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Abstract

In this paper� the concept of Abramov�s method for transferring boundary con�

ditions posed for regular ordinary di�erential equations is applied to index � DAEs�

Having discussed the reduction of inhomogeneous problems to homogeneous ones

and analyzed the underlying ideas of Abramov�s method� we consider boundary

value problems for index � linear DAEs both with constant and varying leading

matrix� We describe the relations de�ning the subspaces of solutions satisfying

the prescribed boundary conditions at one end of the interval� The index � DAEs

that realize the transfer are given and their properties are studied� The results are

reformulated for inhomogeneous index � DAEs� as well�
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� Preliminaries

��� Transforming to homogeneous systems

In the theory of regular linear ordinary di�erential equations� there exist simple tricks that
allow to transform inhomogeneous systems into homogeneous ones �of higher dimension�
and� at least at the theoretical level� the investigations may be carried out only for homo�
geneous systems� This approach simpli�es the theory� Of course� the new homogeneous
system is of a special form� Therefore� when handling inhomogeneous systems� especially
when constructing e�cient numerical algorithms� these specialities have to be taken into
account� Let the boundary value problem be of the following form�

y� 	B�x�y 
 f�x�� xl � x � xr��������

� This research was partially supported by Hungarian Scienti�c Research Fund� Grant No� ����

and by German Scienti�c Research Fund� Grand Ma �	
��	
�
�� Computer and Automation Institute of the Hungarian Academy of Sciences� H
���� Budapest� Hungary

Kende utca �	
���
�� Humboldt University� D
����� Berlin� Unter den Linden �� Germany

�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc Publication server

https://core.ac.uk/display/301514688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


y 
 �y�� � � � � yn�
T � f 
 �f�� � � � � fn�

T � B 
 �bij�
n
i�j���

CY 
 d������
�

C 
 �CljCr�� Cl� Cr � Rm�n� Cl 
 �clij�� Cr 
 �crij��

Y 
 �yT �xl�jy
T�xr��

T � d 
 �d�� � � � � dm��
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Next we turn to the boundary conditions� Let
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Together with the problem �������� �����
�� consider the boundary value problem

�y� 	 �B�x��y 
 ���������
�C �Y 
 ���������

One easily veri�es the following statements�

S�� Let y�x� be a solution vector of �������� �����
�� Then� for an arbitrarily chosen

parameter vector � 
 ���� � � � � �m�T and scalar c �
 �� the vector function �y�x�
def



�cyT �x�jc�T �i�e� the last component is a nonzero constant� satis�es the equations
�������� ��������

S�� Let �y�x� be a solution vector of the problem �������� ������� for some value of � 

���� � � � � �m�T � such that for some x�� �yn���x�� 
 c �
 �� Then the vector function
composed of the �rst n components of �y�x�� each multiplied by ��c� satis�es �������
and �����
��

Proof S� can be obtained by simple substitution� When checking S�� it should be
noticed that due to the last equation in �������� �yn�� � c 
 const� Then� due to the
homogeneity� �y 
 �

c
�y is also a solution of ������� and ������� with �yn�� � � and so

y�x� 
 ��y��x�� � � � � �yn�x�� satis�es the equations �������� �����
��

In this context the problems �������� �����
� and �������� ������� are related� Each
solution of �������� �����
� gives rise to a one�dimensional subspace of solutions of ��������
������� and any solution of �������� ������� with a non�trivial last component results in






a solution of �������� �����
�� Provided that there exists no solution with the property
�yn�� �
 �� the problem �������� �����
� has no solution� too�

This relationship between the inhomogeneous systems and their new homogeneous
counterparts may be useful when B�x� and f�x� have some common properties �say�
smoothness�� In this case� the statements can be formulated more simply for the homoge�
neous systems� However� the price of this problem reduction are in new problem formula�
tions� When having a homogeneous system� we are usually interested in the nonexistence
of nontrivial solutions and�or in the existence of nontrivial solutions whatever they are�
Now we are interested in special nontrivial solutions �with nonzero� constant last compo�
nent�� too� provided the system arose by �homogenization��

It is worth mentioning that boardering B�x� up to �B�x� adds just one zero eigenvalue
to the set of eigenvalues of B�x��

The inhomogeneous systems of DAEs behave more complicated than their homoge�
neous pairs� It is interesting to know the results of the trick above when it is applied to
DAE�s� The existence and the behaviour of solutions of DAE problems is closely con�
nected with the index of the system� Thus� it is worth looking at the result of the above
�homogenization� in DAEs� In this paper we consider only DAE systems of index ��

A�x�y� 	B�x�y 
 f�x�� xl � x � xr��������

A necessary and su�cient condition for this is that rank A 
 const � n and the matrix
G 
 A	 B�I � A�A� is invertible� Here A� is the generalized inverse of A� I �A�A is
an orthoprojector onto Ker A� The enlarged system reads

�A�y� 	 �B�y 
 ���������

where

�A 


�
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� �

�
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�
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�
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Since
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�
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�
�

we �nd

�G 
 �A	 �B�I � �A� �A� 


�
A	B�I �A�A� �

� �

�

and the new system remains of index ��
Together with �������� let us consider the boundary condition

CY 
 d��������

where C� Y� d are as before� Proceeding as before� we set

�C �Y 
 ���������

It turns out that both statements S� and S� remain valid analogously�
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��� Transfer of boundary conditions in regular ODEs

Let us return to the problems �������� �����
� and �������� �������� Let us assume that in
�����
� the boundary conditions are separated� i�e�

Cl 


�
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�

�
� Cr 


�
�
Cr�

�
����
���

Cl� � Rml�n� Cr� � Rmr�n� ml � n� mr � n� ml 	mr 
 m�

rank Cl� 
 ml rank Cr� 
 mr�

Provided the conditions are non�separated� there are several tricks to transform the system
into another one with separated boundary conditions� we refer to �
� ��� From now on we
assume the original problems to have separated boundary conditions� Set

�i 


�
�di� i 
 �� � � � �ml�
�� i 
 ml 	 �� � � � �m�

then the conditions ������� are separated too�
Here and in following sections we will consider homogeneous boundary value problems�

i�e� systems of di�erential equations

y� 	B�x�y 
 �� xl � x � xr����
�
�

and systems of di�erential algebraic equations of index �

A�x�y�	B�x�y 
 �� xl � x � xr����
���

with boundary conditions
CY 
 �����
���

not taking into account for the moment whether they arose originally or they originated
from an inhomogeneous problem �consequently� the mark � �� will not be used until
needed�� The matrix C is assumed to be of the form given by ���
���� Throughout
the whole paper we assume B�x�� f�x� � C�xl� xr� and A�x� � C��xl� xr��

LetM denote an �n�m��dimensional linear subspace of vectors y � Rn� This subspace
can be described by a relation

�Ty 
 �� �y � Ker �T �����
���

where � � Rn�m� rank � 
 m� and so the columns of the matrix � span M�� in other
words M� 
 Im �� The columns of � form a basis in M��

The linear subspace M�x� of solutions of ���
�
� for which M��x� �or a equivalently�
M���x�� is prescribed for some �x may be obtained using the �unique� solution of the
initial value problem for the adjoint equation

�� �BT �x�� 
 �����
���

�



taking any basis inM���x� as ���x� at x 
 �x ���� Since� obviously� the only requirement for
the �full rank� matrix ��x� is to span the subspace M��x�� there are several ways di�erent
from ���
��� to de�ne it� This is precisely the central question in the so�called �initial
value methods� ��� for solving two�point boundary value problems� Find the �n � mi��
dimensional linear subspaces Mi�x� of solutions of ���
�
� satisfying boundary conditions
Ci�y�xi� 
 � prescribed at points xi� i�e� de�ne an appropriate matrix function �i�x��

�T
i �x�y�x� 
 �����
���

�Here the index i stands for either l or r and i� stands for either l� or r
� respectively��
Each method has its own advantages and disadvantages� In ���� the following choice is
proposed� Take the �matrix� solution of the problem below�

��i � �I � �i��T
i �i����T

i �B
T�i 
 �����
���

�i�xi� is any basis in M�

i �xi�����
���

Since we will return to this equation and its variants repeatedly� let us recall several results
from ��� ���

R�� The matrix function �i�x� realizes a special choice of the basis in M�

i �x��

�T
i �x��

�

i�x� 
 �����
����

R�� The initial value problem ���
���� ���
��� has a unique solution on the whole interval
�xl� xr��

R�� Let �i�x� be the solution of ���
���� ���
���� Then the relation ���
��� holds i�
y�x� � Mi�x�

Remark �� The main point in the proof is the representation of M�

i �x� in a basis
with the property ���
����� that is� the representation of the solution of ���
��� using the
unknown basis transformation matrix within M�

i �x� and showing that j�T
i �x��i�x�j and

j��T
i �x��i�x����j are uniformly bounded on the whole interval�

Remark �� In contrast to R�� if one applies other basis transformations yielding for
example a Riccati equation� it may happen that the solution of the corresponding initial
value problem exists on a shorter interval only�

Remark �� In fact� R� expresses that �i�x� changes as smoothly as the subspace M�

i �x�
does� This may not be the case for the solution of ���
���� where the basis vectors may
change very fast or become nearly linearly dependent even in smoothly varying M�

i �x��
This property allows larger steps in the numerical integration of ���
���� which in turn
gives savings in time despite of the complicated form of the equation� As a consequence
of ���
����� one obtains

�T
i �x��i�x� 
 const 
 ��

i�e� an extra possibility for checking the accuracy of numerical integration�

�



Remark �� This special choice of the basis in M�

i �x� results in the most remarkable
property of this method� It preserves the well�conditioning of the boundary value problem�
which may not be the case for some initial value methods like simple shooting or can only
be achieved at least by extra e�orts�

It is interesting to notice that� due to assumption ���
���� equation ���
��� can be
rewritten as

��i � �I � �i�
�
i �B

T�i 
 �����
����

There are two �natural� choices for �i�xi��

�i�xi� 
 CT
i� and �i�xi� 
 CT

i� Li� �

where Li� is chosen such that Li�L
T
i� 
 �Ci�C

T
i� �

�� holds� The latter one provides � 
 I�
where I is the mi �mi identity matrix�

Now we recall that ���
��� forms a system of linear algebraic equations to determine
y�x�� Thus� one obtain at the following existence theorem�

Theorem ��� Let �l�x� and �r�x� be the solutions of the problem ���
�������
���� Then

the space M�x�
def

 Ml�x��Mr�x� of solutions of the boundary value problem ���
�
�� ���
���

is of dimension n� k� where

k 
 rank ��l�x�j�r�x�� � m�

and k is independent of x � �xl� xr�� It holds that M
��x� 
 Im ��l�x�j�r�x���

Proof� Take into account that R� holds for both i 
 l and i 
 r� The resulting linear
system is simply

��l�x�j�r�x��
Ty�x� 
 ��

Notice that no restriction was made on m in the formulation� we only assumed ml � n
and mr � n�

As a particular case of the above� we obtain the following

Corollary ��� The trivial solution y�x� � � is the unique solution i� k 
 n��This implies
m � n��

Assume that the problem ���
�
�� ���
��� has originated from an inhomogeneous prob�
lem �now n may be considered to be an n	 � of Section ���� B for �B there� etc���

Theorem ��� The inhomogeneous problem �of dimension n � �� is solvable i� for the
	homogenized	 boundary value problem ���
�
�� ���
���

rank ��l�x�j�r�x�jen� 
 rank

�
�l�x� �r�x� en

eTm��

�
����
��
�

where ek denotes a k
component column with the �rst k � � components equal to � and
the last one equal to ��

The �original� inhomogeneous problem has a unique solution i� the matrix on the
left
hand side of the equation ���
��
� is of rank n��This implies m � n��

�



� Transfer of boundary conditions in index � DAEs

��� Auxiliary statements for index � DAEs

Now we return to the homogeneous DAE ���
��� and recall that it is said to be of index

� i� rank A�x� is const � n and G�x�
def

 A�x� 	B�x��I �A�x��A�x�� is nonsingular for

any x� In this case the decomposition

Rn 
 Ker A�x�� S�x��
�����

holds where

S�x�
def

 fz � Rn � B�x�z � Im A�x�g 
 Ker ��I �A�x�A�x���B�x���

S�x� is precisely the solution space for ���
��� and � denotes the direct sum� Exactly one
solution passes through each �x�� y��� x� � �xl� xr�� y� � S�x��� Therefore the initial value
problem for ���
��� with the initial value y�x�� 
 y� is solvable i� y� � S�x��� Such an
initial value is called consistent� We are interested in formulating initial value problems
with consistent initial values�

Let �y� � Rn be an arbitrary vector� Choose y�x�� � S�x�� such that

A�x���y�x��� �y�� 
 ��

or equivalently� A�x���A�x���y�x��� �y�� 
 �� then

y�x�� 
 Ps�x��y�x�� 
 Ps�x���y�� y� �
 Ps�x���y� � S�x����
���
�

Here Ps�x� denotes the projector onto S�x� along Ker A�x��
A fundamental solution matrix Y �x� may be de�ned by

AY � 	BY 
 �� A�x���Y �x��� I� 
 ��

One easily veri�es the relations

Y �x� 
 Ps�x�Z�x�A�x��
�A�x��� Im Y �x� 
 S�x��

where Z�x� denotes the classical nonsingular fundamental matrix of the inherent regular
ODE�

Z � 	RZ 
 �� Z�x�� 
 I� R
def

 A�AG��B � �A�A��Ps�

Now consider separated boundary conditions ���
���� ���
���� keeping the assumptions of
section ��
� The special formulation of initial conditions leads to the natural conditions

Ci�A�xi�
�A�xi� 
 Ci�� l�

def

 l�� r�

def

 r
��
�����

which we assume to be valid� The formula �
����� means that the boundary conditions
are related to the inherent regular ODE� It immediately results in mi � rank A�

�



Introducing the orthoprojector P �x�
def

 A�x��A�x� we may reformulate equation

���
��� as
A�x�P �x�y��x� 	B�x�y�x� 
 ��

hence� as
A�x�f�P �x�y�x���� P ��x�y�x�g	B�x�y�x� 
 ��

This indicates the function space

C�
A

def

 fy��� � y��� � C�x�� xr�� �Py���� � C��xl� xr�g

to be the appropriate one for the solutions of ���
����
P �x� is a C� matrix function sinceA�x� is so� However� Ps�x� is not necessarily C� because
the second coe�cient matrix B�x� is supposed to be continuous only� Consequently� the
solutions may have components that are continuous only�

For a detailed discussion of the material above we refer to ��� ���

��� Transfer of boundary conditions� The constant A case

In this section we assume A�x� � A� The adjoint equation

AT���x��B�x�T��x� 
 ��
�
���

is also an index � DAE ���� The consistent initial values belong to

S��x�
def

 f� � Rn � B�x�T� � Im ATg 
 Ker ��I �A�A�B�x�T ��

In analogy with �
������ we have

Rn 
 Ker AT � S��x��

Let P�s�x� denote the projector onto S��x� along Ker AT �
For each pair y�x�� ��x� solving ���
��� and �
�
���� respectively� we have

��T �x�Ay�x��� 
 �T ��x�Ay�x� 	 �T �x�Ay��x� 
 �T �x�By�x�� �T �x�By�x� 
 ��

If
��xi� 
 P�s�xi�A

T�CT
i��
�
�
�

is taken� i�e� AT�i�xi� 
 CT
i� 
 A�ACT

i� is chosen and �i�x� denotes the solution of �
�
���
with the initial value �
�
�
�� then

�T
i �x�Ay�x� � �T

i �xi�Ay�xi� 
�
�
���


 Ci�A
�P T

�s�xi�Ay�xi� 
 Ci�A
�Ay�xi� 
 Ci�y�xi��

thus the solution subspace Mi�x� �determined by the condition Ci�y�xi� 
 �� is given by

�T
i �x�Ay�x� 
 �� �I �AA��By�x� 
 ���
�
���

�



i�e�

Mi�x� 
 Ker �T
i �x�A � S�x� 
 Ker �AT�i�x��

T � S�x� 
 �Im AT�i�x��
� � S�x��

According to section ��
� there arises another natural choice for the value of �i�xi� if one
replaces Ci� by LT

i�Ci� in �
�
�
��
Unfortunately� solutions of �
�
��� may behave unstably� even if the subspace de�ned

by the boundary condition changes slowly� As done for the regular di�erential problems
in ��� ��� an orthogonalization process helps to avoid these problems� So� instead of �nding
the solution ��x� of the initial value problem for the adjoint equation we will look for a
matrix ��x� that varies more smoothly� Since the subspace Mi�x� is �xed� there should
be a nonsingular matrix T �x� such that AT��x�T �x� 
 AT��x� holds�

Consider the equation

AT�� � �I �AT���TAAT�����TA�BT� 
 ���
�
���

Lemma ��� If ��x� solves the equation �
�
���� we have

�AT��T �AT��� � �TAAT�� � ���
�
���

Proof� Premultiplying �
�
��� by �TA gives

�TAAT�� 
 �TA�I �AT���TAAT�����TA�BT� 
 ��

Since I �AT���TAAT�����TA projects onto �Im AT��� 
 Ker �TA� the result simply
follows�

Corollary ���

�T �x�AAT��x� � const 
 �T �xi�AA
T��xi� 
� �

Proof�

��TAAT��� 
 �T �AAT� 	 �TAAT�� � ��

since the transpose of �
�
��� is also valid�

Now choose the initial value for �i equal to that for �� say� as in �
�
�
�� i�e�

AT�i�xi� 
 CT
i� �

�i�xi� 
 P�s�xi�A
T�CT

i� respectively��
�
���

We do not show the existence of the nonsingular matrix T �x� explicitly� we rather verify
the validity of the following

Lemma ��� Let � and y solve the equations ���
��� and �
�
���� respectively� Then

�T �x�Ay�x� � � 	
 ��x��TAy�x�� 
 � at some x� � �xl� xr�

�



Proof�

��TAy�� 
 �T �Ay 	 �TAy�


 �TB�I �AT���TAAT�����TA�y � �TBy


 ��TBAT���TAAT�����TAy�

This di�erential equation is linear with respect to �TAy� The zero initial value prescribed
at x 
 x� proves the assertion from the right to the left�

Thus we have proved that the solution � of �
�
���� �
�
��� determines precisely the
solution subspace Mi�x� we are interested in� provided ��x� exists on the whole interval
�xl� xr�� The validity of the last assumption is the main point in the following

Theorem ��� The initial value problem �
�
���� �
�
��� has a unique solution �i de�ned
on �xl� xr�
 �i�x� determines the solution subspace Mi�x� for ���
��� related to the condition
Ci�y�xi� 
 � by

Mi�x� 
 Ker �T
i �x�A � S�x� 
 Ker �AT�i�x��

T � S�x� 
 �Im AT�i�x��
� � S�x��

Proof� It remains to show the solvability of �
�
���� �
�
��� on the whole interval �xl� xr��
Consider the initial value problem

�� � �I � ���T�����T �BTP�sA
T�� 
 ���
�
���

��xi� 
 CT
i� �

Below� the background of �
�
��� becomes transparent� This equation may be obtained
from �
�
��� by means of the transformation � 
 AT�� � 
 P�sA

T���
This problem is of the type ���
���� ���
���� therefore it is solvable on �xl� xr� ��� ���

Since ��x�T��x� 
 const 
 Ci�C
T
i� � the function ��x� solves also the initial value problem

�� � �I � ��Ci�C
T
i� �

���T �BTP�sA
T�� 
 ��

��xi� 
 CT
i� �

Multiplying byA�A and taking into account that �I�A�A�BTP�s 
 �� AT� 
 AT�ATAT� 

AT�A�A� we obtain

�A�A��� � �I �A�A��Ci�C
T
i� �

���A�A��T �BTP�sA
T�A�A� 
 ��

��xi� 
 A�ACT
i� 
 CT

i� �

Thus� both � and A�A� solve the same initial value problem� which is� at least locally�
uniquely solvable� Hence� ��x� � A�A��x�� Now� if � �
 P�sA

T��� then it becomes
a solution of �
�
���� �
�
��� on the same interval� as the following equations will show�
AT��x� 
 ATAT���x� 
 A�A��x�� ��x�TAAT��x� 
 ��x�TA�P T

�sAA
TP�sA

T���x��
��x�TA�A��x� 
 ��x�T��x� 
 Ci�C

T
i� �

��



Multiplying �
�
��� by ATAT� 
 A�A and using the relation �I � A�A�BTP�s 
 �
again� we conclude

AT�� � �I �AT���TAAT�����TA�A�BTP�s� 
 ��

but �TA�A 
 �TA�P T
�sA 
 �TA�

The equality P�s� 
 � is obvious and the uniqueness of � comes from the theory of
initial value problems for nonlinear index � DAEs� see ����� In fact� as for linear problems�
it depends on the correct formulation of initial values�

Let us brie y return to the inherent regular ODE of ���
���� i�e� to

z� 	Rz 
 �� R �
 A�AG��B��
�
���

Naturally� the question arises whether �
�
��� represents the original Abramov!s method
for this ODE� The next theorem shows that this applies� indeed�

Theorem ��� RT 
 BTP�sA
T��

Proof� Use the notations Q �
 I�P � P �
 A�A�Q� �
 I�P�� P� �
 AA�� G �
 A	BQ�
G� �
 AT	BTQ�� P�s �
 I�Q�G

��
�
BT and G �
 A	Q�BQ� Since A�Q�B form a regular

index � matrix pencil� G is nonsingular and we have

G��A 
 P� G��Q�BQ 
 Q� G��P� 
 G��AA� 
 PA��

and further QG�� 
 QG���P� 	Q�� 
 QG��Q�� Next we compute

G�� 
 �I �G��P�BQ�G
��� G��

�

 �I �G��TPBTQ��G

��T �

This leads to

BTP�sA
T� 
 BTAT� �BTQ�G

��TQBTAT� 
 �I �BTQ�G
��TQ�BTAT�


 �I �BTG��TQ�BTAT�

and� on the other hand�

RT 
 BTG��TATAT� 
 BT �AG���TAT�


 BT ��A	BQ�G�� �BQG���TAT�


 BT �I �BQ�I � G��P�BQ�G
���TAT�


 BT �I �BQG���TAT� 
 �I �BTG��TQ�BTAT��

Remark� Numerical integration methods applied to inital value problems for ���
���
are known to work well� There is no reason for �nding the inherent ODE �
�
��� in
practice� By the same argument� instead of �
�
���� the problem �
�
��� should be solved
numerically� However� for a proper understanding of the situation� it is nice to have the
property stated in the Theorem 
�
�

From the results above we can now formulate the existence theorem�

��



Theorem ��� Let �l�x�� �r�x� be the solutions of �
�
��� with AT�l�xl� 
 CT
l� and

AT�r�xr� 
 CT
r�� respectively� Then the solution subspace M�x� 
 Ml�x� � Mr�x� of

the boundary value problem ���
���� ���
��� is of dimension n � k� where

k 
 rank �AT�l�x�jA
T�r�x�jB

T �I �AA����

Moreover�

M�x� 
 Ker

�
B� �l�x�TA

�r�x�TA
�I �AA��B

	
CA and M��x� 
 Im �AT�l�x�jA

T�r�x�jB
T�I �AA����

��� Transfer of boundary conditions� The varying A case

Consider the index � DAE

A�x�y��x� 	B�x�y�x� 
 �� xl � x � xr�
�����

with the assumptions on A�x� and B�x� posed at the beginning of section 
��� Denote

P �x� �
 A�x��A�x�� P��x� �
 A�x�A�x���

Obviously� A�x� 
 P��x�A�x� 
 A�x�P �x�� and P�P� are C� matrix functions�
Rewrite �
����� as

A�x�f�P �x�y�x���� P ��x�y�x�g	B�x�y�x� 
 �� or

A�x��P �x�y�x���	 �B�x��A�x�P ��x��y�x� 
 ���
���
�

Again� we are looking for equations which provide a function ��x� describing the
solution manifolds under consideration by

��x�TA�x�y�x� 
 ��
�����

as before� For this purpose� we �rst turn to

AT �P���
� � �BT �AT �P��� 
 ���
�����

or� in slightly reformulated version� to

AT �P���
� � �BT 	ATP �

�
�AT ��� 
 ��
�����

�AT��� �BT� 
 ���
�����

Lemma ��� The identity ��x�TA�x�y�x� � const is true for all pairs of solutions y � C�
A�

� � C�
AT of �
����� and �
����� �or �
����� or �
������� respectively�

�




Proof� Let Q �
 I � P �

��TAy�� 
 ��TP�APy�
� 
 ��TP��

�Ay 	 �TP�A
�Py 	 �TA�Py��


 �T �B � P�A
��y 	 �TP�A

�Py � �T �B �AP ��y


 ��TP�A
�y 	 �TP�A

�Py 	 �TAP �y 
 ��TP�A
�Qy 	 �TAP �y


 �TP�AQ
�y 	 �TAP �y 
 �TA�Q� 	 P ��y 
 ��

Remark that the DAE �
����� ��
������ �
������ is of index � simultaneously with �
������
Concerning initial and boundary conditions� all that was explained in section 
��

remains valid� Hence� the solution �i�x� of the initial value problem for �
����� with
A�xi�T��xi� 
 CT

i� provides a tool for describing the solution manifold Mi�x� related to
the �initial value� problem for �
����� with Ci�y�xi� 
 �� Namely�

Mi�x� 
 Ker �i�x�
TA�x� � S�x�

is true�
Unfortunately� this method cannot be expected to behave well� in general� The same

stability problems as in the simpler case of regular ODEs or DAEs with constant A may
occur� This is why we are looking for a more stable representation of Mi�x� again�

Following the concept of ��� �� as done in section 
�
� we transform ��x� by a nonsin�
gular matrix T �x�� ��x� 
 ��x�T �x�� The transformation matrix is chosen to achieve

��x�TA�x��A�x�T��x��� 
 ��

This leads to the nonlinear DAE

�AT��� � �I �AT���TAAT�����TA�BT� 
 � or�
�����

AT �P���
� 	AT �P�� � �I �AT���TAAT�����TA�BT� 
 ���
�����

Lemma ��� All solutions � � C�
AT of �
����� have the property

��x�TA�x��A�x�T��x��� � ���
�����

Proof� The proof is exactly the same as for Lemma 
���

Corollary ���

��x�TA�x�A�x�T��x� � const

Proof� see Corollary 
���

Lemma ��� For solutions y � C�
A and � � C�

AT of �
����� and �
������ respectively� the
following holds

�T �x�A�x�y�x� � � 	
 ��x��TA�x��y�x�� 
 � at some x� � �xl� xr��

��



Proof�

��TAy�� 
 ��TP�APy�
� 
 ��TP��

�Ay 	 �TP�A
�Py 	 �TA�Py��


 ��TP�A
�y 	 �TB�I �AT���TAAT�����TA�y 	 �TP�A

�Py � �T �B �AP ��y


 ��TBAT���TAAT�����TAy � �TP�A
�Qy 	 �TAP �y


 ��TBAT���TAAT�����TAy 	 �TA�Q�	 P ��y


 ��TBAT���TAAT�����TAy 
� D�TAy�

Again� the equation turns out to be linear with respect to �TAy�

As in section 
�
� the transformation � 
 AT�� � 
 P�sA
�T� connects �
����� with the

regular ODE �
�
��� �now with varying A�� Obviously� Theorem 
�� about the solution
subspace remains valid �again after replacing equation �
�
��� by �
�������

However� now the regular ODE �
�
��� does no more represent the original Abramov!s
method applied to the inherent ODE

z� 	Rz 
 �� R �
 A�AG��B � �A�A��Ps

in general� That means� Theorem 
�
 does not hold in case of a variable coe�cient A�x��
This fact is shown by Abramov ���� by means of the following example�

Example� Let A�x� 


�
cosx sin x
� �

�
� B�x� 


�
� �

� sinx cosx

�
�

Compute A�AG��B 
 �� BTP�sA
T� 
 �� but R�x� 
 �

�
cosx sin x � sin� x
cos� x sinx cos x

�
�


��

� Assesment of the results for the inhomogeneous

systems

��� Boundary value problems for regular inhomogeneous sys�

tems

Theorem ��
 about the solution subspace may be not su�ciently transparent� It seems
appropriate to rewrite it in terms of the original inhomogeneous problem� Therefore� we
work out the intermediate results in the inhomogeneous context� too�

Let us return to the problem �������� �����
�� assuming that B�x� and f�x� are con�
tinuous and the boundary conditions are separated� i�e� ���
��� holds�

We are interested in determining the manifolds of solutions Mi�x� � y�x� such that

y�x� solves the system and satis�es the boundary condition Ci�y�xi� 
 di� d 


�
dl
dr

�
�

The results given below are based on the natural splitting of the �boardered� matrices
arising by the �homogenization� and the specialization of the previous results for these

��



systems� The matrix ��x� used in section ��
 is also split� namely� the last row of ��x�
is considered to be a transposed column taken with negative sign and it can be handled
separately�

y�x� � Mi�x� involves 	T
i �x�y�x� 
 
i�x��

The adjoint equation leads to the representation

	�i �BT	i 
 �� 	i�xi� 
 CT
i� �


�i 
 	T
i f� 
i�xi� 
 di�

�������

Instead of solving the adjoint problem �������� the smooth transfer of boundary con�
ditions can be realized by

	� � �I � 	W��	T �BT		 	W��
fT	 
 �������
�


� 	 	TB	W��
 � ��� 
TW��
�	Tf 
 ���������

Here W �
 	T		 

T � �The indices i and i� are omitted for brevity��
The smoothness is achieved by setting

	T	� 	 

T � � ���������

which in turn yields 	T		 

T � const�
Finally� Theorem ��� implies immediately the following one�

Theorem ��� The inhomogeneous problem �������� �����
� is solvable i�

�

l

r

�
� Im �	T

l j	
T
r ��

or� equivalently� the solution�s� is �are� available from the system

	T
l �x�y�x� 
 
l�x��

	T
r �x�y�x� 
 
r�x��

for any x � �xl� xr�� The rank of the matrix �	lj	r� is independent of x�

Remark� In ���� a less severe constraint is considered� Namely� the construction there is
built upon the requirement

	T	� � �� 	T	 � const��������

while in ��� both ������� and ������� are mentioned�

��



��� Boundary value problems for index � inhomogeneous DAEs

Now we determine the manifolds of solutions Mi�x� � y�x� such that y�x� solves the
system ������� and satis�es the separated boundary conditions

Ci�y�xi� 
 di� d 


�
dl
dr

�
�

Again� ���
��� is assumed� We look for representations of the form

	T
i �x�A�x�y�x� 
 
i�x�� B�x�y�x�� f�x� � Im A�x�����
���

Corresponding to the consistent initial value problem formulation� we have to assume that
Ci� 
 Ci�A

�A� Provided A�x� � const� the adjoint system results in

AT	�i �BT	 
 �� 	i�xi� 
 P�s�xi�A
T�CT

i� �

�i 
 	Tf� 
i�xi� 
 di�

���
�
�

see �
�
���� Here P�s denotes the projector onto the solution space of the �rst equation
in ���
�
� along Ker AT � The transfer of boundary conditions suggested in 
�
� is carried
out by the equations

AT	� � �I �AT	W��	TA�BT		AT	W��
fT	 
 �����
���


� 	 	TBAT	W��
 � �� � 
TW��
�	Tf 
 ����
���

with initial values as above� Here W �
 	TAAT		 

T �
These equations ensure 	TAAT	� 	 

T � � �� The consequence of this identity is

	TAAT		 

T � const 
 Ci�C
T
i� 	 di�d

T
i� � which can be used for checking the accuracy of

the numerical integration�
On this background� Theorem 
�� obviously implies the next statement�

Theorem ��� Let 	l� 	r� 
l� 
r be the solutions of the initial value problems posed for the
equations ���
��� and ���
��� with initial values given above� A function y�x� solves the
boundary value problem ������� with separated boundary conditions ������� i� it solves the
system

�
	T
l �x�

	T
r �x�

�
Ay�x� 


�

l�x�

r�x�

�
� �I �AA���By�x�� f�x�� 
 �� x � �xl� xr�����
���

If the leading matrix A depends on x� then the only change is that in the equa�
tions ���
�
� and ���
��� the expression AT	� is replaced by �AT	��� or� equivalently� by
AT �P�	��	AT �P�	� where P� is the orthogonal projector onto Im A� Anything else is the
same as for the case of a constant leading matrix A�

��



� Some general comments

�� As far as we know� this paper represents the �rst attempt to apply a transfer method
that is known to be especially well�conditioned for regular linear ODE!s to the case of
DAE!s� We hope for analogous advantages� e�g� with respect to shooting methods� as
they are well�known for regular ODE!s� However� we should like to emphasize that we
consider here a special procedure for linear boundary value problems only�


� The formally simple form of the regular ODE �
�
��� might entice into performing
the transfer on the basis of �
�
��� and into forming " �
 P�sA

T�� subsequently� Thus�
one would have the possibility to work with simple explicit integration methods� However�
one should take into account that P�s 
 I �Q��AT �BTQ����BT as well as AT� would
have to be computed and that �
�
��� would lose in structure relative to the DAE �
�
����
It seems to us that the direct integration of �
�
��� is simpler and more favourable even
though one has to go back to implicit methods�

�� We have not yet gained any appreciable experience concerning the selection of spe�
cial integration methods� Of course� as for the regular DAE!s� we cannot expect to �nd a
general answer for the DAE!s� We will report about corresponding experiments later�

�� This paper proposes a method of solution of boundary value problems for linear
di�erential�algebraic equations of index �� Due to its stability properties this method
may play the same role among the methods of solution of this problem as the original
Abramov!s transfer plays among the so�called initial value methods for the solution of
boundary value problems posed for regular ordinary di�erential equations� One might
wish to know whether there are any reasons and hopes to extend the results to higher
index problems�
One can easily check that the homogenization as it is proposed in x� may be carried out
in the same way and the enlarged homogeneous system preserves the index of the original
problem� Some of basic assertions in x
��� namely� Lemma 
�� and Lemma 
��� Corollary

�� and Lemma 
��� are independent of the index�
We emphasize that the consistency condition

y�x� � S�x� 
 im Ps�x� 
 kerQs�x�� i�e� Qs�x�y�x� 
 ��

which appears in the linear system to be solved has to be replaced by the corresponding
higher index consistency conditions� For this� an accurate explicit description of the re�
lated lower dimensional subspaces of S�x� is needed� For index 
 DAEs this subspace is
given� e�g� in ��
�� to be the image space im

Q
�x� � S�x� of a certain projector function�

which is constructed on its turn by further special projections as well as their derivatives�
The details take quite a bit of space �cf� ��
���
Next� recall that even for regular ODEs there is no advantage of using the linear ad�
joint equation ���
��� itself to realize the transfer� The point of Abramov!s method is
the nonlinear transfer by equation ���
��� and �
������ respectively� with its nicer stability

��



behaviour �cf� x��
� Remark ���
In the higher index case� the transfer equation �
����� becomes a higher index� nonlinear�
non�Hessenberg matrix di�erential algebraic equation� Theorem 
�� does not apply since
the projector P�s in �
�
��� does not exist any more� Hence� the needed unique solvability
on the whole given interval remains under question by now�
Furthermore� with the transfer method we aim at a more realiable possibility to carry
out necessary numerical integrations� Thus� if we were not able to integrate �
����� nu�
merically fairly well� the whole game of the transfer would not be of any use at all� By
now� there is no reliable integration method for that higher index nonlinear matrix DAE�
These two questions are hoped to be answered positively for the index 
 case� but for
that� considerable further e�ort is needed�

��Concerning the concrete form of a possibly proper transfer for higher index DAEs�
this is not expected to be related to the transferring equation for the inherent ODE of the
DAE under consideration� As the counterexample at the end of x
 shows� even for index
� problems with variable coe�cients the relationship stated in Theorem 
�
 for constant
coe�cients is no more valid�

�� Another possibility for treating index 
 problems is to regularize them to index �
systems� These regularization methods are analyzed e�g� in ����� Let us mention e�g� the
system

�A	 �BP �y�	 �B 	 �BPP ��y 
 f�

which has index � for su�ciently small parameters � �
 � provided that Ay� 	By 
 f is
an index 
 tractable system�
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