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Abstract

A new multi-label document classification technique called CascadeLDA is introduced

in this thesis. Rather than focusing on discriminative modelling techniques, CascadeLDA

extends a baseline generative model by incorporating two types of prior information.

Firstly, knowledge from a labeled training dataset is used to direct the generative model.

Secondly, the implicit tree structure of the labels is exploited to emphasise discriminative

features between closely related labels. By segregating the classification problem in an

ensemble of smaller problems, out-of-sample results are achieved at about 25 times the

speed of the baseline model. In this thesis, CascadeLDA is performed on datasets with

academic abstracts and full academic papers. The model is employed to assist authors in

tagging their newly published articles.

Keywords: Bayesian, Gibbs sampling, Latent Dirichlet Allocation, machine learning,

natural language processing, topic modelling, variational inference.
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1 Introduction

Automated text classification has been an active field of research for decades and is used in

numerous applications. Despite its age, the field has gained prominence over the past decade.

This is due to the increasing need to organise vast amounts of digital textual information and

developments in machine learning techniques and computational power.

A number of equally valid interpretations of "automated text classification" prevail (Se-

bastiani, 2002). The interpretations range from solely identifying categories in a body of

documents to tagging documents according to pre-specified categories. In this thesis, we will

focus on the latter interpretation. An extensive variety of methods exist to tag documents.

Most of them use a dataset of labeled texts with which a model is trained to predict the

category (categories) to which the text belongs. This training may involve neural networks

(Nam et al., 2014), support vector machines (Joachims, 2002) or simpler methods like naive

Bayes (McCallum and Nigam, 1998) to name a few.

In this research, Latent Dirichlet Allocation (LDA) (Blei et al., 2003) will be used as a

baseline method. LDA is a "generative probabilistic model for collections of discrete data

such as text corpora" (Blei et al., 2003, p. 993) and is an unsupervised machine learning

algorithm. A common application of LDA is to identify latent semantic topics contained in

documents. However, many authors have proposed extensions to serve other purposes such

as document classification (e.g. Blei and McAuliffe (2007); Ramage et al. (2009); Rubin

et al. (2012)) and targeted topic identification (e.g. Jagarlamudi et al. (2012); Wang et al.

(2016)). It is often the availability of prior information on the corpus that triggers researchers

to incorporate additional features in the baseline LDA framework.

A representative corpus of academic economic papers and abstracts is utilised for this

paper. Each document in the dataset is assigned to one or more labels that correspond to the

academic discipline of the paper. The American Economic Association (AEA) introduced a

tagging system for their academic articles which is now the standard in economic literature:

JEL (Journal of Economic Literature) codes. The presence and nature of the JEL codes

constitute the main source of prior information and form the basis for analysis.

The aim of this research is to develop an LDA-based document classification model that

assists authors in accurately tagging their academic publications.

In Section 2 the general framework for Latent Dirichlet Allocation will be thoroughly

dealt with, including elaborate background theory of conjugate priors, (collapsed) Gibbs

sampling, exponential families and variational inference. Section 3 will delve into the dataset
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at hand and how the prior information can be integrated in LDA. This section will introduce

and discuss two existing LDA flavours, called Labeled LDA (L-LDA) and Hierarchically

Supervised LDA (HSLDA), and formulate a new LDA extension by the name of CascadeLDA.

This is followed by an introduction and critical assessment of the quality and characteristics

of the datasets used. Section 5 is used to point out challenges in the classification problem,

introduce evaluation metrics and discuss the variable settings used in the final models. The

outcome of the models in the different datasets are presented in Section 6. This section

also provides a detailed discussion to emphasise the fundamental differences between the

three LDA extensions. Finally, Section 7 gives an overview of the findings, use-cases and

suggestions for future research.

2 Latent Dirichlet Allocation

In order to stay within the scope of this paper, this section will only discuss Latent Dirichlet

Allocation in the context of text modelling. Applications to other discrete data structures

such as image and audio classification will therefore be ignored here. This section will not

only provide outcomes and ready-to-use expressions, it will also deal with the mechanics and

properties of the underlying distributions in detail. These insights are required during the

development and analysis of the LDA extensions. Additionally, much attention will be given

to collapsed Gibbs sampling and variational inference.

LDA views documents in a corpus as bags-of-words: Sentence structures are ignored

completely. Every document is assumed to be a mixture of K topics. Each topic is assumed

to be a categorical distribution over all words in the corpus. LDA is a fully generative model

that assumes that a document’s words are the result of a mixture of topics, from which words

are drawn.

The only observable in the fundamental model are the documents and therefore their

words. The aim of LDA is to identify distributions that represent (latent) semantic topics

in the corpus and represent documents as a (latent) mixture of these topics. These two

distributions are referred to as the topic-word distributions and document-topic distributions,

respectively. The topic-word distribution of topic k follows a CategoricalV (φk) distribution,

and document d’s document-topic distribution follows a CategoricalK(θd) distribution.

The graphical model representing LDA can be found in Figure 1. The conditional relations
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Variable Values Meaning

K N+ Number of topics

D N+ Number of documents

V N+ Number of unique words in vocabulary

k, d, v N+ Iterators indicating topic k, document d and word key v.

k = 1 . . . ,K and d = 1, . . . , D and v = 1, . . . , V

Nd N+ Number of words in document d

N N+ Total number of words in all documents: N = ∑D
d=1Nd

α R+ Uninformative prior weight. Same for all d and k

αd,k R+ Prior weight of topic k in document d

αd RK+ = (αd,1, αd,2, . . . , αd,K) = αd,1:K . Vector of prior weights for

all topics 1, . . . ,K for document d

α RK×D+ Matrix of αd,k priors

β R+ Uninformative prior weight. Same for all k and v

βk,v R+ Prior weight of term v in topic k

wd,n 1, . . . , V Dictionary key / identifier of word n in document d

zd,n 1, . . . ,K Topic assignment for word n in document d

φk,v prob.: [0, 1] Probability that word v occurs in topic k

φk RV Vector of multinomial probabilities s.t. ∑V
v=1 φk,v = 1

φ RK×V Matrix of φk,v probabilities

θd,k prob.: [0, 1] Probability that document d belongs to topic k

θd RK Vector of multinomial probabilities s.t. ∑K
k=1 θd,k = 1

θ RD×K Matrix of θd,k probabilities

nk(d) N+ Number of words in document d that carry label k, i.e.

nk(d) = ∑Nd
n=1 1{zn,d = k}

n(k) N+ Number of words assigned to topic k. By definition∑
k n(k) = N

nv(k) N+ Number of times word v is assigned to topic k, i.e. how often

1{zd,n = k & wd,n = v} equals one

Table 1: Definition of variables
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Figure 1: Graphical model: LDA

between the nodes in Figure 1 are as follows:

φk|β ∼ DirichletV (β) (1)

θd|α ∼ DirichletK(α) (2)

zd,n|θd ∼ CategoricalK(θd) (3)

wd,n|zd,n,φ ∼ CategoricalV (φzd,n) (4)

For an overview of all notational definitions, refer to Table 1.

As mentioned before, LDA is a generative probabilistic model. This means that the

observed words are assumed to be a result of underlying latent distributions θ, φ and z. How

exactly these distributions interact can be seen from the generative model:

1. For each topic k = 1, 2, . . . ,K:

• Draw a distribution over words φk|β ∼ DirV (β)

2. For each document d = 1, 2, . . . , D:

• Draw a topic mixture θd|α ∼ DirK(α)

• For each word n = 1, 2, . . . , Nd in document d:

- Draw a word-topic assignment zd,n|θd ∼ CatK(θd)

- Draw a word wd,n|zd,n,φ ∼ CatV (φzd,n)

Note that the LDA setup thus far assumes scalar values for the hyperpriors α and β. In

such a setting the hyperpriors are uninformative. Alternatively, α and β may be document-

and/or topic-specific, respectively, making them informative. Extending to informative hy-

perpriors, however, will be postponed to Section 3.

The joint probability of all latent variables (θ, φ, z) and observed variables (w) in the

LDA model is
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p(θ,φ, z,w|α,β) =
(

K∏
k=1

p(φk|β)
) D∏

d=1

p(θd|α)

 Nd∏
n=1

p(zd,n|θd)p(wd,n|zd,n,φzd,n)

 (5)

The interest of LDA, however, only indirectly involves the joint probability, because the main

goal is to find the posterior of the latent distributions:

p(θ,φ, z|w,α,β) = p(θ,φ, z,w|α,β)
p(w|α,β)

where the denominator requires integration over the full spaces of θ, φ and z. Even if an

analytical solution existed, execution would be prohibitively expensive. Therefore, exact in-

ference is not an option at this point and focus must be shifted towards approximate inference.

Two main types of approximate inference are used in the context of LDA: Collapsed Gibbs

sampling (Section 2.2) and variational inference (Section 2.3).

Key to the success of LDA is the choice for the conditional distributions: neighbouring

nodes in the graphical model are always conjugate pairs (Section 2.1). In other words, the

parent nodes that serve as a prior to their child nodes result in very convenient posterior dis-

tributions. This significantly eases the derivations of the conditional posterior distributions..

In Section 2.2 the collapsed Gibbs sampling approach by Griffiths and Steyvers (2004) for

approximate inference will be introduced. Section 2.3 will start by introducing the concept

of variational inference in general terms, including some necessary lemmata. Section 2.4 will

then apply variational inference in the LDA setting.

2.1 Conjugate Priors

In the generative model, θd serves as a prior for the distribution of zd,n|θd. This section will

demonstrate that using a Dirichlet distributed prior in a categorical distribution will lead to

a Dirichlet distributed posterior. That is, the Dirichlet distribution is the conjugate prior of

the categorical distribution. In order to do so, (2) and (3) will be formulated explicitly after

which the distributions are combined to derive the distribution of the posterior and show

conjugacy:

p(θd|α) =
Γ
(∑K

j=1 αj
)

∏K
j=1 Γ(αj)

K∏
k=1

θαk−1
d,k (Dirichlet prior)
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Extending the distribution of zd,n in (3) to z yields:

p(zd,n = k|θd) =
K∏
k=1

θ
1{zd,n=k}
d,k

p(z|θ) =
D∏
d=1

Nd∏
n=1

K∏
k=1

θ
1{zd,n=k}
d,k (Categorical likelihood)

Using the Dirichlet prior as the parameter in the categorical likelihood results in a Dirichlet

posterior:

p(z|θ) · p(θ|α) =
D∏
d=1

Nd∏
n=1

K∏
k=1

θ
1{zd,n=k}
d,k

Γ
(∑K

j=1 αj
)

∏K
j=1 Γ(αj)︸ ︷︷ ︸
=B(α)

K∏
k=1

θαk−1
d,k

= B(α)
D∏
d=1

Nd∏
n=1

K∏
k=1

θ
(αk−1)+1{zd,n=k}
d,k

= B(α)
K∏
k=1

θ

(αk−1)+
D∑
d=1

Nd∑
n=1

1{zd,n=k}

d,k

∝ DirK(αk +
D∑
d=1

Nd∑
n=1

1{zd,n = k})

= DirK(αk + n(k)) (Dirichlet posterior)

The posterior stems from the same distributional family as its prior, so conjugacy has been

shown. The final expression classically shows how the posterior distribution is determined

by both the prior α as well as the data n(k).

Analogously, the posterior of the prior-likelihood pair p(φzd,n |β) and p(wd,n|φzd,n) is

p(φ|β) =
K∏
k=1

p(φk|β) =
K∏
k=1

Γ(∑V
v=1 βv)∏V

v=1 Γ(βv)

V∏
v=1

φβv−1
k,v

p(w|φ, z) =
D∏
d=1

Nd∏
n=1

K∏
k=1

V∏
v=1

φ
1{zd,n=k & wd,n=v}
k,v

which results in the following Dirichlet posterior

p(w,φ|β) ∝ DirV

βv +
D∑
d=1

Nd∑
n=1

K∑
k=1

1{zd,n = k & wd,n = v}


= DirV (βv + nv(k))
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2.2 Collapsed Gibbs Sampling

One way to deal with an unknown or complicated joint density like (5) is Markov chain

Monte Carlo (henceforth MCMC), or more specifically (collapsed) Gibbs sampling (Geman

and Geman, 1984). In MCMC, a Markov chain is constructed for which the equilibrium

distribution has the properties of the target distribution. Repetitively resampling from this

Markov chain is the essence of MCMC and will eventually result in a state from which samples

are an asymptotically exact draw from the target distribution (Robert and Casella, 2005).

Multiple rules have been developed by which the repetitive resampling is performed. One

of these rules is called Gibbs sampling (Geman and Geman, 1984) in which the next state

in the Markov chain is attained by sampling all variables, conditional on all other variables

and the data. In other words, instances of every variable are sequentially drawn from their

respective full conditional distributions.

Gibbs sampling is particularly useful when the target distribution is overly complicated,

but its ’building blocks’ (i.e. full conditionals) are known and simpler. This method was first

introduced in the context of LDA by Griffiths and Steyvers (2004) and has played a big part

in the development of LDA extensions, including the extensions presented in this thesis.

In order to get the full conditionals in the LDA framework, one needs to know the expected

value of a Dirichlet distributed random variable:

Lemma 1 (Expected value of Dirichlet). Let µ ∼ DirJ(α) then E[µk] = αk∑J

j=1 αj
.

As outlined in Griffiths and Steyvers (2004), only the topic-word assignments zd,n are

sampled. Hence the full conditional of interest is

p(zi = k|z−i,w) (6)

where the subscript −i indicates that all values except the i-th value are considered. This

probability distribution describes the probability that a given word wi will be assigned to topic

k, given that all data w and all other word-topic assignments z−i are known. For notational

convenience, the subscript referring to document d as well as explicitly conditioning on the

hyperpriors α and β have been dropped. The difference in notation will be emphasised by

introducing the subscript i, which will temporarily replace the subscript (d, n). By the end

of the derivation, the usual notation will return and the result will be transformed to reflect

document membership again.

Most terms that rely on available data w or terms that are part of the conditioning

set will be removed over the course of the derivation. This allows for focus on relevant

7



dimensions of the distributions, while only affecting the characteristics of the distribution up

to a multiplicative constant.

p(zi = k|z−i,w) = p(zi = k,wi|z−i,w−i) · p(z−i,w−i)
p(z−i,w)

∝ p(zi = k,wi|z−i,w−i)

= p(wi|zi = k,w−i, z−i) · p(zi = k|w−i, z−i)

= p(wi|zi = k,w−i, z−i)︸ ︷︷ ︸
=CGS: Term 1

· p(zi = k|z−i)︸ ︷︷ ︸
=CGS: Term 2

(CGS: all terms)

The full conditional has been split in two distributions. The first may be interpreted as the

probability that a word wi is drawn, given that the word has been assigned to topic k. The

second probability is broadly interpretable as the relative frequency of topic k in the entire

corpus.

• CGS: Term 1. Further investigation of the first term leads to

p(wi|zi = k,w−i, z−i) =
∫
p(wi|zi = k,φk)︸ ︷︷ ︸

=φk,wi

· p(φk|z−i,w−i)︸ ︷︷ ︸
see (8)

dφk (7)

The second part of the integrand can be reformulated to a conjugate likelihood-prior

structure for which the resulting posterior has been derived in Section 2.1

p(φk|z−i,w−i) = p(w−i,φk|z−i) · p(z−i)
p(z−i,w−i)

∝ p(w−i|φk, z−i) · p(φk)

= DirV (nv−i,(k) + β) (8)

The expression in (7) is therefore equal to the expected value of a Dirichlet distributed

random variable. Using Lemma 1, the first term in (CGS: all terms) is equal to

p(wi|zi = k,w−i, z−i) =
nwi−i,(k)

+ β∑
j 6=i

(
n
wj
−i,(k)

+ β
)

=
nwi−i,(k)

+ β

n−i,(k) + V β
(CGS: Term 1)

• CGS: Term 2. Analogous reasoning will be applied to the second term:

p(zi = k|z−i) =
∫
p(zi = k|θd)︸ ︷︷ ︸

θd,k

· p(θd|z−i)︸ ︷︷ ︸
see (10)

dθd (9)
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The second part of the integrand can be reformulated as a conjugate likelihood-prior

pair for which the posterior is known from Section 2.1

p(θd|z−i) = p(z−i|θd) · p(θd)
p(z−i)

∝ p(z−i|θd) · p(θd)

= DirK(nk−i,(d) + α) (10)

Hence (9) is the expectation of a Dirichlet distributed random variable, which is the

final expression for the second term in (CGS: all terms)

p(zi = k|z−i) =
nk−i,(d) + α

n−i,(d) +Kα
(CGS: Term 2)

Inserting (CGS: Term 1) and (CGS: Term 2) into (CGS: all terms) yields the full condi-

tional that was first formulated in Griffiths and Steyvers (2004):

p(zi = k|z−i,w) =
nwi−i,(k)

+ β

n−i,(k) + V β
·
nk−i,(d) + α

n−i,(d) +Kα
(11)

Intuitively, this may be interpreted as the product of two empirical probabilities: The

probability that word wi occurs in topic k multiplied by the probability hat topic k occurs in

document d. This expression will play a major role in the dynamics of the LDA extensions

in this paper.

At this point, the rule by which samples are repetitively drawn in the Monte Carlo

procedure has been established: every draw is performed on the full conditional. The full

conditional of every zi is dependent on z−i so the rule must constantly be adapted to the

current state of the Markov chain. Once all zi are assigned a value between 1 and K, the

Markov chain is initialised, the iterative sampling procedure according to the ever-changing

full conditional distribution of the zi’s can be started.

A sample from the posterior distribution p(z|w) is generated in every iteration of the

Markov chain. Latent distributions φ and θ can be estimated from every one of these

iterations:

φ̂k,v =
nv(k) + β

n(k) + V β

θ̂d,k =
nk(d) + α

n(d) +Kα

After a burn-in period of iterations, every t-th sample (Markov state) can be saved. Taking

averages for each φ̂ and θ̂ in the saved Markov states, results in the "predictive distributions

9



over new words w and topics z conditioned on w and z" (Griffiths and Steyvers, 2004,

p. 5230).

So far the collapsed aspect of this Gibbs sampling procedure has not been addressed ex-

plicitly. The document-topic distribution θ and topic-word distributions φ serve as (Dirichlet)

priors to the categorical likelihood z. As can be seen in equations (7) and (9), these priors

have been integrated (collapsed) out. The collapsing out results in an unconditional distri-

bution (independent of its prior) from which samples will be taken. In case of conjugate

pairs, the resulting distribution has a particularly simple form in comparison to the initial

conditional distributions, thus making the Gibbs sampling process less complex. Also, de-

pendencies between all categorical variables that relied on the Dirichlet prior are created.

This can be easily confirmed by observing that the distribution of zi is partially determined

by z−i via the n-terms in (11).

2.3 Variational Inference: Background

The posterior distribution of all latent distributions p(θ,φ, z|w,α,β) is to be computed, but

is intractable. Variational inference can be used to deal with models for which it is infeasible

to evaluate the posterior distribution. Infeasibility may stem from the high dimensionality

of latent spaces or complex forms that disable analytical tractability (Bishop, 2006, p. 461).

By using the tools of variational inference, the posterior distribution can be approximated by

more handleable distributions that in turn can be optimised. The general idea is to minimise

the Kullback-Leibler divergence (Kullback and Leibler, 1951) between the true posterior and

the approximate distribution, whilst restricting the family of distributions from which we can

select the approximate distribution. The family must be rich enough to resemble relevant

features of the true distribution, while simultaneously be restricted to family members that

are tractable and feasible for optimisation.

Assume a model with observed variables x and latent variables y such that the posterior

distribution p(y|x) is intractable, due the high dimensionality of the latent space in which x

resides. The aim of variational inference is to approximate p(y|x) with a tractable density

q(y). To do so, the Kullback-Leibler divergence is minimised

q∗(y) = arg min
q(y)∈D

KL (q(y)||p(y|x)) (12)

10



where

KL (q(y)||p(y|x)) = Eq
[
log q(y)

p(y|x)

]
= Eq [log q(y)]− Eq [log p(y|x)]

= Eq [log q(y)]− Eq [log p(y,x)] +����log p(x)

and where D is the family of distributions from which we can select q(y). The above still

involves p(x), however it is nothing more than an additive constant in the optimisation

function (12), so it may be ignored.

Since the KL-divergence is non-negative (Kullback and Leibler, 1951), it is easy to verify

that log p(x) is lower bounded by Eq [log p(y,x)] − Eq [log q(y)]. Because log p(x) is also

referred to as the evidence in Bayesian statistics, the following is called Evidence Lower

Bound (ELBO):

ELBO(q) = Eq [log p(y,x)]− Eq [log q(y)] (13)

From the definition of the KL-divergence and ELBO(q), it can be seen that minimising the

KL-divergence w.r.t. q(y) is equivalent to maximising ELBO(q) which is what the focus will

be on henceforth.

If no restrictions are placed on the family of distributions D from which q(y) can be

selected, the optimal choice would be to set q(y) equal to p(y|x), because the KL-divergence

would obviously be zero. To ensure simplicity in the structure of the variational distribution,

q(y) is limited to distributions that factorise over all its marginal distributions. In other

words, the joint variational distribution of y = (y1, y2, . . . , yM ) is equal to the product of the

marginal variational distributions

q(y) =
M∏
m=1

qm(ym)

This is known as the mean-field variational family, where each latent variable is represented by

its own variational factor qm(ym), that may be considered as factorised marginal distributions

(Blei et al., 2017; Jordan et al., 1999).

In general, a joint distribution p(x,y) (such as the one in (13)) can be factorised like

log p(y,x) = log
[
p(x)

M∏
m=1

p(ym|y−m,x)
]

= log p(x) +
M∑
m=1

log p(ym|y−m,x)

Incorporating the mean-field variational family assumption in ELBO(q) now yields

ELBO(q) = log p(x) +
M∑
m=1

(Eq [log p(ym|y−m,x)]− Eqm(log qm(ym)))
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Recall that the aim is to maximise ELBO(q) with respect to the variational distributions,

hence log p(x) may be regarded as a constant. Since the ELBO(q) will be maximised and

eventually the derivative w.r.t. qm(ym) will be set to zero, a convenient formulation makes all

dependencies on qm(ym) explicit. Using the law of iterated expectations, taking the partial

derivative and solving for qm(ym) yields

ELBO(q)m =
∫
qm(ym) E−m [log p(ym|y−m,x)] dym −

∫
qm(ym) log qm(ym)dym

∂ELBO(q)m
∂qm(ym) = E−m [log p(ym|y−m,x)]− log qm(ym)− 1 != 0

q∗m(ym) ∝ exp [E−m(log p(ym|y−m,x))] (14)

This expression can be solved when p(ym|y−m,x) has been derived, which will be done in

Section 2.4.

Before moving on to the general solutions for exponential family members, it is interesting

to pay close attention to the similarities between Gibbs sampling and (coordinate ascent)

variational inference. They are more closely related than one may suspect at first sight. Recall

that Gibbs sampling uses the full conditional distribution to sample from. The coordinate

ascent variational inference method discussed here uses the (exponentiated) expected (log)

value of that full conditional (see (14)) to set each variational factor (Blei et al., 2017).

In addition to (14), there is another useful relation between the optimal variational factors

q∗m(ym) and the full conditionals. If the full conditional is a member of the exponential family,

then q∗m(ym) is member of that same family, but with different natural parameters ν∗m (see

Appendix A for a proof). The only difference (up to a multiplicative constant) between the

true full conditionals and the variational factors qm(ym) lies in the natural parameters, which

is the reason why in this setting they are also referred to as the variational parameters of

qm(ym):

ν∗m ∝ Eq−m [ηm(x,y−m)] (15)

where ηm(x,y−m) is the natural parameter of the complete conditional. For a full derivation,

refer to Appendix A.

In order to arrive at the variational factors in the LDA model, it is useful to be aware of

the following lemmata:

Lemma 2 (Markov blankets). LDA is a statistical model that can be expressed as a graphical

model (see Figure 1). Such Bayesian networks posses a number of properties that help in

identifying conditional independence of nodes in the network. Awareness of these properties
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allows one to nimbly assess whether the conditioning set of variables can be reduced or not,

without affecting the conditional distribution. The Markov blanket of a node A - denoted as

MB(A) - in a Bayesian network consists of

1. all parents of A

2. all children of A and

3. all parents of the children of A (so called co-parents of A).

All nodes outside of MB(A) are conditionally independent of A if conditioned on MB(A).

This implies that all nodes outside of A’s Markov Blanket are redundant in the conditioning

set as long as MB(A) is contained in the conditioning set (Bishop, 2006).

Lemma 3 (D-separation due to collider node). A path between nodes A and C in a Bayesian

network is d-separated (i.e. blocked) by a node set Z if both nodes A and C are directed

towards B, and neither B nor any of its descendants are part of the set Z (Geiger et al.,

1990).

Lemma 4 (Expected value of log-Dirichlet). Let x ∼ DirJ(α), then the expected value of

the logarithm of xk equals

E(log xk) = ψ(αk)− ψ

 J∑
j=1

αj


where ψ(y) = d

dy log Γ(y) is the digamma function.

Lemma 5 (Natural parameters - Dirichlet distribution). Let x ∈ RM and x ∼ Dir(α), then

the natural parameter of x is

η(x,α) = (α1, . . . , αM )

Lemma 6 (Natural parameters - categorical distribution). Let x ∈ {1, . . . , N} and x ∼

CatN (p), then the natural parameter of x is

η(x,p) = (log p1, log p2, . . . , log pN )

2.4 Variational Inference in Latent Dirichlet Allocation

In order to use (15) and obtain the optimal variational parameters, the full conditionals of

the latent distributions are required. Three groups of latent distributions exist in LDA: z, φ

and θ. Each of them has a different full conditional distribution. This section will start off
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with obtaining the true full conditionals (Section 2.4.1) and will afterwards proceed with the

identification of the optimal variational distributions (Section 2.4.2). As a final result, we

will end up with the Coordinate Ascent Variational Inference (CAVI) algorithm for LDA.

2.4.1 Full Conditionals in LDA

Getting to the full conditionals will build on the conjugacy results of Section 2.1 and on the

lemmata presented at the end of Section 2.3.

1. Full conditional of document-topic distributions: The Markov blanket MB(θd)

consists of the parents α and the children zd (there are no co-parents for θd), so

p(θd|z,θ−d,φ,w) = p(θd|zd, α)

where it is known that zd ∼
∏Nd
n=1 Cat(θd) and θd|α ∼ Dir(α) from the LDA model

specification. By the conjugacy results from Section 2.1, the full conditional of topic

proportions p(θd|zd, α) ∼ Dir(α∗d), where

α∗d =

α+
Nd∑
n=1

1{zd,n = 1}, . . . , α+
Nd∑
n=1

1{zd,n = K}

 (16)

=
(
α+ n1

(d), . . . , α+ nK(d)

)
2. Full conditional of topic-words distributions: The Markov blanket MB(φk) con-

sists of the children z, the co-parents φ−k and w, and parents β, so

p(φk|z,θ,φ−k,w, β) = p(φk|z,φ−k,w, β)

∝ p(φk,w|z,φ−k, β)

= p(w|φk,φ−k, z, β) · p(φk|φ−k, z, β)

= p(w|φ, z) · p(φk|β)

where the last term in the final equation follows from Lemma 3: wd,n is the colliding

node between φk and z, but wd,n is not part of the conditioning set and therefore they

are conditionally independent. From the LDA model specification it is known that

p(w|φ, z) ∼ ∏D
d=1

∏Nd
n=1 Cat(φzd,n) and p(φk|β) ∼ Dir(β). Considering that the latter

serves as a conjugate prior to the former distribution, it is known (see Section 2.1) that

the result must follow a Dir(β∗k) distribution, where

β∗
k =

β +
D∑
d=1

Nd∑
n=1

1{zd,n=k & wd,n=1} , . . . , β +
D∑
d=1

Nd∑
n=1

1{zd,n=k & wd,n=V }

 (17)
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3. Full conditional of word assignments: The Markov blanket MB(zd,n) consists of

the parents θd, the children wd,n and the co-parents φk. Hence

p(zd,n = k|z−d,n,θ,φ,w) = p(zd,n = k|θd,φk, wd,n)

This is a conditional distribution that is not known directly, but using the chain rule

the above equation can be written like

p(zd,n = k|θd,φ, wd,n) ∝ p(zd,n = k,wd,n = v|θd,φ)

= p(wd,n = v|zd,n,θd,φzd,n) · p(zd,n = k|θd,φ)

= p(wd,n = v|zd,n,φ) · p(zd,n = k|θd)

= φk,v · θd,k (18)

where θd is cancelled because it is not part of theMB(wd,n) and φ is cancelled because

it is d-separated from zd,n by the node wd,n (Lemma 3)

2.4.2 Variational Factors in LDA

With the results from the previous section, we now know the distributional family of each vari-

ational factor, but the parameters for those distributions are still unknown. Let the unknown

parameters be γd, λk and ψd,n for the document-topic, topic-word and word-assignment

distributions, respectively:

1. Variational distribution of document-topic distribution: qθd(θd) = Dir(γd). The natural

parameters, ηθd(α,zd), of the full conditional are (α+ nk(d)) for k = 1, . . . ,K.

2. Variational distribution of topic-word distribution: qφk(φk) = Dir(λk). The natural

parameters, ηφk(β,zd,n), of the full conditional are β + ∑D
d=1

∑N
n=1 1{zd,n=k & wd,n=v}

for v = 1, . . . , V .

3. Variational distribution of word assignment distribution: qzd,n(zd,n) = Cat(ψd,n). By

Lemma 6, the natural parameters, ηzd,n(φzd,n ,θd, wd,n), of the full conditional are equal

to the logarithm of the parameters. Therefore ηzd,n(φzd,n ,θd, wd,n) = log φk,v log θd,k for

k = 1, 2, . . . ,K.

The natural parameters of the full conditionals will be crucial in this section, since they have

been linked explicitly with the optimal natural parameters of the variational factors (see

expression (15)).
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1. Variational distribution of document-topic distributions: To find the appropri-

ate parameters γd for the variational distribution, we will rely on (15):

γ∗d ∝ Eq−γd
[ηθd(α,zd)]

The reason α and zd appear in the expression is that they constitute the Markov blanket

that was used in the full conditional.

The expectation is taken w.r.t. all variational distributions, except γd. Since the term

inside the expectation operator, i.e. the natural parameters of the full conditional,

contains only α and zd, the expected value is equivalent to Ezd [ηθd(α,zd)]. We have

γ∗d,k ∝ Eqzd,k [ηθd,k(α,zd)]

= α+
Nd∑
n=1

Eqzd (1{zd,n = k})

= α+
Nd∑
n=1

ψd,n,k

where the final line follows from the fact that qzd follows a categorical distribution with

the (unknown) parameters ψd,n,k for n = 1, . . . , Nd and k = 1, . . . ,K. The document-

topic variational distribution is q∗θd,k = Dir(γ∗d,k).

2. Variational distribution of topic-words distributions: Analogous to the deriva-

tion for the variational distribution of the document-topic distributions, we know that

λ∗k,v ∝ Eq−λk
(ηφk(β, zd,n))

= Eqzd,n (ηφk(β,z))

=

β +
D∑
d=1

Nd∑
n=1

Eqzd,n [1zd,n=k]1wd,n=v


=

β +
D∑
d=1

Nd∑
n=1

ψd,n,k · 1wd,n=v


Therefore, the variational distribution of the topic-words distributions is q∗φk,v = Dir(λ∗k,v).

3. Variational distribution of word assignments: By expression (16), the natural

parameters of the variational distribution of zd,n are

ν∗qzd,n
∝ E−ψd,n [ηzd,n(φzd,n ,θd, wd,n)]

Since qzd,n(ψd,n) is a categorical distribution, the natural parameters are the logarithm

of the parameters (see Lemma 6). The actual parameters of qzd,n(ψd,n) are denoted as
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ψd,n:

ψ∗d,n,k = exp
(
ν∗qzd,n

)
∝ exp

(
E−ψd,n [ηzd,n(φzd,n ,θd, wd,n)]

)
= exp

(
E−ψd,n [log φk,v + log θd,k]

)
= exp

(
Eqφk [log φk,v] + Eqθd [log θd,k]

)
= exp

Ψ(λk,v)−Ψ(
V∑
u=1

λk,u) + Ψ(γd,k)−Ψ(
K∑
j=1

γd,j)


where the last line follows from Lemma 4.

3 Incorporating Available Information

The input required to perform baseline LDA is merely a corpus with documents, the number

of topics K and a value for the hyperpriors α and β. The corpus used in this paper has

an additional source of information that can be exploited, namely the JEL codes for each

document. Not only are the documents labeled, the structure of the labels is also known.

For example, the labels D12 and D01 are both members of the label family D and are likely

to have more in common than labels A14 and Q21. By incorporating such prior knowledge,

the unsupervised baseline LDA can be transformed into a (semi)supervised method.

This section will present three extensions to the baseline LDA model: Labeled LDA (L-

LDA), Hierarchically Supervised LDA (HSLDA) and CascadeLDA. Each of the extensions

utilises the available information in its own way and the quality of their results depends on

the ultimate aim of the user and at times on very specific features of the dataset.

3.1 Extension 1: Labeled LDA

The aim of this paper is to build a classifier that is able to recommend JEL codes for previously

unseen academic abstracts and full academic papers. This implies that the interest is not to

identify latent topics, but rather explicit topics that have a one-to-one correspondence with

the JEL codes. There are multiple ways to manipulate the topics identified by LDA. One

could, for example, provide a set of seed words and use them to bias topic-word distributions

towards certain terms (Jagarlamudi et al., 2012). Alternatively, by creating Must-Links and

Cannot-Links between words and topics (Andrzejewski et al., 2009) the structure of topic-

word distributions is restricted in a favourable way. These methods can be used if the dataset

is an unlabeled corpus, but the researchers have some domain knowledge about the topics

they wish to identify. External knowledge sources such as Wikipedia articles regarding the
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Figure 2: Graphical model: Labeled LDA

desired topics can also be used as a form of prior knowledge (Wood et al., 2016). In the case

of this research, we can manipulate the topics to exactly correspond with the labels. Such

a setting of explicit topics in labeled data has been investigated in Ramage et al. (2009)

and Rubin et al. (2012). A crucial piece of information is that the topics/labels covered in

a every document is known a priori and more importantly, it is known which topics are not

part of the document. To put the above in more LDA-specific terms: It is known which of

the K elements in θd have a positive document-topic mixture and which elements are equal

to zero. Hence, the space in which the topic-document distribution resides (during training)

for every document can be shrunk tremendously, since it is limited to only the JEL-codes

attached to that document. This causes a shift in the way the conditional distributions in

the model interact through a three step process: Firstly, the parameters for the distribution

of zd,n (recall that zd,n ∼ CatK(θd)) are mostly equal to zero, with positive values only in the

positions that correspond to the labels of the document. This leads to the second step of the

process: zd,1:N can only be assigned to the positively loaded labels, hence all words wd,1:N

in that document will be associated with those labels. As a result, document d only affects

those topic-word distributions φk that correspond to the topics (labels) of that document.

The above has been dubbed Labeled LDA or L-LDA by Ramage et al. (2009), who

claims that L-LDA outperforms support vector machines in identifying label-specific docu-

ment snippets and is competitive when it comes to discriminatively assigning labels to unseen

documents. Despite some contextual differences, L-LDA is in practice equivalent to Rubin’s

Flat-LDA (Rubin et al., 2012).

Figure 2 illustrates how the label information is incorporated to extend the baseline

LDA model. The full generative model of L-LDA is nearly identical to LDA, except for the

document-topic distribution θd:

θd ∼ DirK(α ·Ωd)

where Ωd is a K-dimensional 0-1 vector that indicates whether label k is part of document
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Table 2: The ten most likely words for five JEL codes

root E32 D82 J24 R31 I12

econom cycl agent skill hous mortal

cours model inform capit price health

signific busi princip human boom increase

student shock optim educ transact percent

research recess mechan labor home age

author aggreg privat school area birth

regress volatil effici worker buyer suggest

expeditur rate incent occup percent rate

call fluctuat alloc wage seller life

yield product select college rent effect
root is the generic label that is assigned to all documents to improve classification results of real labels

E32: Macroeconomics & Monetary Economics → Prices, Business Fluctuations & Cycles → Business

Fluctuations - Cycles

D82: Microeconomics → Information, Knowledge & Uncertainty → Asymmetric & Private Information -

Mechanism Design

J24: Labour & Demographic Economics → Demand & Supply of Labour → Human Capital - Skills -

Occupational Choice - Labour Productivity

R31: Urban, Rural, Regional, Real Estate & Transportation Economics → Real Estate Markets, Spatial

Production Analysis & Firm Location →Housing Supply and Markets

I12: Health, Education & Welfare → Health → Health Behaviour

d’s label set. This is the dynamic that forces all topic-loadings that are not part of the

document’s label set to zero while keeping the rest positive. It results in highly accurate

topic-word distributions for each label as can be seen in Table 2.

An important characteristic is the root label which is assigned to every single document.

The purpose of this label is to capture generic (academic) language and thus clean these words

from the actual JEL labels.

Shrinking a document’s topic-document distribution sets the stage for a noteworthy side

effect. Due to the fewer possible values, the iterative processes of Gibbs sampling and CAVI

during training time converge much faster and in a more stable way.
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3.2 Extension 2: Hierarchically Supervised LDA

The labels of the documents have an implicit structure which is illustrated in Figure 3. The

labels consist of one letter and two digits, like D42 and F31, where the letter stands for a

general category (level 1) such as microeconomics or international finance. The first digit

represents the first refinement within the general category (level 2) and the second digit

provides the final level of granularity (level 3 or leaf label). Therefore, it is to be expected

that JEL code D421 has a topic-word distribution very closely related to the JEL code D412.

More generally, neighbouring leaf labels tend to be highly similar and are, also for the human

reader, hard to distinguish between.

The idea of related topics within the LDA model has been investigated in a number

of papers (e.g. Blei and Lafferty (2006)), but these generally do not allow for pre-specified

correlations between the topics, whereas our dataset would require so. Additionally, the Semi-

Supervised Hierarchical Topic Model (SSHLDA) by Mao et al. (2012) introduces a promising

model which learns new topics automatically. Since the aim of this thesis is to classify

according to pre-specified label and not to identify new topics, SSHLDA would unnecessarily

complicate computations and derivations in this thesis, without any guarantee regarding

the correctness of the hierarchy. Dependency-LDA introduced by Rubin et al. (2012) does

account for dependencies between labels while also allowing for multiple labels per document.

However, Dependency-LDA would require creating positive loadings to all of the topics that

are related to the document’s labels which in turn decreases the discriminative power of

the model. Additionally, it is specifically designed to perform well on corpora with a large

number of labels whose frequencies follow a power law distribution. Since Dependency-LDA

outperforms other methods only for datasets with labels that follow a power law distribution,

this method has also not been pursued further.

Another promising model is found in Hierarchically Supervised LDA (HSLDA) by Perotte

et al. (2011) for which performing out-of-sample predictions is the primary aim. The base-

line LDA model is augmented with an entirely new mechanism that exploits the hierarchy

structure of the labels via zd,n. Figure 4 shows the graphical model for HSLDA. The top part

of the model is a baseline LDA model in which actual latent topics are searched for. The

information on the document labels is integrated in the bottom part of the graphical model.
1D42: Microeconomics → Market structure, pricing → Monopoly
2D41: Microeconomics → Market structure, pricing → Perfect competition
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Figure 3: Label structure: JEL code tree

3.2.1 Generative Model

Before diving into the technical parts, a more intuitive explanation of the model’s mechanics

will be provided here. The most intuitive take on this model is to start off at node aroot,d.

This node serves as a running variable in a probit model and follows a normal distribution

with mean z̄1ηroot,1+z̄2ηroot,2+· · ·+z̄Kηroot,K , where z̄k represents the current share of topic k

in the document-topic mixture. During testing a given label will be assigned to a document

only if its corresponding running variable exceeds a pre-specified threshold. If that is the

case, the label dummy yl,d for label l is set to one. The running variables further down the

label tree are dependent on the other label dummies. During testing they are truncated from

above at the threshold if its parent has a value below the threshold. It is therefore impossible

for a label down the label tree to turn positive when any of its ancestors is negative. As all

labels are known during training time, the running variables are always forced either below

or above the threshold. By doing so, the regression coefficients ηl,k are trained to reflect the

interaction between the observed labels and the latent topics identified in the top part of the

graphical model.

Note that the top part that identifies latent topics is not the actual aim of this model.

The crucial aspect are the running variables and the label dummies: the latent topics are

merely a tool to help achieve that goal.
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Figure 4: Graphical model: Hierarchically Supervised LDA

Except for the specification of α and β3, this generative model corresponds to the original

HSLDA:

1. For each topic k = 1, . . . ,K

• Draw a distribution over words φk|β ∼ DirV (β)

2. For each label l ∈ L

• Draw a label application coefficient ηl|µ,σ ∼ NK(µ,σ), where µ contains K

identical values and σ = diag(σ) for σ > 0..

3. For each document d = 1, . . . , D

• Draw topic proportions θd|α ∼ DirK(α)

• For n = 1, . . . , Nd

- Draw a word assignment zd,n|θd ∼ CatK(θd)

- Draw a word wd,n|zd,n,φ ∼ CatV (φzd,n)

• Set the root node yroot,d = 1

• For each label l in L, starting at the children of root

3The original prior structure uses Hierarchical Dirichlet Priors (HDP). Due to its complex construct and a

lack of added value in our context, this aspect is excluded from the test. The Python code does feature HDP.

22



- Draw al,d|z̄d,ηl, ypa(l),d ∼

 N (z̄Td ηl, 1), if ypa(l),d = 1

N (z̄Td ηl, 1)1{al,d<0}, if ypa(l),d = −1
- Apply label l to document d according to

yl,d|al,d =

 1 if al,d > 0

−1 else

where z̄Td = (z̄1, . . . , z̄K) are the fractions of words that are assigned to topic k in document

d, i.e. z̄1 = 1
Nd

∑Nd
n=1 1{zd,n=k}. This may be regarded as an intermediate estimate of θd.

The hierarchical coupling of the regression coefficients ηl creates a posteriori dependence

which causes label predictors deeper in the hierarchy to focus on distinguishing features

between a label’s levels.

3.2.2 Gibbs Sampling

Collapsed Gibbs sampling is used for approximate inference in HSLDA. Whereas the baseline

LDA model collapsed out all latent variables except zd,n, HSLDA involves two additional

latent conditional distributions, namely al,d and ηl.

• The conditional posterior distribution of the words’ topic assignments zd,n used in this

paper differs in some important ways from the original HSLDA specifications. Instead

of conditioning on the running variables a, we will condition on y. The reason for this

is discussed a bit further below. This leads to

p(zd,n|z−d,n,y,w,η, α, β) = p(y, zd,n|z−d,n,w,η, α, β) · p(z−d,n,w,η, α, β)
p(z−d,n,y,w,η, α, β)

∝ p(yd, zd,n|z−d,n,w,η, α, β)

= p(yd|zd,n, z−d,n,w,η, α, β) · p(zd,n|z−d,n,w,η, α, β)

= p(yd|z,η) · p(zd,n|z−d,n,w, α, β)

where the conditioning sets of both terms could be reduced in the final line, because

those nodes are outside the relevant Markov blanket (Lemma 2), and zd,n and η are

d-separated by al,d (Lemma 3). Considering that the variables in yd can only take
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values in {0, 1}, we know that

p(yd|z,η) =
∏
l∈Ld

p(yl,d = 1|z,η)yl,d · p(yl,d = 0|z,η)1−yl,d

=
∏
l∈Ld

p(al,d > c|z,η)yl,d · p(al,d < c|z,η)1−yl,d

=
∏
l∈Ld

∫ ∞
c

exp
{
−1

2(z̄Td ηl − al,d)2

}
dal,d ·

∏
j /∈Ld

∫ c

−∞
exp

{
−1

2(z̄Td ηj − aj,d)2

}
daj,d (19)

This derivation differs in two ways from the original HSLDA formulation. Firstly, the

original HSLDA takes only the product for present labels into account, thus effectively

ignoring the second term. This is justified by the assumption that absent labels may

actually be part of the document’s true label set as opposed to its observed label set,

so the absent labels are not restricted to be below the threshold. This implies that the

second set of integrals in (19) are evaluated from −∞ to ∞. Since these integrals are

proportional to probability density functions, they can be ignored. For the corpora in

this thesis, however, it is implicitly assumed that the labels assigned to a document

indicate that paper’s true present (positive) labels, and therefore also its absent (nega-

tive) labels. Secondly, this paper focuses on p(yl,d|z,η) (i.e. the conditional probability

that al,d is larger or smaller than threshold c) instead of p(al,d|z,η). The reason being

that the former quantifies the distance from the threshold better than the latter and

thus also captures the "magnitude of presence" more accurately.

The second term in (19) is equivalent to the results in Section 2.2 (Eq. 11):

p(zd,n|z−d,n,w, α, β) =
nwi−i,(k)

+ β

n−i,(k) + V β
·
nk−i,(d) + α

n−i,(d) +Kα

• The conditional posterior distribution of the regression coefficients ηl corresponds to

the least squares regression results with priors µ and σ conditional on the available

data. In the statistics literature, this is referred to as a ridge regression:

p(ηl|z,a, µ, σ) = N (µ̂l, Σ̂)

where

µ̂ = Σ̂

(
1µ
σ

+ Z̄Tal
)

and Σ̂−1 = IKσ−1 + Z̄T Z̄

• The conditional posterior distribution of the running variables al,d is closely related to

the model specification for al,d | z̄d,ηl, ypa(l),d. The difference is that the probability is
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Figure 5: Graphical model: CascadeLDA

forced to zero (truncated) if the is-a hierarchy between yl,d and al,d is violated. This

results in

p(al,d|z,Y,η) ∝

 exp{−1
2
(z̄Td ηl − al,d)2}1{al,dyl,d>0} if ypa(l),d = 1

exp{−1
2
(z̄Td ηl − al,d)2}1{al,dyl,d>0}1{al,d<0} if ypa(l),d = −1

3.3 Extension 3: CascadeLDA

CascadeLDA is designed to take advantage of the hierarchy structure in the labels with a

different approach from the HSLDA mechanism. A foreseeable issue with the previously

discussed extensions is that it seems unlikely for the topic-word distributions φk to be dis-

criminative between sibling labels. By focusing on the entire corpus -or global scope- the

topic-word distributions of leaf labels are bound to be polluted by the same dominant words

that dominate their siblings’ (and parents’) topic-word distributions. On the one hand, this

does represent that leaf label’s topic-word distribution, but on the other hand it does not

help us in discriminating between sibling labels. CascadeLDA aims at finding discriminating

features between sibling nodes by zooming in on a single (non-leaf) label at a time. The local

scope then serves as a magnifying glass for the differences between sibling nodes.

Before proceeding, it is useful to be clear about the terminology used to explain Cas-

cadeLDA. Firstly, the terms sibling label and neighbour label may be used interchangeably.

Secondly, leaf labels are not necessarily level 3 labels. As the name suggests, it refers to the

most detailed labels in the label tree. If the model ignores the level 3 labels, then the level

2 automatically become the leaf labels. Thirdly, all labels with descendants (i.e. all non-leaf

labels) can serve as parent labels. Similarly, all labels except the root-label can serve as
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child labels. Fourthly, each non-leaf label serves as the basis for a local scope. A local scope

may also be referred to as neighbourhood or family scope.

The idea of CascadeLDA is to train an ensemble of L-LDA models in different local scopes.

Each non-leaf label serves as a starting point of a local scope once during training time. This

non-leaf label is called the parent label for that scope. All documents that have the parent

label in their label sets are retained in the local scope, whereas all other documents fall

outside the scope. For the retained documents the label sets are obfuscated to only contain

the parent’s children labels (i.e the labels that descent from the parent label in Figure 3). The

remaining documents and labels are referred to as subcorpus. After creating the subcorpus,

L-LDA is performed on it. As a final, but crucial, manipulation of the subcorpus, a generic

label is added to each document’s label set in addition to the children labels. This is the

local scope analog of the root-label.

Upon discarding all non-child labels, all non-family features of a document will be assigned

to the generic label during training. In fact, all features shared by the documents in the

subcorpus are assigned to the generic label. This includes generic parent label features. The

only parts of a document that are likely to be attributed to the children labels are the ones

that set a child label apart from its siblings.

After the L-LDA model in a local scope converged, the resulting topic-word distributions

for the children labels are retained in the CascadeLDA model. Typically, CascadeLDA will

then cascade down the label tree and choose one of the former child labels as the next parent

label. This process is continued until all non-leaf labels have served as a parent label. After

cascading down all branches, the CascadeLDA should have the topic-word distributions that

distinguish sibling labels from each other.

In the classic L-LDA approach only leaf labels are considered labels. That is, no topic-

word distribution is identified for e.g. the non-leaf label D8. In CascadeLDA, however, all

non-leaf labels also have their own topic-word distributions. It may seem like a small detail,

but leads to an important characteristic of CascadeLDA, because the topic-word distributions

are only valid (i.e. usable) in their respective scope. A discriminating feature in a local scope

may very well be completely uninformative in the global scope. To see why, consider a human

family in which the children are recognised based on their hair colour. Even though this may

help in their family home, it will not suffice to identify the children outside the family setting.

This creates a challenge during testing time: in which scope should an unseen document

be tested? The process of testing starts at the root and attempts to assign the document to
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one or more level 1 labels, in the same way L-LDA is applied for classification. After this, the

testing procedure cascades down to each of the promising level 1 labels and the document’s

content is fitted to that parent label’s local scope to discriminate between its children labels.

This procedure is continued until all promising branches are pursued. A discussion on which

labels are considered ’promising’ is postponed to Section 5.1.

Beware of certain dynamics that should be handled with caution. Consider the situation

in which the words for a test document are convincingly assigned to e.g. label B. As a result,

the model will zoom in on label B and make it the parent in the following local scope. Here

it may occur that the test document does not contain any features that allow for recognition

of B’s children, even though the document really is a member of the B-family. As a result,

all words in the test document are assigned to the generic label and no further paths are

considered in this branch and the prediction strands at a non-leaf label. For the datasets

we are using this is not a favourable characteristic, because only leaf labels are assigned to

documents.

4 Data and Preprocessing

Two corpora containing JEL-labeled, academic texts are at our disposal to which the methods

discussed are applied.

The first corpus consists of 4,635 abstracts that each contain an average of 60 (standard

deviation: 18.9) unique tokens. In order to obtain a wide range of topics, the abstracts were

gathered from different journals including American Economic Journals with the speciali-

sation journals Applied Economics, Economic Policy, Macroeconomics and Microeconomics.

The creator of the JEL codes, the Journal of Economic Literature, is also the source of nu-

merous abstracts in this research. Thus, the corpus should constitute a representative sample

of the relevant academic economic literature of the past 20 years.

The other corpus is a collection of 1,422 full-text academic articles. Approximately half of

the articles correspond to the same documents as the first corpus. The other half stems from

the Collaborative Research Center 649: Economic Risk which is part of the interdisciplinary

Center for Applied Statistics and Economics. All full-text articles have been gathered as PDF

documents. After extracting the text from the documents all tables, images and non-text

data has been removed.4 The documents contain on average 5,444 unique words (standard

4 The Python source code: https://github.com/KenHBS/pdf_to_text
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Abstracts Abstracts Full texts Full texts

until level 2 until level 3 until level 2 until level 3

Nr. of documents 4,635 4,635 1,422 1,422

Nr. of words per doc. 59.8 59.8 5,444 5,444

Leaf labels only:

- Nr. of labels 103 391 86 295

- Nr. of labels per doc. 2.9 3.6 3.0 3.5

- Distinct label sets 2,883 3,813 900 1.132

Incl. non-leaf labels:

- Nr. of labels 122 512 103 398

- Nr. of labels per doc. 5.3 8.8 5.13 8.7

Table 3: Summary statistics of the corpora

deviation: 2,228).

After training the classification models, the next step is to test and evaluate its effec-

tiveness. As is standard in classification problems, the model will be applied to unseen

documents, also known as the test set. Even though labels are available for the test set -

making them theoretically suitable to use for training - all documents in the test set have

been isolated from the model during training. Failing to strictly split training data from

test data is likely to lead to overfitting and the external validity of the classification would

immediately be compromised.

The documents are labeled by humans. Authors have a subjective interpretation of the

paper’s semantic topics. This interpretation may or may not align well with the way other

authors label their papers. This leads to inconsistent labelling of documents and is also

known as inter-indexing inconsistency (Hamill and Zamora, 1980). It is useful to keep this

potential flaw in the data quality in mind when interpreting the results of the model.

Labels that are used in less than 4 documents were removed from the datasets, due to a

lack of data to create reliable predictions. In theory, 989 JEL labels exist (level 1, level 2

and leaf labels) of which 846 are leaf labels. To see what portion of the labels was retained

after cleaning the labels please refer to Table 3.

All texts are transformed to bags-of-words and stemmed with the Porter Stemmer using

the standard settings of the Python module gensim (Řehůřek and Sojka, 2010).
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5 Evaluation Methods and Experiment Setup

In this section we will discuss the challenges faced during the task of classifying documents

with the particular corpora at hand. Furthermore, the metrics that are used to evaluate the

predictive quality of the models are introduced and discussed.

5.1 Challenges in Classification

To point out the challenges faced when predicting a document’s JEL labels, an elaborate

overview on the differences between the most basic classification methods and the LDA

framework adopted in this paper will be given in this subsection. Additionally, it is important

to stress the influence that classification methods and parameters (e.g. thresholds) may have

on the quality of classifications.

The first difference between common use cases of classification models and this thesis is

the number of classes in the problem. Elementary classifications focus on binary classification,

that is, a model is trained to predict either zero or one (false or true) for a subject. Our setting

is one of multi-class classification in which every JEL leaf label is considered its own class.

Instead of predicting a zero or one, a model is trained to choose between K values, where K

is the number of classes. Roughly two techniques exist to approach the multi-class problem:

one-vs-all and one-vs-one. Multiple classifiers are needed in either case, because K classes

need to be separated either way. The one-vs-all strategy creates a classifier for every class

to separate itself from all other subjects. In order to predict the class of an unseen instance,

every separating function is applied to that instance and thus it is assigned K values. The

discriminating function that produces the highest score is chosen, because it supposedly

separates itself the best from the rest. If a number of classes are more closely related than

one distant class, the one-vs-all approach will tend to wrongfully predict the distant class.

This is because the two related classes are hard to separate from each other and therefore

they tend to rarely distinguish themselves from the rest. The one-vs-one approach does not

suffer from this setting, because it creates a single classifier between every combination of

two classes, resulting in K(K − 1)/2 classifiers. The class that "wins" the most one-on-one

comparisons will be the final prediction of a one-vs-one.

Secondly, a single instance may be assigned to more than one class. This is known

as a multi-label classification problem. Methods dealing with such cases either transform

the problem to a single-label problem or transform a single-label algorithm to match the

multi-label requirement (Read et al., 2011; Tsoumakas and Katakis, 2007). A profound
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transformation method is the binary-relevance method which applies a binary transformation

to each label. That is, all labels are trained and predicted independent of each other, thus

ignoring dependence structures between the labels. Selecting the threshold for including a

label in the prediction requires more thought than in the single-label case, too. This threshold

can either be defined in terms of a label’s probability regardless of the other labels or all label

probabilities are ranked and the N most probable labels are predicted. Surely, a hybrid of

these two is also possible.

To put the above in perspective with the LDA extensions in this paper, note that HSLDA

is a model designed for classification and produces proper probabilities, whereas L-LDA and

CascadeLDA produce document-topic mixtures for each test document. Lets elaborate a

bit: The fundamental aim of LDA is to learn topic-word distributions and document-topic

mixtures. Establishing topic-word distributions could be considered the aim during training

time, whereas the document-topic distribution is the important result during testing time.

The outcomes of L-LDA and CascadeLDA are mixtures of topics which could be interpreted as

the share of the document concerned with those topics. For a given document,∑K
k=1 θd,k = 1.

With this in mind, also consider that multiple labels (eight maximum) may be applied to a

single document. Now it becomes clear that even though a label may only account for 10

percent of the document mixture, this may still constitute a significant share in the document.

On the other extreme, posterior inference on an unseen document may result in a 90 percent

share of a given label and the remainder is allocated to another label. In such a case, a single

label as the prediction seems more appropriate. Hence, the label’s share in the document-

topic mixture may not be interpreted as the probability of that label being present in the

document. Therefore, it would be inappropriate to drive the decision of including a label in

the prediction solely by the share in the document-topic mixture. A more suitable approach

would incorporate a ranking of the document-topic mixtures and only include low share labels

if they are the third or fourth most significant label. This is the approach used in this paper.

The exact features of this hybrid prediction rule vary among the datasets and models.

As mentioned above, a significant weakness of the one-vs-all approach (see the paragraph

on multi-classification) is that it favours classes farther away from other classes. If a number

of classes are located very closely together, they are unlikely to be identified at all by a one-vs-

all approach. This is where CascadeLDA comes in. Rather than focusing on all documents

and classes, it takes a subset of both and aims to discriminate between the neighbouring

classes (previously referred to as siblings). This still constitutes a one-vs-all approach, albeit
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within a given local neighbourhood where distant neighbours are unlikely. CascadeLDA may

be viewed as an ensemble of one-vs-all approaches. Creating such collections of multi-class

subproblems is also referred to as hierarchical classification (Silva-Palacios et al., 2017).

5.2 Metrics for Classification Quality

A variety of metrics exist that help evaluate the quality of classification results. None of them

captures the notion of classification quality perfectly. Therefore, each metric tends to focus

on a different aspect of classification. It is thus very possible that model A outperforms model

B according to one metric, but is inferior in terms of another metric. The multi-label nature

adds complexity to the evaluation metrics and numerous approaches have been proposed

(Tsoumakas and Katakis, 2007). A thorough comparison between the LDA extensions will

therefore require an array of metrics for all corpora, label depths and models.

Before presenting the actual metrics it is appropriate to put the choice of metrics into

context and be clear about what features they do and do not capture. To illustrate this,

lets take a step back and focus on some of the LDA mechanisms that may cause inflated

or deflated quality metrics. Recall that the Gibbs update for zd,n in Section 2.2 consists

of two parts. One concerns the probability that word wd,n is part of topic k via the topic-

word distribution, whereas the other term is related to document d’s current document-topic

mixture. This causes the update rule to favour currently present topics while updating zd,n.

One consequence of this is that small document-topic mixtures tend to vanish over the course

of iterations to the benefit of already present topics. This is the root of two potential biases

in classification metrics.

First of all, if the number of labels is large and some of the topic-word distributions are

very similar, there is a risk of getting off on the wrong foot. As long as the topic-word

distributions are nearly identical, there is no reason for the Gibbs sampler to move away

from its current label in favour of its almost identical neighbour. As a result, LDA may

often predict neighbours of a document’s labels. In the setting of document classification,

misclassifying a label with its neighbour should be regarded less of a misclassification than

predicting a label from the other side of the spectrum. Due to the generative nature of

LDA, such ’loss asymmetries’ in misclassification are not implementable in a straightforward

fashion if at all. For conventional machine learning methods, asymmetric loss functions can

be implemented during training already thus affecting a model’s actual classification ability

(Abe et al., 2004; Zhou and Liu, 2006). For the LDA extensions in this paper, however,
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the asymmetric costs of misclassification could be used to get a more accurate metric for

classification quality, rather than actually affecting the predictions.

A second issue that originates from the generative mechanics of LDA is concerned with

the majority of topics having zero document-topic mixtures5. As discussed before, numerous

chains of events can cause a real label to be absent in the predictions. When all small share

topics are shrunk to zero it is not uncommon for 90 percent of the labels to have a document-

topic mixture share of zero. By ranking the predictions of the labels in a descending order of

presence, the trailing 90 percent of the labels are randomly sorted. Rank based metrics that

rely on the distance between the lowest ranked true label and highest ranked false label are

therefore not useful for this research.

For each test document the K labels are ranked from most- to least likely. Based on this

ranking the following rank-based evaluation metrics are calculated:

• AUCROC : The Area under the Curve (AUC) of the Receiver Operating Characteristic

(ROC)-curve takes values between zero and one for every test document. Every point on

an ROC-curve, (FPR(ci), TPR(ci)), is the False Positive Rate (FPR) vs. True Positive

Rate (TPR) at a threshold ci, where ci moves from zero to one. FPR = FP
FP + TN

and

TPR = TP
TP+FN

, where FP is False Positive, TN is True Negative, TP is True Positive

and FN is False Negative. At any given threshold ci the labels will be given value

true or false. FP, TN, TP and FN are the values in the cells of a contingency table

at threshold ci. The AUCROC therefore captures the accuracy in ranking. It may be

interpreted as the probability that a randomly selected subject with label k is predicted

to have a higher probability than a random subject without label k (Hanley and McNeil,

1982). When the ranking of likelihoods of absent labels and present labels are scattered

randomly, the AUCROC will be 0.50, whereas a perfect prediction results in 1. Hence,

the value of AUCROC should always be compared to 0.50. After obtaining an AUCROC

for every test document, they are averaged to get the macro AUCROC as a single metric

for a model’s predictive capability:

AUCROC, macro = 1
Dtest

Dtest∑
d=1

AUCROC,d

• One-Hit: Percentage of documents for which the highest ranked label is correct.
5This is relevant only for L-LDA and CascadeLDA. In the case of HSLDA, p(yl,d = 1|z,η) is used to

classify documents, whereas for L-LDA and CascadeLDA the document-topic mixture is used as a basis for

classification
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• Two-Hit: Percentage of documents for which at least one of the two highest ranked

labels is correct.

• F1-Score: Measure the harmonic mean between the TPR and 1-FPR. Since FPR may

be considered as the probability of a false-alarm, either term is considered favourable

regarding classification quality. F1-score is also measured regarding a threshold ci. For

this paper, the threshold that produces the highest F1-score for a given test document

is chosen. This threshold is referred to with the subscript ’opt’.

F1doc1 = 2 · TPRopt · (1− FPRopt)
TPRopt + (1− FPRopt)

(20)

The F1-scores of all test documents are then averaged to obtain the model’s F1 score:

F1macro = 1
Dtest

Dtest∑
d=1

F1d

A word of caution is in place when interpreting and comparing the reported AUCROC metrics.

By implementation, the L-LDA and CascadeLDA can obtain no predictions at all for a given

document. Such documents are ignored while calculating evaluation metrics. To understand

why this is done, we will inspect the cases in which the models produce no predictions. In the

case of L-LDA this occurs when all word-topic assignment zd,n are assigned to the root label.

As the root label is not a valuable prediction it is actively removed from the predictions as

to not inflate the predictive quality for every single document. For CascadeLDA, the model

may get stuck on its way down (see the end of Section 3.3). Because the evaluation metrics

throw an error if all document-topic mixtures are zero, such documents are removed. All in

all, CascadeLDA tends to end up with no solutions more often than L-LDA, especially in the

academic abstract corpus. For the full text corpus, however, this rarely happens.

5.3 Experiment Setup

The quality of LDA and its extensions relies heavily on a number of settings. In this subsection

the choices regarding hyperparameters and model settings are presented and discussed.

All models were estimated by means of collapsed Gibbs sampling (CGS). Even though

more methods are available in theory, the only realistic competitor to CGS is CAVI. As

pointed out by Asuncion et al. (2009), the claimed differences in performance between the

different means of modelling are mainly attributable to hyper-parameter configurations. The

choice for CGS was mainly driven by its relative simplicity and availability of rudimentary

code examples.
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The Gibbs sampler was programmed to run between 1,500 and 2,000 iterations in the

L-LDA model. For reasons that will be discussed in Section 6.1, the CascadeLDA sampler

produces the best results when less than 5 iterations per subcorpus are used.

The importance of hyperpriors has been pointed out in many papers (e.g Asuncion et al.

(2009); Wallach et al. (2009)), but conclusive settings regarding the magnitude of the priors

do not exist. After testing multiple magnitudes for the hyperpriors, the best results are

achieved with α equal to 0.1 and β equal to 0.01. Without going into too much detail, it

is notable that a larger β of, say, 0.1 actually produced better results in cases where the

number of labels are small. Despite the lack of a highly detailed grid search, a considerable

improvement was observed with relatively small changes in the hyperpriors.

To speed up the iterations, the documents are saved as (token-id, frequency) tuples.

That is, instead of recording e.g. "market" a hundred times in a bag-of-words, it is recorded

once, but is assigned a weight of hundred. Upon resampling, all instances of a word in a

document are reassigned at the same time. This saves significant computational costs and

was a necessary step to handle the full text corpus.

The least used words and the most used words were removed from the corpus. In addition

to saving computational costs this should also remove noisy non-words that may have entered

the files in the process of extracting text from the PDFs. Based on test runs, however, no

pruning of the dictionary produced the best results in the corpus with abstracts. For the

corpus with full texts, the results were unaffected by removing tokens that occur in less than 1

percent of the documents. Pruning the dictionary this way reduces the size of the vocabulary

from 430,000 tokens to approximately 12,500. This resulted in a significant increase in speed.

After pruning the dictionary and saving the document as (token-id, frequency) tuples, the

size of the full text corpus was reduced from nearly 7 million words to less than 1.4 million,

without affecting predictive quality. Recall that every single word is assigned a topic in every

single iteration. Hence, the effort to save computation time has actually resulted in a cost

reduction of about 80 percent.

The number of topics K is determined by the number of unique labels in the corpus for

L-LDA and CascadeLDA. In HSLDA, however, the number of topics K does not refer to the

number of labels, but instead indicates the number of latent topics that should be used in

running the probit regression on label presence. Upon personal inspection of the JEL codes

a suitable number of semantic topics that were likely to be distinguishable was established

to be 15.
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By incorporating a Hierarchical Dirichlet Process (HDP), the hyperprior α was made

flexible by estimating it based on the available data (Teh et al., 2006). The quality and

stability of the latent topics are supposed to improve by this extension (Wallach et al.,

2009). Unfortunately, the results for HSLDA were barely affected. Considering the trade-off

between the complexity of the Hierarchical Dirichlet Process and its added value, it will not

be covered in this paper.

6 Results

This section will present and discuss the classification quality of the models presented. The

metrics will be based on the different LDA extensions, two datasets and multiple levels of

detail in the labels. While comparing the models, much attention will be paid to the different

settings in which each model thrives. This will expose the strengths of the models and identify

the roots of their differences.

Despite promising features, some of the mechanics of HSLDA proved fatal for classifying

academic articles according to JEL codes. The classification metrics are neither presentable

nor interesting and have therefore been dismissed from this paper. Nevertheless, a detailed

discussion on the reason for this outcome will be provided in Section 6.2, as it is certainly

insightful.

6.1 L-LDA and CascadeLDA

Table 4 presents the evaluation metrics in multiple settings. No general consensus exists on

acceptable values for AUCROC. However, values between 0.50 and 0.65 are usually considered

poor, while values exceeding 0.90 are regarded as very good. Regardless of the interpretation

it is safe to say the classifiers perform better than random predictions.

All evaluation metrics improve as the label depths decrease. Particularly the 1-Hit and

2-Hit metrics show a large increase. This is an expected result that was briefly touched upon

in Section 5.2 when discussing the asymmetric costs of misclassifications. The notion that

classifying sibling labels should not be penalised as much as classifying far-away labels can

thus be implicitly incorporated by only considering labels up to level 2 in the label tree in

Figure 3. A downside, however, is that a slightly misclassified document is now scored as a

perfect prediction.

Another interesting finding is that neither model performed significantly better on the full

text corpus. One may therefore conclude that the added number of words did not add features
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Table 4: Evaluation metrics

Model D∗ Dataset (i, t)∗∗ AUCROC 1-Hit 2-Hit F1-Score

L-LDA 3 Abs. (2,000; 25) 0.862 0.655 0.779 0.536

L-LDA 2 Abs. (2,000; 25) 0.885 0.748 0.838 0.643

L-LDA 1 Abs. (2,000; 10) 0.898 0.817 0.929 0.789

CascadeLDA 3 Abs. (4 ; 2) 0.901 0.573 0.699 0.518

CascadeLDA 2 Abs. (4 ; 2) 0.934 0.748 0.860 0.680

CascadeLDA 1 Abs. (4 ; 2) 0.941 0.846 0.951 0.857

L-LDA 3 Full (1,500; 25) 0.818 0.524 0.727 0.514

L-LDA 2 Full (2,000; 25) 0.849 0.678 0.846 0.644

L-LDA 1 Full (1,500; 25) 0.922 0.916 0.979 0.863

CascadeLDA 3 Full (2 ; 2) 0.884 0.490 0.671 0.512

CascadeLDA 2 Full (2 ; 2) 0.906 0.678 0.804 0.656

CascadeLDA 1 Full (2 ; 2) 0.906 0.825 0.944 0.820

Python code available at https://github.com/KenHBS/LDA_thesis

∗: The label level (depth) considered in the analysis.

∗∗: Parameters settings: i is the number of iterations in the Gibbs sampler, t is the number of iterations

between consecutive saving of the Markov chain.

that help discriminate between labels. Both models apparently handle the (concentrated)

information in the abstracts well enough to achieve high quality separation between labels.

6.1.1 Number of Iterations

A feature that requires a thorough discussion is the fact the CascadeLDA performs best

with only 2 or 4 iterations of the Gibbs sampler. To explain this phenomenon, we need to

answer two questions: Firstly, why does it produce good results after such a small number

of iterations? Secondly, why does the performance not increase (in fact, it decreases) with

more iterations?

The answer to the first question lies in the fact that CascadeLDA breaks a large multi-

class problem down to multiple smaller multi-class problem. As the number of labels in each

subcorpus is reduced drastically compared to the entire corpus, a stable state of the Gibbs

sampler is expected to occur faster in each local scope. This expectation jumps to mind,

because the number of topics/labels to choose from while assigning values to zd,n is relatively
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small. As a result, the sampler in the subcorpus is more stable and settles in a steady state

faster.

The second question can be tentatively answered by a mechanism we refer to as the

gravitational pull of the generic label. Consider a document that contains four labels that

belong to different branches of the label tree. By investigating this document in a subcorpus,

three of those labels are obfuscated and only about 25 percent of that document’s words are

relevant to that local scope, because the other 75 percent belong to the obfuscated labels.

The majority of that 75 percent is expected to be assigned to the generic label. Recall that

the Gibbs update for the word-topic assignments favours topics that have a high document-

topic loading already. This mechanism was also discussed in Section 5.2, albeit in a different

setting. Over the course of iterations the generic label will be continuously favoured over the

child labels, that are supposed to share the remaining 25 percent. As a result, word-topic

assignments are gravitated towards the generic label and are gradually moved away from the

child labels they actually belong to.

The two-fold answer describes two separate mechanisms that influence the state of the

Markov chain simultaneously. Therefore, the argumentation that the Markov chain settles

faster in a stable state only holds in absence of the gravitational pull of the generic label. In

fact, the gravitational pull drags the Markov chain away from the optimal state and forces

CascadeLDA to terminate with a small number of iterations. As a result, the predictive

quality of CascadeLDA fluctuates heavily between runs.6

6.1.2 Speed Assessment

Now that we understand why less iterations are required in CascadeLDA, the next step

is to assess what that means in terms of computational speed. The forces that increase

CascadeLDA’s computational costs compared to L-LDA will be presented first. Afterwards,

the cost-saving mechanics are discussed. Finally, the advantage CascadeLDA has in terms of

speed will be illustrated with a timing experiment.

Even though the number of iterations is small in a single subcorpus, there are approxi-

mately 125 subcorpora that are analysed. Additionally, a single document occurs in multiple

local scopes. Even a document with only a single label occurs in three subcorpora: The first

is headed by root, and the second and third local scopes are headed by its level 1 and level

2 parents, respectively. Over the course of a single full iteration in CascadeLDA, a single
6The metrics presented in Table 4 correspond to the final runs of the model and are not necessarily the

best values that were obtained.
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document is analysed in at least three different local scopes.

The fewer number of iterations required are a tremendous push in terms of speed. Fur-

thermore, in L-LDA every topic-word assignment involves calculating a K-dimensional vector

of probabilities that is used to draw a value for zd,n. In CascadeLDA, the number of possible

labels, Klocal, is much smaller and therefore computation is sped up. This effect is the largest

if we considered all level 3 labels. Note, however, that even though the calculations of the

K-dimensional vector of probabilities are vectorised with numpy (van der Walt et al., 2011),

it still affects computational speed.

To avoid getting into a formal computational complexity analysis, a simple timing compar-

ison was performed. The settings that resulted in the highest predictive quality for abstracts

dataset were used for this assessment. The computation time reflects the time expired to

load, train, test and evaluate the models with 4,635 abstracts. The results serve as a mere

indication of the speed up and should not be interpreted as a formal statement. The timing

comparison will vary depending on the machine used to compute, but also the dataset and

the optimal settings are likely to influence the computation times of the models unequally.

Having said that, the CascadeLDA requires 13 minutes to finish the task, whereas L-LDA

ran for 300 minutes to attain a comparable predictive quality. Conservatively, CascadeLDA

is faster than L-LDA by a factor of more than 20.

On a final note, CascadeLDA produces the results for all three label depths in a single

run, whereas L-LDA requires training an entirely new model if the label depth is changed.

The reason being that CascadeLDA is trained to perform in every local scope and thus also

records topic-word distributions for non-leaf labels. L-LDA, on the other hand, only identifies

topic-word distributions for leaf labels. If, for whatever reason, a classification at every label

level is demanded, L-LDA will have to train three separate models.

6.2 HSLDA

HSLDA takes into account the hierarchical structure of the labels which was one of the main

features that peaked interest in this model. L-LDA in particular fails to acknowledge this

important piece of prior information. As a result, a suboptimal separation between sibling

labels is obtained. The quality of HSLDA to overcome this remains theoretically convincing.

The reason for the fatal HSLDA results lies in the structure of JEL codes.

Recall from Section 3.2 that a running variables al,d is assigned to every document d for

every label. al,d follows a (truncated) normal distribution with mean z̄Td ηl and variance 1.
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The mean of every running variable is thus a linear combination of a document’s K latent

topic mixtures and K regression coefficients. Simultaneously, al,d is forced to be below or

above the threshold, based on the presence of its parent label pa(l) in document d’s label set.

Upon integrating HSLDA in this thesis, the hope was that the labels down the hierarchy

would be separated from each other by their running variable means z̄Td ηl. Surely, within a

single document the document-topic mixtures z̄d are equal for both labels l and l′. Separation

of sibling labels l and l′ would thus only occur if the regression coefficients ηl differs from the

regression coefficient for label l′.

Note that the latent topics (whatever they may be) covered in sibling labels must be

nearly identical for the JEL code labels, since they cover almost identical topics. As a result,

the mechanism in HSLDA is unable to train discriminating regression coefficients.

At this point it may seem that HSLDA does not offer what it advertises. However,

consider a catalog with product descriptions that are assigned to main categories and subcat-

egories, such as the online catalog of Amazon.com. A single product may reside in multiple

subcategories of different top-level product categories. Lets consider a typical product like

sneakers. Sneakers appear in the top-level categories Sports & Outdoors and Clothing, Shoes

& Jewelry. Within Sports & Outdoors the sneaker may also occur in Athletic Clothing as

well as Sports Collectibles and so forth. In contrast to the JEL hierarchy, the sibling labels

in e.g. Athletic Clothing are not very similar to sneakers and can therefore be discriminated

very well. Taking into the account the prior information on all other products within a cer-

tain branch leads HSLDA to produce regression coefficients and latent topics that separate

sibling labels from each other. Unfortunately, this has proven to not be the case for JEL code

classification.

7 Conclusion

In conclusion, L-LDA and Cascade produce very comparable, high quality predictions in

both datasets. The speed at which CascadeLDA attains these results is faster by a factor of

roughly 20 to 25, but this is highly dependent on the label structure and general features

of the dataset. The increase in speed comes at the cost of less stability. HSLDA could

unfortunately not be included in the model comparison, due to the misalignment in label

structure between our datasets and the datasets used in the original paper.

No systematic differences in predictive quality can be found between the corpora of aca-

demic abstracts and full texts. Apparently, all discriminative features contained in the full
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texts are also present in the abstracts, as far as CascadeLDA and L-LDA are concerned.

7.1 Applications

The high quality predictions indicate that both L-LDA and CascadeLDA can be used to

provide suggestions for JEL code labelings of unseen papers. A practical use case for either

model would be to embed them in the uploading process of new academic articles. By

analysing the abstract of the new article, the author can be quickly provided with the top 5

or 10 labels, including their descriptions. The authors would then be able to select the most

fitting JEL codes by means of simple point-and-click. Such an implementation would have

two benefits. Firstly, only relevant labels will be suggested based on the actual content of the

paper (or abstract), leading to less subjective labelings. Secondly, the author would not have

to go through the list of JEL codes and search for the most suitable codes for the paper. In

the case of CascadeLDA, such a suggestion would take up less than half a second, whereas

L-LDA would require approximately 10 seconds to perform the task.

CascadeLDA could be used in more general settings as well. Within the scope of text

mining, it could be used to automatically archive new arrivals in a digital library. However,

applications outside of text mining are also possible. Topic modelling techniques are used

extensively in the field of bioinformatics for example to predict protein functions. As each

protein may perform multiple functions and sub-functions (Cerri et al., 2016), these functions

may be seen as labels and may be used the hierarchically predict the functions and sub-

functions of unseen protein sequences.

7.2 Future Research

The final part of the thesis will be dedicated to ideas that may improve the models and are

worth considering for future research.

An interesting concept to pursue is to prune the dictionary less crudely. The idea behind

reducing the dictionary is to remove words and thus shrink the uninformative word share.

Currently, words that occur in nearly all or barely any documents are removed from the

corpus. A more refined way of doing this is to run an exploratory L-LDA and identify the

top words for the generic label and remove them from the corpus. This is equivalent to

cutting out the most frequent words. The least frequent and uninformative words could also

be identified and cut away. To do so, the topic-word distribution matrix φ of the exploratory

L-LDA should be analysed. Recall that topic k represents a row φk,1:V . Instead of focusing
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on the rows, one could analyse the columns and search for columns with a column sum close

to zero. These columns correspond to words with low value in terms of identifying topics.

By reducing the corpus in this way, the noise is removed from the corpus and the succeeding

analysis will be more focused and less computationally expensive.

The idea of specialised pruning is particularly interesting for CascadeLDA for parent

nodes further down the JEL label tree. The subcorpus contains only documents that belong

(partially) to, say, label D8. In order to retain only relevant words for discriminating between

siblings, a specialised pruning would remove all generic D8 terms and all terms that are

irrelevant for D8. This will lead to a much smaller document-topic share of the ’rest’-label

and would thus overcome the risk of the gravitational pull. Therefore, this may stabilise

CascadeLDA’s performance.

From a computer science point of view, it would be interesting to thoroughly analyse the

computational complexity of the different models. This could formally validate the increase

in speed and potentially confirm the scalability of CascadeLDA.
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A Variational Factors in the Exponential Family

Let the full conditional of ym be a member of the exponential family, i.e.

p(ym|x,y−m) = h(ym) exp [ηm(x,y−m)T (ym)− a(ηm(x,y−m))] (21)

where h(ym) is the base measure; ηm(x,y−m) is the natural parameter, that always depends

on the known parameters/conditioning set; T (ym) are the sufficient statistics; and a(·) is the

log-normaliser

Using the general expression for exponential family members and the solution for q∗m(ym)

in (14)

q∗m(ym) ∝ exp [E−m(log p(ym|x,y−m))]

= exp [E−m (log{h(ym) exp [ηm(x,y−m)T (ym)− a(ηm(x,y−m))]})]

= exp E−m (log{h(ym)}+ ηm(x,y−m)T (ym)− a(ηm(x,y−m)))

= h(ym) exp [E−m{ηm(x,y−m)}T (ym)− E−m{a(ηm(x,y−m))}]

∝ h(ym) exp [E−m{ηm(x,y−m)}T (ym)]

The log-normaliser a(ηm(x,y−m)) is the normalising factor that ensures that the exponential

family member’s density integrates to one. Therefore, it may be ignored, because it acts as

a scaling constant in this optimisation problem.

The final expression reveals a crucial feature: the base measure h(ym) and sufficient statis-

tic T (ym) are the same for the variational factor q∗(ym) as they are for the full conditional.

This fact implies that the variational factor must be a member of the same exponential fam-

ily of distribution as the full conditional. The difference between the variational factor and

the full conditional lies only in the value of its natural parameters. In the variational factor

q∗(ym), the natural parameter is equal to E−m{ηm(x,y−m)} instead of ηm(x,y−m).
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