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Abstract

Generalized quantile regressions, including the conditional quantiles and expectiles
as special cases, are useful alternatives to the conditional means for characteriz-
ing a conditional distribution, especially when the interest lies in the tails. We
denote vn(x) as the kernel smoothing estimator of the expectile curves. We prove
the strong uniform consistency rate of vn(x) under general conditions. Moreover,
using strong approximations of the empirical process and extreme value theory,
we consider the asymptotic maximal deviation sup06x61 |vn(x)− v(x)|. According
to the asymptotic theory, we construct simultaneous confidence bands around the
estimated expectile function. We develop a functional data analysis approach to
jointly estimate a family of generalized quantile regressions. Our approach as-
sumes that the generalized quantiles share some common features that can be
summarized by a small number of principal components functions. The principal
components are modeled as spline functions and are estimated by minimizing a
penalized asymmetric loss measure. An iteratively reweighted least squares al-
gorithm is developed for computation. While separate estimation of individual
generalized quantile regressions usually suffers from large variability due to lack
of sufficient data, by borrowing strength across data sets, our joint estimation ap-
proach significantly improves the estimation efficiency, which is demonstrated in
a simulation study. The proposed method is applied to data from 150 weather
stations in China to obtain the generalized quantile curves of the volatility of the
temperature at these stations.

Keywords: Asymmetric loss function; Functional data analysis; Generalized quan-
tile curve; Iteratively reweighted least squares; simultaneous confidence bands.
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Zusammenfassung

Die generalisierte Quantilregression, einschließlich der Sonderfälle bedingter Quan-
tile und Expektile, ist insbesondere dann eine nützliche Alternative zum bedingten
Mittel bei der Charakterisierung einer bedingten Wahrscheinlichkeitsverteilung,
wenn das Hauptinteresse in den Tails der Verteilung liegt. Wir bezeichnen mit
vn(x) den Kerndichteschätzer der Expektilkurve und zeigen die stark gleichms̈ßige
Konsistenzrate von vn(x) unter allgemeinen Bedingungen. Unter Zuhilfenahme
von Extremwerttheorie und starken Approximationen der empirischen Prozesse
betrachten wir die asymptotischen maximalen Abweichungen sup06x61 |vn(x) −
v(x)|. Nach Vorbild der asymptotischen Theorie konstruieren wir simultane Kon-
fidenzbänder um die geschätzte Expektilfunktion. Wir entwickeln einen funk-
tionalen Datenanalyseansatz um eine Familie von generalisierten Quantilregres-
sionen gemeinsam zu schätzen. Dabei gehen wir in unserem Ansatz davon aus,
dass die generalisierten Quantile einige gemeinsame Merkmale teilen, welche durch
eine geringe Anzahl von Hauptkomponenten zusammengefasst werden können.
Die Hauptkomponenten sind als Splinefunktionen modelliert und werden durch
Minimierung eines penalisierten asymmetrischen Verlustmaßes geschätzt. Zur
Berechnung wird ein iterativ gewichteter Kleinste-Quadrate-Algorithmus entwick-
elt. Während die separate Schätzung von individuell generalisierten Quantilre-
gressionen normalerweise unter großer Variablität durch fehlende Daten leidet,
verbessert unser Ansatz der gemeinsamen Schätzung die Effizienz signifikant. Dies
haben wir in einer Simulationsstudie demonstriert. Unsere vorgeschlagene Meth-
ode haben wir auf einen Datensatz von 150 Wetterstationen in China angewendet,
um die generalisierten Quantilkurven der Volatilität der Temperatur von diesen
Stationen zu erhalten.

Schlagwörter: asymmetrischen Verlustmaßes Funktionen; generalisierte Quan-
tilregression; funktionalen Datenanalyseansatz; iterativ gewichteter Kleinste-Quadrate-
Algorithmus; simultane Konfidenzbänder.
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meinschaft via SFB 649 “Ökonomisches Risiko”, Humboldt-Universität zu Berlin
and China Scholarship Council (CSC).

Last but certainly not the least I deeply indebted to my family for having been
there whenever I needed them, especially the continues support from my grand-
parents, my parents, my sister and my brother. I would like also thank all my
friends for their continuous encouragement to make me never give up.

V



VI



Contents

1 Introduction 1

2 Adaptive Interest Rate Modeling 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Interest Rate Models . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Likelihood Function of CIR Process . . . . . . . . . . . . . . 7
2.3.2 Test of Homogeneous Intervals . . . . . . . . . . . . . . . . . 8
2.3.3 The Local Parametric Approach (LPA) . . . . . . . . . . . . 9
2.3.4 Choice of Critical Values . . . . . . . . . . . . . . . . . . . . 10
2.3.5 “Oracle” Property of The Estimators . . . . . . . . . . . . . 12

2.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Simultaneous Confidence Bands for Expectile Regression 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 A Monte Carlo Study . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Functional Data Analysis for Generalized Quantile Regression 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Generalized Regression Quantiles . . . . . . . . . . . . . . . . . . . 52
4.3 Functional data analysis for a collection of regression quantiles . . . 55

4.3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.3 Choice of Auxiliary Parameters . . . . . . . . . . . . . . . . 59

4.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

VII



4.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A 81
A.1 Proofs of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2 Algorithm in Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.2.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.2.2 The complete PLAWS Algorithm . . . . . . . . . . . . . . . 89
A.2.3 Initial Values Selection . . . . . . . . . . . . . . . . . . . . . 90

VIII



List of Figures

2.1 Construction of the Test Statistics for LPA: the involved interval Ik
and Jk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
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Chapter 1

Introduction

The thesis includes three topics I was working on during my PhD studies.
Chapter 2 investigates the stochastic process of interest rate. As we know, the

interest have been well studied by a lot of researcher, therefore there are already
several methods to capture the stochastic process of interest rate. We recall sev-
eral classical models, such as, Vasicek model, CIR model, or jump diffusion model.
Interest rate modelling in an unstable macroeconomic context motivates interest
rate models with time varying parameters. In this paper, the local parametric
approach is introduced to adaptively estimate interest rate models. This method
can be generally used in time varying coefficient parametric models. It is used not
only to detect jumps and structural breaks, but also to choose the largest “time
homogeneous” interval, in which the coefficients are statistically constant. We de-
scribe this adaptive approach in detail, illustrate it in simulations and apply it to
real data. Using the three month treasury bill rate as a proxy of the short rate,
we find that our method can detect both structural changes and stable intervals
for homogeneous modelling of the interest rate process. In unstable macroeco-
nomic periods, the time homogeneous interval can not last long. Furthermore, the
proposed approach performs well in the long horizon forecasting.

Chapter 3 and 4 focus on the analysis of the tails of the distribution functions.
We investigate both conditional quantile and expectile curves, which together are
named as generalized quantile curves. In Chapter 3, the expectile curves are
studied. We denote vn(x) as the kernel smoothing estimator of the expectile curves.
We prove the strong uniform consistency rate of vn(x) under general conditions.
Moreover, using strong approximations of the empirical process and extreme value
theory, we consider the asymptotic maximal deviation sup06x61 |vn(x) − v(x)|.
According to the asymptotic theory, we construct simultaneous confidence bands
around the estimated expectile function. Furthermore, we apply the confidence
bands to the temperature analysis, i.e. we separately construct the confidence
bands for the expecitle curves of the volatility of temperature in Berlin and Taipei,
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we investigate the temperature risk drivers to these two cities.
In Chapter 4, We introduce the generalized quantile curves, which includes

both quantile curves and expectile curves. They can transfer to each other via
a transformation weight. Traditional generalized quantile regression focuses on a
single curve, as described in Chapter 3. When a family of random curves are avail-
able, we can estimate the individual generalized quantile curves jointly by using
the information from all subjects instead of estimating them separately. In reality,
high dimensional data is always involves in the research. For example, in metrol-
ogy, we might want to analyze the temperature fluctuations in China. As known,
China has more than 150 weather stations allocated in different locations. Then
the temperature data collected over time at each station are effectively producing a
curve over the observed interval, with, say, 365 measurements made over 365 days
of the year. We are interested in the extreme values of the temperature during
some specific year, which in turn lead us to study the generalized quantile curves
of the variation of the temperature. On one hand, to estimate the generalized
quantile curves precisely, one direct approach is to collect all the information from
all the stations. On the other hand, to avoid too many parameters to estimate and
data sparsity, we apply a novel method – functional data analysis (FDA) combin-
ing least asymmetric weighted squares (LAWS), we estimate both the mean curve
as the common factor curve and the individual departure curves of the generalized
quantile curves via a penalized spline smoothing. We run both simulations and
real data analysis to investigate the performance of the FDA method in compari-
son with the traditional single curve estimation method. Taking the temperature
as an example, we estimate the generalized quantile curves for the volatility of the
temperature in 150 weather stations in China to analyze the factors influencing
the variation of the temperature in China.
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Chapter 2

Adaptive Interest Rate Modeling

This chapter is based on the paper “ Adaptive Interest Rate Modeling” by Guo
and Härdle (2010).

2.1 Introduction

Interest rate is one of the key financial variables in any economy. As interest rates
rise, bond prices fall and vice versa. Interest rate risk, caused by the variability
of interest rates, is the risk borne by an interest-bearing asset, such as a loan or a
bond. Moreover, interest rate risk causes credit risk, which in turn may induce fur-
ther risks (for instance, financial crisis). For hedging purposes, it is crucial to price
interest rate derivatives which of course depend on the dynamics of interest rates.
As described in literature, if the macroeconomy is unstable, the volatility of interest
rates will be larger, and vice versa. For instance, in 2002, bubbles existed in the US
stock market, in 2003, the war in Iraq influenced the macroeconomy. In 2007, the
macroeconomy has changed due to the subprime crisis. Correspondingly one finds
the interest rate in these periods fluctuating strongly. On the other hand, changes
in business cycle conditions or macroeconomic shocks may affect the dynamics of
interest rates. These shocks or news are dominated by central bank announcements
or from federal agencies, who release macroeconomic data at monthly or quarterly
frequencies. They may contain a large, unanticipated component. However, the
interest rates respond quickly to these unanticipated announcements. The corre-
sponding findings are well documented in Jones et al. (1998) and Johannes (2004).
Due to these unanticipated announcements and shocks in the macroeconomy, nu-
merous empirical studies have demonstrated the dynamics of short rate processes
not being stable. This may be reflected by time varying parameters in interest
rate models. In this paper, we study the dynamics of the short rate, which can
respond quickly to news and shocks. The short rate is the (annualized) interest
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rate at which an entity can borrow money for an infinitesimally short period of
time, it is the instantaneous-return rate of a risk-free investment.

Three main strands of literature exist to capture the instability of the dynamics
of the short rate. In one line of literature, the described instability is modeled via
structural breaks, captured by jump diffusion models. In this kind of models, it
is assumed several unknown jumps exist in the dynamics of the short rate. For
instance, Das (2002) incorporated jumps into the Vasicek (1977) model and found
strong evidence of jumps in the daily federal funds rate. Johannes (2004) used a
nonparametric diffusion model to study the secondary three month treasury bills
and concluded that jumps are generally generated by the arrival of news about
the macroeconomy. A general conclusion in the literature is that the dynamics
vary significantly due to shocks and jumps, which is also well described in Let-
tau and Ludvigson (2001), Goyal and Welch (2003) and Paye and Timmermann
(2006). Another strand of literature uses regime switching models to capture the
business cycle character of interest rates, see Ang and Bekaert (2002), Bansal and
Zhou (2002). They found that the interest rate has changed significantly and
its volatility performs differently in expansion regimes and recession regimes. In a
third kind of models, the process parameters (drift or volatility) are assumed to be
functions of time. This is well documented in numerous studies, such as Hull and
White (1990), Black and Karasinski (1991), A¨it-Sahalia (1996), Stanton (1997),
Fan et al. (2003) and Arapis and Gao (2006). For instance, using semi and non-
parametric approaches, A¨it-Sahalia (1996) found strong nonlinearity in the drift
function of the interest rate model. Arapis and Gao (2006) applied nonparametric
techniques to provide evidence that the specification of the drift has a considerable
impact on the pricing of derivatives through its effect on the diffusion function. As
a conclusion from these findings, one may say that the coefficients in the models,
such as Vasicek (1977) model and Cox, Ingersoll and Ross (CIR) (1985) model, are
time varying, especially with a nonlinear drift function. Thus, a short rate model
with constant parameters may not be valid for a long time period.

In this paper, we introduce the time-varying CIR model, and estimate it from a
novel point of view - the local parametric approach (LPA). Before we come to our
method in detail, let us first review several methods to capture the time variation
of the parameters. They are commonly used to estimate time-varying coefficients
or to detect the breakpoints. We list out some, for instance, the wavelets method,
see Fan and Wang (2007), or the kernel based estimation, see Cai (2007), as
well as the taut string methods, see Davies and Kovac (2001), and the online
checking change point used in Ombao et al. (2001). However, the local parametric
approach can determine a homogeneous interval for each time point. What’s more,
by this method, we can detect jumps and structural break points in the stochastic
process, which indicates that the commonly used regime switching models are
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also included in our method as well. Based on the parameters inside the selected
interval, one may distinguish expansion and recession stages of the macroeconomy.
Moreover, the LPA has several nice properties. Firstly, it can describe the smooth
time-varying parameters. The coefficients can arbitrarily depend on time, such
as smooth time trend. Secondly, it allows for structural breaks and jumps in the
parameter values. Thirdly, there is no requirement on the number of observations
in a homogeneous interval before or after the break point.

The proposed approach can be applied to different real problems. Giacomini
et al. (2009) considered time varying copulae estimation, C´ižek et al. (2009)
applied it to compare the performance of global and time-varying ARCH and
GARCH specifications, Härdle et al. (2011) applied this method to hierarchical
Archimedean copulae, and found the LPA can be used to detect both adaptive
copulae parameters and local dependency structures.

To assess the performance of the LPA, we do both simulations and empirical
studies. In the simulation exercise, we show that the proposed LPA detects the
structural breaks very well, and all the true parameters are located in the point-
wise confidence intervals of the estimators. In the empirical study, we use the
three month treasury bill rate as a proxy of the short rate and investigate the
performance of the LPA to the time-varying CIR model by both in sample fitting
and out of sample forecasting via comparing with moving window estimators.

The chapter is organized as follows. In Section 2.2, we give a short recall about
standard interest rate models, later we explain the LPA in detail in Section 2.3.
In Section 2.4, we present our simulation results. Empirical studies are presented
in Section 4.5. We conclude in Section 4.6.

2.2 Interest Rate Models

In this section, we recall several standard short rate models. In general, the dy-
namics describing short rate processes should satisfy the properties:

1. Mean reversion (the interest rates always tend to return to an average level).

2. The interest rate is nonnegative.

Vasicek Model (1977)

dr(t) = a{b− r(t)}dt+ σdWt

where a, b and σ are constants, Wt is a standard Brownian process. It is consistent
with the mean reversion feature with a reversion speed a to the long run mean
level b. However, in this model r(t) can be negative.
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Cox, Ingersoll and Ross (CIR) Model (1985)

dr(t) = a{b− r(t)}dt+ σ
√
r(t)dWt (2.1)

The drift function µ{r(t)} = a{b− r(t)} is linear and possesses a mean reverting
property, i.e. r(t) moves in the direction of its long run mean b at speed a. The
diffusion function σ2{r(t)} = r(t)σ2 is proportional to the interest rate r(t) and
ensures that the process stays positive. Moreover, here r(t) has a positive impact
on the standard deviation through (2.1).

Hull-White Model (1990)

dr(t) = {δ(t)− ar(t)}dt+ σdWt

This is an extended Vasicek model, where a and σ are constant, δ(t) is a deter-
ministic function of time. Moreover, this model uses the time dependent reversion
level δ(t)/a for the long run mean instead of the constant b in the Vasicek model.

Black-Karasinski Model (1991)

d log r(t) = δ(t){log µ(t)− log r(t)}dt+ σ(t)dWt

with δ(t), µ(t) and σ(t) as a deterministic function of time, where µ(t) as the
target interest rate. A drawback is that no closed form formula for valuing bonds
in terms of r(t) can be derived by this model.

2.3 Methodology

In the Vasicek model, the interest rate r(t) can be negative, whereas the CIR
model guarantees the interest rate to be nonnegative. In the Hull-White model,
the volatility is a constant. The Black-Karasinski model assumes δ(t) and µ(t)
are deterministic functions of time. Inherence of all these dynamics is that the
coefficient functions can not arbitrarily depend on time. This property might be
useful though in a changing macro setting. Thus, we introduce a time varying
CIR model in this paper, which allows the coefficients arbitrarily functions of
time. We introduce the LPA in detail, which is used to find the longest stable
“time homogeneous” interval for each time point, where the parameters in the
CIR model can be safely assumed to be constant.

The time varying CIR model is expressed as:

dr(t) = at{bt − r(t)}dt+ σt
√
r(t)dWt (2.2)
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where, Wt is the standard Wiener Process. Denote the time varying parameters
as θt = (at, bt, σt)

⊤. This CIR model (2.2) includes all of the aforementioned
parametric models, such as jump diffusion models, regime switching models, and
also nonparametric specified time varying interest rate models.

The discrete version of (2.2) is:

Yi = rti+1
− rti = at{bt − rti}∆t+ σt

√
rtiZi (2.3)

Where {Zi}Ti=1 are normally distributed with zero mean and variance ∆t = ti+1−ti,
(more generally, Zi can be a white noise process). The time unit can be one year,
then ∆t = 1

250
for daily data, or for weekly data, ∆t = 1

52
.

2.3.1 Likelihood Function of CIR Process

If a, b, σ are all positive, and 2ab ≥ σ2 holds, then the CIR model is well defined
and has a steady state distribution. Given rt at time t, the density of rt+∆t at
time point t+∆t is:

p(rt+∆t|rt; θ,∆t) = ce−u−v(
v

u
)
q
2 Iq(a

√
uv) (2.4)

where

c =
2a

σ2(1− e−a∆t)

u = crte
−a∆t

v = crt+∆t

q =
2ab

σ2

and Iq(2
√
uv) is the modified Bessel function of the first kind with order q. The

log likelihood function is given by:

L(θ) =
T−1∑
i=1

log p(rti+1
|rti ; θ,∆t) (2.5)

Fix now t, the MLE estimator θ̃Ik in any interval Ik = [t−mk, t] is:

θ̃Ik = argmaxLIk(θ) = argmax
∑
i∈Ik

log p(rti+1
|rti ; θ,∆t) (∗)

The accuracy of the estimation for a locally constant model with parameter θ0 is
measured via the log likelihood ratio LIk(θ̃Ik , θ0) = LIk(θ̃Ik) − LIk(θ0). In C´ižek
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Figure 2.1: Construction of the Test Statistics for LPA: the involved interval Ik
and Jk.

et al. (2009), it is proved that if Yi follows a nonlinear process (2.2), then given Ik
for any r > 0, there exists a constant ℜr(θ0), such that:

Eθ0 |LIk(θ̃Ik , θ0)|r ≤ ℜr(θ0) (2.6)

Thus, ℜr(θ0) can be treated as the parametric risk bound. It enables testing the
parametric hypothesis on the basis of the fitted log likelihood LIk(θ̃Ik , θ0).

2.3.2 Test of Homogeneous Intervals

Mercurio and Spokoiny (2004), C´ižek et al. (2009) and Spokoiny (2009) are in-
formative references for the LPA. The general idea can be described as follows:
suppose we have K (historical) candidate intervals with a starting interval I0, i.e.
I0 ⊂ I1 ⊂ · · · ⊂ IK , Ik = [t−mk, t] with 0 < mk < t. We increase the length from
mk to mk+1, and test over the larger interval Ik+1 whether θ̃k+1 is still consistent
with θ̃k. To test an interval Ik = [t − mk, t], we fix the null hypothesis with a
constant parameter θt ≡ θ. The alternative (a non constant θt) is given by an
unknown change point τ in Ik, i.e. Yt′ follows one process when t

′ ∈ J = [τ + 1, t]
with parameter θJ , and it follows another process when t

′ ∈ J c = [t − mk+1, τ ]
with parameter θJc , where θJ ̸= θJc . With this alternative, the log likelihood (∗)
can be expressed as LJ(θ̃J) + LJc(θ̃Jc), giving the test statistics:

TIk+1,τ = LJ(θ̃J) + LJc(θ̃Jc)− LIk+1
(θ̃Ik+1

) (2.7)

where τ ∈ Jk = Ik\Ik−1, see Figure 2.1. Since the change point τ ∈ Ik is unknown,
we consider the maximum of the test statistics over Jk:

Tk = max
τ∈Jk

TIk+1,τ (2.8)
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This statistics (2.8) is compared with critical values {zk}, see below for more
details.
The selected longest time homogeneous interval Ik̂ satisfies

Tk ≤ zk, for k ≤ k̂ (2.9)

and Tk̂+1 > zk̂+1. In interval Ik̂ yields the adaptive estimator θ̂t = θ̂Ik̂ . The event
{Ik is rejected} means that Tℓ > zℓ for some ℓ < k, and hence a change point has
been detected in the first k steps.

2.3.3 The Local Parametric Approach (LPA)

For any given t with intervals I0 ⊂ I1 ⊂ · · · ⊂ IK , the algorithm is described in
four steps.

1. We estimate θ̃I0 using the observations from the smallest interval I0 = [t −
m0, t], θ̃I0 is always accepted.

2. We increase the interval to Ik, (k ≥ 1), get the estimator θ̃Ik by MLE, and
test homogeneity via (2.8), i.e. we test whether there is a change point in
Ik. If (2.9) is fulfilled, we go on to step 3, otherwise we go to step 4.

3. Let θ̂Ik = θ̃Ik , then further set k = k + 1, and go to step 2.

4. Accept as the longest time homogeneous interval Ik̂ = Ik−1, and define the

local adaptive estimator as θ̂Ik̂ = θ̃Ik−1
. Additionally set θ̂Ik̂ = θ̂Ik = · · · =

θ̂IK for all k > k̂.

For a change point τ in Ik, we obtain k̂ = k − 1, and Ik̂ = Ik−1 is the selected
longest time homogenous interval. We compare the test statistics with the critical
value, if it is smaller than the critical value zk for interval Ik, we accept Ik as the
time homogeneous interval, then we increase the interval to Ik+1, and do the test
again. We sequentially repeat this procedure until we stop at some k < K or we
exhaust all the chosen intervals. For each time point t, we use the same algorithm,
while we do not need to calculate the critical values a second time, since they
depend on only the parametric specification and the length of interval mk.

To investigate the performance of the adaptive estimator, we introduce the
small modeling bias (SMB). The SMB for interval Ik is:

∆Ik(θ) =
∑
t∈Ik

K{r(t), r(t; θ)} (2.10)
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with K the Kullback-Leibler (KL) divergence,

K{r(t), r(t; θ)} = E log
p{r(t)}
p{r(t; θ)}

(2.11)

where p(.) and p(.; θ) are the pdfs of r(t) and r(t; θ) respectively. The SMB mea-
sures in terms of KL divergence the closeness of a constant parametric model with
p(.; θ) to a time-varying nonparametric model with p(.). Suppose now for a fixed
∆ > 0:

E∆Ik(θ) ≤ ∆ (2.12)

Inequality (2.12) simply means that for some θ ∈ Θ, ∆Ik(θ) is bounded by a small
constant , implying that the time varying model can be well approximated (over
Ik) by a model with a fixed parameter θ.

Under the SMB condition (2.12) for some interval Ik and θ ∈ Θ, one has with
a risk bound Rr(θ):

E log{1 + |LIk(θ̃Ik , θ)|r

Rr(θ)
} ≤ 1 + ∆ (2.13)

If ∆ is not large, (2.13) extends the parametric risk bound Rr(θ) to the nonpara-
metric situation, for details see C´ižek et al. (2009). An “oracle” choice Ik∗ from
the set I0, · · · , IK exists, which is defined as the largest interval satisfying (2.12).
We denote the corresponding “oracle” parameter as θIk∗ .

However, two types of errors occur in this algorithm: the first type is to reject
the time homogeneous interval earlier than the “oracle” step, which means k̂ ≤ k∗.
The other type is to select a homogeneous interval larger than the “oracle”, i.e.
k̂ > k∗. The first type of error can be treated as a “false alarm”, i.e. the algorithm
stops earlier than the “oracle” interval Ik∗ , which leads to selecting an estimate
with a larger variation than θIk∗ . The second type of the error arises if k̂ > k∗.
Outside the oracle interval we are exploiting data which does not support the SMB
condition. Both errors will be specified in a propagation and stability condition in
the next section.

2.3.4 Choice of Critical Values

The accuracy of the estimator can be measured by the log likelihood ratio LIk(θ̃Ik , θ0),
which is stochastically bounded by the exponential moments (2.13). In general,
θ̃Ik differs from θ̂Ik only if a change point is detected at the first k steps. A small

value of the likelihood ratio means that θ̂Ik belongs to the confidence set based on

the estimate of θ̃Ik , i.e. statistically we “accept” θ̂Ik = θ̃Ik . If the procedure stops
at some k ≤ K by a false alarm, i.e. a change point is detected in Ik with the
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adaptive estimator θ̂Ik , then the accuracy of the estimator can be expressed via
the “propagation” condition:

E
θ0
|LIk(θ̃Ik , θ̂Ik)|r ≤ ρℜr(θ0) (2.14)

In the parametric situation we can calculate the LHS of (2.14) and choose the
critical value zl based on this inequality. The situation at the first k steps can be
distinguished into two cases: There is a change point detected at some step l ≤ k,
or there is no change point in the first k intervals. We denote by Bl the event of
rejection at step l, that is,

Bl = {T1 ≤ z1, · · · , Tl−1 ≤ zl−1, Tl > zl} (2.15)

and θ̂Ik = θ̃Il−1
on Bl, l = 1, 2, · · · , k. Now choose z1 by minimizing the following

equation:

max
k=1,··· ,K

Eθ0 |L(θ̃Ik , θ̃I0)|r1(B1) = ρRr(θ0)/K (2.16)

For zl, l ≥ 2, we use the same algorithm to calculate them. The event Bl depends
on z1, · · · , zl. Since z1, · · · , zl−1 have been fixed by previous steps, the event Bl is
controlled only by zl. Hence, the minimal value of zl should ensure

max
k≥l

E
θ0
|mkK(θ̃k, θ̃l−1)|r1(Bl) = ρRr(θ0)/K (2.17)

or we can express the criterion via the log likelihood ratio:

max
k≥l

E
θ0
|L(θ̃Ik , θ̃Il−1

)|r1(Bl) = ρRr(θ0)/K (2.18)

where ρ and r are two global parameters, and mk denotes the number of observa-
tions in Ik. The role of ρ is similar to the level of the test in hypothesis testing
problems, while r describes the power of the loss function. We apply r = 1/2 in
both the simulation and the real data analysis, since it makes the procedure more
stable and robust against outliers. We also choose ρ = 0.2, however other values
in the range [0.1, 1] lead to similar results, Spokoiny (2009).

The critical value zl which satisfies (2.18) can be found numerically by Monte
Carlo simulations from the parametric model. It is a decreasing function with
respect to the log length of interval. When the interval is small, it is easier to
accept it as the time homogeneous interval, since there can not be many jumps due
to the short length, while if we increase the length of interval, as more observations
are included, it will contain more uncertain information, especially when big jumps
or visible structural changes can exist in the interval, therefore in this case, it tends
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to reject the test statistics, and the corresponding critical values will decrease as
well.

The length of the tested interval is assumed to geometrically increase with
mk = [m0a

k]. m0 is the length of initial interval I0, which is time homogeneous
as default. a can be chosen from 1.1 to 1.3. However, the experiments reveal that
the estimated results are not sensitive to the choice of a. In the time varying CIR
model, to guarantee a reasonable quality of the estimation, we need a large sample
size, since there are three parameters to be estimated. Therefore, we choose the
length of the initial interval I0 as m0 = 40 and a = 1.25. As already discussed,
interest rates are influenced by macroeconomic structures, and may also be subject
to regime shifts. Therefore the longest interval we choose should cover one regime,
while at least one change point exists between the expansion and recession regimes.
Referring to a business cycle of around 4 years, we choose the number of intervals
K = 15, so that mK = 1136 is the longest tested time homogeneous interval used
in both simulation and empirical exercises in this paper.

2.3.5 “Oracle” Property of The Estimators

In this section, we discuss the “oracle” properties of the LPA estimators. Recall
that for the “oracle” choice k∗, (2.12) holds, and it also holds for every k ≤ k∗,
while it does not hold for any k ≥ k∗. However, the “oracle” choice Ik∗ and θIk∗
are of course unknown. The LPA algorithm tries to mimic these oracle values.
In C´ižek et al. (2009), it is proved that under the SMB condition, i.e. when
(2.12) holds, the “oracle” property of the LPA estimator θ̂Ik̂ satisfies the following
property:

For θ ∈ Θ and let maxk≤k∗ E |L(θ̃Ik∗ , θ)|r1(B1) ≤ Rr(θ), one has:

E log{1 +
|LIk∗ (θ̃Ik∗ , θ)|r

Rr(θ)
} ≤ 1 + ∆ (2.19)

Further, one obtains:

E log{1 +
|LIk∗ (θ̃Ik∗ , θ̂Ik̂)|

r

Rr(θ)
} ≤ ρ+∆ (2.20)

This property tells us that although the false alarm occurs before the “oracle”
choice, i.e. k̂ ≤ k∗, under the SMB condition, the adaptive estimator θ̂I

k̂
does not

go far from the oracle value, which implies the LPA estimator does not introduce
large errors into the estimation.

The SMB condition doesn’t hold if k̂ > k∗, which means the detected interval
is bigger than the “oracle” interval. However, the LPA estimator θ̂Ik̂ satisfies
Theorem 4.3 in C´ižek et al. (2009):
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t a b σ
t ∈ [1, 500] 0.2 0.04 0.03

t ∈ [501, 1000] 0.5 0.06 0.1
t ∈ [1001, 1500] 0.8 0.01 0.07

Table 2.1: The parameter settings for simulations of the CIR process

Let E∆Ik∗ (θ) ≤ ∆ for k∗ ≤ K, then LIk∗ (θ̃Ik∗ , θ̂)1(k̂ ≥ k∗) ≤ zk∗ ,

E log{1 +
|LIk∗ (θ̃Ik∗ , θ̂Ik̂)|

r

Rr(θ)
} ≤ ρ+∆+ log{1 + zrk∗

Rr(θ)
} (2.21)

This means that θ̂Ik̂ belongs with a high probability to the confidence interval of

the oracle estimate θ̃Ik∗ , i.e. it is still a reliable approximation for the oracle value
θIk∗ .

2.4 Simulation Study

We evaluate the performance of the LPA for the CIR model by simulations. We
simultaneously change all three parameters (at, bt, σt)

⊤ and assume there are two
change points for each parameter in the process. We tried several scenarios with
change points at different times with satisfactory results. For brevity of presenta-
tion, we concentrate here on identical time for the change points of all the three
parameters. We simulate the CIR path 100 times with the sample size T = 1500.
Table 1 summarizes the parameter settings for simulations of the CIR model, the
chosen values locate in the range of estimators from the global CIR model.

The estimators â, b̂, and σ̂ are described in Figures 2.2 to 2.5. In each figure, the
blue line respectively depicts the mean of the corresponding estimators from the
100 simulations, and the two dotted red lines are the 5%–95% pointwise confidence
intervals for the estimators, the black line describes the respective real parameter.
We use the first 250 data points as the training set referring to the moving window
estimator, then we estimate the CIR model by the LPA from time point 251 to
1500. One can observe that for the mean reversion speed a, the LPA under the null
contains the true parameter in Figure 2.2. Figure 2.3 presents the performance of
the LPA estimator b̂. Its performance is reasonable. It is obvious to detect there
are two jump points, which respectively locate around time point 300 and 800.
Taking the delayed time into consideration, the performance of b̂ coincides with
the true process. It is worth noting that the performance of the LPA estimator σ̂
is preferable to that of both â and b̂. The structural break points are evident in
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Figure 2.2: LPA estimator â with simulated CIR paths. The dotted red lines are
the 5%–95% pointwise confidence intervals of â, the blue line is the mean of â, and
the black line stands for the true process as set in Table 1.

Figure 2.4. Both the mean value and the confidence intervals of the estimator have
the same trend as the true parameter path, which indicates the LPA can capture
more precise information for volatilities.

Figure 2.5 depicts the selected longest time homogeneous interval for each time
point. One can compare the selected homogeneous intervals with the LPA estima-
tors in other figures, all of which provide consistent evidence for its performance.
In the initial setting, we have two jumps respectively at 250, and 750. One can
easily detect in Figure 2.5 that the two jump points locate respectively around
300 and 800, due to some delayed time. Further, both the 5%–95% pointwise
confidence intervals and the mean of the length of the selected intervals coincide
with the parameter settings.

2.5 Empirical Study

2.5.1 Data Description

We use the three month treasury bill rate from Federal Reserve Bank of St. Louis
as a proxy for the short rate. It has been used frequently in the term structure
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Figure 2.3: LPA estimator b̂ with simulated CIR paths.The dotted red lines are
the 5%–95% confidence interval of b̂, the blue line is the mean of b̂, and the black
line stands for the true process as set in Table 1.

literature. The data consists of 2840 daily observations, ranging from 2 January,
1998 to 13 May, 2009. The summary statistics are shown in Table 2.2. The short
rate and its daily change are displayed in Figure 2.6. Apparently, the volatility
of the short rate is time varying. As described in the literature, there are several
jumps and break points in the whole period; the short rate from 1999 to 2001 is
little volatile, while from mid 2007 to 2009, its volatility is higher than that in other
periods. On the basis of the phenomenon we observed from the plot the variation
of the short rate is time varying, therefore, we fit the CIR model separately with
three different scenarios, the first estimation is using the whole sample, another is
with the observations from the beginning of 1998 to the end of July 2007, and the

Mean SD Skewness Kurtosis
rt 0.0319 0.0176 -0.1159 -1.4104
drt −1.764× 10−5 0.0006 -0.7467 34.4856

Table 2.2: Statistical summary of three month treasury bill rate (daily data) with
the period from 2 January,1998 to 13 May, 2009
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Figure 2.4: LPA estimator σ̂ with simulated CIR paths. The dotted red lines are
the 5%–95% confidence interval of σ̂, the blue line is the mean of σ̂, and the black
line stands for true process as set in Table 1.

last estimated period is from August 2007 to May 2009. The results are presented
in Table 2.3. All three parameters differ significantly during the three different
periods. For instance, â is around 0.26 from the whole sample, and it changes
to 0.14 when the observations range from 1998 to 2007, and in the last period, it
jumps a relative high value 3.69. Similar performance can be detected for the long
run mean b̂. Interestingly, for the volatility, it is relatively low from 1998 to 2007,
while it increases to 0.228 in the last period, which also can be verified by Figure
2.6. The volatility of the interest rate at that time is quite high.

Sample Size â b̂ σ̂
19980102–20090513 0.2657 0.0153 0.0944
19980102–20070731 0.1424 0.0252 0.0428
20070731–20090513 3.6792 0.0081 0.2280

Table 2.3: Estimated parameters of CIR model by MLE with three different time
periods.
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Figure 2.5: The length of time homogenous intervals for simulated CIR paths. The
dotted red lines are the 5%–95% confidence interval, the blue lines is the mean of
the estimators length of time homogeneous intervals.

2.5.2 Empirical Results

Firstly, we use the moving window estimation to investigate the stability of the
coefficients in the CIR model. We specify three window sizes as l = 250, l = 500,
l = 750, corresponding to one-year, two-year and three-year periods. Figure 2.7,
2.8 and 2.9 separately presents the moving window estimates â, b̂ and σ̂. Quite
similar performances are illustrated both in â and b̂. One can find that large
variations exist in the process. The moving window estimator â with a very large
variation is shown in Figure 2.7. It is not surprising that â as in the simulation
is very sensitive to the data and the length of interval, even for the window size
l = 750, it still varies a lot. Similarly, big jumps exist in b̂. It can be negative at
some point, and always fluctuates a lot in different periods. However, the volatility
σ̂ performs in a much more stable way. It keeps almost the same value except in
the last periods, where it jumps to a high volatility level.

The critical values are calculated from 500 Monte Carlo runs. We simulate
the CIR paths with different combinations of â, b̂, σ̂ which are chosen from the
estimators using different subsamples of the real data. The performance of the
critical values is described in Figure 2.10. One can notice, the critical value is a
decreasing function with respect to the log length of intervals, which is consistent
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Figure 2.6: Three month treasury bill rate: 19980102—20090513. Top panel:
Daily yields; Bottom panel: Changes of daily yields.
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Figure 2.7: Moving window estimator â with window sizes 250, 500 and 750 (from
left to right).

with the theory mentioned above. Moreover, although the parameter settings are
different for the simulation, under the null, there are no very significant differences
between the critical values. That is, the critical values are not sensitive to the
parameters values we choose. We therefore choose the critical values based on the
values estimated globally from data, i.e. θ⊤0 = (0.2657, 0.0153, 0.0944)⊤.

The LPA results are shown from Figures 2.11 to 2.14. The performance of â
from the LPA is very similarly like that of the moving window estimator â. It
varies a lot during the period, since the interest rate volatility is characterized
by a fast mean reverting behaviour reflecting the impact of transient economic
shocks, such as central bank announcements of base rate changes. b̂ performs
volatile in different periods, which is consistent with the behaviour of the length
of selected time homogeneous interval described in Figure 2.14. It is relatively
stable from 1999 to 2000, while its variation becomes larger in 2001 to 2003. From
2003 to 2007, it turns to be stable again, however in the last period, it reverts to
a large variation again. σ̂ performs relatively stable compared with the other two
estimators in the CIR model during the whole time series. Whereas, we can still
find three different regimes: from 2001 to 2003, the fluctuation of σ̂ is increased;
from mid 2007, the volatility jumps to a high level, which is also reflected in the
length of the intervals Ik̂ in Figure 2.14.

Figure 2.14 describes the selected time homogeneous interval for each time point
t. Here we evaluate from 1999, and treat the first year as a time homogeneous
interval. We can compare the performance of the LPA with that of the moving
window method.

19



0 500 1000 1500 2000
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

750

0 500 1000 1500 2000
−0.4

−0.2

0

0.2

0.4

0.6

500

0 1000 2000

−0.4

−0.2

0

0.2

0.4

0.6

250

Figure 2.8: Moving window estimator b̂ with window sizes 250, 500 and 750 (from
left to right).

Please note that the interval Ik̂ can drop rapidly when the LPA diagnoses a
change point. After with a drop, the intervals increase slowly as the LPA gets
more confidence into stability of parameters. Moreover, it is worth noting that
the length of the selected time homogeneous interval has a close relationship with
the regimes of the macroeconomy. On one hand, the recession regime induces
shorter homogeneous intervals, and on the other hand, the length is extended
in the blooming periods, where the macroeconomy is in a stable state. Let us
first analyze the short rate before 2001. In that period, the economic activity
continued to expand briskly, and the variation of the short rate was relatively
small from the time series plot. We go on to compare the short rate in 2001-2003
with the corresponding selected time homogeneous interval. In this period, the US
economy went into the recession period. It was influenced by the terrorist attack
on 11 September, 2001, the stock market crash in 2002 and the war in Iraq in 2003,
which induced a quite fluctuate macroeconomy: for example, increased oil prices,
overstretched investment, too high productivity. All of these factors led to short
selected homogeneous intervals. From 2004 to 2006, the economy headed towards
a stable state again. The selected intervals lasted longer than before. From 2007,
the situation reversed, another global recession came. Again it can be confirmed
by the shorter length of the selected intervals, the same as in the period from
2001-2003.

Figure 2.15 depicts the performance of in-sample fitting. The real data is
described by the black line, and the two red dashed lines stand for 10%–90%
pointwise confidence intervals from the simulated data, where the parameters are
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Figure 2.9: Moving window estimator σ̂ with window sizes 250, 500 and 750 (from
left to right).

set the same as that in calculating the critical values. The blue line is the in
sample fitting path with the values estimated by the LPA, and the purple line is
one randomly selected CIR path from the simulation. One can notice that the
fitted sample path by the LPA estimator matches the real data path quite well,
i.e. the LPA has an acceptable performance for in sample fitting. The structural
break points from the fitted LPA path occur very closely to the real data path.

We further evaluate the out-of-sample forecasting performance of the LPA. We
compare the forecasting result of the LPA with that of the moving window method
by means of absolute prediction error (APE). It is defined over a prediction period
horizon H, APE(t) =

∑
h∈H |rt+h− r̂t+h|t|/|H|, where r̂t+h|t represents the interest

rate prediction by a particular model. Both one-day and ten-day ahead forecasting
are considered. Figures 2.16 to 2.18 present the comparison results. In each figure,
the left panel stands for the ratio from the forecasting with horizon of one day,
and the right panel presents the ten days ahead forecasting. It is clear to see that
the LPA performs well especially in the long horizon forecasting.

First, let us consider the result from one-day ahead forecasting. One observes
that, in general, the LPA is more preferable than the moving window estimation.
Furthermore, as we increase the window size, the variation of the ratio becomes
smaller, it is therefore obvious that the LPA performs relatively better, while when
the economy is in an unstable state, the LPA for one-day ahead forecasting can
not perform very precisely.

Next, let us discuss the prediction results with the horizon of ten days (i.e.
2 weeks). We observe that firstly in comparison with one-step forecasting, the
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Figure 2.10: Critical values for four combinations of θ, changing one or two from
a, b, σ with m0 = 40, K = 15 and initial value r0 = 0.05 referred from the real
data.
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Figure 2.11: Estimated â for CIR model using three month treasure bill rate by
the LPA.
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Figure 2.12: Estimated b̂ for CIR model using three month treasure bill rate by
the LPA.
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Figure 2.13: Estimated σ̂ for CIR model using three month treasure bill rate by
the LPA.
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Figure 2.14: The selected longest time-homogeneous intervals using three month
treasure bill rate with ρ = 0.2, and r = 0.5. The first reported time period is in
1999.

variation becomes smaller and the ratios are more stable. Secondly, the LPA
shows a superior prediction performance. It is worth noting that generally for
ten-day ahead forecasting, the LPA outperforms the moving window estimate in
the whole period. Additionally, the LPA forecasting performance improves when
we compare with longer moving window estimators, since it is not reasonable to
assume all parameters remain the same in a long period. The prediction is clearly
better no matter if it is in a stable state or in a volatile state. It is to say that
the proposed LPA method shows advantages of forecasting. Additionally, we can
confirm that the moving window estimations can not be valid in long horizon
forecasting.

Table 2.4 summarizes the prediction performance for the LPA and the moving
window (MW) estimations with the forecasting horizon of one day and ten days.
We consider the mean of absolute forecasting errors (MAE) for each method.
Note that for one-day ahead forecasting, there is no significant difference between
the result from the LPA and that from the MW, although the MW estimators
are slightly better than the estimators from the LPA, both of their MAEs are
quite small. However, in ten-day ahead forecasting, the difference becomes huge.
The LPA method performs much better than the MW method. The details are
summarized in the table. The accuracy of the MW decreases a lot compared with
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Figure 2.15: In-sample fitting for CIR model using three month treasure bill rate.
The black line is the real data; The blue line is the fitted CIR path with the
estimators by LPA; The two red lines are 10%–90% confidence intervals simulated
with the global estimators; The purple line is a random selected CIR path.
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the LPA, especially if we increase the window size, it is more obvious.
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Figure 2.16: The ratio of the absolute prediction errors between the estimators by
the LPA (numerator) and moving window estimator (denominator) with window
size 250. The left panel: One-day ahead forecasting; The right panel: Ten-day
ahead forecasting.

2.6 Conclusion

There are both considerable statistical evidence and economic reasons to believe
that the short rate is not following a stable stochastic process. We apply a mod-
ern statistical method to describe the changing dynamics of the short rate. With
the simple CIR model, and the LPA, we detect structural break points for the
short rate process, which is consistent with the conclusion from the existing lit-
erature that the dynamics of interest rate is not stable, and also coincides with
the reality. We obtain time homogenous intervals for each time point, which is
useful to explain the regime switching point. We compare our results with moving
window estimators, and the results show that the LPA performs better in both
in-sample fitting and out-of-sample forecasting, independent of it being in a stable
or unstable period.
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Figure 2.17: The ratio of the absolute prediction errors between the estimators by
the LPA (numerator) and moving window estimator (denominator) with window
size 500. The left panel: One-day ahead forecasting; The right panel: Ten-day
ahead forecasting.
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Figure 2.18: The ratio of the absolute prediction errors between the estimators by
the LPA (numerator) and moving window estimator (denominator) with window
size 750. The left panel: One-day ahead forecasting; The right panel: Ten-day
ahead forecasting.
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Forecasting Horizon MAE
l = 250 l = 500 l = 750

One Day LPA 4.7409×10−4 4.8516×10−4 4.9649×10−4

MW 4.7851×10−4 4.4181×10−4 4.1681×10−4

Ten Days LPA 0.0201 0.0215 0.0232
MW 0.1868 1.0032 1.8054

Table 2.4: The table reports the forecast evaluation criteria for one day ahead and
ten days ahead forecast of the short rate based on the LPA and moving window
(MW) estimation. The first column refers to the forecasting horizon. The second
column represents the mean absolute forecast errors according to different moving
window sizes.
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Chapter 3

Simultaneous Confidence Bands
for Expectile Regression

This chapter is based on the paper “ Simultaneous Confidence Bands for Expectile
Regression” by Guo and Härdle (2011).

3.1 Introduction

In regression function estimation, most investigations are concerned with the con-
ditional mean. Geometrically, the observations {(Xi, Yi), i = 1, . . . , n} form a
cloud of points in a Euclidean space. The mean regression function focuses on the
center of the point-cloud, given the covariate X, see Efron (1991). However, more
insights about the relation between Y and X can be gained by considering the
tails of the conditional distribution.

Asymmetric least squares estimation provides a convenient and relatively effi-
cient method of summarizing the conditional distribution of a dependent variable
given the regressors. It turns out that similar to conditional percentiles, the con-
ditional expectiles also characterize the distribution. Breckling and Chambers
(1988) proposed M -quantiles, which extend this idea by a “quantile-like” gener-
alization of regression based on asymmetric loss functions. Expectile regression,
and more general M -quantile regression, can be used to characterize the relation-
ship between a response variable and explanatory variables when the behaviour
of “non-average” individuals is of interest. Jones (1994) described that expectiles
andM -quantiles are related to means and quantiles are related to the median, and
moreover expectiles are indeed quantiles of a transformed distribution. However,
Koenker (2005) pointed out that expectiles have a more global dependence on the
form of the distribution.

The expectile curves can be key aspects of inference in various economic prob-
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lems and are of great interest in practice. Kuan et al. (2009) considered the condi-
tional autoregressive expectile (CARE) model to calculate the VaR. Expectiles are
also applied to calculate the expected shortfall in Taylor (2008). Moreover, Schn-
abel and Eilers (2009a) analyzed the relationship between gross domestic product
per capita (GDP) and average life expectancy using expectile curves. Several
well-developed methods already existed to estimate expectile curves. Schnabel
and Eilers (2009b) combined asymmetric least square and P -splines to calculate
a smooth expectile curve. In this paper, we apply the kernel smoothing tech-
niques for the expectile curve, and construct the simultaneous confidence bands
for the expectile curve, which describes a picture about the global variability of
the estimator.

Let (X1, Y1), . . ., (Xn, Yn) be i.i.d. rvs. We denote the joint probability density
function (pdf) of the rvs is f(x, y), F (x, y) is the joint cumulative distribution
function (cdf), conditional pdf is f(y|x), f(x|y) and conditional cdf F (y|x), F (x|y).
Further, x ∈ J with J a possibly infinite interval in Rd and y ∈ R. In general, X
may be a multivariate covariate.

From an optimization point of view, both quantile and expectile can be ex-
pressed as minimum contrast parameter estimators. Define ρτ (u) = |I(u ≤ 0) −
τ ||u| for 0 < τ < 1, then the τ -th quantile is expressed as argminθ E ρτ (y − θ),
where

E ρτ (y − θ) = (1− τ)

∫ θ

−∞
|y − θ|dF (y|x) + τ

∫ ∞

θ

|y − θ|dF (y|x)

where θ is the estimator of the τ expectile, and define θ ∈ I , where the compact
set I ⊂ R. With the interpretation of the contrast function ρτ (u) as the negative
log likelihood of asymmetric Laplace distribution, we can see the τ -th quantile as
a quasi maximum estimator in the location model. Changing the loss (contrast)
function to

ρτ (u) = | I(u ≤ 0)− τ |u2, τ ∈ (0, 1) (3.1)

leads to expectile. Note that for τ = 1
2
, we obtain the mean respective to the

sample average. Putting this into a regression framework, we define the conditional
expectile function (to level τ) as:

v(x) = argmin
θ

E{ρτ (y − θ)|X = x} (3.2)

Inserting (3.1) into (3.2), we obtain the expected loss function:

E{ρτ (y − θ)|X = x} = (1− τ)

∫ θ

−∞
(y − θ)2dF (y|x) + τ

∫ ∞

θ

(y − θ)2dF (y|x)

(3.3)
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From now on, we silently assume τ is fixed therefore we suppress the explicit
notion. Recall that the conditional quantile l(x) at level τ can be considered as

l(x) = inf{y ∈ R|F (y|x) ≥ τ}

Therefore, the proposed estimate ln(x) can be expressed :

ln(x) = inf{y ∈ R|F̂ (y|x) ≥ τ}

where F̂ (y|x) is the kernel estimator of F (y|x):

F̂ (y|x) =
∑n

i=1Kh(x−Xi)I(Yi ≤ y)∑n
i=1Kh(x−Xi)

In the same spirit, define GY |x(θ) as

GY |x(θ) =

∫ θ
−∞|y − θ|dF (y|x)∫∞
−∞|y − θ|dF (y|x)

Replacing θ by v(x), we get

GY |x(v) =

∫ v(x)
−∞ |y − v(x)| dF (y|x)∫∞
−∞ |y − v(x)| dF (y|x)

= τ

so v(x) can be equivalently seen as solving: GY |x(θ)− τ = 0 (w.r.t. θ). Therefore,

v(x) = G−1
Y |x(τ)

with the τth expectile curve kernel smoothing estimator:

vn(x) = Ĝ−1
Y |x(τ)

where the nonparametric estimate of GY |x(v) is

ĜY |x(θ) =

∑n
i=1Kh(x−Xi) I(Yi < y)|y − θ|∑n

i=1Kh(x−Xi)|y − θ|

Quantiles and expectiles both characterize a distribution function although
they are different in nature. As an illustration, Figure 3.1 plots curves of quantiles
and expectiles of the standard normal N(0, 1). Obviously, there is a one-to-one
mapping between quantile and expectile, see Yao and Tong (1996). For fixed x,
define w(τ) such that vw(τ)(x) = l(x), then w(τ) is related to the τ -th quantile
curve l(x) via

w(τ) =
τ l(x)−

∫ l(x)
−∞ ydF (y|x)

2E(Y |x)− 2
∫ l(x)
−∞ ydF (y|x)− (1− 2τ)l(x)

(3.4)
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Figure 3.1: Quantile Curve(blue) and Expectile Curve(green) for Standard Normal
Distribution (Color online).

l(x) is an increasing function of τ , therefore, w(τ) is also a monotonically increasing
function. Expectiles correspond to quantiles with this transformation w. However,
it is not straightforward to apply (3.4), since it depends on the conditional distribu-
tion of the regressors. For very simple distributions, it is not hard to calculate the
transformation w(τ), for example, Y ∼ U(−1, 1), then w(τ) = τ 2/(2τ 2 − 2τ + 1).
However, if the distribution is more complicated, even worse, the conditional dis-
tribution is unknown, it is hard to apply this transformation, see Jones (1994).
Therefore, it is not feasible to calculate expectiles from the corresponding quan-
tiles.

In the current paper, we apply the methodology to weather studies. Weather
risk is an uncertainty caused by weather volatility. Energy companies take posi-
tions in weather risk if it is a source of financial uncertainty. However, weather is
also a local phenomenon, since the location, the atmosphere, human activities and
some other factors influence the temperature. We investigate whether such local
factors exist. Taking two cities, Berlin and Taipei, as an example, we check whether
the performance of high expectiles and low expectiles of temperature varies over
time. To this end, we calculate the expectiles of trend and seasonality corrected
temperature.

The structure of this paper is as follows. In Section 3.2, the stochastic fluc-
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tuation of the process {vn(x) − v(x)} is studied and the simultaneous confidence
bands are presented through the equivalence of several stochastic processes. We
calculate the asymptotic distribution of vn(x), and the strong uniform consistency
rate of {vn(x) − v(x)} is discussed in this section. In Section 4.4, a Monte Carlo
study is to investigate the behaviour of vn(x) when the data is generated with the
error terms standard normally distributed. Section 4.5 considers an application in
the temperature of Berlin and Taipei. All proofs are attached in Section A.1.

3.2 Results

In light of the concepts of M -estimation as in Huber (1981), if we define ψ(u) as:

ψ(u) =
∂ρ(u)

∂u
= |I(u ≤ 0)− τ |u
= {τ − I(u ≤ 0)}|u|

vn(x) and v(x) can be treated as a zero (w.r.t. θ) of the function:

Hn(θ, x)
def
= n−1

n∑
i=1

Kh(x−Xi)ψ(Yi − θ) (3.5)

H(θ, x)
def
=

∫
R
f(x, y)ψ(y − θ)dy (3.6)

correspondingly.
Härdle (1989) has constructed the uniform confidence bands for general M -

smoothers. Härdle and Song (2009) studied the uniform confidence bands for
quantile curves. In our paper, we investigate expectile curves, one kind of M -
smoother. The loss function for quantile regression is not differentiable, however
it is differentiable for expectile when it is in the asymmetric quadratic form. There-
fore, by employing similar methods as those developed in Härdle (1989), it is shown
in this paper that

P
[
(2δ log n)1/2

{
sup
x∈J

r(x)|vn(x)− v(x)|/λ(K)1/2 − dn

}
< z

]
−→ exp{−2 exp(−z)}, as n→ ∞. (3.7)

with some adjustment of vn(x), we can see that the supreme of vn(x) − v(x)
follows the asymptotic Gumbel distribution, where r(x), δ, λ(K), dn are suitable
scaling parameters. The asymptotic result (3.7) therefore allows the construction
of simultaneous confidence bands for v(x) based on specifications of the stochastic
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fluctuation of vn(x). The strong approximation with Brownian bridge techniques
is applied in this paper to prove the asymptotic distribution of vn(x).

To construct the confidence bands, we make the following necessary assump-
tions about the distribution of (X, Y ) and the score function ψ(u) in addition to
the existence of an initial estimator whose error is a.s. uniformly bounded.
(A1) The kernel K(·) is positive, symmetric, has compact support [−A,A] and is
Lipschitz continuously differentiable with bounded derivatives;
(A2) (nh)−1/2(log n)3/2 → 0, (n log n)1/2h5/2 → 0, (nh3)−1(log n)2 6 M , M is a
constant;
(A3) h−3(log n)

∫
|y|>an fY (y)dy = O(1), fY (y) the marginal density of Y , {an}∞n=1

a sequence of constants tending to infinity as n→ ∞;
(A4) infx∈J |p(x)| > p0 > 0, where p(x) = ∂ E{ψ(Y −θ)|x}/∂θ|θ=v(x) ·fX(x), where
fX(x) is the marginal density of X;
(A5) The expectile function v(x) is Lipschitz twice continuously differentiable, for
all x ∈ J .
(A6) 0 < m1 6 fX(x) 6 M1 < ∞, x ∈ J , and the conditional density f(·|y), y ∈
R, is uniform locally Lipschitz continuous of order α̃ (ulL-α̃) on J , uniformly in
y ∈ R, with 0 < α̃ 6 1, and ψ(x) is piecewise twice continuously differentiable.

Define also

σ2(x) = E[ψ2{Y − v(x)}|x]

Hn(x) = (nh)−1

n∑
i=1

K{(x−Xi)/h}ψ{Yi − v(x)}

Dn(x) = (nh)−1∂
∑n

i=1K{(x−Xi)/h}ψ{Yi − θ}
∂θ

|θ=v(x)

and assume that σ2(x) and fX(x) are differentiable.
Assumption (A1) on the compact support of the kernel could possibly be re-

laxed by introducing a cutoff technique as in Csörgö and Hall (1982) for density
estimators. Assumption (A2) has purely technical reasons: to keep the bias at
a lower rate than the variance and to ensure the vanishing of some non-linear
remainder terms. Assumption (A3) appears in a somewhat modified form also
in Johnston (1982). Assumption (A4) guarantees that the first derivative of the
loss function, i.e. ψ(u) is differentiable. Assumptions (A5) and (A6) are common
assumptions in robust estimation as in Huber (1981), Härdle et al. (1988) that are
satisfied by exponential, and generalized hyperbolic distributions.

Zhang (1994) has proved the asymptotic normality of the nonparametric ex-
pectile. Under the Assumptions (A1) to (A4), we have:

√
nh{vn(x)− v(x)} L→ N

{
0, V (x)

}
(3.8)
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with
V (x) = λ(K)fX(x)σ

2(x)/p(x)2

where we can denote

λ(K) =

∫ A

−A
K2(u)du

σ2(x) = E[ψ2{Y − v(x)}|x]

=

∫
ψ2{y − v(x)}dF (y|x)

= τ 2
∫ ∞

v(x)

{y − v(x)}2dF (y|x) + (1− τ)2
∫ v(x)

−∞
{y − v(x)}2dF (y|x)(3.9)

p(x) = E[ψ
′{Y − v(x)}|x] · fX(x)

= {τ
∫ ∞

v(x)

dF (y|x) + (1− τ)

∫ v(x)

−∞
dF (y|x)} · fX(x) (3.10)

For the uniform strong consistency rate of vn(x) − v(x), we apply the result of
Härdle et al. (1988) by taking β(y) = ψ(y − θ), y ∈ R, for θ ∈ I, q1 = q2 = −1,
γ1(y) = max{0,−ψ(y − θ)}, γ2(y) = min{0,−ψ(y − θ)} and λ = ∞ to satisfy
the representations for the parameters there. We have the following lemma under
some specified assumptions:

LEMMA 3.2.1 Let Hn(θ, x) and H(θ, x) be given by (3.5) and (3.6). Under
Assumption (A6) and (nh/ log n)1/2 → ∞ through Assumption (A2), for some
constant A∗ not depending on n, we have a.s. as n→ ∞

sup
θ∈I

sup
x∈J

|Hn(θ, x)−H(θ, x)| ≤ A∗max{(nh/ log n)−1/2, hα̃} (3.11)

For our result on vn(·), we shall also require

inf
x∈J

∣∣ ∫ ψ{y − v(x) + ε}dF (y|x)
∣∣ > q̃|ε|, for |ε| 6 δ1, (3.12)

where δ1 and q̃ are some positive constants, see also Härdle and Luckhaus (1984).
This assumption is satisfied if there exists a constant q̃ such that f{v(x)|x} > q̃/p,
x ∈ J .

THEOREM 3.2.1 Under the conditions of Lemma 3.2.1 and also assuming (3.12)
holds, we have a.s. as n→ ∞

sup
x∈J

|vn(x)− v(x)| ≤ B∗max{(nh/ log n)−1/2, hα̃} (3.13)
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with B∗ = A∗/m1q̃ not depending on n and m1 a lower bound of fX(x). If addi-
tionally α̃ > {log(

√
log n)− log(

√
nh)}/log h, it can be further simplified to

sup
x∈J

|vn(x)− v(x)| ≤ B∗{(nh/ log n)−1/2}.

THEOREM 3.2.2 Let h = n−δ, 1
5
< δ < 1

3
with λ(K) as defined before, and

dn = (2δ log n)1/2 + (2δ log n)−1/2[log{c1(K)/π1/2}+ 1

2
(log δ + log log n)],

if c1(K) = {K2(A) +K2(−A)}/{2λ(K)} > 0

dn = (2δ log n)1/2 + (2δ log n)−1/2 log{c2(K)/2π}

otherwise with c2(K) =

∫ A

−A
{K ′(u)}2du/{2λ(K)}.

Then (3.7) holds with

r(x) = (nh)−
1
2p(x){fX(x)

σ2(x)
}

1
2

This theorem can be used to construct uniform confidence intervals for the regres-
sion function as stated in the following corollary.

COROLLARY 3.2.1 Under the assumptions of the theorem above, an approxi-
mate (1− α)× 100% confidence band over [0, 1] is

vn(x)± (nh)−1/2{σ̂2(x)λ(K)/f̂X(x)}1/2p̂−1(x){dn + c(α)(2δ log n)−1/2}

where c(α) = log 2 − log | log(1 − α)| and f̂X(x), σ̂
2(x) and p̂(x) are consistent

estimates for fX(x), σ
2(x) and p(x).

With
√
V (x) introduced, we can further write Corollary 3.2.1 as:

vn(x)± (nh)−1/2{dn + c(α)(2δ log n)−1/2}
√
V̂ (x)

where V̂ (x) is the nonparametric estimator of V (x). Bandwidth selection is quite
crucial in kernel smoothing. In this paper, we use the optimal bandwidth discussed
in Zhang (1994), which has the following form

hoptn =

(
σ2(x)λ(K)

n[Λ{v(x)|x}]2[
∫
{y − v(x)}2K2{y − v(x)}dF (y|x)]2

)1/5

(3.14)

where

Λ(θ|x) = ∂2ψ(θ|x− u)

∂u2
|u=0
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The proof is essentially based on a linearization argument after a Taylor series
expansion. The leading linear term will then be approximated in a similar way as
in Johnston (1982), Bickel and Rosenblatt (1973). The main idea behind the proof
is a strong approximation of the empirical process of {(Xi, Yi)

n
i=1} by a sequence

of Brownian bridges as proved by Tusnady (1977).
As vn(x) is the zero (w.r.t. θ) of Hn(θ, x), it follows by applying 2nd-order

Taylor expansions to Hn(θ, x) around v(x) that

vn(x)− v(x) = {Hn(x)− EHn(x)}/p(x) +Rn(x) (3.15)

where {Hn(x)− EHn(x)}/p(x) is the leading linear term and the remainder term
is written as:

Rn(x) = Hn(x){p(x)−Dn(x)}/{Dn(x) · p(x)}+ EHn(x)/p(x)

+
1

2
{vn(x)− v(x)}2 · {Dn(x)}−1 (3.16)

·(nh)−1

n∑
i=1

K{(x−Xi)/h}ψ′′{Yi − v(x) + rn(x)}, (3.17)

|rn(x)| < |vn(x)− v(x)|.
We show in Section A.1 that (Lemma A.1.1) that ∥Rn∥ = supx∈J |Rn(x)| =
Op{(nh log n)−1/2}.

Furthermore, the rescaled linear part

Yn(x) = (nh)1/2{σ2(x)fX(x)}−1/2{Hn(x)− EHn(x)}

is approximated by a sequence of Gaussian processes, leading finally to the Gaus-
sian process

Y5,n(x) = h−1/2

∫
K{(x− t)/h}dW (x). (3.18)

Drawing upon the result of Bickel and Rosenblatt (1973), we finally obtain asymp-
totically the Gumbel distribution.

We also need the Rosenblatt (1952) transformation,

T (x, y) = {FX|y(x|y), FY (y)},

which transforms (Xi, Yi) into T (Xi, Yi) = (X ′
i, Y

′
i ) mutually independent uniform

rv’s. In the event that x is a d-dimension covariate, the transformation becomes:

T (x1, x2, . . . , xd, y) = {FX1|y(x1|y), FX2|y(x2|x1, y), . . . ,
FXk|xd−1,...,x1,y(xk|xd−1, . . . , x1, y), FY (y)}. (3.19)

With the aid of this transformation, Theorem 1 of Tusnady (1977) may be applied
to obtain the following lemma.
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LEMMA 3.2.2 On a suitable probability space a sequence of Brownian bridges
Bn exists that

sup
x∈J,y∈R

|Zn(x, y)−Bn{T (x, y)}| = O{n−1/2(log n)2} a.s.,

where Zn(x, y) = n1/2{Fn(x, y)−F (x, y)} denotes the empirical process of {(Xi, Yi)}ni=1.

For d > 2, it is still an open problem which deserves further research.
Before we define the different approximating processes, let us first rewrite (3.18)

as a stochastic integral w.r.t. the empirical process Zn(x, y),

Yn(x) = {hg′(x)}−1/2

∫∫
K{(x− t)/h}ψ{y − v(x)}dZn(t, y),

g′(x) = σ2(x)fX(x).

The approximating processes are now:

Y0,n(x) = {hg(x)}−1/2

∫∫
Γn

K{(x− t)/h}ψ{y − v(x)}dZn(t, y) (3.20)

where Γn = {|y| 6 an}, g(t) = E[ψ2{y − v(x)} · I(|y| 6 an)|X = x] · fX(x)

Y1,n(x) = {hg(x)}−1/2

∫∫
Γn

K{(x− t)/h}ψ{y − v(x)}dBn{T (t, y)} (3.21)

{Bn} being the sequence of Brownian bridges from Lemma 3.2.2.

Y2,n(x) = {hg(x)}−1/2

∫∫
Γn

K{(x− t)/h}ψ{y − v(x)}dWn{T (t, y)} (3.22)

{Wn} being the sequence of Wiener processes satisfying

Bn(t
′, y′) = Wn(t

′, y′)− t′y′Wn(1, 1)

Y3,n(x) = {hg(x)}−1/2

∫∫
Γn

K{(x− t)/h}ψ{y − v(t)}dWn{T (t, y)} (3.23)

Y4,n(x) = {hg(x)}−1/2

∫
g(t)1/2K{(x− t)/h}dW (t) (3.24)

Y5,n(x) = h−1/2

∫
K{(x− t)/h}dW (t) (3.25)

{W (·)} being the Wiener process.
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Lemmas A.1.2 to A.1.7 ensure that all these processes have the same limit distri-
butions. The result then follows from

LEMMA 3.2.3 (Theorem 3.1 in Bickel and Rosenblatt (1973)) Let dn, λ(K), δ
as in Theorem 3.2.2. Let

Y5,n(x) = h−1/2

∫
K{(x− t)/h}dW (t).

Then, as n→ ∞, the supremum of Y5,n(x) has a Gumbel distribution.

P
{
(2δ log n)1/2

[
sup
x∈J

|Y5,n(x)|/{λ(K)}1/2 − dn

]
< z

}
→ exp{−2 exp(−z)}.

Same as quantile, the supremum of a nonparametric expectile converge to its
limit at a rate (log n)−1. We do not check the bootstrap confidence bands in this
paper, which can be the future work. Instead, we point out several well doc-
umented literature related to this issue. For example, Claeskens and Keilegom
(2003) discussed the bootstrap confidence bands for regression curves and their
derivatives. Partial linear quantile regression and bootstrap confidence bands are
well studied in Härdle et al. (2010). They proved that the convergence rate by
bootstrap approximation to the distribution of the supremum of a quantile esti-
mate has been improved from (log n)−1 to n−2/5.

3.3 A Monte Carlo Study

In the design of the simulation, we generate bivariate random variables {(Xi, Yi)}ni=1

with sample size n = 50, n = 100, n = 200, n = 500. The covariate X is uniformly
distributed on [0, 2]

Y = 1.5X + 2 sin(πX) + ε (3.26)

where ε ∼ N(0, 1).
Obviously, the theoretical expectiles (fixed τ) are determined by

v(x) = 1.5x+ 2 sin(πx) + vN(τ) (3.27)

where vN(τ) is the τth-expectile of the standard Normal distribution.
Figure 3.2 (in the left part) describes the simulated data (the grey points),

together with the 0.5 estimated quantile and estimated expectile and theoretical
expectile curves, which represents respectively the conditional median and con-
ditional mean and the theoretical mean. The conditional mean and conditional
median coincide with each other, since the error term is symmetrically distributed,
which is obvious in Figure 3.2. In the right part of the figure, we consider the con-
ditional 0.9 quantile and expectile curves. Via a transformation (3.4), there is a
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Figure 3.2: τ = 0.5(left) and τ = 0.9(right) Estimated Quantile and Expectile
Plot. Quantile Curve, Theoretical Expectile Curve, Estimated Expectile Curve
(Color online).

gap between the quantile curve and the expectile curve. By calculating w(τ) for
the standard normal distribution, the 0.9 quantile can be expressed by the around
0.96 expectile. The estimated expectile curve is close to the theoretical one.

Figure 3.3 shows the 95% uniform confidence bands for expectile curve, which
are represented by the two red dashed lines. We calculate both 0.1 (left) and 0.9
(right) expectile curves. The black lines stand for the corresponding 0.1 and 0.9
theoretical expectile curves, and the blue lines are the estimated expectile curves.
Obviously, the theoretical expectile curves locate in the confidence bands.

To check the performance of the calculated confidence bands, we compare the
simulated coverage probability with the nominal values for coverage probability
95% for different sample sizes. We apply this method to both 0.9 and 0.1 expectile.
Table 3.1 and Table 3.2 present the corresponding results. We run the simulation
500 times in each scenario. Obviously, the coverage probabilities improve as we
increase the sample size, and the width of the bands h becomes smaller for both
0.9 and 0.1 expectile. It is noteworthy that when the number of observation is
large enough, for example n = 500, the coverage probability is very close to the
nominal probability, especially for the 0.9 expectile.
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Figure 3.3: Uniform Confidence Bands for Expectile Curve for τ = 0.1 (Left) and
τ = 0.9 (Right). Theoretical Expectile Curve, Estimated Expectile Curve and
95% Uniform Confidence Bands (Color online).

n cp h
50 0.526 1.279
100 0.684 1.093
200 0.742 0.897
500 0.920 0.747

Table 3.1: simulated coverage probabilities of 95% confidence bands for 0.9 expec-
tile with 500 runs of simulation. cp stands for the coverage probability, and h is
the width of the band.

n cp h
50 0.386 0.859
100 0.548 0.768
200 0.741 0.691
500 0.866 0.599

Table 3.2: simulated coverage probabilities of 95% confidence bands for 0.1 expec-
tile with 500 runs of simulation. cp stands for the coverage probability, and h is
the width of the band.
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Mean SD Skewness Kurtosis Max Min
Berlin 9.66 7.89 -0.315 2.38 30.4 -18.5
Taipei 22.61 5.43 -0.349 2.13 33.0 6.5

Table 3.3: Statistical summary of the temperature in Berlin and Taipei

3.4 Application

In this part, we apply the expectile into the temperature study. We consider the
daily temperature both of Berlin and Taipei, ranging from 19480101 to 20071231,
together 21900 observations for each city. The statistical properties of the tem-
perature are summarized in Table 3.3. The Berlin temperature data was obtained
from Deutscher Wetterdienst, and the Taipei temperature data was obtained from
the center for adaptive data analysis in National Central University in Taiwan.

Before proceeding to detailed modeling and forecasting results, it is useful to
get an overall view of the daily average temperature data. Figure 3.4 displays the
average temperature series of the sample from 2002 to 2007. The black line stands
for the temperature in Taipei, and the blue line describes for the temperature in
Berlin. The time series plots reveal strong and unsurprising seasonality in aver-
age temperature: in each city, the daily average temperature moves repeatedly
and regularly through periods of high temperature (summer) and low temperature
(winter). It is well documented that seasonal volatility in the regression residu-
als appears highest during the winter months where the temperature shows high
volatility. Importantly, however, the seasonal fluctuations differ noticeably across
cities both in terms of amplitude and detail of pattern.

Based on the observed pattern, we apply a stochastic model with seasonality
and inter temporal autocorrelation, as in Benth et al. (2007). To understand the
model clearly, let us introduce the time series decomposition of the temperature,
with t = 1, · · · , 365 days, and j = 0, · · · , J years:

X365j+t = Tt,j − Λt

X365j+t =
L∑
l=1

βljX365j+t−l + εt,j

Λt = a+ bt+
M∑
m=1

cl cos{
2π(t− dm)

l · 365
} (3.28)

where Tt,j is the temperature at day t in year j, and Λt denotes the seasonality
effect. Motivation of this modeling approach can be found in Diebold and Inoue
(2001). Further studies as Campbell and Diebold (2005) has provided evidence

42



Year

T
e
m
p
e
ra
tu
re

2002 2004 2005 2006 2007

−
2
0

−
1
0

0
1
0

2
0

3
0

4
0

Figure 3.4: The time series plot of the temperature in Berlin and Taipei from
2002-2007. The black line stands for the temperature in Taipei, and the blue line
is in Berlin (Color online).
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that the parameters βlj are likely to be j independent and hence estimated con-
sistently from a global autoregressive process AR(Lj) model with Lj = L. The
analysis of the partial autocorrelations and Akaike’s Information Criterion (AIC)
suggests that a simple AR(3) model fits well the temperature evolution both in
Berlin and Taipei.

In this paper, the risk factor of temperature, which is the residual ε̂t,j from
(3.28), is studied in the expectile regression. We intend to construct the confidence
bands for the 0.01 and 0.9-expectile curves for the volatility of temperature. It
is interesting to check whether the extreme values perform differently in different
cities.

The left part of the figures describes the expectile curves for Berlin, and the
right part is for Taipei. In each figure, the thick black line depicts the average
expectile curve with the data from 1948 to 2007. The red line is the expectile for
the residuals from (3.28) with the data of the first 20 years temperature, i.e. in
the period from 1948 to 1967. The 0.9 expectile for the second 20 years (1968-
1987) residuals is described by the green line, and the blue line stands for the
expectile curve in the latest 20 years (1988-2007). The dotted lines are the 95%
confidence bands corresponding to the expectile curve with the same color. Figures
3.5 − 3.7 describe the 0.9 expectile curves for Berlin and Taipei, as well as their
corresponding confidence bands. Obviously, the variance is higher in winter-earlier
summer both in Berlin and Taipei.

Note that the behaviour of expectile curves in Berlin and Taipei is quite dif-
ferent. Firstly, the variation of the expectiles in Berlin is smaller than that of
Taipei. All the expectile curves cross with each other in the last 100 observations
of the year for Berlin, and the variance in this period is smaller. Moreover, all of
these curves nearly locate in the corresponding three confidence bands. However,
the performance of the expectile in Taipei is quite different from that of Berlin.
The expectile curves for Taipei have similar trends for each 20 years. They have
highest volatilities in January, and lowest volatility in July. More interestingly,
the expectile curve for the latest 20 years does not locate in the confidence bands
constructed using the data from the first 20 years and second 20 years, see Figure
3.5 and Figure 3.7. Similarly, the expectile curve for the first 20 years does not
locate in the confidence bands constructed using the information from the latest
20 years.

Further, let us study low expectile for the residuals of the temperature in Berlin
and Taipei. It is hard to calculate very small percentage of quantile curves, due to
the sparsity of the data, expectiles though can overcome this drawback. One can
calculate very low or very high expectiles, such as 0.01 and 0.99 expectile curves,
even when there are not so many observations. Display of the 0.01 expecitles for
the residuals and their corresponding confidence bands is given in Figures 3.8 −
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Figure 3.5: 0.9-expectile curves for Berlin (left) and Taipei (right) daily tempera-
ture residuals from 1948-2007 with the 95% uniform confidence bands for the first
20 years expectile.

3.10. One can detect that the shapes of the 0.01 expectile for Berlin and Taipei
are different. It does not fluctuate a lot during the whole year in Berlin, while the
variation in Taipei is much bigger. However, all the curves both for Berlin and
Taipei locate in their corresponding confidence bands.

As depicted in the figures, the performance of the residuals are quite different
from Berlin and Taipei, especially for high expectiles. The variation of the tem-
perature in Taipei is more volatile. One interpretation is that in the last 60 years,
Taiwan has been experiencing a fast developing period. Industrial expansion,
burning of fossil fuel and deforestation and other sectors, could be an important
factor for the bigger volatility in the temperature of Taipei. However, Germany
is well-developed in this period, especially in Berlin, where there are no intensive
industries. Therefore, one may say the residuals reveals the influence of the human
activities, which induce the different performances of the residuals of temperature.
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Figure 3.6: 0.9-expectile curves for Berlin (left) and Taipei (right) daily temper-
ature residuals from 1948-2007 with the 95% uniform confidence bands for the
second 20 years expectile.
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Figure 3.7: 0.9-expectile curves for Berlin (left) and Taipei (right) daily temper-
ature residuals from 1948-2007 with the 95% uniform confidence bands for the
latest 20 years expectile.
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Figure 3.8: 0.01-expectile curves for Berlin (left) and Taipei (right) daily tempera-
ture residuals from 1948-2007 with the 95% uniform confidence bands for the first
20 years expectile.
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Figure 3.9: 0.01-expectile curves for Berlin (left) and Taipei (right) daily temper-
ature residuals from 1948-2007 with the 95% uniform confidence bands for the
second 20 years expectile.
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Figure 3.10: 0.01-expectile curves for Berlin (left) and Taipei (right) daily tem-
perature residuals from 1948-2007 with the 95% uniform confidence bands for the
latest 20 years expectile.
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Chapter 4

Functional Data Analysis for
Generalized Quantile Regression

4.1 Introduction

Conventional regression focuses on the conditional mean, typically in the center
of the conditional distribution. In a wide spectrum of applications, other features
like the variance or the tail behavior contingent on an explanatory variable is of
interest. Increased interest focuses on the tail of the distribution, more precisely
on conditional quantile or conditional expectile.

As known, quantile regression, introduced by Koenker and Bassett (1978) has
been widely applied to capture the tail behaviour of a distribution, similarly, expec-
tile regression, provides another convenient measure of describing the conditional
distribution, Newey and Powell (1987). Based on the asymmetric contrast func-
tions, Breckling and Chambers (1988) proposedM -quantiles, which includes quan-
tile and expectile functions as special case. Jones (1994) described that expectiles
are related to means the same as quantiles are related to the median, and moreover
expectiles are indeed quantiles with a transformation function. Both quantile and
expectile can be as the minimum of the asymmetric contrasts function. Quantile
functions are to minimize the asymmetric absolute loss function, while expectile
functions, defined in L2 norm, are to minimize the asymmetric square loss func-
tion. For the generalized index of the loss function, we introduce a uniform name
for both quantile regression and expectile regression as the generalized quantile
regression.

The generalized quantile regression is widely used in financial market, demo-
graphic studies, and weather analysis, especially for the analysis of the extreme
situations. One can apply the generalized quantile function to calculate Value at
Risk (VaR) and expected shortfall (ES) in finance in Taylor (2008). It also can
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be used to study the relationship between GDP and population in demography,
Schnabel and Eilers (2009a), and Härdle and Song (2009) applied it to study the
correlation between the wage and the level of education. It is also applied in
weather study in Guo and Härdle (2011), where they investigated the volatility of
temperature in Berlin and Taipei to detect the temperature risk drivers.

Extreme behaviours are calling more and more attention, especially in meteo-
rology and agricultural economics. For instance, to avoid the loss induced by the
extreme behaviour of weather, one is interested to study the fluctuations of tem-
perature, price weather derivatives and further hedge weather risks, see Odening
et al. (2008). Weather derivative is a financial instrument to hedge the weather
risk. Temperature derivatives may be attractive for industries with temperature-
dependent profits, such as tourism or the energy sector. Rainfall derivatives are
crucial to the agriculture industry, since the productions, such as wheat, corn, rice,
etc., are sensitive to the rainfall. One can rather say that the revenue of above
mentioned sectors would have a strong correlation with the extreme fluctuations
of weather. Therefore, to investigate the extreme behavior of weather motivates
the pricing of weather derivatives and hedging the corresponding weather risk.

In reality, the temperature or rainfall data always involve high dimensional
and complex structural data over space and time. For example, in a specific ob-
served period, one always can collect the data from different locations, which can
be treated as a longitudinal data. Traditional way to analyze the temperature ex-
tremes is to estimate the quantile or expectile functions of the volatility of temper-
ature individually, Guo and Härdle (2011) and Anastasiadou and López-Cabrera
(2012). While, the traditional estimation method may ignore the common struc-
ture of these generalized quantile curves. Moreover, when estimating very high
percentage of quantile curves, due to few observations in the tail of the distribu-
tion, the estimate may show high variability.

To solve these issues, we introduce functional data analysis (FDA) to estimate
the generalized quantile functions. FDA, a detailed summary of recent work in
Ramsay and Silverman (2005), is to study the relationship between functional
random variables or with other quantities. However, the traditional studies in
functional data analysis focus on the average behavior, and numerous papers have
well described solid theoretical foundation and methodology for FDA. However,
to gain a informative description of the distribution, the percentages of the tails
are motivated to study. Cardot et al. (2005) applied FDA to the quantile regres-
sions. He assumed the explanatory variables have a functional covariate while the
response is a scalar. Hence, the conditional quantile function is a function of the
quantile index and the covariate. Instead, we fix the percentage of the general-
ized quantile, and allow the generalized quantile functions vary over individuals.
We treat the longitudinal data as observed functional data, and apply FDA to
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estimate the generalized quantile curves. We simultaneously obtain generalized
quantile curves by applying the information from a collection of individuals, in-
stead of the individual information. However, when more information are included
into the regression, it induces more parameters to be estimated, i.e. the challenge
of curse of dimensionality, see James et al. (2000).

The objective of this paper is to find several factors to explain the variation
of the generalized quantile functions. We assume that the generalized quantile
curves share some common features which can be summarized by a small number
of principal component functions. In particular, the principle components and the
common structure are modeled as penalized splines, and they can be estimated by
minimizing the asymmetric contrast loss functions. To get the convergence of the
estimators, the iteratively reweighted least squares are used for computation.

James et al. (2000) and Zhou et al. (2008) mentioned that the combination
of FDA and penalized spline methods performs well for estimating the average
behaviour when data is sparse. By simulation, we also show this method performs
well for capturing the tail behaviours. When calculating very high percentage
of the generalized quantile curves, by borrowing the common information among
individuals makes a comparable result. The temperature data in a specific ob-
served period at different weather stations can be treated as functional data. The
generalized quantile curves for the volatility of temperature are estimated by our
method. The common structure and individual departure of generalized quan-
tile curves are obtained simultaneously. Analyzing the departures can be used to
clarify the individual curves how the curves variate around the common structure
curve. Further, the principal component functions contains the information that
influences the volatility of temperature.

The structure of this paper is as follows. In Section 4.2, we briefly recall the un-
conditional and conditional generalized quantiles. Moreover, we explain the details
to estimate the generalized quantile curve for single distributions. Functional data
analysis (FDA) for generalized quantile curves is introduced in Section 4.3. Both
the model construction and estimation algorithm will be discussed in detail. In
Section 4.4, a Monte Carlo simulation is studied to investigate the performance of
our method in comparison with the traditional single curve estimation. In Section
4.5, an application considers the temperature of 150 weather stations in China in
2010. The aim is to find the risk drivers to the temperature by calculating different
percentages of expectile curves of the volatility of the temperature, we conclude
in Section 4.6. The completed algorithm is attached in Appendix.
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4.2 Generalized Regression Quantiles

Any random variable Y can be characterized by its cdf FY (y) = P (Y ≤ y), or
equivalently, by its quantile function (qf)

QY (τ) = F−1
Y (τ) = inf{y : F (y) ≥ τ}, 0 < τ < 1.

The τ -th quantile QY (τ) minimizes the expected loss,

Q(τ) = argmin
y

E{ρτ (Y − y)}, (4.1)

for the asymmetric loss function ρτ (Y − y) with

ρτ (u) = u{τ − I(u < 0)}. (4.2)

When Y is associated with a vector of covariates X, one is interested in studying
the conditional (or regression) quantile QY |X(τ |x) = F−1

Y |X=x(τ) as a function of x.
Assuming linear dependence on covariates, the τ -th theoretical regression quantile
is QY |X(τ |x) = x⊤β∗, where

β∗ = argmin
β

E{ρτ (Y −X⊤β)|X = x}. (4.3)

Koenker and Bassett (1978) used this fact to define a minimum contrast estimator
of regression quantiles. Since the loss function used in (4.1) and (4.3) can be
interpreted as asymmetrically weighted absolute errors, it is natural to consider
the asymmetrically weighted squared errors or other asymmetrically weighted loss
functions. The expectile curves of Newey and Powell (1987) are the solutions of
the optimization problem (4.3) with the loss function corresponding to

ρτ (u) = u2|τ − I(u < 0)|.

More general asymmetric loss functions have been considered by Breckling and
Chambers (1988) to define theirM -quantiles which include quantiles and expectiles
as special cases.

We now restrict our attention to a univariate covariate but consider the more
flexible nonparametric estimation. For fixed τ , the τ -th generalized regression
quantile function is defined as

lτ (x) = argmin
θ

E{ρτ (Y − θ)|X = x}, (4.4)

where ρτ (Y − y) is an asymmetric loss function. In this paper we focus on the
quantile and expectile curves, corresponding to

ρτ (u) = |u|α|τ − I(u < 0)| (4.5)
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with α = 1, 2, respectively, although with slight modifications our methodology
is generally applicable for any α > 0. According to Jones (1994), the expectiles
can be interpreted as quantiles, not of the distribution F (y|x) itself, but of a
distribution related to F (y|x). Specifically, write H(y|x) for the conditional partial
moment

∫ y
−∞ uF (du|x), and denote

G(y|x) = H(y|x)− yF (y|x)
2{H(y|x)− yF (y|x)}+ {y − µ(x)}

,

where µ(x) = H(∞|x) =
∫∞
−∞ uF (du|x) is the conditional mean function. The τ -

th expectile function of the distribution L(Y |X = x) is the quantile of G(y|x), that
is, lτ (x) = G−1(τ |x). When they are well-defined, both the conditional quantile
function and the expectile function characterize the conditional distribution, and
there is a one-to-one mapping between them, as described in Yao and Tong (1996).
Quantiles are intuitive, but expectiles are easier to compute and more efficient to
estimate, Schnabel and Eilers (2009b).

To estimate the generalized quantile functions, assume we have paired data
(Xi, Yi), i = 1, . . . , n, an i.i.d. sample from the joint distribution of (X,Y ). It
follows from (4.4) that the generalized quantile function lτ (·) minimizes the un-
conditional expected loss,

lτ (·) = argmin
f∈F

E[ρτ{Y − f(X)}], (4.6)

where F is the collection of functions such that the expectation is well-defined.
Using the method of penalized splines (Eilers and Marx, 1996; Ruppert et al.,
2003), we represent f(x) = b(x)⊤γ, where b(x) = {b1(x), . . . , bq(x)}⊤ is a vector
of B-spline basis functions and γ is a q-vector of coefficients, and minimize the
penalized avarage empirical loss,

l̂τ (·) = argmin
f(·)=b(·)⊤γ

n∑
i=1

ρτ{Yi − f(Xi)}+ λγ⊤Ωγ, (4.7)

where Ω is a penalty matrix and λ is the penalty parameter. The penalty term
is introduced to penalize the roughness of the fitted generalized quantile function
l̂τ (·). When Xi’s are evenly spaced, the penalty matrix Ω can be chosen such
that γ⊤Ωγ =

∑
i(γi+1 − 2γi + γi−1)

2 is the squared second difference penalty.
In this case, Ω = D⊤D and D is the second-differential matrix such that Dγ
creates the vector of second differences γi+1 − 2γi + γi−1. In general, the penalty
matrix Ω can be chosen to be

∫
b̈(x)b̈(x)⊤ dx such that γ⊤Ωγ =

∫
{b̈(x)⊤γ}2 dx,

where b̈(x) = {b̈1(x), . . . , b̈q(x)}⊤ denotes the vector of second derivatives of the
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basis functions. The minimizing objective function in (4.7) can be viewed as the
penalized negative log likelihood for the signal-plus-noise model

Yi = lτ (Xi) + εi = b(Xi)
⊤γ + εi, (4.8)

where εi follows a distribution with a density proportional to exp{−ρr(u)}, which
corresponds respectively to the asymmetric Laplace distribution or the asymmetric
Gaussian distribution for α = 1 and α = 2 (Koenker and Machado, 1999). Since
these distributions are rather implausible for real-world data, their likelihood is
better interpreted as a quasi-likelihood.

For expectiles (α = 2 in the definition of loss function), Schnabel and Eilers
(2009b) developed an iterative least asymmetrically weighted squares (LAWS) al-
gorithm to solve the minimization problem (4.7), by extending an idea of Newey
and Powell (1987). They rewrote the objective function in (4.7) as

n∑
i=1

wi(τ){Yi − b(Xi)
⊤γ}2 + λγ⊤Ωγ, (4.9)

where

wi(τ) =

{
τ if Yi > b(Xi)

⊤γ,

1− τ if Yi ≤ b(Xi)
⊤γ.

(4.10)

For fixed weights wi(τ)’s, the minimizing γ̂ has a closed-form expression

γ̂ = (B⊤WB + λΩ)−1B⊤WY, (4.11)

where B is a matrix whose i-th row is b(Xi)
⊤, W is the diagonal matrix whose

ith diagonal entry is wi(τ), and Y = (Y1, . . . , Yn)
⊤. Note that the weights wi(τ)’s

depend on the spline coefficient vector γ. The LAWS algorithm iterates until
convergence between computing (4.11) and updating W using (4.10) with γ being
its current value obtained from (4.11).

With a slight modification, the LAWS algorithm can also be used to calculate
the penalized spline estimator of conditional quantile functions, which correspond
to α = 1 in the asymmetric loss function. The weights for calculating the expectiles
given in (4.10) need to be replaced by

wi(τ) =


τ

|Yi − b(Xi)⊤γ|+ δ
if Yi > b(Xi)

⊤γ,

1− τ

|Yi − b(Xi)⊤γ|+ δ
if Yi ≤ b(Xi)

⊤γ,
(4.12)

where δ > 0 is a small constant used to avoid numerical problems when Yi =
b(Xi)

⊤γ is close to zero. In this case, the LAWS algorithm can be interpreted as
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a variant of Majorization-Minimization (MM) algorithm and the convergence of
the LAWS algorithm then follows from the general convergence theory of the MM
algorithm; see Hunter and Lange (2000).

One advantage of expectiles is that they can always be calculated no matter
how low or high of the generalized quantile level τ , while the empirical quantiles
can be undefined at extreme tails of the data distribution. It is also known that
estimation of expectiles is usually more efficient than that of quantiles since it
makes more effective use of data Schnabel and Eilers (2009b). However, when
τ is close to 0 or 1, we still can estimate expectiles, but quantiles exhibit high
variability, because of sparsity of data in the tails of the distribution. In the next
section, we will present a method for better quantile and expectile estimation when
there is a need to estimate a collection of generalized quantile functions and, if
these functions share some common features. We use functional data analysis
techniques to improve the estimation efficiency by borrowing strength across data
sets.

4.3 Functional data analysis for a collection of

regression quantiles

4.3.1 Approach

When we are interested in a collection of generalized quantile curves, denoted
as li(t), i = 1, . . . , N , we may treat them as functional data. Suppose li(t)’s
are independent realizations of a stochastic process l(t) defined on a compact
interval T with the mean function E{l(t)} = µ(t) and the covariance kernel
K(s, t) = Cov{l(s), l(t)}, s, t ∈ T . (To emphasize the one-dimensional natural
of the covariate, from now on we change notation for the covariate from x to t.)
If
∫
I
K(t, t)dt <∞, then Mercer’s Lemma states that there exists an orthonormal

sequence of eigen-functions (ψj) and a non-increasing and non-negative sequence
of eigenvalues (κj) such that

(Kψj)(s)
def
= K(s, t)ψj(t)dt = κjψj(s),

K(s, t) =
∞∑
j=1

κjψj(s)ψj(t),

and
∞∑
j=1

κj =

∫
I

K(t, t)dt.
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Moreover, we have the following Karhunen-Loève expansion

l(t) = µ(t) +
∞∑
j=1

√
κjξjψj(t), (4.13)

where ξj
def
= 1√

κj

∫
l(t)ψj(s)ds, E(ξj) = 0, E(ξjξk) = δj,k, j, k ∈ N, and δj,k is the

Kronecker delta.
Usually statistical estimation demands a parsimonious model for estimation

efficiency and thus the terms associated with small eigenvalues in (4.13) can be
neglected. As a result, we obtain the following factor model

li(t) = µ(t) +
K∑
k=1

fk(t)
⊤αik = µ(t) + f(t)⊤αi, (4.14)

where fk is the k-th factor with f(t) = {f1(t), · · · , fK(t)}⊤, αi = (αi1, · · · , αiK)⊤
is the vector of scores, and K is the number of factors to be used in the model.
The function µ can be interpreted as the mean function, and the factors fk’s
can be interpreted as the functional principal components James et al. (2000);
Zhou et al. (2008). Since the factor model (4.14) indicates that the collection
of generalized quantile curves share the same mean function and the same set of
principal components, it opens the door for borrowing information across data sets
to improve the estimation efficiency.

Accepting the parametrizations in (4.14), estimation of the generalized quantile
functions li’s is reduced to the estimation of the mean and principal components
functions. Using the method of penalized splines again, we represent these func-
tions in the form of basis expansions

µ(t) = b(t)⊤θµ,

f(t)⊤ = b(t)⊤Θf ,
(4.15)

where b(t) = {b1(t), · · · , bq(t)}⊤ is a q-vector of B-splines, θµ is a q-vector and
Θf = {θf,1, · · · , θf,K}⊤ is a q ×K matrix of spline coefficients. The B-splines are
normalized so that ∫

b(t)b(t)⊤dt = Iq.

Thus the estimation problem is further reduced to the estimation of spline coeffi-
cients. For identifiability, we impose the following restriction

Θ⊤
f Θf = IK .
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The above two equations imply the usual orthogonality requirements of the prin-
cipal component curves:∫

f(t)f(t)⊤dt = Θ⊤
f

∫
b(t)b(t)⊤dtΘf = IK .

Denote the observations as {Yij} with i = 1, · · · , N , j = 1, · · · , Ti. Combining
(4.14) and (4.15) yields the following data model

lij
def
= li(tij) = b(tij)

⊤θµ + b(tij)
⊤Θfαi. (4.16)

Here, the scores αi’s are treated as fixed effects instead of random effects for
convenience in applying the asymmetric loss minimization and, for identifiability,
their average is assumed to be 0. The empirical loss function for generalized
quantile estimation is

S =
N∑
i=1

Ti∑
j=1

ρτ{Yij − b(tij)
⊤θµ − b(tij)

⊤Θfαi}, (4.17)

where ρτ (u) is the asymmetric loss function defined in (4.5). To ensure the smooth-
ness of the estimates of the mean curve and the principal components curves, we
use a moderate number of knots and apply a roughness penalty to regularize the
fitted curves. The squared second derivative penalties for the mean and principal
components curves are given by

Mµ = θ⊤µ

∫
b̈(t)b̈(t)⊤ dt θµ = θ⊤µΩ θµ,

Mf =
K∑
k=1

θ⊤f,k

∫
b̈(t)b̈(t)⊤ dt θf,k =

K∑
k=1

θ⊤f,kΩ θf,k.

The penalized empirical loss function is then

S∗ = S + λµMµ + λfMf , (4.18)

where λµ and λf are nonnegative penalty parameters. Note that we use the same
penalty parameter for all principal components curves for the sake of simplicity.
We propose to minimize the penalized loss (4.18) to estimate the parameters θµ,
Θf , and αi’s. The choice of the penalty parameters will be discussed later in the
paper.

Define the vector Li = {li1, · · · , liTi}⊤ and the matrixBi = {b(ti1), · · · , b(tiTi)}⊤.
The data model can be written in matrix form as

Li = Biθµ +BiΘfαi (4.19)
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Writing Yi = (Yi1, . . . , YiTi)
⊤, the data have the following signal-plus-noise repre-

sentation
Yi = Li + εi = Biθµ +BiΘfαi + εi (4.20)

where εi is the random error vector whose components follow some asymmetric
distribution as in (4.8), corresponding to the asymmetric loss minimization for the
generalized quantile regression. Equation (4.20) has also been used in Zhou et al.
(2008) for a random effects model of functional principal components, where both
αi and εi are multivariate normally distributed. Since the signal-plus-noise model
(4.20) for generalized quantile regression is not a plausible data generating model
but rather an equivalent representation of the asymmetric loss minimization, the
EM-algorithm used in Zhou et al. (2008) can not be simply extended and justified
in the current context.

4.3.2 Algorithm

This subsection develops an iterative penalized least asymmetrically weighted
squares (PLAWS) algorithm for minimizing the penalized loss function defined
in (4.18), by defining weights in a similar manner as in (4.10) and (4.12).

We fix the quantile level τ ∈ (0, 1). To estimate the expectile curves, for
i = 1, · · · , N and j = 1, · · · , Ti, define the weights

wij =

{
τ if Yij > lij,

1− τ if Yij ≤ lij.
(4.21)

where lij = b(tij)
⊤θµ − b(tij)

⊤Θfαi is a function of the parameters. To estimate
the quantile curves, define the weights

wij =


τ

|Yij − lij|+ δ
if Yij > lij,

1− τ

|Yij − lij|+ δ
if Yij ≤ lij,

(4.22)

where lij is defined as in (4.21) and δ is a small positive constant. Using these
weights, the asymmetric loss function in (4.17) can be written as the following
weighted sum of squares

S =
N∑
i=1

Ti∑
j=1

wij{Yij − b(tij)
⊤θµ − b(tij)

⊤Θfαi}2, (4.23)

and the penalized loss function (4.18) becomes the following penalized weighted
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least squares criterion

S∗ =
N∑
i=1

(Yi −Biθµ −BiΘfαi)
⊤Wi (Yi −Biθµ −BiΘfαi)

+ λµθ
⊤
µΩ θµ + λf

K∑
k=1

θf,kΩ θf,k,

(4.24)

where Wi = diag{wi1, . . . , wiTi}. Since the weights depend on the parameters,
the PLAWS algorithm iterates until convergence between minimizing (4.24) and
updating the weights using (4.21) and (4.22).

To minimize (4.24) for fixed weights, we alternate minimization with respect
to θµ, Θf , and αi. Such minimizations have close-form solutions

θ̂µ =

{ N∑
i=1

B⊤
i WiBi + λµΩ

}−1{ N∑
i=1

B⊤
i Wi(Yi −BiΘ̂f α̂i)

}
, (4.25)

θ̂f,l =

{ N∑
i=1

α̂2
ilB

⊤
i WiBi + λfΩ

}−1{ N∑
i=1

α̂ilB
⊤
i Wi(Yi −Biθ̂µ −BiQil)

}
,

α̂i = (Θ̂⊤
f B

⊤
i WiBiΘ̂f )

−1
{
Θ̂⊤
f B

⊤
i Wi(Yi −Biθ̂µ)

}
,

where

Qil =
∑
k ̸=l

θ̂f,kα̂ik,

and i = 1, · · · , N , k, l = 1, · · · , K, θ̂f,k is the k-th column of Θ̂f .
Any iterative algorithm needs a method of obtaining initial values, which is

referred in Appendix. Moreover, one can find the details of the algorithm in
Appendix A.2.

4.3.3 Choice of Auxiliary Parameters

In the paper, for simplicity, we use equally spaced knots for the B-splines. The
choice of the number of knots to be used is not critical, as long as it is moderately
large, since the smoothness of the fitted curves is mainly controlled by the rough-
ness penalty term. For typical sparse functional datasets, 10-20 knots is often
sufficient; see Zhou et al. (2008). The optimal choice of the penalty parameter
for the single curve estimation used in initialization follows the method in Schn-
abel and Eilers (2009b). There are several well developed methods for choosing
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the auxiliary parameters in the FDA framework, such as, AIC, BIC and cross-
validation (CV). In this paper, all the auxiliary parameters, such as the number of
principal components/factors to be included, and the penalty parameters λµ and
λf , will be chosen via the 5-fold cross-validation by minimizing the cross-validated
asymmetric loss function.

4.4 Simulation

In this section, simulations are set up to investigate the performance of the FDA
method to estimate the generalized quantile curves. We compare the estimation
results from individual estimation of the expectile curves and the FDA jointly
estimation method. The general setup is written as

Yij = µ(tj) + f1(tj)α1i + f2(tj)α2i + eij (4.26)

We also assume that for i = 1, · · · , N , tj is equidistant in [0, 1], and j = 1, · · · , T .
The mean curve is µ(t) = 1 + t + exp{−(x − 0.6)2/0.05} and we set f1(t) =
sin(2πx)/

√
0.5 and f2(t) = cos(2πx)/

√
0.5. Let α1i ∼ N(0, 36), α2i ∼ N(0, 9) and

eit ∼ (0, σ2).
Different scenarios are built up by changing the sample size and the distribution

of the error terms, that is we have large sample size and small sample size. While,
we also assume the error terms to be normally distributed or time varying normally
distributed, or it can be t distributed. The distributions of the error terms are
designed:

• eit ∼ N(0, 0.5)

• eit ∼ N(0, µ(t)× 0.5)

• eit ∼ t(5)

• small sample: N = 20, T = 100

• large sample: N = 40, T = 150

The theoretical τ -th quantile and expectile, which we consider as a reference
for the estimators:

lij = li(tj) = µ(tj) + f1(tj)α1i + f2(tj)α2i + εiτ

where i = 1, · · · , N , tj = 1, · · · , T and ετ represents the corresponding τ -th theo-
retical quantile and expectile of eit. To design the criteria for the comparison, we
define
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• The individual curve:

Theoretical curve: li = µ+
K∑
k=1

fkαik

FDA estimated: l̂i,fda = Biθ̂µ +BiΘ̂f α̂i

Individually estimated: l̂i,in : Referred to Section 4.2.

• The mean curve:

Theoretical curve: m = µ(t) + eτ

FDA estimated: mfda =
1

N

N∑
i=1

Biθ̂µ

Individually estimated: min =
1

N

N∑
i=1

l̂i,in

One can evaluate the jointly estimation method (FDA) via comparing its per-
formance with other existing individual estimation methods, taking the method
in Schnabel and Eilers (2009b) as an example. Two aspects of comparison are
considered in the paper. We firstly compare the theoretical mean curve of the
estimated mean curve by the FDA method and the estimated mean curve from
single curve estimation. Meanwhile, we are also interested in how far the estimated
individual expectile curves by the two methods are from the theoretical expectile
curves. We evaluate the estimators in each scenario in terms of the MSE (mean
square errors).

Table 4.1 and ?? show the results of different methods based on 200 runs of sim-
ulations in each scenario. The first table summarize the results for 95% expectile
regressions. We compare separately the common shape curve and the individual
curves in each scenario. Moreover, the MSE from the small sample size and the
large sample size are shown in each table. Obviously, when we increase the sample
size, i.e. to increase the number of individuals as well as the observations in each
individual, the MSE from FDA and single estimation method are getting smaller.
It is worth noting that when the error term is normally distributed, both methods
perform well, that is to say, they both can provide reliable results when the error
term is not very volatile. While our FDA method provides even better result, es-
pecially when the sample size is large. However, when the volatility of the random
errors becomes larger, for instance, as we change the error term to the time-varying
with the mean of the error term as designed in scenario 2 or we change the error
term to be t distributed in scenario 3, summarized in Table 4.1, the MSE from
both methods becomes larger than that from the normally distributed. However,
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Individual Mean
Sample Size FDA Single FDA Single

N = 20, T = 100 0.0815 0.1407 0.0491 0.0288
N = 40, T = 150 0.0189 0.0709 0.0028 0.0063

N = 20, T = 100 0.1571 0.2957 0.0272 0.0377
N = 40, T = 150 0.1002 0.2197 0.0118 0.0172

N = 20, T = 100 0.2859 0.5194 0.0454 0.0556
N = 40, T = 150 0.1531 0.4087 0.0181 0.0242

Table 4.1: The mean squared errors (MSE) of the FDA and the single curve
estimation for 95% expectile curves when the error term is normally distributed
with mean 0 and variance 0.5 (Top), with variance µ(t) × 0.5 (Middle) and t(5)
distribution (Bottom).

if we increase the sample size, the difference of the between estimated common
structure curves by FDA with the theoretical one is quite small comparing with
that from the individual estimation method. One may detect that the estimated
individual curves from FDA method also outperform the single curve estimation
method. More details is summarized in the corresponding tables. Table ?? sum-
marized the result for quantile curves when the error term is normally distributed
and t(5) distributed. Similarly, the FDA method has a better performance than
single curve estimation in both large sample size and small sample size. The FDA
method has a quite smaller MSE in comparison with the individual estimation,
especially when the error term with volatile distributed. One can say that the
performance of FDA is similar for the expectile curves. However, the MSE be-
comes slightly larger than that of the expectile regressions, since for the very high
quantile, the results may contain a larger bias due to not many observations in the
tail.

Figure 4.1 shows the estimated common structure curve µ(t) by FDA method
together with the designed common shape curves for the 95% expectile curves with
the error term normally distributed, together with the 95% pointwise confidence
intervals. The blue line is the estimated common shape curve, and the black
solid one is the designed line respectively in both plots. The red dashed lines
represent the 95% confidence intervals. The left plot displays the result of the
small sample size, and the right one is for the large sample size. It is obvious
that both estimated common structure curves fit the respective true ones well,
while the one from the large data set fits slightly better, moreover, the confidence
intervals are smaller than that of the small sample size. Figure 4.2 tells us the
estimated factor curves and the real factor curves and corresponding confidence
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Figure 4.1: The estimated µ (blue), the real µ (black) and the 5%−95% pointwise
confidence intervals for 95% expectile curves when the error term is normally
distributed with mean 0 and variance 0.5. The sample size is N = 20,M = 100
(Left) and N = 40,M = 150 (Right).

intervals for the 95% expectile curves. The solid black lines stand for the first and
the second factor, the solid blue lines are the corresponding estimated factors by
FDA method. The dashed red lines are the respective confidence interval. The left
figure describes the result from the small sample size, and the right one captures
the performance for the large sample size. Similarly, the confidence intervals from
large sample size become smaller, i.e. the estimation can be more accurate. Figure
4.3 shows the estimated common structure curves of 95% quantile curves for the
simulation when the error term is normally distributed with mean 0 and variance
0.5 for both small sample size and large sample size. Figure 4.4 describes the
corresponding estimated factor curves and the real factor curves. It is no doubt
that the performance of FDA method for quantile regression is comparable with
the expectile regression.

4.5 Application

In this section, we apply the proposed FDA method to study the daily temperature
of 150 weather stations in China in year 2010. The locations of these weather
stations are shown in Figure 4.5. The data is obtained from China Meteorological
Administration.
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Figure 4.2: The estimated first factor f1 (blue), the real f1 (black) and the 5%−
95% pointwise confidence intervals for 95% expectile curves (Top). The estimated
second factor f2 (blue), the real f2 (black) and the 5%− 95% pointwise confidence
intervals for 95% expectile curves (Bottom). The error term is normally distributed
with mean 0 and variance 0.5. The sample size is N = 20,M = 100 (Left) and
N = 40,M = 150 (Right).
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Figure 4.3: The estimated µ (blue), the real µ (black) and the 5%−95% pointwise
confidence intervals for 95% quantile curves with error term normally distributed
with mean 0 and variance 0.5. The sample size is N = 20,M = 100 (Left) and
N = 40,M = 150 (Right).

Recently, a market for trading on temperature events, or more popularly, buy-
ing and selling temperature, has emerged. Financial contracts, whose value de-
pends on certain temperature events are called temperature derivatives, and pro-
vide a financial protection against undesirable weather events or a tool for spec-
ulating in future temperature levels. Temperature derivatives may be attractive
for industries with temperature-dependent profits, such as tourism or the energy
sector.

The volatility of temperature is crucial to the weather derivatives pricing, and it
also provides evidence to crop insurance, especially in China. Therefore, to study
the volatility of temperature motivates us to hedge the corresponding weather
risk. Further, we analyze the functional factors to explain these curves and the
corresponding fixed effects for all the weather stations. It would be meaningful to
see the factors affecting the variation of the temperature.

The temperature in all 150 weather stations shows a clear seasonable pattern-
lower in winter and higher in summer. The temperature record for each station
also has strong autocorrelation. Therefore, the volatility of the temperature would
be the residuals after removing the seasonal effect and the autoregressive effect.
The technology has already been well documented in the literature. Campbell and
Diebold (2005) introduced the AR-GARCH model to capture the dynamics of the
average day temperature. And more detailed description is written in Härdle and
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Figure 4.4: The estimated first factor f1 (blue), the real f1 (black) and the 5%−95%
pointwise confidence intervals for 95% quantile curves (Top). The estimated second
factor f2 (blue), the real f2 (black) and the 5%−95% pointwise confidence intervals
for 95% quantile curves (Bottom). The error term is normally distributed with
mean 0 and variance 0.5. The sample size is N = 20,M = 100 (Left) and N =
40,M = 150 (Right).
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Figure 4.5: 150 Weather Stations in China

López-Cabrera (2011). The temperature on day t for city i is to decompose the
the temperature into two parts, the seasonal part and the random part.

• The temperature at Tit on day t:

Tit = Xit + Λit

• The seasonal effect Λit:

Λit = ai + bit+
M∑
m=1

cim cos{2π(t− dim)

m · 365
}

• Xit follows an AR(pi) process:

Xit =

pi∑
j=1

βijXi,t−j + εit (4.27)

ε̂it = Xit −
pi∑
j=1

β̂ijXt−j

The variation of the temperature is expressed as ε̂it in (4.27). To understand its
performance, we investigate different percentages of expectile curves, such as, the

67



95%, 75%, 50% and the 25% expectile curves for each weather station. Following
the aforementioned algorithm, we choose all the auxiliary parameters by 5-fold
CV. In the paper, we choose K = 3 principal components for each percentage of
expectile curves to explain the large enough variance for each station. To note
that, we use different smoothing parameters λ’s for different expectiles.

Figure 4.6 describes the estimated expectile curves for these 150 weather sta-
tions in 2010, respectively, 25%, 50%, 75% and 95%. The grey lines in each plot
are the estimated individual expectile curves by our FDA method. The dashed red
lines are the pointwise intervals that cover 95% of the mass of the distributions for
the individual curves. It is obvious that these four expectile curves perform slightly
differently. The 25%,75% and 95% expectile curves vary in a relative larger range
comparing with the 50% expectile, especially the 95% expectile curves. Note that
in these four plots, for the upper tails and the mean curve, i.e, 75%, 95% and 50%
expectile curves, they have low part around observation 200, to say it is around
the beginning of July, the summer time, and two peaks appear around observation
100 and 300, which are respectively around the beginning of April and the end
of November, i.e. the spring and the fall. Hence, one can conclude that during
summer time, the volatility of the temperature in China does not change a lot,
while in spring and fall, it is relatively a little more volatile. While, for the lower
part of the distribution of the volatility, i.e. 25% expectile curves, we only have
one significant peak at position 300.

The estimated factor curves for the expectile curves are shown in Figure 4.7.
Generally, it is known that there are several factors that influence temperature,
such as latitude, altitude, distance from large bodies of water, ocean currents,
mountain barriers, air masses, prevailing wind system, and human behaviors. The
first factor has similar pattern in all these 4 expectiles, which are very flat, ex-
cept for the 50% expectile curves, further, they vary little around 1. While, the
first factor for the 50% expectile looks a little more volatile, which displays a U
shape. Therefore, the first factor for the lower and upper tails of the volatility of
temperature is time-invariant, which would be the geographical factors, such as
the latitude and the attitude and so on. The second factor for each expectile has
similar pattern, except for 95% expectile and they are more volatile comparing
with the first factor. The second factor is time varying, which can be explained by
the seasonal factor, while the 95% performs the opposite. The third factor shows
similar trend for the expectile, except for the 75% expectile curves. They are de-
creasing with time. In sum, one may say that the volatility of all these 4 different
percentages of the expectile curves is influenced by similar factors according to the
shape of the estimated factors.

Figure 4.8 to 4.10 describe respectively to the three estimated fixed effect αi’s
for all the expectile curves, which are also projected to the China map. We draw
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each point with the heat colors. One can notice that there is a clear pattern
for α1 in Figure 4.8. In the low percentage of the expectile, i.e. 25% and 50%
expectile curves, in the north and northeast part, α1 are negative values, while in
the south part, the values are positive. Oppositely, for the 75% and 95% expectile
curves, the scores are positive in the north part and negative in the south part
of China. This is consistent with the geographical knowledge. For the extreme
values of temperature always show in the north. The temperature generally has
larger change than that from the south part. The second mapping plot also shows
different allocations of the scores. For the lower expectile, the middle part show
larger values than the north and south parts, which are opposite with the 50%, 75%
and 95% expectile curves. The third mapping does not show very clear pattern as
the first two has. Moreover, please note that the scale of all αi for 50% expectile
curves is smaller than others.

4.6 Conclusion

In this paper, we provide a novel methodology to estimate the generalized quantile
curves when a family of random curves are available. Further, we deduce the close
form solutions for the generalized quantile curves. We use all the information from
the observed data, and estimate both the common shape curve and the departure
curves for each individual expectile curve. We found our method outperforms the
individually estimate method for generalized quantile regression curves, which is
verified in the simulations. In the application, we investigated different factors to
influence the volatility of the temperature. Roughly, the risk drivers for differ-
ent percentages of expectiles are quite similar. The factors which influence both
the temperature and the volatility of the temperature, can be expressed as three
factors. One is time invariant, and the other two are time varying.
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Figure 4.6: The estimated expectile curves of the volatility of the temperature for
150 weather stations cities in China in 2010 for the 25%, 50%, 75%, 95% expectiles.
The grey lines stand for the individual expectile curves estimated by the FDA
method.
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Figure 4.7: The estimated three factors for the 25%, 50%, 75%, 95% expectiles
(from left to right) curves of the volatility of the temperature of China in 2010
with the data from 150 weather stations. The black solid curve is the first factor,
the red dashed curve is the second and the green dotted curve represents the third
factor.
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Figure 4.8: The estimated fixed effect α1 for the 25%, 50%, 75% and 95% expectile
curves of the temperature variation.
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Figure 4.9: The estimated fixed effect α2 for the 25%, 50%, 75% and 95% expectile
curves of the temperature variation.
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Figure 4.10: The estimated fixed effect α3 for the 25%, 50%, 75% and 95% expectile
curves of the temperature variation.
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E. Giacomini, W. Härdle, and V. Spokoiny. Inhomogeneous dependence modeling
with time-varying copulae. Journal of Business and Economic Statistics, 27(2):
224–234, 2009.

A. Goyal and I. Welch. Predicting the equity premium with dividend ratios. Man-
agement Science, 49(5):639–654, 2003.
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W. Härdle and S. Song. Confidence bands in quantile regression. Econometric
Theory, 3:1–21, 2009.
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Appendix A

A.1 Proofs of Chapter 3

Proof of Theorem 3.2.1. By the definition of vn(x) as a zero of (3.5), we have,
for ε > 0,

if vn(x) > v(x) + ε, and then Hn{v(x) + ε, x} > 0. (A.1.1)

Now

Hn{v(x) + ε, x} 6 H{v(x) + ε, x}+ sup
θ∈I

|Hn(θ, x)−H(θ, x)|. (A.1.2)

Also, by the identity H{v(x), x} = 0, the function H{v(x) + ε, x} is not positive
and has a magnitude > m1q̃ε by assumption (A6) and (3.12), for 0 < ε < δ1. That
is, for 0 < ε < δ1,

H{v(x) + ε, x} 6 −m1q̃ε. (A.1.3)

Combining (A.1.1), (A.1.2) and (A.1.3), we have, for 0 < ε < δ1:

if vn(x) > v(x) + ε, and then sup
θ∈I

sup
x∈J

|Hn(θ, x)−H(θ, x)| > m1q̃ε.

With a similar inequality proved for the case vn(x) < v(x) + ε, we obtain, for
0 < ε < δ1:

if sup
x∈J

|vn(x)− v(x)| > ε, and then sup
θ∈I

sup
x∈J

|Hn(θ, x)−H(θ, x)| > m1q̃ε. (A.1.4)

It readily follows that (A.1.4), and (3.11) imply (3.13). �
Below we first show that ∥Rn∥∞ = supx∈J |Rn(x)| vanishes asymptotically

faster than the rate (nh log n)−1/2; for simplicity we will just use ∥ · ∥ to indicate
the sup-norm.

LEMMA A.1.1 For the remainder term Rn(t) defined in (3.16) we have

∥Rn∥ = Op{(nh log n)−1/2}. (A.1.5)
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Proof. First we have by the positivity of the kernel K,

∥Rn∥ 6
[

inf
06x61

{|Dn(x)| · p(x)}
]−1

{∥Hn∥ · ∥p−Dn∥+ ∥Dn∥ · ∥EHn∥}

+C1 · ∥vn − l∥2 ·
{

inf
06t61

|Dn(x)|
}−1

· ∥fn∥,

where fn(x) = (nh)−1
∑n

i=1K{(x−Xi)/h}.
The desired result (A.1.1) will then follow if we prove

∥Hn∥ = Op{(nh)−1/2(log n)1/2} (A.1.6)

∥p−Dn∥ = Op{(nh)−1/4(log n)−1/2} (A.1.7)

∥EHn∥ = O(h2) (A.1.8)

∥vn − v∥2 = Op{(nh)−1/2(log n)−1/2} (A.1.9)

Since (A.1.8) follows from the well-known bias calculation

EHn(x) = h−1

∫
K{(x− u)/h}E[ψ{y − v(x)}|X = u]fX(u)du = O(h2),

where O(h2) is independent of x in Parzen (1962), we have from assumption (A2)
that ∥EHn∥ = Op{(nh)−1/2(log n)−1/2}.

According to Lemma A.3 in Franke and Mwita (2003),

sup
x∈J

|Hn(x)− EHn(x)| = O{(nh)−1/2(log n)1/2}.

and the following inequality

∥Hn∥ 6 ∥Hn − EHn∥+ ∥EHn∥.
= O{(nh)−1/2(log n)1/2}+ Op{(nh)−1/2(log n)−1/2}
= O{(nh)−1/2(log n)1/2}

Statement (A.1.6) thus is obtained.
Statement (A.1.7) follows in the same way as (A.1.6) using assumption (A2)

and the Lipschitz continuity properties of K, ψ′, l.
According to the uniform consistency of vn(x)− v(x) shown before, we have

∥vn − v∥ = Op{(nh)−1/2(log n)1/2}

which implies (A.1.9).
Now the assertion of the lemma follows, since by tightness ofDn(x), inf06t61 |Dn(x)| >

q0 a.s. and thus
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∥Rn∥ = Op{(nh log n)−1/2}(1 + ∥fn∥).

Finally, by Theorem 3.1 of Bickel and Rosenblatt (1973), ∥fn∥ = Op(1); thus the
desired result ∥Rn∥ = Op{(nh log n)−1/2} follows. �

We now begin with the subsequent approximations of the processes Y0,n to Y5,n.

LEMMA A.1.2

∥Y0,n − Y1,n∥ = O{(nh)−1/2(log n)2} a.s.

Proof. Let x be fixed and put L(y) = ψ{y − v(x)} still depending on x. Using
integration by parts, we obtain∫∫

Γn

L(y)K{(x− t)/h}dZn(t, y)

=

∫ A

u=−A

∫ an

y=−an
L(y)K(u)dZn(x− h · u, y)

= −
∫ A

−A

∫ an

−an
Zn(x− h · u, y)d{L(y)K(u)}

+L(an)(an)

∫ A

−A
Zn(x− h · u, an)dK(u)

−L(−an)(−an)
∫ A

−A
Zn(x− h · u,−an)dK(u)

+K(A)
{∫ an

−an
Zn(x− h · A, y)dL(y)

+L(an)(an)Zna(x− h · A, an)− L(−an)(−an)Zn(x− h · A,−an)
}

−K(−A)
{∫ an

−an
Zn(x+ h · A, y)dL(y) + L(an)(an)Zn(x+ h · A, an)

−L(−an)(−an)Zn(x+ h · A,−an)
}
.

If we apply the same operation to Y1,n with Bn{T (x, y)} instead of Zn(x, y) and
use Lemma 3.2.2, we finally obtain

sup
06x61

h1/2g(x)1/2|Y0,n(x)− Y1,n(x)| = O{n−1/2(log n)2} a.s..

�
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LEMMA A.1.3 ∥Y1,n − Y2,n∥ = Op(h
1/2).

Proof. Note that the Jacobian of T (x, y) is f(x, y). Hence

Y1,n(x)− Y2,n(x)

=
∣∣∣{g(x)h}−1/2

∫∫
Γn

ψ{y − v(x)}K{(x− t)/h}f(t, y)dtdy
∣∣∣ · |Wn(1, 1)|.

It follows that

h−1/2∥Y1,n − Y2,n∥ 6 |Wn(1, 1)| · ∥g−1/2∥

· sup
06t61

h−1

∫∫
Γn

|ψ{y − v(x)}K{(x− t)/h}|f(t, y)dtdy.

Since ∥g−1/2∥ is bounded by assumption, we have

h−1/2∥Y1,n − Y2,n∥ 6 |Wn(1, 1)| · C4 · h−1

∫
K{(x− t)/h}dx = Op(1).

�

LEMMA A.1.4 ∥Y2,n − Y3,n∥ = Op(h
1/2).

Proof. The difference |Y2,n(x)− Y3,n(x)| may be written as∣∣∣{g(x)h}−1/2

∫∫
Γn

[ψ{y − v(x)} − ψ{y − v(t)}]K{(x− t)/h}dWn{T (t, y)}
∣∣∣.

If we use the fact that l is uniformly continuous, this is smaller than

h−1/2|g(x)|−1/2 · Op(h)

and the lemma thus follows. �

LEMMA A.1.5 ∥Y4,n − Y5,n∥ = Op(h
1/2).

Proof.

|Y4,n(x)− Y5,n(x)| = h−1/2
∣∣∣ ∫ [{ g(t)

g(x)

}1/2

− 1
]
K{(x− t)/h}dW (x)

∣∣∣
6 h−1/2

∣∣∣ ∫ A

−A
W (x− hu)

∂

∂u

[{g(x− hu)

g(x)

}1/2

− 1
]
K(u)du

∣∣∣
+h−1/2

∣∣∣K(A)W (t− hA)
[{g(x− Ah)

g(x)

}1/2

− 1
]∣∣∣

+h−1/2
∣∣∣K(−A)W (x+ hA)

[{g(x+ Ah)

g(x)

}1/2

− 1
]∣∣∣

S1,n(x) + S2,n(x) + S3,n(x), say.
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The second term can be estimated by

h−1/2∥S2,n∥ 6 K(A) · sup
06x61

|W (x− Ah)| · sup
06x61

h−1
∣∣∣[{g(x− Ah)

g(x)

}1/2

− 1
]∣∣∣;

by the mean value theorem it follows that

h−1/2∥S2,n∥ = Op(1).

The first term S1,n is estimated as

h−1/2S1,n(x) =
∣∣∣h−1

∫ A

−A
W (x− uh)K ′(u)

[{g(x− uh)

g(x)

}1/2

− 1
]
du

1

2

∫ A

−A
W (x− uh)K(u)

{g(x− uh)

g(x)

}1/2{g′(x− uh)

g(x)

}
du

∣∣∣
= |T1,n(x)− T2,n(x)|, say;

∥T2,n∥ 6 C5 ·
∫ A
−A |W (t− hu)|du = Op(1) by assumption on g(x) = σ2(x) · fX(x).

To estimate T1,n we again use the mean value theorem to conclude that

sup
06x61

h−1
∣∣∣{g(x− uh)

g(x)

}1/2

− 1
∣∣∣ < C6 · |u|;

hence

∥T1,n∥ 6 C6 · sup
06x61

∫ A

−A
|W (x− hu)|K ′(u)u/du = Op(1).

Since S3,n(x) is estimated as S2,n(x), we finally obtain the desired result. �

The next lemma shows that the truncation introduced through {an} does not
affect the limiting distribution.

LEMMA A.1.6 ∥Yn − Y0,n∥ = Op{(log n)−1/2}.

Proof. We shall only show that g′(x)−1/2h−1/2
∫∫

R−Γn
ψ{y−v(x)}K{(x−t)/h}dZn(t, y)

fulfills the lemma. The replacement of g′(x) by g(x) may be proved as in Lemma
A.4 of Johnston (1982). The quantity above is less than h−1/2∥g−1/2∥·∥

∫∫
{|y|>an} ψ{y−

v(x)}K{(x− t)/h}dZ(t, y)∥. It remains to be shown that the last factor tends to
zero at a rate Op{(log n)−1/2}. We show first that

Vn(x) = (log n)1/2h−1/2

∫∫
{|y|>an}

ψ{y − v(x)}K{(x− t)/h}dZn(t, y)

p→ 0 for all x
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and then we show tightness of Vn(x), the result then follows:

Vn(x) = (log n)1/2(nh)−1/2

n∑
i=1

[ψ{Yi − v(x)}I(|Yi| > an)K{(x−Xi)/h}

−Eψ{Yi − v(x)}I(|Yi| > an)K{(x−Xi)/h}]

=
n∑
i=1

Xn,x(x),

where {Xn,x(x)}ni=1 are i.i.d. for each n with EXn,x(x) = 0 for all x ∈ [0, 1]. We
then have

EX2
n,x(x) 6 (log n)(nh)−1 Eψ2{Yi − v(x)}I(|Yi| > an)K

2{(x−Xi)/h}
6 sup

−A6u6A
K2(u) · (log n)(nh)−1 Eψ2{Yi − v(x)}I(|Yi| > an);

hence

Var{Vn(x)} = E
{ n∑

i=1

Xn,x(x)
}2

= n · EX2
n,x(x)

6 sup
−A6u6A

K2(u)h−1(log n)

∫
{|y|>an}

fy(y)dy ·Mψ.

where Mψ denotes an upper bound for ψ2. This term tends to zero by assumption
(A3). Thus by Markov’s inequality we conclude that

Vn(x)
p→ 0 for all x ∈ [0, 1].

To prove tightness of {Vn(x)} we refer again to the following moment condition as
stated in Lemma A.1.1:

E{|Vn(x)− Vn(x1)| · |Vn(x2)− Vn(x)|} 6 C ′ · (x2 − x1)
2

C ′ denoting a constant, x ∈ [x1, x2].

We again estimate the left-hand side by Schwarz’s inequality and estimate each
factor separately,

E{Vn(x)− Vn(x1)}2 = (log n)(nh)−1 E
[ n∑
i=1

Ψn(x, x1, Xi, Yi) · I(|Yi| > an)

−E{Ψn(x, x1, Xi, Yi) · 1(|Yi| > an)}
]2
,
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where Ψn(x, x1, Xi, Yi) = ψ{Yi − v(x)}K{(x − Xi)/h} − ψ{Yi − v(x1)}K{(x1 −
X1)/h}. Since ψ, K are Lipschitz continuous except at one point and the expec-
tation is taken afterwards, it follows that

[E{Vn(x)− Vn(x1)}2]1/2

6 C7 · (log n)1/2h−3/2|x− x1| ·
{∫

{|y|>an}
fy(y)dy

}1/2

.

If we apply the same estimation to Vn(x2)− Vn(x1) we finally have

E{|Vn(x)− Vn(x1)| · |Vn(x2)− Vn(x)|}

6 C2
7(log n)h

−3|x− x1||x2 − x| ×
∫
{|y|>an}

fy(y)dy

6 C ′ · |x2 − x1|2 since x ∈ [x1, x2] by (A3).

�

LEMMA A.1.7 Let λ(K) =
∫
K2(u)du and let {dn} be as in the theorem. Then

(2δ log n)1/2[∥Y3,n∥/{λ(K)}1/2 − dn]

has the same asymptotic distribution as

(2δ log n)1/2[∥Y4,n∥/{λ(K)}1/2 − dn].

Proof. Y3,n(x) is a Gaussian process with

EY3,n(x) = 0

and covariance function

r3(x1, x2) = EY3,n(x1)Y3,n(x2)

= {g(x1)g(x2)}−1/2h−1

∫∫
Γn

ψ2{y − v(x)}K{(x1 − x)/h}

×K{(x2 − x)/h}f(t, y)dtdy

= {g(x1)g(x2)}−1/2h−1

∫∫
Γn

ψ2{y − v(x)}f(y|x)dyK{(x1 − x)/h}

×K{(x2 − x)/h}fX(x)dx

= {g(x1)g(x2)}−1/2h−1

∫
g(x)K{(x1 − x)/h}K{(x2 − x)/h}dx

= r4(x1, x2)

where r4(x1, x2) is the covariance function of the Gaussian process Y4,n(x), which
proves the lemma. �
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A.2 Algorithm in Chapter 4

A.2.1 Identification

Firstly, to make sure there exists global minima, that is to say, (4.18) is convex,
one needs a constraint on αi.

∑N
i=1 αi = 0 guarantee that the convexity of the

penalized loss function S∗. To identify Θf and α’s, note that Θfαi = Θ̃f α̃i, where
Θ̃f = ΘfC and α̃i = C−1αi for any invertible K × K matrix C. Therefore,
by requiring that Dα be diagonal and that the Θf have orthonormal columns,
we prevent reparameterization by linear transformation, for more clarification of
this issue we refer to Lemma 1 in Zhou et al. (2008). We also need to order
αi according to their second moments, since αi’s are already centered, that is
E(α2

i1) > · · · > E(α2
iK), which makes sure all the equations are identifiable.

A.2.2 The complete PLAWS Algorithm

We give the complete algorithm in this appendix. The parameters that appear
on the right hand side of the equations are all fixed at the values from the last
iteration.

1. Initialization the algorithm using the procedure described in Appendix A.2.3.

2. Update θ̂µ.

θ̂µ =

{ N∑
i=1

B⊤
i ŴiBi + λµΩ

}−1{ N∑
i=1

B⊤
i Ŵi(Yi −BiΘ̂f α̂i)

}

3. For l = 1, · · · , K, update the l-th column of Θ̂f using

θ̂f,l =

{ N∑
i=1

α̂2
ilB

⊤
i ŴiBi + λfΩ

}−1{ N∑
i=1

α̂ilB
⊤
i Ŵi(Yi −Biθ̂µ −BiQil)

}
where

Qil =
∑
k ̸=l

θ̂f,kα̂ik, i = 1, · · · , N

θ̂f,k is the k-th column of Θ̂f .

4. Orthogonalize Θf .
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5. Update (α̂1, . . . , α̂N) using

α̂i = (Θ̂⊤
f B

⊤
i ŴiBiΘ̂f )

−1
{
Θ̂⊤
f B

⊤
i Ŵi(Y si −Biθ̂µ)

6. Update the weight, defined in (4.21) for expectile and (4.22) for quantile.

7. Iterate Steps 2-6 until Convergence is reached.

A.2.3 Initial Values Selection

We propose the following procedure to initialize the PLAWS algorithm:

1. We estimate N single expectile/quantile curves l̂i(t) by applying the single
curve estimation algorithm described in Section 4.2.

2. Set L̂i = {l̂(ti1), . . . , l̂(tiTi)}⊤. Run the linear regression

L̂i = Biθµ + εi, i = 1, . . . , N, (A.2.1)

to get the initials of θ̂µ as follows

θ̂µ0 =

( N∑
i=1

B⊤
i Bi

)−1( N∑
i=1

B⊤
i L̂i

)
.

3. Calculate the residuals of the regression (A.2.1), denoted as L̃i = L̂i−Biθ̂µ0.
For each i, run the following linear regression:

L̃i = BiΓi + εi,

the solution, denoted as Γ̂i0, is used in later steps for finding initials of Θf

and αi. Set Γ̂0 = (Γ̂10, · · · , Γ̂N0).

4. Calculate the singular value decomposition of Γ̂⊤
0 :

Γ̂⊤
0 = UDV ⊤

The initial of Θf is chosen as Θ̂f = VkDk where Vk consists of the first K
columns of V and Dk is the corresponding K ×K block of D.

5. Do regression on Θ̂f

Γ̂i0 = Θ̂f (αi1, · · · , αiK) + εi (A.2.2)

to get the initials of α̂i. We centered the initial values αi’s for further iterating
procedures.

90
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