
l

〉
− 2W′8ρ2 sin2 ωh

(
Σ(3) + Σ†(3)

)
3,3
.

The last term exhibits a nontrivial reduction, that can be understood by multiplying
eq. (4.11) with Σ0 and taking the trace. The single element

(
Σ(3) + Σ†(3)

)
3,3

can
alternatively be written as

(
Σ(3) + Σ†(3)

)
3,3

=
〈
Ps

(
Σ(3) + Σ†(3)

)〉
,

where we introduced the projector

Ps = diag(0, 0, 1).
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The charmless tmWChPT Lagrangian associated to lattice effects up to order O(a2)
hence reads

Lp2a + Lma = + W4ρ
〈
∂µΣ(3)∂µΣ†(3)

〉 〈
Σ(3)Σ̃l + Σ̃†lΣ

†
(3)

〉
+ W5ρ

〈
∂µΣ(3)∂µΣ†(3)

(
Σ(3)Σ̃l + Σ̃†lΣ

†
(3)

)〉
−W6ρ

〈
χ†3Σ(3) + Σ†(3)χ3

〉 〈
Σ(3)Σ̃l + Σ̃†lΣ

†
(3)

〉
−W7ρ

〈
χ†3Σ(3) − Σ†(3)χ3

〉 〈
Σ(3)Σ̃l − Σ̃†lΣ

†
(3)

〉
−W8ρ

〈
χ†3Σ(3)Σ̃lΣ(3) + Σ†(3)Σ̃

†
lΣ
†
(3)χ3

〉
+ 2W4ρ cosωh

〈
∂µΣ(3)∂µΣ†(3)

〉
− 2W6ρ cosωh

〈
χ†3Σ(3) + Σ†(3)χ3

〉
,

La2 =−W′6ρ2
〈
Σ(3)Σ̃l + Σ̃†lΣ

†
(3)

〉2

−W′7ρ2
〈
Σ(3)Σ̃l − Σ̃†lΣ

†
(3)

〉2

−W′8ρ2
〈
Σ̃lΣ(3)Σ̃lΣ(3) + Σ†(3)Σ̃

†
lΣ
†
(3)Σ̃

†
l

〉
− 4W′6ρ2 cosωh

〈
Σ(3)Σ̃l + Σ̃†lΣ

†
(3)

〉
+ 2W′8ρ2 sin2 ωh

(
Σ(3) + Σ†(3)

)
3,3
.

(4.16)

Obviously, it is supplemented by terms that would not be present if one started from
SU(2+1) WChPT with twisted masses in the light sector.
Absorbing the charm quark dependence in the continuum Lagrangian works completely
analogous to the reduction from three flavor ChPT to two flavor ChPT. The charmless
continuum Lagrangian is hence just the ordinary ChPT Lagrangian [11], however, with
LO LECs differing from the ones entering SU(4) ChPT,

L2 = f 2

4
〈
∂µΣ3∂µΣ†3

〉
− f 2

4
〈
χ†3Σ3 + Σ†3χ3

〉
L4 =− L1

〈
∂µΣ3∂µΣ†3

〉2
− L2

〈
∂µΣ3∂νΣ†3

〉 〈
∂µΣ3∂νΣ†3

〉
− L3

〈
∂µΣ3∂µΣ†3∂νΣ3∂νΣ†3

〉
+ L4

〈
∂µΣ3∂µΣ†3

〉 〈
χ†3Σ3 + Σ†3χ3

〉
+ L5

〈
∂µΣ3∂µΣ†3

(
χ†3Σ3 + Σ†3χ3

)〉
− L6

〈
χ†3Σ3 + Σ†3χ3

〉2
− L7

〈
χ†3Σ3 − Σ†3χ3

〉2
− L8

〈
χ†3Σχ†3Σ3 + Σ†3χ3Σ†3χ3

〉
.

(4.17)
The L1, L2 and L3 terms do not contribute to meson masses or decay constants to one
loop, as their expansion in terms of meson fields starts only at O(π4), and any loop
diagram built from these vertices is of higher order than considered.

4.2. Meson Masses in the Generically Small Masses
Regime

With the charmless ChPT Lagrangian at hand, we are now equipped to tackle some
sample calculation in the framework of this theory.
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4.2.1. Ground State and Tree Level Masses
In order to conform with the literature [13], we parametrize the mass matrix by the
respective radial masses and twist angles. The vacuum angle in the light sector obtained
from minimizing the potential energy then reads

ωl = φl −
8
f 2
ρ sinφl
2Bm′l

[
2Bm′lW68 + 2BmsW6 + ρ cosφl2W

′
68 + ρ cosωh4W

′
6

]
. (4.18)

In order to compare to the respective vacuum angle obtained from minimizing the four
flavor potential and subsequently dropping the charm quark, recall that

m′h = 1
2(ms +mc)

δ = 1
2(ms −mc)

⇐⇒
ms = m′h + δ

mc = m′h − δ
. (4.19)

Therefore, loosely speaking, making the charm quark heavy in the sense of ChPT while
keeping the strange quark mass fixed at its physical value corresponds to sending both
m′h and δ to infinity such that their difference remains fixed. Thus, the replacement

m′h →
1
2ms (4.20)

describes the matching prescription for explicit removal of the charm quark dependence
from results of the four flavor theory. Indeed, the light vacuum angle given in eq. (3.31)
reduces to the one of eq. (4.18) under this replacement.
The heavy sector vacuum angle is determined solely by the mass term. A nontriv-
ial ground state appears only when lattice effects and mass terms are of comparable
sizes and hence compete in the minimization of the potential. A heavy charm quark,
however, readily implies

ωh = φh. (4.21)

It is unclear, whether a heavy charm quark suppresses the O(a2) contributions to the
light vacuum angle. Taking the respective limit in the potential of the four flavor theory
contradicts the assertion of a sufficiently light charm quark needed for the theory to
be sensible in the first place. We may either write down a four flavor ChPT or make
the charm quark heavy. The two are not compatible.
We stick to the light sector gap equation given in eq. (4.18) since it leaves the light
sector physics intact regardless of the masses in the heavy sector. This appears reason-
able due to the following rationale: If we start from the four flavor theory and decide to
discard mesons including the charm or the strange quark as dynamical degrees of free-
dom, we expect to recover standard two flavor twisted mass WChPT. This is only true
if we keep the O(a2) terms in the light sector gap equation. Although we thus choose
to use the gap equation (4.18), we stress that this step is not based on a physically
rigorous argument.
Having determined the ground state, the LO masses can be read off after expanding
the Lagrangian in terms of meson fields,

m2
π = 2Bm′l,

m2
K = B (m′l +ms) ,

m2
η = 2

3B (m′l + 2ms) .
(4.22)
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Again, more precisely the field π8 is related to the η8 meson. The mass eigenstates,
the η and η′ mesons, are obtained from the mixing of the flavor-neutral η8 meson and
η1 related to the anomalous U(1)A symmetry. We will not address η-η′ mixing [12] any
further and will abbreviate η8 as η in all the following results.
These tree level results of course coincide with the results obtained in the four flavor
theory [13].

4.2.2. Meson Masses to One Loop

Since the leading order Lagrangian is just the continuum Lagrangian, it is immediately
clear, that the nonanalytic one loop contributions have the same form as in the con-
tinuum result. However, recall that the tree level masses in (4.22) already include an
O(a) shift.
All one loop diagrams contributing to the meson masses to one loop are tadpole dia-
grams built from four pion vertices from the LO Lagrangian. How contributions to the
masses are calculated from the Lagrangian is discussed in App. B. Thereby occurring
divergent loop integrals are conveniently regularized using dimension regularization
(see App. A). The NLO Lagrangian provides counterterms to cancel all divergences
by appropriate renormalization of the respective NLO LECs.
The charged pion mass reads

M2
π± = m2

π + 8
f 2

(
m4
π[4L6 + 2L8 − 2L4 − L5] +m2

π(2m2
K −m2

π)[−L4 + 2L6]

+ρm2
π cosφl[4W6 + 2W8 − 2W4 −W5]

+ρm2
π cosφh[2W6 − 2W4]

+ρ(2m2
K −m2

π) cosφlW6

+ρ2 cos2 φl[4W
′
6 + 2W′8]

+ρ2 cosφl cosφh4W
′
6

)
+loopπ.

(4.23)

By construction, this is just the continuum expression supplemented by NLO correc-
tions from Lma and La2 . Again, the O(a2) terms induce a mass splitting between the
charged and the neutral pion that is found to be

M2
π± −M2

π0 = 16ρ2 sin2 φl
f 2

[
2W′6 + W

′
8

]
. (4.24)

The pion mass splitting is a sole light sector feature. The light sector physics is basically
unaltered in our theory, apart from additional contributions from kaons and η. The
mass splitting thus coincides with the one in two flavor tmWChPT (c.f. eq. (3.22)).
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The degenerate kaon mass is given by

M2
K = m2

K + 4
f 2

(
m4
K [−8L4 − 2L5 + 16L6 + 4L8] +m2

K(2m2
K −m2

π)[2L4 − 4L6]

+ρm2
K(cosφl + cosφh)[−4W4 −W5 + 8W6 + 2W8]

+ρ(2m2
K −m2

π)(cosφl + cosφh)[−W6]
+ρ2 (cosφl + cosφh)2 [4W′6 + W

′
8]

+ρ2
(
sin2 φl + sin2 φh

)
[−W′8]

)
+loopK .

(4.25)
These masses can be compared to the respective four flavor results given in eq. (3.32).
From eq. (4.20), we find that explicit reduction of the four flavor masses amounts to
setting

m2
Ds = 2Bm′h → Bms = 1

2
(
2m2

K −m2
π

)
,

−
(
m2
D −m2

K

)
= Bms −Bmc → Bms = 1

2
(
2m2

K −m2
π

)
.

The expressions are then found to coincide. This, in a sense, validates the approach
presented in this work. Starting from a charmless Lagrangian, we still captured the
relevant structure of the four flavor theory and end up with correct expressions for the
masses.
It is sensible to express the results in terms of tree level meson masses, since non-
perturbatively determined meson masses are the actual observables in lattice simula-
tions, in contrast to the quark masses as mere parameters. Thereby one circumvents
the need to specify the definition of the critical quark mass [31] in connection with the
O(a) shift and the mass renormalization.
Additionally, the expressions in eqs. (4.23) - (4.25) reproduce the continuum results
[12] in their continuum limit ρ → 0 as expected. To this end, recall that the loop
contributions are just the ones from the continuum with O(a) shifted quark hence tree
level meson masses, that tend to their continuum counterparts in the respective limit.
The one loop masses simplify considerably in the case of maximal twist,

cosφl = 0 = cosφh.

There are then noO(ma) andO(p2a) contributions to the masses, confirming automatic
O(a)-improvement [28, 31] in tmWChPT.

4.3. Meson Masses in the Large Cutoff Effects Regime
The pion mass splitting entering at next to leading order in the GSM regime becomes
even more important in the LCE regime by construction. Since O(a2) terms are pro-
moted to leading order, the tree level masses of the charged pions and the neutral pion
already differ by the amount given in eq. (4.24). Therefore, one has to distinguish be-
tween looping charged pions and neutral pions in the computation of meson masses to
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one loop. In the ChPT for two light degenerate Wilson fermions with twisted masses,
it was established that indeed only the neutral pion enters the chiral logs in the charged
pion mass (c.f. eq. (3.25)).

4.3.1. Approximate Gap Equation and Tree Level Masses

Let us briefly return to the four flavor theory to see that even in the regime of practical
interest, charmless ChPT captures all the relevant information. The potential energy
in the LCE regime is given by

V = −Lm −La2 .

The gap equations for the light and heavy sector of the four flavor theory are completely
symmetric,

2Bµl,h cosωl,h = sinωl,h
(

2Bm′l,h + 16ρ
2

f 2W
′
68 cosωl,h + 32ρ

2

f 2W
′
6 cosωh,l

)
.

Again the last term couples light and heavy sector. The coupling at O(a2) has already
been recognized in the GSM regime, though as a next to leading order effect. Note that
the gap equation does not include any dependence on the mass difference δ between
the strange and charm quark.
With respect to phenomenological applications, we want to have

m′l ∼ ρ2 � m′h,

since the heavy charm quark implies a largem′h according to eq. (4.19). Put differently,
working in the LCE regime amounts to having light quark masses of order O(a2) while
still keeping a GSM-like heavy sector. We can then fall back to the respective discussion
above and conclude that in charmless ChPT the light sector gap equation is essentially
the gap equation found in two flavor tmWChPT, once the heavy sector is tuned to
maximal twist.
The calculations carried out in the two flavor setup [30] can thus readily be carried
over. Expanding the whole leading order Lagrangian and using the light sector gap
equation, one derives the pion tree level masses to read

m2
π± = 2Bµl√

1− cos2 ωl

m2
π0 = m2

π± +
(
−16ρ2

f 2

(
1− cos2 ωl

)
W
′
68

)
︸ ︷︷ ︸

=∆m2
π

.
(4.26)
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The degenerate Kaon tree level mass is given by

m2
K = 2B

2 (m cosωl + µl sinωl +m cosωh + µh sinωh + δ)

+ 4ρ
2

f 2 (cosωl + cosωh)2(4W′6 + W
′
8)− 4ρ

2

f 2W
′
8(sin2 ωl + sin2 ωh)

= 1
2

2Bµl√
1− cos2 ωl

+ 2B
2 (δ +m cosωh + µh sinωh)

+ 16ρ
2

f 2 cosω2
hW
′
6 + 8ρ

2

f 2 cosωl cosωh(2W
′
6 + W

′
8)− 4ρ

2

f 2W
′
8(sin2 ωl + sin2 ωh),

(4.27)
where, again, the light sector gap equation has been employed in the derivation.
The first line of course agrees with the tree level result in the GSM regime, supple-
mented by the additional O(a2) terms given in the second line.
Additionally, the η tree level mass can readily be computed. It satisfies the continuum
Gell-Mann-Okubo formula evaluated with pion and kaon tree level masses including
O(a2) corrections, plus explicit O(a2) terms,

m2
η = 1

3
(
4m2

K −m2
π±

)
− 16ρ2

3f 2 (cosωl − cosωh)2
(
2W′7 + W

′
8

)
. (4.28)

For cosωl = cosωh, the η mass obeys the continuum Gell-Mann-Okubo relation. Even
if the respective twist angles differed by O(a), this would correspond to promoting the
correction to higher than leading order.
Recall that the mass given above describes the unphysical η8 rather than the physical
η.

4.3.2. Rewriting the Leading Order Lagrangian
In the loop calculation in the GSM regime, the calculation has simplified considerably
due to the fact, that the leading order Lagrangian coincided with the continuum La-
grangian. The masses to one loop were therefore given by the nonanalytic continuum
results, supplemented by analytic terms, than can readily be computed. It thus looks
promising to first rewrite the leading order Lagrangian once expanded to four meson
fields in terms of the vertices that an ordinary mass term in continuum SU(3) ChPT
would spawn, however, now with the O(a2) shifted tree level masses m2

π± and m2
K

given in eqs. (4.26) and (4.27), plus additional O(a2) four pion vertices. The meson
masses to one loop are then trivially the continuum expressions (with tree level masses
including the O(a2) shift) plus additional chiral logs proportional to a2, supplemented
by a vast number of analytic contributions from the NLO and NNLO Lagrangian. We
hence generalize the approach outlined in [30].
Therefore, the mass matrix χ3 can be rewritten as a function of the tree level meson
masses given in eq. (4.26) and (4.27) instead of the quark masses,

χ3
(
m,µl,h, ωl,h

)
= χ3

(
m2
π± ,m

2
K

)
+
[
O
(
a2
)
-terms

] (
ωl,h

)
. (4.29)

Note that the neutral pion tree level mass and the η tree level mass are given by linear
combinations of the charged pion mass and the kaon mass plus O(a2) terms, and the
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functional dependence of χ3 sketched above suffices to parametrize the mass matrix
completely. After expanding the leading order Lagrangian to four meson fields, we find

Lm,4π + La2,4π = W
′
6
ρ2

f 4

(
− 4 cos2 ωlπ

2
l π

2 + 16
3 sin2 ωlπ

2
3π

2

− 4 cosωl cosωhπ2
l π

2
h

− (cosωl + cosωh)2π4
h

+ 2
3(cos2 ωl − cos2 ωh)π2

8π
2
h

+ 4
3
(
cos2 ωl − cosωl cosωh

)
π2

8π
2
l

− 1
9(cosωl − cosωh)2π4

8

)
+ W

′
8
ρ2

f 4

(
− 2 cos2 ωlπ

2
l π

2 + 8
3 sin2 ωlπ

2
3π

2

− 1
2(cosωl + cosωh)2π4

h

− 2 cosωl cosωhπ2
l π

2
h

− 2
(
cos2 ωl − cosωl cosωh

)
π2

8π
2
l (4.30)

+ 1
3
(
cos2 ωl + 4 cosωl cosωh − 5 cos2 ωh

)
π2

8π
2
h

+ 1
54
(
5 cos2 ωh + 14 cosωl cosωh − 19 cos2 ωl

)
π4

8

+ 1
2 sin2 ωlπ

′4
h + 2

3
√

3
ξπ3π8π

′2
h

)

+ W
′
7
ρ2

f 4

(16
3 cosωl(cosωh − cosωl)π2

8π
2
l

+ 8
3 cosωh(cosωl − cosωh)π2

8π
2
h

+ 8
27
(
−2 cos2 ωl + cosωl cosωh + cos2 ωh

)
π4

8

+ 16
3 sin2 ωlπ

2
3π

2
8

+ sin2 ωlπ
′4
h + 2

3
√

3
ξπ3π8π

′2
h

)
+ continuum,

where

π2
l =

3∑
i=1

π2
i

π2
h =

8∑
i=4

π2
i

π2 = π2
l + π2

h

π′2h = π2
4 + π2

5 − π2
6 − π2

7
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denote prominent combinations of fields stemming from the light- and heavy sector,
respectively, and the continuum terms are the standard SU(3) ChPT four pion vertices
stemming from the mass term but with tree level masses in the LCE regime.
As far as the W

′
6 and W

′
8 terms are concerned, the two expressions in the first line

generalize the corresponding terms found in the two flavor twisted mass case [30].
Particularly, the respective coefficients are identical.
In the W′8 and W′7 terms, the vertices proportional to

ξ = 2 + cos 2ωh + cos (ωh − ωl)− 5 cos 2ωl + cos (ωh + ωl)

allude to potential π0-η8-mixing. The prefactor ξ vanishes at zero twist, but acquires
a nonzero value at maximal twist. In continuum ChPT, the mixing is proportional to
the mass difference between the up and down quark, and hence not expected in the
current setup either. Indeed, the particular form of the vertex incorporating π′2h implies
that contributions to the two-point function

〈π3π8〉

cancel as long as the fields πi for i ∈ [4, 7] are mass-degenerate at tree-level. Thus,
according to eq. (4.27), there is no π3-π8-mixing even to NLO in the current setup,
and the respective fields are just π0 and η8. Note that the vertices will still contribute
for instance to kaon scattering at one loop.
Furthermore, there are similar vertices of the form

π1,2π8π
′2
h

in the W
′
8 and W

′
7 terms. Their common prefactor is again a function of ωl,h, and

vanishes for any ωl = ωh.
The W′7 term vanishes at zero twist,

ωl = 0 = ωh.

Working however at

ωl = π

2 = ωh,

one encounters a nontrivial contribution.
The flavor symmetry violating three meson vertex stemming from the mass term gen-
eralizes the result of the two flavor calculation [30] in a straightforward manner,

Lm,3π = 2B
6f π3π

2 (µl cosωl −m sinωl) ,

which can hence, using the gap equation analogously to the SU(2) case, be cast into

Lm,3π = 16
3
ρ2

f 2 sinωl
(
W
′
68 cosωl + W

′
6 cosωh

)
π3π

2.

However, three meson vertices are of no particular interest in the current application,
since at least two three-meson vertices are needed in order to form a loop diagram
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contributing to the meson self energy, with the loop adding another p2 ∼ m. Their
contribution is at least of order O

(
(a2)2

p2
)
∼ O (ma4) and thus beyond the order

considered here.
The upshot here is that in accordance with the approach of first rewriting the leading
order Lagrangian presented in the two flavor case, one can re-express the four pion
part of the charmless Lagrangian as a sum of vertices that take the form as in SU(3)
continuum ChPT and supplementalO(a2) vertices. The findings particularly reproduce
the established two flavor results [30].

4.3.3. Meson Masses to One Loop at Maximal Twist

At maximal twist,

cosωl = 0 = cosωh,

there are just three extra vertices from the leading order Lagrangian contributing to
the self energy to one loop besides the familiar ones from continuum ChPT,

∆ [Lm,4π + La2,4π]
∣∣∣∣
max. twist

=8
3
ρ2

f 4

(
2W′6 + W

′
8

)
π2

3π
2

+ 1
2
ρ2

f 4

(
2W′7 + W

′
8

)
π′4h

+ 16
3
ρ2

f 4W
′
7π

2
3π

2
8

+ 4√
3
ρ2

f 4

(
2W′7 + W

′
8

)
π3π8π

′2
h .

(4.31)

The vertices given in the first three lines lead to additional divergent loop corrections,
that are canceled by appropriate redefinition of LECs from the NNLO Lagrangian,

Llat, NNLO = Lp2a2 + Lma2 + La4 .

The vertices given in the last line do not contribute to the masses at one loop, and are
only given for completeness. The full NNLO Lagrangian in the LCE regime of SU(2)
ChPT was derived in the literature.[37] However, to obtain these results, SU(2) Cayley-
Hamilton relations were employed, that do not hold in SU(4). Additional terms entering
the NNLO Lagrangian can easily be constructed. As before, all terms compatible with
the symmetries have to be written down in the four flavor theory, and subsequently
reduced to yield the NNLO Lagrangian of the charmless theory. We refrain from giving
all terms compatible with the symmetry and restrict ourselves to some exemplary terms
that are needed to explicitly demonstrate the presence of a sufficient number of linearly
independent combinations of LECs to cancel all divergences. To this end, some of the
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allowed terms entering the NNLO Lagrangian, evaluated at maximal twist, read

Lp2a2 =a1ρ
2
〈
∂µΣ∂µΣ†

〉
+ a2ρ

2
〈
∂µΣ + ∂µΣ†

〉 〈
∂µΣ + ∂µΣ†

〉
+ a3ρ

2
〈
ΣΣ + Σ†Σ†

〉 〈
∂µΣ∂µΣ†

〉
+ a4ρ

2
〈
∂µΣ∂µΣ†ΣΣ + Σ†Σ†∂µΣ∂µΣ†

〉
→a1ρ

2
〈
∂µΣ(3)∂µΣ†(3)

〉
+ a2ρ

2
〈
∂µΣ(3)Σ̃l + Σ̃†l∂µΣ†(3)

〉 〈
∂µΣ(3)Σ̃l + Σ̃†l∂µΣ†(3)

〉
+ a3ρ

2
〈
Σ(3)Σ̃lΣ(3)Σ̃l + Σ̃†lΣ

†
(3)Σ̃

†
lΣ
†
(3)

〉 〈
∂µΣ(3)∂µΣ†(3)

〉
− 2a3ρ

2
〈
Ps(Σ(3) + Σ†(3))

〉 〈
∂µΣ(3)∂µΣ†(3)

〉
+ a4ρ

2
〈
∂µΣ(3)∂µΣ†(3)Σ(3)Σ̃lΣ(3)Σ̃l + Σ̃†lΣ

†
(3)Σ̃

†
lΣ
†
(3)∂µΣ(3)∂µΣ†(3)

〉
,

(4.32)

Lma2 =b1ρ
2
〈
χ†Σ + Σ†χ

〉
+ b2ρ

2
〈
ΣΣ + Σ†Σ†

〉 〈
χ†Σ + Σ†χ

〉
+ b3ρ

2
〈
Σ + Σ†

〉2 〈
χ†Σ + Σ†χ

〉
→b1ρ

2
〈
χ†3Σ(3) + Σ†(3)χ3

〉
+ b2ρ

2
〈
Σ(3)Σ̃lΣ(3)Σ̃l + Σ̃†lΣ

†
(3)Σ̃

†
lΣ
†
(3)

〉 〈
χ†3Σ(3) + Σ†(3)χ3

〉
− 2b2ρ

2
〈
Ps(Σ(3) + Σ†(3))

〉 〈
χ†3Σ(3) + Σ†(3)χ3

〉
+ b3ρ

2
〈
Σ(3)Σ̃l + Σ̃†lΣ

†
(3)

〉2 〈
χ†3Σ(3) + Σ†(3)χ3

〉
,

(4.33)

La4 =h1ρ
4
〈
ΣΣ + Σ†Σ†

〉2
+ h2ρ

4
〈
Σ + Σ†

〉2

→h1ρ
4
[〈

Σ(3)Σ̃lΣ(3)Σ̃l + Σ̃†lΣ
†
(3)Σ̃

†
lΣ
†
(3)

〉
− 2

〈
Ps(Σ(3) + Σ†(3))

〉]2
+ h2ρ

4
〈
Σ(3)Σ̃l + Σ̃†lΣ

†
(3)

〉2
.

(4.34)
In principle, there is no need to keep track of individual higher order LECs in the
results, since these are undetermined anyway. It is only in order to show that there is a
sufficient number of linearly independent combinations that they are stated explicitly
for the moment. The identifiers of the LECs are nonstandard, and must particularly
not be confused with the respective constants from the two flavor calculation.
It is now easy to compute the meson masses to one loop. One loop diagrams contribut-
ing to the self-energy, again, are tadpole diagrams built from four pion vertices of Lp2 ;
the vertices of Lm and La2 have been rewritten in terms of vertices taking the form
as in continuum ChPT and some remaining vertices of O(a2). Hence, the calculation
up to here is just as in the continuum, once the correct tree level masses including the
O(a2) shift are inserted. Technically, this means one has to keep track of the index of
the looping pion, since the neutral pion acquires a tree level mass differing from the
charged pion tree level mass by O(a2).
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In the continuum-like contribution, pion chiral logs now split,

M2
π± = m2

π±

[
1 + 1

6f 2A0(π0)− 1
6f 2A0(η)

]
+ 1

6f 2 2m2
π0A0(π0)

= m2
π±

[
1 + 1

6f 2 3A0(π0)− 1
6f 2A0(η)

]
+ 1

3f 2 ∆m2
πA0(π0),

M2
K = m2

K

[
1 + 1

3f 2A0(η)
]

+ 1
12f 2 ∆m2

πA0(π0),

(4.35)

where A0(πa), again, refers to the (divergent) loop integral regularized using dimen-
sional regularization. The chiral logs involving the mass of its argument are contained
in these expressions (cf. App A).
In the continuum limit,

∆m2
π → 0 ⇔ m2

π± = m2
π0 ,

the masses in eq. (4.35) reduce to the results given in the literature [12] after ap-
propriate renormalization of the Gasser-Leutwyler coefficients Li. At maximal twist
in tmWChPT, one finds an additional pion chiral log proportional to the pion mass
splitting, that has not been present in the continuum nor the untwisted scenario.
The extra vertices given in eq. (4.31) spawn additional contributions,

∆M2
π± = − 1

3f 2 ∆m2
πA0(π0),

∆M2
K = − 1

3f 2 ∆m2
πA0(π0) + 4ρ2

f 4

(
2W′7 + W

′
8

)
A0(K).

(4.36)

As for the pion mass expression, the same term is present in the continuum-like con-
tribution, but with opposite sign. The terms hence cancel. With respect to the kaon
mass, however, one now finds chiral logs involving the neutral pion, kaons and the
η-meson to be present, in contrast to only the η log being present in the continuum
expression; there are no charged pion chiral logs present in both, the charged pion and
kaon masses. The complete result for the masses reads

M2
π± = m2

π±

[
1 + 1

6f 2 3A0(π0)− 1
6f 2A0(η)

+ 8
f 2m

2
π± (2L8 + 2L6 − L4 − L5) + 16

f 2m
2
K (2L6 − L4)

]

− 4m2
π±
ρ2

f 2 (a1 + b1 − 8b2 − 8a3 − 2a4)

M2
K = m2

K

[
1 + 1

3f 2A0(η) + 8
f 2m

2
K (2L8 + 4L6 − 2L4 − L5) + 8

f 2m
2
π± (2L6 − L4)

]

− 1
4f 2 ∆m2

πA0(π0) + 4ρ2

f 4

(
2W′7 + W

′
8

)
A0(K)

− 4m2
K

ρ2

f 2 (a1 + b1 − 16b2 − 8a3 − 4a4) + 16m2
π±
ρ2

f 2 b2

− 128ρ
4

f 2h1.

(4.37)
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Analytic NNLO terms are quoted incompletely and only exemplarily to illustrate the
presence of counterterms for all divergences. Note there are also contributions stem-
ming from Lp2a, Lma and La3 . When cosωl is taken to be of order O(a) as a result
of slight mistuning, they are promoted to NNLO. These terms are not of interest as
counterterms and thus not given explicitly either.
The divergent part of the results resides in A0(πa),

A0(πa) = − m2
a

16π2

(
∆ + 1− logm2

a

)
,

where

∆ = 2
ε
− γE + log 4π,

diverges in the desired case of D → 4 dimensions, implying ε → 0. These divergences
are removed by introducing renormalized LECs, whereby besides the divergence pro-
portional to ε−1, the finite part log 4π − γE + 1 is also subtracted by convention. Let

A′0(πa) = m2
a

16π2 logm2
a,

∆′ = − 1
16π2 (∆ + 1)

denote the finite and to-be subtracted parts of A0, respectively, and L46 = 2L6 − L4,
L58 = 2L8 − L5

4. Expressing the η tree level mass through the pion and kaon masses,
cf. eq (4.28), and rearranging the expressions for the masses in order to demonstrate
renormalizability explicitly, one finds

M2
π± = m2

π±

[
1 + 1

6f 2 3A′0(π0)− 1
6f 2A

′
0(η)

+ m2
π±

f 2

(
8(L46 + L58) + 5

9∆′
)

+ m2
K

f 2

(
16L46 −

2
9∆′

) ]

+m2
π±
ρ2

f 2

(
−4(a1 + b1 − 8b2 − 8a3 − 2a4) + ∆m2

π

2ρ2 ∆′
)
,

M2
K = m2

K

[
1 + 1

3f 2A
′
0(η)

+ m2
π±

f 2

(
8L46 −

1
9∆′

)
+ m2

K

f 2

(
8(2L46 + L58) + 4

9∆′
) ]

+4ρ2

f 4

(
2W′7 + W

′
8

)
A′0(K)− 1

4f 2 ∆m2
πA
′
0(π0)

+ρ
2m2

π±

f 2

(
16b2 −

∆m2
π

4ρ2 ∆′
)

+ρ4

f 2

(
−128h1 −

∆m4
π

4ρ4 ∆′
)

+ρ
2m2

K

f 2

(
−4(a1 + b1 − 16b2 − 8a3 − 4a4) + 4

f 2

(
2W′7 + W

′
8

)
∆′
)
,

4 These combinations of LECs keep appearing throughout the following equations. Abbreviations
are however nonstandard.
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where it can now readily be checked that the various combinations of LECs suffice to
cancel all divergences. Summarizing linearly independent combinations of (unknown)
LECs, and abbreviating W′78 = 2W′7 + W

′
8, one finally arrives at

M2
π± = m2

π±

[
1 + 1

32π2f 2m
2
π0 log m

2
π0

µ2 −
1

96π2f 2m
2
η log

m2
η

µ2 + 8m2
π±

f 2 (L46 + L58)

+ 16m2
K

f 2 L46 + C1ρ
2
]
,

M2
K = m2

K

[
1 + 1

48π2f 2m
2
η log

m2
η

µ2 + 8m
2
π±

f 2 L46 + 8m
2
K

f 2 (2L46 + L58)
]

+ ρ2

4π2f 4W
′
78m

2
K log m

2
K

µ2 −
1

64π2f 2 ∆m2
πm

2
π0 log m

2
π0

µ2

+C2
ρ2m2

π±

f 2 + C3
ρ2m2

K

f 2 + C4
ρ4

f 2 .

(4.38)

Note the correct result is recovered in the continuum limit,

ρ→ 0, m2
π0 → m2

π± , ∆m2
π → 0,

and the expression matches the result found in the two flavor theory with large isospin
breaking [30], after replacing (in analogy to eq. (4.20), now for a strange quark too
heavy to appear in the theory)

m2
K →

1
2m

2
π± . (4.39)

The additional η chiral log simply is to be discarded, as η involving strangeness is not
a dynamical degree of flavor in SU(2) ChPT.
The calculation of the neutral pion mass works completely analogous. The continuum-
like contribution reads

M2
π0 = m2

π±

[
1 + 1

f 2A0(π±)− 1
2f 2A0(π0)− 1

6f 2A0(η)
]

+∆m2
π

[
1 + 2

3f 2A0(π±) + 1
3f 2A0(K)

]
,

and the contribution from the additional vertices is given by

∆M2
π0 = − 1

3f 2 ∆m2
π

[
2A0(π±) + 6A0(π0) + 4A0(K) + A0(η)

]
.

The complete neutral pion mass is the sum of these individual contributions and the
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respective analytic corrections, that provide the counterterms to cancel all divergences,

M2
π0 = m2

π±

[
1 + 1

f 2A0(π±)− 1
2f 2A0(π0)− 1

6f 2A0(η)
]

+∆m2
π

[
1− 2

f 2A0(π0)− 1
f 2A0(K)− 1

3f 2A0(η)
]

+ 8
f 2m

4
π±(L46 + L58)− 8

f 2 ∆m2
πm

2
π±(L4 + L5)− 16

f 2 ∆m2
πm

2
KL4

+ 16
f 2m

2
π±m

2
KL46

−4ρ2

f 2

(
m2
π± + ∆m2

π

)
(a1 + 8a2 − 8a3 − 2a4) + 4ρ2

f 2 m
2
π± (−b1 + 16b2 + 16b3)

+ 64ρ2

f 2 m2
K (b2 + 2b3) + 32ρ4

f 2 (h2 − 8h1) .

Separating finite and to-be subtracted parts of the neutral pion mass and re-expressing
it in terms of the charged pion mass, the kaon mass and the mass splitting, one finds

M2
π0 = m2

π±

[
1 + 1

f 2A
′
0(π±)− 1

2f 2A
′
0(π0)− 1

6f 2A
′
0(η)

]

+∆m2
π

[
1− 2

f 2A
′
0(π0)− 1

f 2A
′
0(K)− 1

3f 2A
′
0(η)

]

+m
4
π±

f 2

(
8(L46 + L58) + 5

9∆′
)

+ m2
π±m

2
K

f 2

(
16L46 −

2
9∆′

)

+ρ
2m2

K

f 2

(
64(b2 + 2b3)− ∆m2

π

ρ2
13
9 ∆′

)

+ρ
2m2

π±

f 2

(
4(−b1 + 16b2 + 16b3)− ∆m2

π

ρ2
43
18∆′

)

+ρ4

f 2

(
32(h2 − 8h1)− ∆m4

π

ρ4 2∆′
)
.

It is readily checked, that the renormalization of the continuum part is consistent
with the conditions obtained from renormalizing the charged pion and kaon mass.
Furthermore, as now terms including the LECs a2, b3 and h2 are present, that did not
contribute in the charged pion mass or the kaon mass, there is a sufficient number of
linearly independent NNLO LECs to cancel all occurring divergences. The somewhat
awkward coefficients multiplying the divergences occurring in the O(ma2) terms reflect
the arbitrary choice to expand the neutral pion mass in terms of the charged pion mass
and the pion mass splitting.
The fact, that all divergences can be canceled by appropriate renormalization of higher
order LECs is of course a consequence of the construction principle of the effective field
theory. It is still comforting to see renormalizability worked out explicitly also in the
charmless theory.
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Eventually, the neutral pion mass reads

M2
π0 = m2

π±

1 + 1
32π2f 2

(
2m2

π± log m
2
π±

µ2 −m
2
π0 log m

2
π0

µ2

)
− 1

96π2f 2m
2
η log

m2
η

µ2

+ 8m
2
π±

f 2 (L46 + L58) + 16m
2
K

f 2 L46 + C̃1ρ
2


+∆m2

π

1− 1
8π2f 2m

2
π0 log m

2
π0

µ2 −
1

16π2f 2m
2
K log m

2
K

µ2

− 1
48f 2m

2
η log

m2
η

µ2 + C̃2m
2
K + C̃3ρ

2

.

(4.40)

The neutral pion mass involves all kinds of chiral logs, particularly both, neutral pion
and charged pion chiral logs. Again, in both, the continuum limit [12], and the limit
of a heavy strange quark [30], this expression yields the correct results.
For completeness, we give the η8-mass to one loop, as well. The continuum-like contri-
bution reads

M2
η = m2

η

[
1 + 1

f 2A0(K)− 2
3f 2A0(η)

]

+m2
π±

[
− 2

6f 2A0(π±)− 1
6f 2A0(π0) + 1

3f 2A0(K) + 1
6f 2A0(η)

]
,

which reproduces the continuum results in the respective limit. The contribution from
the additional vertices is given by

∆M2
η = 16

3f 4

[
2W′6 + W

′
8 + 2W′7

]
ρ2A0(π0)

= − 1
3f 2 ∆m2

πA0(π0) + 16
3f 4ρ

22W′7A0(π0).

The complete η8 mass is the sum of these individual contributions and the respective
analytic corrections, that provide the counterterms to cancel all divergences. The
analytic continuum part remains unaltered. By construction, there exist counterterms
all occurring divergences and we hence refrain from quoting them explicitly.

M2
η = m2

η

[
1 + 1

16π2f 2m
2
K log m

2
K

µ2 −
1

24π2f 2m
2
η log

m2
η

µ2

]

+m2
π±

− 2
96π2f 2m

2
π± log m

2
π±

µ2 −
1

96πf 2m
2
π0 log m

2
π0

µ2

+ 1
48π2f 2m

2
K log m

2
K

µ2 + 1
96π2f 2m

2
η log

m2
η

µ2


− 1

48π2f 2 ∆m2
πm

2
π0 log m

2
π0

µ2 + 2
3π2f 4ρ

2W
′
7m

2
π0 log m

2
π0

µ2

+C ′1
ρ2m2

π±

f 2 + C ′2
ρ2m2

K

f 2 + C ′3
ρ4

f 2

+continuum analytic.

(4.41)
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Eq. (4.41) can be rewritten in terms of the continuum result and additional chiral logs,

M2
η = continuum result

− 1
96π2f 2 ∆m2

π

(
2m2

π0 +m2
π±

)
log m

2
π0

µ2 + 2
3π2f 4ρ

2W
′
7m

2
π0 log m

2
π0

µ2

+ analytic.

(4.42)

In this expression, the correct continuum limit is evident. Again, there are additional
chiral logs as pure lattice effects.

4.4. Decay Constants to One Loop
Another application of the charmless theory is in computing decay constants to one
loop. Again, the nonanalytic behavior, namely the chiral logs, may differ from contin-
uum results. The decay constants fa of pseudoscalar Goldstone bosons are defined by
the meson to vacuum matrix element mediated by the axial vector current Aaµ [11],〈

0
∣∣∣Aaµ ∣∣∣ πb(p)〉 = iδabpµfb, (4.43)

whereby the field renormalization Z needed when evaluating the left-hand side of eq.
(4.43) has been determined while computing the masses to one loop at maximal twist,

Zπ± = 1− 8
f 2

(
m2
π±(2L4 + L5) + L4

(
2m2

K −m2
π±

))
+O(a2)

+ 1
3f 2

(
A0(π±) + A0(π0) + A0(K)

)
,

Zπ0 = 1− 8
f 2

(
m2
π±(2L4 + L5) + L4

(
2m2

K −m2
π±

))
+O(a2)

+ 1
3f 2

(
2A0(π±) + A0(K)

)
,

ZK = 1− 4
f 2

(
2(2L4 + L5)m2

K + 2L4m
2
π±

)
+O(a2)

+ 1
12f 2

(
2A0(π±) + A0(π0)

)
+ 1

2f 2A0(K) + 1
4f 2A0(η).

(4.44)

The continuum analytic part of Zπ± and Zπ0 coincide of course. Note however the dif-
ferent chiral logs entering the respective expressions. The analytic O(a2) contributions
stem from Lp2a2 , that contributes to the masses at one loop in the Aoki regime. It
will only shift the respective analytic contributions to the decay constant and is hence
not given explicitly. Note that there are no contributions proportional to a, alluding
to O(a)-improvement at maximal twist.
In principle one has to construct the most general expression transforming as an axial
vector using the building blocks involved in the construction of the respective La-
grangian [17]. Equivalently one can follow the procedure of introducing sources in the
Lagrangian and constructing the axial current through appropriate functional deriva-
tives with respect to these sources (e.g. [29]). Afterwards, the reduction eliminating the
degrees of freedom involving charm is to be performed as outlined for the Lagrangian.
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The nonanalytic behavior of the decay constants is entirely governed by the LO axial
current. No matter what power counting scheme one works in, it is given by [17]

Aaµ,LO = f 2

2
〈
T a
(
Σ†∂µΣ− Σ∂µΣ†

)〉
, (4.45)

and we do not have to construct the complete axial current if we are solely interested
in the nonanalytic behavior. As discussed in [17] the lattice axial vector is subject to
renormalization that depends on the particular enforced Ward identity on the lattice,
leading to differences of O(a) in the currents. Since the currently used conditions to
fix the lattice axial vector current are not accessible in the framework of ChPT, the
only meaningful quantities are those in which the axial vector renormalization cancels.
To one loop, discarding the axial vector renormalization the decay constant is just given
by the continuum result supplemented by analytic contributions at order O(a2). We
do not expect analytic contributions at O(a) due to automatic O(a)-improvement at
maximal twist. The only peculiarity arises when working in the LCE regime featuring
the pion mass splitting at leading order by construction. As in the computation of
the meson masses to one loop, we then have to keep track of the pions propagating in
loops.
To one loop, one finds

〈
0
∣∣∣Aπ±µ,LO

∣∣∣ π±(p)
〉

=i
√
Zπ±pµf

[
1− 2

3f 2

(
A0(π±) + A0(π0) + A0(K)

)]
,

〈
0
∣∣∣Aπ0

µ,LO

∣∣∣ π0(p)
〉

=i
√
Zπ0pµf

[
1− 2

3f 2

(
2A0(π±) + A0(K)

)]
,

〈
0
∣∣∣AKµ,LO

∣∣∣K(p)
〉

=i
√
ZKpµf

[
1− 1

6f 2

(
2A0(π±) + A0(π0) + 6A0(K) + 3A0(η)

)]
.

Hence, by comparison with eq. (4.43), and including the field renormalization, one
finds

fπ±

f
= 1− 1

2f 2

(
A0(π±) + A0(π0) + A0(K)

)
+ cont. analytic +O(a2),

fπ0

f
= 1− 1

2f 2

(
2A0(π±) + A0(K)

)
+ cont. analytic +O(a2),

fK
f

= 1− 1
8f 2 (2A0(π±) + A0(π0))− 3

4f 2A0(K)− 3
8f 2A0(η)

+ cont. analytic +O(a2).

(4.46)

The decay constants in eq. (4.46) reproduce the respective results in the continuum
limit, and both a neutral pion log and a charged pion log appear in the charged pion
decay constant, whereas only a charged pion log enters the neutral pion decay con-
stant. If the pion decay constant is determined directly through the axial current in
contrast to using the indirect method via the pseudoscalar density [11], we find after
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renormalization of LECs

fK
fπ±

= 1 + 1
128π2f 2 (2m2

π± log m
2
π±

µ2 + 3m2
π0 log m

2
π0

µ2 )− 1
64π2f 2m

2
K log m

2
K

µ2

− 3
128π2f 2m

2
η log

m2
η

µ2 + cont. analytic +O(a2).
(4.47)

This result again has the correct continuum limit [12] and clarifies that indeed the
neutral pion log contributes.
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5. Level of Impact Estimation
All calculations so far have been performed for infinite volumes. However, finite vol-
ume corrections are under control from a theoretical point of view and can readily be
included [38]. The relevant case in practice is a finite space-time with extent L3×T in
the three spatial and the one temporal direction, respectively. Assuming a large time
extent compared to the spatial extent and imposing periodic boundary conditions, the
two scalar integrals A0 and A1 are replaced by their finite volume counterparts. The
correction due to the finite volume can then be expressed in terms of the Euclidean
position space propagator in infinite volume,

G(L)(x) = G(x) +
∑
~n6=~0

G(x+ L~n). (5.1)

The meaning of eq. (5.1) is intuitively clear; in order to propagate to a given point on
the lattice with periodic boundary conditions, a particle can not only propagate directly
along the shortest distance, but may additionally circle around the periodic system to
end up at the very same point. ~n ∈ Z

3\{~0} hence counts the number of additional
orbits along any of the three spatial directions. Since the propagator in position space
asymptotically decreases exponentially with the particle mass, it is clear, that finite
volume corrections will be most important for light particles.
Writing the propagator in position space that is related to the modified Bessel function
of the second kind K1, eventually finite volume corrections are properly incorporated,
once one replaces the chiral logs [38],

log m
2

µ2 → log m
2

µ2 + δ1(mL), (5.2)

in the results for the meson masses to one loop. The correction is given by

δ1 = 4
mL

∑
~n6=~0

K1 (|~n|mL)
|~n|

. (5.3)

The degeneracy in the sum of eq. (5.3) can be exploited to rewrite the respective
correction as

δ1 = 4
mL

∞∑
n=1

gnK1 (
√
nmL)√
n

(5.4)

with respective multiplicities gn [39].
For sufficiently large mL, the correction behaves as

δ1 ∼ e−mL, (5.5)
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emphasizing the need to incorporate finite volume corrections for light looping particles.
Similar to the SU(2) tmWChPT scenario [30], it is the very presence of the neutral pion
chiral log instead of the charged pion log in the charged pion mass, and the previously
even absent pion log in the kaon mass, that might have significant impact on the
analysis of current data from twisted mass simulations, since the neutral pion is the
lightest pseudoscalar meson, and hence triggers the largest finite volume corrections.
Current charged pion masses are in the range 270MeV . Mπ± . 510MeV [18]; the
ratio of the neutral pion mass and the charged pion mass in different twisted mass
ensembles indicate a non-negligible isospin breaking (cf. Tab. 5.1). In the language
of tmWChPT, this is indeed explained by asserting that present-day simulations are
already performed in the LCE regime, i.e. in a regime where at least the light quark
masses become comparable to a2.
In order to estimate the impact of the neutral pion log on the kaon mass squared, we
evaluate part of the respective correction,

∆∞M2
K = − 1

64π2f 2 ∆m2
πm

2
π0 log m

2
π0

µ2 ,

∆(FV)M
2
K = − 1

64π2f 2 ∆m2
πm

2
π0 δ1 (mπ0L) ,

(5.6)

noting that only the approximately known charged and neutral pion masses and the
decay constant in the chiral limit enter. The relative impact on the kaon mass is then
given by

∆MK/MK = 1
2

∆∞M2
K + ∆(FV)M

2
K

M2
K

. (5.7)

Estimations for the various ensembles examined by the ETMC are depicted in Table
5.1.
Although finite volume correction and overall chiral log expose different signs and thus
partially cancel, we estimate the previously disregarded neutral pion log to alter the
kaon mass by the same order of magnitude as the currently quoted statistical error.
This conclusion remains valid, even if the neutral pion mass is varied by up to ten
percent to amount for the uncertainty in its determination from simulations.
Additionally, the expression for the kaon mass in tmWChPT involves another chiral log
without counterpart in continuum ChPT, namely the kaon log. Since W′7 has not been
determined to date, its impact can hardly be estimated without actually performing
the simultaneous fit using the updated expressions for the meson masses to one loop
to the whole set of data from numerical studies. Superficially, the numerical prefactor
suggests, the log might have significant impact.
Following these rather crude estimations, the previously disregarded neutral pion log
is expected to affect the analysis of data obtained in twisted mass QCD simulations to
an extent comparable to current statistical and systematic uncertainties. The fact that
current data analysis, though neglecting the new terms, appears to work out sufficiently
well might be due to the parametric space explored to date. In the parameter space
currently examined, the new logs and their respective finite volume corrections tend
to cancel each other. This situation may change once different pion masses, lattice
spacings or volumes are examined.
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On the other hand, the existence of W′7 terms entering actual observables might enable
the determination of its value, once appropriate precision is achieved.

52



6. Conclusion
Quantum Chromodynamics (QCD) is widely believed to be the correct theory de-
scribing strong interaction. Prominent features of QCD include analytically proven
asymptotic freedom for the currently known six quark flavors realized in nature, as
well as confinement at low energies. Confinement refers to the experimentally con-
firmed observation, that the dynamical degrees of freedom of QCD, quarks and gluons,
are not observed as free particles at low energies. Instead, the appropriate degrees
of freedom at low energies are bound states of quarks and gluons, so-called hadrons.
Lattice Calculations strongly support the notion that this phenomenon is correctly
predicted by QCD. Both asymptotic freedom and confinement are manifestations of
the running coupling of QCD. The coupling increases at low energies, rendering con-
ventional perturbative methods to explore the low-energy dynamics of QCD useless.
Chiral Perturbation Theory (ChPT) as the effective theory of QCD in the low-energy
regime provides a description of the respective dynamics that can be handled with
perturbative methods. As in all effective theories, the effect of fields that are not kept
as dynamical degrees of freedom is encoded in a set of parameters entering the theory.
They can be determined by matching quantities computed in both the effective theory
and the underlying theory. In ChPT, they are called Low Energy Constants (LECs).
To date, lattice QCD is the only non-perturbative formulation of QCD. The continuous
space-time that QCD is defined on is replaced by a finite Euclidean grid referred to
as lattice. Once an appropriate implementation of fermions representing the quarks
has been chosen, the resemblance of the path integral formalism in Quantum Field
Theory to statistical mechanics allows for the treatment of lattice QCD via Monte
Carlo methods.
The lattice effects can be incorporated systematically in ChPT, providing a framework
to study the continuum and infinite volume limits, both of which are fundamentally
inaccessible to lattice QCD calculations. Comparing correlation functions from lattice
QCD and ChPT, the Low Energy Constants of ChPT can be fixed.
The construction of ChPT as the theory describing the low-energy regime of QCD is
based on symmetry considerations. While the massless QCD Lagrangian exhibits a
global symmetry under seperate transformations of left- and right-handed components
of the fermionic matter fields, hadron phenomenology does not confirm that the full
chiral symmetry is realized in nature. Particularly, the presence of some extraordinar-
ily light hadrons compared to the residual hadronic scale cannot be explained. The
full chiral symmetry exhibited by the massless QCD Lagrangian is thus believed to be
spontaneously broken down to a subgroup. One possible mechanism for the sponta-
neous symmetry breaking is by a nonvanishing quark condensate. Whether or not the
quark condensate is the dominant trigger of the phase transition does not affect the
construction of ChPT.
According to the Goldstone theorem, a massless (Goldstone-)boson is spawned for
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every spontaneously broken continuous symmetry. The observed hadron spectrum can
be made plausible once the lightest hadrons are reinterpreted as pseudo Goldstone
bosons of the spontaneously broken chiral symmetry, that still acquire a small mass
due to the additional explicit chiral symmetry breaking by nonvanishing though small
quark masses. Soft pion processes can then be studied using perturbation theory in
the effective field theory.
Starting from a Lagrangian comprising all terms compatible with the symmetry of
the underlying theory one obtains the most general scattering matrix elements that
obey the respective symmetries and additional properties of a good Quantum Field
Theory such as locality and cluster decomposition. The explicit symmetry breaking
of the full chiral symmetry by quark masses is carried over to the effective theory by
spurion analysis. This ensures that the symmetry is broken in ChPT in the same way
as in QCD. The effective theory then is a joint expansion in hadron momenta and
quark masses. Therefore one has to impose a power-counting scheme to organize the
expansion consistently.
In order to establish the connection to lattice QCD with a given fermion implemen-
tation, all of which violate different symmetries of continuum QCD, the lattice effects
have to be made explicit in an effective continuum theory. The expansion of the lattice
QCD action near the continuum limit in powers of the lattice spacing is accomplished by
Symanzik’s effective theory. Since the approach again relies on symmetry arguments,
different fermion implementations lead to different Symanzik effective theories. These
can then be translated to the ChPT framework based on the chiral symmetry break-
ing pattern of the additional terms in the Symanzik effective theory. Again, a power
counting scheme weighting the relative impact of all sources of symmetry breaking has
to be imposed.
Recently, a formulation of lattice QCD with Wilson fermions has emerged, featuring
automatic O(a)-improvement when the original QCD mass term is rotated chirally.
This twisted-mass formulation has been studied numerically over the past decade and
can as well be examined in the framework of ChPT. The appropriate inclusion of
lattice effects in this lattice QCD formulation leads to ChPT for Wilson fermions with
twisted masses (tmWChPT), which generalizes ChPT for Wilson fermions (WChPT).
Including the charm quark at its physical mass in the expansion in the framework of
ChPT contradicts the premise of a small perturbation by nonvanishing quark masses.
Therefore, D mesons must not occur in ChPT results.
In recent simulations including two mass-degenerate light quark flavors resembling
the up and down quark plus two non-degenerate flavors (strange and charm quarks),
referred to as 2+1+1 simulations, a twofold twist of masses is implemented in the light
and heavy sector separately. To capture the effects of twisted masses in the heavy
sector, we start from a 2+1+1 flavor tmWChPT. We then proceed to perform the
reduction from the 2+1+1 flavor theory to the charmless theory in analogy to how
three flavor ChPT relates to two flavor ChPT. In the course of matching additional
terms altering the dynamics remain compared to the naively set up 2+1 tmWChPT
with twisted masses in the light sector.
As a first important result of our work, the reduction already at Lagrangian level is
shown to work by reproducing the reduction from three to two flavor in continuum
ChPT. Additionally, comparing formal predictions of the 2+1+1 flavor theory to the
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respective expressions obtained from charmless theory in the GMS-regime, agreement
up to terms involving charm degrees of freedom is found.
As an application, we calculate the charged and neutral pion masses, the kaon mass
and the η8 mass to one loop in the LCE regime, that is likely to describe the numerical
simulations carried out by the European Twisted Mass Collaboration. The nonana-
lytic behavior, so-called chiral logs, are governed by looping mesons in the one-loop
diagrams. The neutral pion is significantly lighter than the charged pions in recent
simulations, alluding to isospin violation correctly predicted by tmWChPT. Therefore,
finite volume corrections altering the chiral logs are much more important for neutral
pion chiral logs compared to charged pion chiral logs. Particularly, pion chiral logs en-
ter the kaon mass that do not have a counterpart in continuum ChPT. Their respective
relative impact is estimated to be of the same order of magnitude as the systematic
error claimed in current twisted mass data analysis. We show that decay constants
as first actual observables also include neutral pion logs altering their finite volume
dependence. Therefore, analysis of numerical data will have to take the newly de-
rived formulae into consideration in upcoming evaluations when even higher precision
is accessible.
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A. Dimensional Regularization
In the course of computing the meson self-energy to one loop, one is confronted with
evaluating integrals of the form

A0(m) =
∫ dDk

(2π)D
1

k2 +m2 ,

A1(m) =
∫ dDk

(2π)D
k2

k2 +m2 ,

that are divergent for D → 4 space-time dimensions. One hence employs a regulator to
evaluate the integrals and postpone the treatment of the divergences. They are later
on removed by renormalization.
The integrals can be computed using (see e.g. [41], eq. (65))∫ dDk

(2π)D
1

(k2 + L)n = 1
(4π)D/2

Γ(n−D/2)
Γ(n) L−n+D/2,

and expanding around 0 = ε = 4−D, where the following properties of the Γ function
hold

Γ(x) = 1/x− γE +O(x),
Γ(−1 + x) = −1/x+ γE − 1 +O(x).

Here, γE is the Euler-Mascheroni constant. Hence, the initial divergence of the integrals
is recovered as pole in the expansion of the Γ function, and one obtains

A0(m) = (4π)−2+ε/2 Γ(−1 + ε/2)
Γ(1) m2(1−ε/2)

=
1 + ε

2 log 4π
16π2

(
−2
ε

+ γE − 1
)
m2(1− ε logm) +O(ε)

= m2

16π2

(
−2
ε

+ γE − 1− log 4π + 2 logm
)

+O(ε)

= − m2

16π2

(
∆ + 1− logm2

)
,

where

∆ = 2
ε
− γE + log 4π,

and

A1(m) =
∫ dDk

(2π)D
k2 +m2 −m2

k2 +m2

= const
Γ(0)︸ ︷︷ ︸
→0

−m2A0(m).
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B. Feynman Rules and Contributions
to Meson Masses to One Loop

With the accurate Lagrangian up to a prescribed order at hand, one is confronted with
computing the contributions to the self-energy in terms of (Euclidean) Feynman rules.
Let V a,b,c,d

r [p1, p2, p3, p4] denote the Euclidean Feynman rules for the four-pion vertices
occurring in the expansion of the leading order Lagrangian up to four meson fields,
where a, b, c, d denote meson field indices, r simply indicates the different vertices, and
all momenta are oriented as incoming. Their contribution to the self-energy of field πa
then reads

1
2

8∑
b=1

∫ d4k

(2π)4
1

k2 +m2
b

∑
r

V a,b,b,a
r [p, k,−k,−p], (B.1)

where the sum over r extends over all vertices, and the tadpole diagram’s overall sym-
metry factor is included. Up to proportionality constants, the vertices in the integrand
of eq. (B.1) are of one of the following forms,

p2, (p+ k)2, const,

where terms including no momenta, for example stemming from the mass term, are
referred to as constant. The truncated Green’s function can thus be re-written as

1
2

8∑
b=1

ca,b0 (p2)A0(mb) + ca,b1 A1(mb)

= 1
2

8∑
b=1

(
ca,b0 (p2)− ca,b1 m2

b

)
A0(mb),

(B.2)

in terms of the two scalar integrals A0(mb) and A1(mb) discussed in App. A. Obviously,
the two integrals distinguish the cases of whether the derivative occurring in the inter-
action vertices acts on the external or the looping meson. The propagator accordingly
always involves the mass of the looping particle.
The actual translation of terms in the Lagrangian to their contribution to the truncated
two-point function of particle a can be handled by means of expression replacements in
computer algebra systems. The replacement rules for the four pion vertices stemming
from the leading order Lagrangian, that contribute via tadpole diagrams, read

∂µπa∂
µπa πbπb →

eucl.︷︸︸︷
(−) 4ip (−ip)A0(mb),

πaπa ∂µπb∂
µπb → (−) 4A1(mb),

πaπa πbπb → (−) 4A0(mb),
πaπa πaπa → (−) 24A0(ma),

∂µπaπa ∂
µπbπb → 0,
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B. Feynman Rules and Contributions to Meson Masses to One Loop

where the 4 = 2 · 2 and 24 = 4! reflect the different ways of contracting external fields
with the vertex. The overall symmetry factor 1

2 of the tadpole diagram has to be kept
in mind. The last term does not contribute to the one-loop diagram, as the sum of all
possible contractions always vanishes,

V a,b,b,a
∂µπaπa ∂µπbπb

[p, p+ k,−(p+ k),−p]
∝ p(p+ k) + p[−(p+ k)] + (−p)(p+ k) + (−p)[−(p+ k)] = 0.

The above expressions have to be Wick-rotated back to Minkowski-space, and then give
contributions to the meson self-energy Σ(p2). This part of the self-energy is supple-
mented by analytic contributions stemming from the next to leading order Lagrangian.
The respective vertices contribute only at tree-level, the respective replacements thus
trivially read

πaπa →
eucl.︷︸︸︷
(−) 2

∂µπa∂
µπa → (−) 2ip (−ip)

Having computed the meson self-energy, the meson mass to one loop, M2
a , is given by

the pole of the propagator, hence as solution of the equation

p2 −m2
a + Σa

(
p2
)

= 0

at p2 = M2
a . The self-energy can always be writen as

Σa(p2) = Ap2 +Bm2
a + C,

where the respective coefficients are of the orders

A,B = O(p2), C = O(p4),

or of equivalent order in terms of m and a, according to the prescribed power-counting
scheme. The meson mass accurate to O(p4) is then given by

M2
a = m2

a(1−B − A)− C.

The wave-function renormalization Zπa is then given by,

Zπa = 1− dΣa

dp2

∣∣∣∣∣
p2=M2

a

= 1− A.

The divergence of the scalar integral A0 in the limit D → 4 calls for renormalization
of the theory. The appropriate counterterms are provided by the next to leading
order Lagrangian. Indeed, by construction, appropriate renormalization of NLO LECs
renders the theory finite. The finite part of A0, the chiral logarithms, remain in the
expressions for the meson masses to one loop.
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