View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by edoc Publication server

Transfer of boundary conditions for DAEs of
index 1*

Katalin Balla! and Roswitha Marz?

Abstract

In this paper, the concept of Abramov’s method for transferring boundary con-
ditions posed for regular ordinary differential equations is applied to index 1 DAFEs.
Having discussed the reduction of inhomogeneous problems to homogeneous ones
and analyzed the underlying ideas of Abramov’s method, we consider boundary
value problems for index 1 linear DAEs both with constant and varying leading
matrix. We describe the relations defining the subspaces of solutions satisfying
the prescribed boundary conditions at one end of the interval. The index 1 DAEs
that realize the transfer are given and their properties are studied. The results are
reformulated for inhomogeneous index 1 DAEs, as well.
Key words: Differential-algebraic equations, boundary value problems, transfer
method

AMS(MOS) subject classification: 651.10

1 Preliminaries

1.1 Transforming to homogeneous systems

In the theory of regular linear ordinary differential equations, there exist simple tricks that
allow to transform inhomogeneous systems into homogeneous ones (of higher dimension)
and, at least at the theoretical level, the investigations may be carried out only for homo-
geneous systems. This approach simplifies the theory. Of course, the new homogeneous
system is of a special form. Therefore, when handling inhomogeneous systems, especially
when constructing efficient numerical algorithms, these specialities have to be taken into
account. Let the boundary value problem be of the following form:

(1.1.1) y' '+ B(x)y = f(z), o <z<a,
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y:(ylv"'vyn)Tv f:(flv"'vfn)Tv B:(bij)Z]‘:p

(1.1.2) CY =d,
C=(C|C,), C,Coe R™" Cr=(c), O, =(ch),

Y = (yT(xl)|yT(xT))T7 d=(dy,... dn).

We remove the inhomogeneity as done by Abramov [1]. Let § = (§1,. -, 9n, Gns1)?,
B = (bj)if2y, Y = (3" (@) ()",
) bij, i,jzl,...,n,
bij: —fi, j:n—l—l,izl,...,n
0, t=n+1l,5=1,...,n+ 1.
Next we turn to the boundary conditions. Let

N

E=(CIC), Culoe RO G= (@), ¢ = (@),
Al ci’j? i=1,...,myy=1,...n, r ngy v=1,....m,3=1,...,n,
ﬂ,” ]:n+17Z:177m7 Z] _dl_ﬂﬂ ]:n—|—17Z:177m

Together with the problem (1.1.1), (1.1.2), consider the boundary value problem

(1.1.3) y+§@w:m
(1.1.4) CY =0.

One easily verifies the following statements:

S1: Let y(x) be a solution vector of (1.1.1), (1.1.2). Then, for an arbitrarily chosen
parameter vector 3 = (f1,...,3n)T and scalar ¢ # 0, the vector function (=) e

(ecyT(x)|e)T (i.e. the last component is a nonzero constant) satisfies the equations

(1.1.3), (1.1.4).

S2: Let g(x) be a solution vector of the problem (1.1.3), (1.1.4) for some value of § =
(Bi,- -+, Bm)T, such that for some z° #,41(2°) = ¢ # 0. Then the vector function

composed of the first n components of g(x), each multiplied by 1/¢, satisfies (1.1.1)
and (1.1.2).

PROOF S1 can be obtained by simple substitution. When checking S2, it should be
noticed that due to the last equation in (1.1.3), §,41 = ¢ = const. Then, due to the

homogeneity, § = 17 is also a solution of (1.1.3) and (1.1.4) with g,41 = 1 and so
y(x) = (g1(x),...,g.(x)) satisfies the equations (1.1.1), (1.1.2).

In this context the problems (1.1.1), (1.1.2) and (1.1.3), (1.1.4) are related. Each
solution of (1.1.1), (1.1.2) gives rise to a one-dimensional subspace of solutions of (1.1.3),
(1.1.4) and any solution of (1.1.3), (1.1.4) with a non-trivial last component results in
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a solution of (1.1.1), (1.1.2). Provided that there exists no solution with the property
Ynt1 # 0, the problem (1.1.1), (1.1.2) has no solution, too.

This relationship between the inhomogeneous systems and their new homogeneous
counterparts may be useful when B(z) and f(x) have some common properties (say,
smoothness). In this case, the statements can be formulated more simply for the homoge-
neous systems. However, the price of this problem reduction are in new problem formula-
tions. When having a homogeneous system, we are usually interested in the nonexistence
of nontrivial solutions and/or in the existence of nontrivial solutions whatever they are.
Now we are interested in special nontrivial solutions (with nonzero, constant last compo-
nent), too, provided the system arose by "homogenization”.

[t is worth mentioning that boardering B(x) up to B(l‘) adds just one zero eigenvalue
to the set of eigenvalues of B(x).

The inhomogeneous systems of DAEs behave more complicated than their homoge-
neous pairs. It is interesting to know the results of the trick above when it is applied to
DAE-s. The existence and the behaviour of solutions of DAE problems is closely con-
nected with the index of the system. Thus, it is worth looking at the result of the above
"homogenization” in DAEs. In this paper we consider only DAE systems of index 1:

(1.1.5) A(z)y + B(z)y = f(z), x <z <a,.

A necessary and sufficient condition for this is that rank A = const < n and the matrix
G = A+ B(I — AT A) is invertible. Here AT is the generalized inverse of A, I — AT A is

an orthoprojector onto Ker A. The enlarged system reads
(1.1.6) A§ + Bj =0,

where

Since .
ALoa ATA 0
+ 4
AA_( . 1),
we find .
é:A+BU_Aﬂ®:(A+B%—AA)?)

and the new system remains of index 1.
Together with (1.1.5), let us consider the boundary condition

(1.1.7) CY =d,
where C| Y, d are as before. Proceeding as before, we set
(1.1.8) CY =0.

It turns out that both statements S/ and S2 remain valid analogously.
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1.2 Transfer of boundary conditions in regular ODEs

Let us return to the problems (1.1.1), (1.1.2) and (1.1.3), (1.1.4). Let us assume that in
(1.1.2) the boundary conditions are separated, i.e.

(1.2.1) Cl:(%’l),a:(&),

Che R CneR™ ™, my<n, m.,<n, m+m,=m,
rank Cpp = my  rank Co.o = m,.

Provided the conditions are non-separated, there are several tricks to transform the system
into another one with separated boundary conditions, we refer to [2, 3]. From now on we
assume the original problems to have separated boundary conditions. Set

—di, izl,...,ml,

r=my+1,...,m,

then the conditions (1.1.4) are separated too.
Here and in following sections we will consider homogeneous boundary value problems,
i.e. systems of differential equations

(1.2.2) y' 4+ B(z)y =0, x<z<uz,
and systems of differential algebraic equations of index 1
(1.2.3) A(2)y'+ B(x)y =0, x<z<ua,,
with boundary conditions

(1.2.4) CY =0,

not taking into account for the moment whether they arose originally or they originated
from an inhomogeneous problem (consequently, the mark ” ™ will not be used until
needed). The matrix C is assumed to be of the form given by (1.2.1). Throughout
the whole paper we assume B(z), f(z) € Clz, z,] and A(z) € Cay, 2]

Let M denote an (n—m)-dimensional linear subspace of vectors y € R". This subspace
can be described by a relation

(1.2.5) o'y =0, (y€ Ker "),

where ¢ € R™"™ .  rank ¢ = m, and so the columns of the matrix ¢ span M, in other
words M* = Im ¢. The columns of ¢ form a basis in M*.

The linear subspace M(x) of solutions of (1.2.2) for which M(z) (or a equivalently,
M*(z)) is prescribed for some z may be obtained using the (unique) solution of the
initial value problem for the adjoint equation

(1.2.6) ¢’ — BT (x)¢ =0,
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taking any basis in M*(z) as ¢(z) at @ = z [4]. Since, obviously, the only requirement for
the (full rank) matrix ¢(z) is to span the subspace M*(z), there are several ways different
from (1.2.6) to define it. This is precisely the central question in the so-called "initial
value methods” [3] for solving two-point boundary value problems: Find the (n — m;)-
dimensional linear subspaces M;(x) of solutions of (1.2.2) satisfying boundary conditions
Ciy(x;) = 0 prescribed at points x;, i.e. define an appropriate matrix function ¢;(z),

(1.2.7) 6i (x)y(x) = 0.

(Here the index ¢ stands for either [ or r and ¢’ stands for either I1 or r2, respectively.)
Each method has its own advantages and disadvantages. In [5], the following choice is
proposed. Take the (matrix) solution of the problem below:

(1.2.8) & — (I — ¢i( ¢ ¢i) "ol )BT i = 0,
(1.2.9) éi(z;) is any basis in M>*(z;).

Since we will return to this equation and its variants repeatedly, let us recall several results

from [5, 6].

R1: The matrix function ¢;(x) realizes a special choice of the basis in M (x):
(12.10) S (@)el(x) = 0.

R2: The initial value problem (1.2.8), (1.2.9) has a unique solution on the whole interval

(7, 2]

R3: Let ¢;(x) be the solution of (1.2.8), (1.2.9). Then the relation (1.2.7) holds iff
y(x) € Mi(z)

Remark 1. The main point in the proof is the representation of Mi-(x) in a basis
with the property (1.2.10), that is, the representation of the solution of (1.2.6) using the
unknown basis transformation matrix within M;(z) and showing that |67 (z)és(z)| and
(¢ (2)¢i(x))~Y| are uniformly bounded on the whole interval.

Remark 2. In contrast to R2, if one applies other basis transformations yielding for
example a Riccati equation, it may happen that the solution of the corresponding initial
value problem exists on a shorter interval only.

Remark 3. In fact, R1 expresses that ¢;(x) changes as smoothly as the subspace M; ()
does. This may not be the case for the solution of (1.2.6), where the basis vectors may
change very fast or become nearly linearly dependent even in smoothly varying M;(z).
This property allows larger steps in the numerical integration of (1.2.8), which in turn
gives savings in time despite of the complicated form of the equation. As a consequence

of (1.2.10), one obtains
5 (2)61(x) = const = ,

K3

i.e. an extra possibility for checking the accuracy of numerical integration.
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Remark 4. This special choice of the basis in M:(x) results in the most remarkable
property of this method. It preserves the well-conditioning of the boundary value problem,
which may not be the case for some initial value methods like simple shooting or can only
be achieved at least by extra efforts.

It is interesting to notice that, due to assumption (1.2.9), equation (1.2.8) can be
rewritten as

(1.2.11) 8 — (I — 667 )BT 61 = 0.

There are two "natural” choices for ¢;(x;):
¢i(zi) = Cii and  ¢i(x;) = Cff L,

where L; is chosen such that LZ'/L;TC = (C’Z'/CZ»:,F)_1 holds. The latter one provides & = I,
where [ is the m; x m; identity matrix.

Now we recall that (1.2.7) forms a system of linear algebraic equations to determine
y(x). Thus, one obtain at the following existence theorem:

Theorem 1.1 Let ¢;(x) and ¢,.(x) be the solutions of the problem (1.2.8),(1.2.9). Then

the space M(x) & M (x)NM,(x) of solutions of the boundary value problem (1.2.2), (1.2.4)
is of dimension n — k, where

k= rank (¢1(x)|¢r(x)) < m,
and k is independent of x € [x;,x,]. It holds that M*(x) = Im (¢:1()|¢.(2)).

PRrOOF: Take into account that R3 holds for both ¢+ = [ and ¢ = r. The resulting linear
system is simply
(é1(x)|6,(x)) " y(x) = 0.
Notice that no restriction was made on m in the formulation; we only assumed m; < n
and m, < n.
As a particular case of the above, we obtain the following

Corollary 1.1 The trivial solution y(x) = 0 is the unique solution iff k = n.(This implies
m>n.)

Assume that the problem (1.2.2), (1.2.4) has originated from an inhomogeneous prob-
lem (now n may be considered to be an n + 1 of Section 1.1, B for B there, etc.).

Theorem 1.2 The inhomogeneous problem (of dimension n — 1) is solvable iff for the
“homogenized” boundary value problem (1.2.2), (1.2.4)

em—l—l

(1.2.12) rank (¢i(2)|6,(2)]en) = rank ( dilz) ¢,(x) en )

where e, denotes a k-component column with the first k — 1 components equal to 0 and
the last one equal to 1.

The (original) inhomogeneous problem has a unique solution iff the matriz on the
left-hand side of the equation (1.2.12) is of rank n.(This implies m > n.)



2 Transfer of boundary conditions in index 1 DAEs

2.1 Auxiliary statements for index 1 DAEs

Now we return to the homogeneous DAE (1.2.3) and recall that it is said to be of index
Liff rank A(x) is const < n and G(x) def A(x) + B(z)(I — A(x)* A(x)) is nonsingular for

any . In this case the decomposition
(2.1.1) R* = Ker A(z) & S(x)
holds where

S(x) ¥ {ze R*: B(x)z € Im A(z)} = Ker [(I — A(x)A(2)T)B(x)].

S(x) is precisely the solution space for (1.2.3) and & denotes the direct sum. Exactly one
solution passes through each (xo,y0), 2o € [21, 2], Yo € S(x0). Therefore the initial value
problem for (1.2.3) with the initial value y(x¢) = yo is solvable iff yo € S(a¢). Such an
initial value is called consistent. We are interested in formulating initial value problems
with consistent initial values.

Let go € R" be an arbitrary vector. Choose y(xq) € S(x0) such that

A(zo)(y(wo) — o) = 0,
or equivalently, A(zo)tA(xo)(y(z0) — o) = 0, then
(2.1.2) y(wo) = Ps(wo)y(wo) = Ps(w0)go,  yo := Pe(0)go € S(wo).

Here P;(x) denotes the projector onto S(x) along Ker A(x).
A fundamental solution matrix Y () may be defined by

AY'+ BY =0, A(xo)(Y(x0) — 1) =0.
One easily verifies the relations
Y(z) = Py(2)Z(2)A(x0)T A(zg), Im Y(z) = S(x),

where Z(x) denotes the classical nonsingular fundamental matrix of the inherent regular
ODE:
7'+ RZ =0, Z(wo)=1I R AYAG'B— (ATA)P,.

Now consider separated boundary conditions (1.2.4), (1.2.1), keeping the assumptions of
section 1.2. The special formulation of initial conditions leads to the natural conditions

(2.1.3) CoA(z) P Alai) = Cy, 101, 02,

which we assume to be valid. The formula (2.1.3) means that the boundary conditions
are related to the inherent regular ODE. It immediately results in m; < rank A.
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Introducing the orthoprojector P(x) o

(1.2.3) as

A(z)tA(xz) we may reformulate equation

A(z)P(x)y'(x) + B(x)y(x) =0,
hence, as
A(e){[P()y(x)] = P'(x)y(x)} + Blx)y(x) = 0.
This indicates the function space

Ch = {y() y() € Clen, ], (Py)() € Ca, ]}

to be the appropriate one for the solutions of (1.2.3).
P(x)is a C! matrix function since A(x) is so. However, P(x) is not necessarily C'! because
the second coefficient matrix B(x) is supposed to be continuous only. Consequently, the
solutions may have components that are continuous only.

For a detailed discussion of the material above we refer to [7, 8].

2.2 Transfer of boundary conditions. The constant 4 case

In this section we assume A(z) = A. The adjoint equation
(2.2.1) AT¢ (z) — B(x)Té(x) =0
is also an index 1 DAE [9]. The consistent initial values belong to
Soe) e e R B(x)Te € Im AT} = Ker [(1 — AT A)B(x)7).
In analogy with (2.1.1), we have
R" = Ker AT @ S, ().

Let P.s(x) denote the projector onto S.(z) along Ker AT.
For each pair y(z), ¢(x) solving (1.2.3) and (2.2.1), respectively, we have

(6" (x)Ay(x)) = ¢"'(x)Ay(x) + ¢ (x)Ay'(x) = &' (2) By(x) — ¢" (x) By(x) = 0.

If
(2.2.2) o(x;) = Pus(xi)ATTCE

is taken, i.e. AT¢;(z;) = CT = AT ACY is chosen and ¢;(x) denotes the solution of (2.2.1)
with the initial value (2.2.2), then

(2.2.3) ol (x)Ay(z) = ¢ (wi)Ay(x,) =
Co AT PL(2)Ay(x;) = Co At Ay(2;) = Cay(xy),

thus the solution subspace M;(z) (determined by the condition Cyy(x;) = 0) is given by

(2.2.4) ¢i (¢)Ay(z) =0, (I — AAT)By(x) =0,
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Mi(z) = Ker ¢ (2)AN S(z) = Ker (AT¢y(x))' N S(x) = [Im AT¢;(2)]* N S(2).

According to section 1.2, there arises another natural choice for the value of ¢;(x;) if one
replaces Cy by LLCy in (2.2.2).

Unfortunately, solutions of (2.2.1) may behave unstably, even if the subspace defined
by the boundary condition changes slowly. As done for the regular differential problems
in [4, 5], an orthogonalization process helps to avoid these problems. So, instead of finding
the solution ¢(x) of the initial value problem for the adjoint equation we will look for a
matrix ¢ (a) that varies more smoothly. Since the subspace M;(x) is fixed, there should

be a nonsingular matrix T'(x) such that ATy ()T (x) = AT¢(x) holds.

Consider the equation
(2.2.5) AT — [ — ATp(pT AAT )T A BT = 0.
Lemma 2.1 If () solves the equation (2.2.5), we have
(2.2.6) (AT (ATY = T AATY = 0.

PROOF: Premultiplying (2.2.5) by 1T A gives
PTAATY = T AL — ATp(pT AATY) T A]BTY = 0.

Since [ — AT (pT AATY)~1pT A projects onto [Im AT)t = Ker 1T A, the result simply

follows.
Corollary 2.1
DT () AATY(2) = const = T (2) AAT Y (2) =: 11

ProoOF:
(" AATY) = T AATY 9T AATY =0,

since the transpose of (2.2.6) is also valid.

Now choose the initial value for ¢; equal to that for ¢, say, as in (2.2.2), i.e.

Alyi(xy) = CF,
(2.2.7) Yi(x;) = P*S(J}Z')AT-I_C}; respectively.

We do not show the existence of the nonsingular matrix T'(x) explicitly, we rather verify
the validity of the following

Lemma 2.2 Let ¢ and y solve the equations (1.2.3) and (2.2.5), respectively. Then

() Ay(2) =0 <= (2T Ay(z') =0 al some 2’ € [z}, x,]



ProOF:

(T Ay) = T Ay + T Ay
= B[ — ATyY(p"AATY) T Aly — 7 By
— U TBATH(UTAATY) T Ay,

This differential equation is linear with respect to 7 Ay. The zero initial value prescribed
at @ = 2’ proves the assertion from the right to the left.

Thus we have proved that the solution ¥ of (2.2.5), (2.2.7) determines precisely the
solution subspace M;(x) we are interested in, provided () exists on the whole interval
[, 2,]. The validity of the last assumption is the main point in the following

Theorem 2.1 The initial value problem (2.2.5), (2.2.7) has a unique solution ; defined
on [z, x,]; ¥i(x) determines the solution subspace M;(x) for (1.2.3) related to the condition
Ciy(wi) =0 by

Mi(z) = Ker o] ()AN S(x) = Ker (ATyy(2))T 0 S(x) = [Im ATi(2)]F 0 S(2).

PROOF: It remains to show the solvability of (2.2.5), (2.2.7) on the whole interval [z}, x,].
Consider the initial value problem

(2.2.8) n' = [T —n(n"n)~n BT P ATy =0,

n(x:) = C.
Below, the background of (2.2.8) becomes transparent: This equation may be obtained
from (2.2.5) by means of the transformation n = AT, p = P.,ATTy.

This problem is of the type (1.2.8), (1.2.9); therefore it is solvable on [z, z,] [5, 6].
Since n(z)Tn(z) = const = CyCE, the function 5(x) solves also the initial value problem

n' — [ —n(CyCh) T |BTPAT =0,

n(wi) = Ci.
Multiplying by A* A and taking into account that (I—A*A)BT P, = 0, AT+ = ATTATATH =
ATT AT A, we obtain
(AT Ap) —[I — AT Ap(CoCIY (AT AT BT P, ATT AT Ay = 0,

n(z;) = ATACT = CF.

Thus, both 7 and At An solve the same initial value problem, which is, at least locally,
uniquely solvable. Hence, n(z) = At An(x). Now, if ¢ := P.,AT*Ty, then it becomes
a solution of (2.2.5), (2.2.7) on the same interval, as the following equations will show.
Alp(z) = ATAT p(z) = AtAn(z), (o) AATY(2) = n(2)T AT PLAATP AT (),
n(x)T At An(x) = n(x)"n(z) = CCF.
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Multiplying (2.2.8) by ATATT = A*A and using the relation (I — ATA)BTP,, = 0
again, we conclude
AT — (1 — ATp(pT AAT )T AYAIBT Py = 0,

but nT ATA = pTATPLA = T A.

The equality P.st) = @ is obvious and the uniqueness of 1) comes from the theory of
initial value problems for nonlinear index 1 DAEs, see [10]. In fact, as for linear problems,
it depends on the correct formulation of initial values.

Let us briefly return to the inherent regular ODE of (1.2.3), i.e. to
(2.2.9) Y+ Rx=0, R:=ATAG'B.

Naturally, the question arises whether (2.2.8) represents the original Abramov’s method
for this ODE. The next theorem shows that this applies, indeed.

Theorem 2.2 RT = BTp AT+,

PROOF: Use the notations () := I—P, P := ATA,Q, := [-P,, P, := AAT (G .= A+BQ,
G. = AT+ BYQ., Py =1 -Q.G7'BT and G := A+Q.BQ. Since A, Q.5 form a regular

index 1 matrix pencil, G is nonsingular and we have
GlA=P, ¢7QBQ=Q, §G'P.=GAAT =PAY,
and further QG = QG (P, + Q.) = QG Q.. Next we compute
G =(I-g7PBQG™, GI'=(I-¢g"PBIQIG.
This leads to
BTP*SAT-|— — BT AT+ _ BTQ*g—lTQBTAT-|— _ (] . BTQ*g—lTQ)BTAT+
= (I- BTg—lTQ)BTAT-|—
and, on the other hand,
RT = BTGTTATA™ = BT(AG™")T AT
= BT[(A+ BQ)G™' — BQG™'TATT

= BY[I - BQ(I -G 'P.BQ)G T ATT
— BT(] o BQQ‘I)TAT"' — (] o BTQ_ITQ)BTAT"'.

Remark. Numerical integration methods applied to inital value problems for (1.2.3)
are known to work well. There is no reason for finding the inherent ODE (2.2.9) in
practice. By the same argument, instead of (2.2.8), the problem (2.2.5) should be solved
numerically. However, for a proper understanding of the situation, it is nice to have the
property stated in the Theorem 2.2.

From the results above we can now formulate the existence theorem:
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Theorem 2.3 Let y(x), .(x) be the solutions of (2.2.5) with ATey(z)) = C} and
AT, (z,) = CL, respectively. Then the solution subspace M(z) = M(z) N M,(x) of
the boundary value problem (1.2.3), (1.2.4) is of dimension n — k, where

k = rank (AT (2)| AT, (2)| BT (I — AAT)).

Moreover,
@/)l(w)TA
M(z) = Ker v (x)T A and  M*(2) = Im (ATy(2)| AT, (2)| BT (I — AAT)).
(I — AAY)B

2.3 Transfer of boundary conditions. The varying A case

Consider the index 1 DAE

(2.3.1) A(2)y'(z) + Bx)y(z) =0, x <z <z,

with the assumptions on A(z) and B(z) posed at the beginning of section 2.1. Denote
P(z) = Alz)*A(z), Puz):= Alx)A(z)*.

Obviously, A(z) = P*( JA(z) = A(x)P(z), and P, P, are C'' matrix functions.
Rewrite (2.3.1

A({[P(z)y(2)) = P'(x)y(e)} + B(x)y(x) = 0, or
(2.3.2) A(@)[P(e)y(2)]' + [B(z) — A(z) P'(2)]y(x) =

Again, we are looking for equations which provide a function ¢(x) describing the
solution manifolds under consideration by

23.3) Ha)T Ale)y(e) = 0

as before. For this purpose, we first turn to

(2.3.4) AT(P.¢) — (BT — AT'P)¢ = 0,
or, in slightly reformulated version, to

(2.3.5) AT(P.¢) — (BT + ATP. — ATy =
(2.3.6) (AT¢Y — BT¢ =

Lemma 2.3 The identity ¢(x)T A(z)y(x) = const is true for all pairs of solutionsy € C,
¢ € Clhr of (2.3.1) and (2.3.4) (or (2.3.5) or (2.3.6)), respectively.
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PRrROOF: Let () :=1 — P.

(0" Ay)' = (¢"P.APy) = (6" P.) Ay + ¢" P.A'Py + ¢" A(Py)
= (B PAY+ S PAPYy — 6T (B APy
= —¢'PAYy+¢"PAPy+¢" APy = —¢" P.A'Qy + 6" AP'y
= ¢'PAQy + ¢" APy = ¢TA(Q"+ Py = 0.
Remark that the DAE (2.3.4) ((2.3.5), (2.3.6)) is of index 1 simultaneously with (2.3.1).
Concerning initial and boundary conditions, all that was explained in section 2.1
remains valid. Hence, the solution ¢;(x) of the initial value problem for (2.3.4) with

A(z)T ¢(x;) = C¥ provides a tool for describing the solution manifold M;(z) related to
the (initial value) problem for (2.3.1) with Cyy(x;) = 0. Namely,

Mi(x) = Ker 6(x)" A(x) N 5(x)

is true.

Unfortunately, this method cannot be expected to behave well, in general. The same
stability problems as in the simpler case of regular ODEs or DAEs with constant A may
occur. This is why we are looking for a more stable representation of M;(x) again.

Following the concept of [5, 6] as done in section 2.2, we transform ¢(x) by a nonsin-
gular matrix 7'(x), ¢(x) = (x)T(x). The transformation matrix is chosen to achieve

()" A(z)(A(z) (2)) = 0.
This leads to the nonlinear DAE

(2.3.7) (AT) — [I — ATp(pT AATY) T AIBTYy = 0 or
(2.3.8)  AT(Pap) + AT Py — [I — AT (T AAT) T A1 BTy = 0.

Lemma 2.4 All solutions ©» € Cyr of (2.3.7) have the property
(23.9) D)7 A (AT h(2)) = 0.
PROOF: The proof is exactly the same as for Lemma 2.1.

Corollary 2.2
b(z) T A(x)A(x) () = const

PROOF: see Corollary 2.1.

Lemma 2.5 For solutions y € C} and ¢ € Cly of (2.3.1) and (2.3.7), respectively, the
following holds

PT()A(x)y(x) =0 <= P@NTA)y(2)) =0 at some 2’ € [x1,,].

13



ProOF:

(p"Ay) = (P P.APy) = (9T P.) Ay + T P.A'Py + T A(Py)’
TP Ay + 6T BT — AT AATE) T ALy + 6T PA Py — 0T (B — APy
= " BATY(QTAATY) T Ay — TP A'Qy + T APy
= T BATH(WTAATY) T Ay TAQ + Py
= T BATH(TAAT )T Ay = DT Ay,

Again, the equation turns out to be linear with respect to o7 Ay.

As in section 2.2, the transformation n = ATv, ¢p = P.,ATTy connects (2.3.7) with the
regular ODE (2.2.8) (now with varying A). Obviously, Theorem 2.3 about the solution
subspace remains valid (again after replacing equation (2.2.1) by (2.3.7)).

However, now the regular ODE (2.2.8) does no more represent the original Abramov’s
method applied to the inherent ODE

Y4+ R:=0, R:=ATAG'B—(ATAYP,

in general. That means, Theorem 2.2 does not hold in case of a variable coefficient A(z).
This fact is shown by Abramov [11] by means of the following example.

cosT sinx 0 0
Example. Let A(x) = ( 0 0 ), B(x) = ( Csine cosa )

o
Compute A*AG™'B = 0, BT P, AT+ = 0, but R(z) = — [ ©*50e ~sm @ ) 4

Ccos” x SN T COS T

3 Assesment of the results for the inhomogeneous
systems

3.1 Boundary value problems for regular inhomogeneous sys-
tems

Theorem 1.2 about the solution subspace may be not sufficiently transparent. It seems
appropriate to rewrite it in terms of the original inhomogeneous problem. Therefore, we
work out the intermediate results in the inhomogeneous context, too.

Let us return to the problem (1.1.1), (1.1.2), assuming that B(z) and f(x) are con-
tinuous and the boundary conditions are separated, i.e. (1.2.1) holds.

We are interested in determining the manifolds of solutions M;(z) 3 y(x) such that

d,
The results given below are based on the natural splitting of the "boardered” matrices
arising by the "homogenization” and the specialization of the previous results for these

y(x) solves the system and satisfies the boundary condition Cyy(x;) =d;, d = @ )
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systems. The matrix ¢(x) used in section 1.2 is also split, namely, the last row of ¢(x)
is considered to be a transposed column taken with negative sign and it can be handled
separately:

y(x) € Mi(x) involves xI(z)y(z) = 6(x).

The adjoint equation leads to the representation

i— BTy, = 0, xi(zi) = CF,

(3.1.1) 8§ = \Tf, 8x;)=d:.

Instead of solving the adjoint problem (3.1.1), the smooth transfer of boundary con-
ditions can be realized by

(3.1.2) X' = (L= xW DB x + xWl "y = 0,
8+ X"BYWTl = (1=8"Wlo)f =

Here W := xTy + 66T, (The indices 7 and 7’ are omitted for brevity.)
The smoothness is achieved by setting

(3.1.4) YIv + 66T =0,

which in turn yields y7y + 667 = const.
Finally, Theorem 1.1 implies immediately the following one.

Theorem 3.1 The inhomogeneous problem (1.1.1), (1.1.2) is solvable iff

5
( 5. ) € Im (X7 |x;),

r

or, equivalently, the solution(s) is (are) available from the system

Xi (2)ylx) = di(x),
X (2)y(x) = 8(x),

for any x € [x;,x,]. The rank of the matriz (xi|x,) s independent of x.

Remark. In [5], a less severe constraint is considered. Namely, the construction there is
built upon the requirement

(3.1.5) YIv' =0, x'y = const,

while in [6] both (3.1.4) and (3.1.5) are mentioned.
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3.2 Boundary value problems for index 1 inhomogeneous DAEs

Now we determine the manifolds of solutions M;(x) > y(«) such that y(z) solves the
system (1.1.5) and satisfies the separated boundary conditions

Cz'/y(l‘i) = di, d= ( cclli ) .
Again, (1.2.1) is assumed. We look for representations of the form

(3.2.1) Xi (2)A(x)y(z) = 0i(x),  Blay(x) = f(x) € Im A(z).

Corresponding to the consistent initial value problem formulation, we have to assume that
Ci = Cyu AT A. Provided A(z) = const, the adjoint system results in

ATi=B"x = 0,  xi(#i) = Pu(2)ATYCT,
(3.2.2) ; T
52» = X f, 52(1}2) :di,

see (2.2.1). Here P.; denotes the projector onto the solution space of the first equation
in (3.2.2) along Ker AT. The transfer of boundary conditions suggested in 2.2. is carried
out by the equations

(3.2.3) ATY = (I = ATYWINTA) BT + ATX\W s Ty = 0,
(324) 5/ T XTBATXW_15 o (1 _ 5TW_15)XTf —

with initial values as above. Here W := yTAATy 4 667.
These equations ensure Yy AATy' + §67" = 0. The consequence of this identity is
XTAATX + 66T = const = CZ'/CZ»:,F + d;dh

5, which can be used for checking the accuracy of
the numerical integration.

On this background, Theorem 2.1 obviously implies the next statement.

Theorem 3.2 Let vy, ., 01,0, be the solutions of the initial value problems posed for the
equations (3.2.3) and (3.2.4) with initial values given above. A function y(x) solves the
boundary value problem (1.1.5) with separated boundary conditions (1.1.7) iff it solves the
system

T
X (@) o() ) +
3.2.5 Ay(x) = , (I —=—AA")(By(x)— f(z)) =0, =z € |x,z,]
323 (50 o= (20)). (- anniByte) - ) 10

It the leading matrix A depends on x, then the only change is that in the equa-
tions (3.2.2) and (3.2.3) the expression AT’ is replaced by (ATy)', or, equivalently, by
AT(P.x) + AT'P,x, where P, is the orthogonal projector onto Im A. Anything else is the
same as for the case of a constant leading matrix A.
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4 Some general comments

1. As far as we know, this paper represents the first attempt to apply a transfer method
that is known to be especially well-conditioned for regular linear ODE’s to the case of
DAE’s. We hope for analogous advantages, e.g. with respect to shooting methods, as
they are well-known for regular ODFE’s. However, we should like to emphasize that we
consider here a special procedure for linear boundary value problems only.

2. The formally simple form of the regular ODE (2.2.8) might entice into performing
the transfer on the basis of (2.2.8) and into forming ¥ := P., ATy subsequently. Thus,
one would have the possibility to work with simple explicit integration methods. However,
one should take into account that P, = [ — Q*(AT — BTQ*)_IBT as well as ATt would
have to be computed and that (2.2.8) would lose in structure relative to the DAE (2.2.5).
It seems to us that the direct integration of (2.2.5) is simpler and more favourable even
though one has to go back to implicit methods.

3. We have not yet gained any appreciable experience concerning the selection of spe-
cial integration methods. Of course, as for the regular DAE’s, we cannot expect to find a
general answer for the DAE’s. We will report about corresponding experiments later.

4. This paper proposes a method of solution of boundary value problems for linear
differential-algebraic equations of index 1. Due to its stability properties this method
may play the same role among the methods of solution of this problem as the original
Abramov’s transfer plays among the so-called initial value methods for the solution of
boundary value problems posed for regular ordinary differential equations. One might
wish to know whether there are any reasons and hopes to extend the results to higher
index problems.

One can easily check that the homogenization as it is proposed in §1 may be carried out
in the same way and the enlarged homogeneous system preserves the index of the original
problem. Some of basic assertions in §2.3, namely, Lemma 2.3 and Lemma 2.4, Corollary
2.1 and Lemma 2.5, are independent of the index.

We emphasize that the consistency condition

y(x) € S(x) =im Ps(x) = ker Qs(x), i.e. Qs(x)y(x) =0,

which appears in the linear system to be solved has to be replaced by the corresponding
higher index consistency conditions. For this, an accurate explicit description of the re-
lated lower dimensional subspaces of S(x) is needed. For index 2 DAEs this subspace is
given, e.g. in [12], to be the image space im [[(x) C S(x) of a certain projector function,
which is constructed on its turn by further special projections as well as their derivatives.
The details take quite a bit of space (cf. [12]).

Next, recall that even for regular ODEs there is no advantage of using the linear ad-
joint equation (1.2.6) itself to realize the transfer. The point of Abramov’s method is
the nonlinear transfer by equation (1.2.8) and (2.3.7), respectively, with its nicer stability
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behaviour (cf. §1.2, Remark 3).

In the higher index case, the transfer equation (2.3.7) becomes a higher index, nonlinear,
non-Hessenberg matrix differential algebraic equation. Theorem 2.1 does not apply since
the projector P.s in (2.2.8) does not exist any more. Hence, the needed unique solvability
on the whole given interval remains under question by now.

Furthermore, with the transfer method we aim at a more realiable possibility to carry
out necessary numerical integrations. Thus, if we were not able to integrate (2.3.7) nu-
merically fairly well, the whole game of the transfer would not be of any use at all. By
now, there is no reliable integration method for that higher index nonlinear matrix DAE.
These two questions are hoped to be answered positively for the index 2 case, but for
that, considerable further effort is needed.

5.Concerning the concrete form of a possibly proper transfer for higher index DAEs,
this is not expected to be related to the transterring equation for the inherent ODE of the
DAE under consideration. As the counterexample at the end of §2 shows, even for index
1 problems with variable coefficients the relationship stated in Theorem 2.2 for constant
coefficients is no more valid.

6. Another possibility for treating index 2 problems is to regularize them to index 1
systems. These regularization methods are analyzed e.g. in [13]. Let us mention e.g. the
system

(A+eBP)y' + (B4 BPP)y = f,

which has index 1 for sufficiently small parameters ¢ # 0 provided that Ay’ 4+ By = f is
an index 2 tractable system.
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